blob: 9d7af933bb765835e418d1b3d5648e4c0c7ee9d5 [file] [log] [blame]
//===--- ProtocolConformance.cpp - AST Protocol Conformance ---------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the protocol conformance data structures.
//
//===----------------------------------------------------------------------===//
#include "ConformanceLookupTable.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include "swift/AST/LazyResolver.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/Module.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/Substitution.h"
#include "swift/AST/Types.h"
#include "swift/AST/TypeWalker.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Support/SaveAndRestore.h"
using namespace swift;
Witness::Witness(ValueDecl *decl, SubstitutionList substitutions,
GenericEnvironment *syntheticEnv,
SubstitutionList reqToSynthesizedEnvSubs) {
auto &ctx = decl->getASTContext();
auto declRef = ConcreteDeclRef(ctx, decl, substitutions);
auto storedMem = ctx.Allocate(sizeof(StoredWitness), alignof(StoredWitness));
auto stored = new (storedMem)
StoredWitness{declRef, syntheticEnv,
ctx.AllocateCopy(reqToSynthesizedEnvSubs)};
ctx.addDestructorCleanup(*stored);
storage = stored;
}
void Witness::dump() const { dump(llvm::errs()); }
void Witness::dump(llvm::raw_ostream &out) const {
// FIXME: Implement!
}
ProtocolConformanceRef::ProtocolConformanceRef(ProtocolDecl *protocol,
ProtocolConformance *conf) {
assert(protocol != nullptr &&
"cannot construct ProtocolConformanceRef with null protocol");
if (conf) {
assert(protocol == conf->getProtocol() && "protocol conformance mismatch");
Union = conf;
} else {
Union = protocol;
}
}
ProtocolDecl *ProtocolConformanceRef::getRequirement() const {
if (isConcrete()) {
return getConcrete()->getProtocol();
} else {
return getAbstract();
}
}
ProtocolConformanceRef
ProtocolConformanceRef::getInherited(ProtocolDecl *parent) const {
assert((getRequirement() == parent ||
getRequirement()->inheritsFrom(parent)) &&
"not a parent of this protocol");
if (parent == getRequirement())
return *this;
// For an abstract requirement, simply produce a new abstract requirement
// for the parent.
if (isAbstract()) {
return ProtocolConformanceRef(parent);
}
// Navigate concrete conformances.
if (isConcrete()) {
return ProtocolConformanceRef(
getConcrete()->getInheritedConformance(parent));
}
llvm_unreachable("unhandled ProtocolConformanceRef");
}
ProtocolConformanceRef
ProtocolConformanceRef::subst(Type origType,
TypeSubstitutionFn subs,
LookupConformanceFn conformances) const {
auto substType = origType.subst(subs, conformances,
SubstFlags::UseErrorType);
if (substType->isOpenedExistential())
return *this;
// If we have a concrete conformance, we need to substitute the
// conformance to apply to the new type.
if (isConcrete())
return ProtocolConformanceRef(
getConcrete()->subst(substType, subs, conformances));
auto *proto = getRequirement();
// If the original type was an archetype, check the conformance map.
if (origType->is<SubstitutableType>()
|| origType->is<DependentMemberType>()) {
if (auto result = conformances(origType->getCanonicalType(),
substType,
proto->getDeclaredType())) {
return *result;
}
}
// If that didn't find anything, we can still synthesize AnyObject
// conformances from thin air. FIXME: gross.
if (proto->isSpecificProtocol(KnownProtocolKind::AnyObject)) {
if (substType->isExistentialType())
return *this;
ClassDecl *classDecl = nullptr;
auto archetype = substType->getAs<ArchetypeType>();
if (archetype) {
if (archetype->getSuperclass())
classDecl = archetype->getSuperclass()->getClassOrBoundGenericClass();
// A class-constrained archetype without a superclass constraint
// conforms to AnyObject abstractly.
if (!classDecl && archetype->requiresClass())
return ProtocolConformanceRef(proto);
} else {
classDecl = substType->getClassOrBoundGenericClass();
}
assert(classDecl);
// Create a concrete conformance based on the conforming class.
SmallVector<ProtocolConformance *, 1> lookupResults;
classDecl->lookupConformance(classDecl->getParentModule(), proto,
lookupResults);
return ProtocolConformanceRef(lookupResults.front());
}
// FIXME: Rip this out once ConformanceAccessPaths are plumbed through
auto *M = proto->getParentModule();
return *M->lookupConformance(substType, proto, nullptr);
}
Type
ProtocolConformanceRef::getTypeWitnessByName(Type type,
ProtocolConformanceRef conformance,
Identifier name,
LazyResolver *resolver) {
// For an archetype, retrieve the nested type with the appropriate
// name. There are no conformance tables.
if (auto archetype = type->getAs<ArchetypeType>()) {
return archetype->getNestedType(name);
}
// Find the named requirement.
AssociatedTypeDecl *assocType = nullptr;
auto members = conformance.getRequirement()->lookupDirect(name);
for (auto member : members) {
assocType = dyn_cast<AssociatedTypeDecl>(member);
if (assocType)
break;
}
// FIXME: Shouldn't this be a hard error?
if (!assocType)
return nullptr;
if (conformance.isAbstract())
return DependentMemberType::get(type, assocType);
auto concrete = conformance.getConcrete();
if (!concrete->hasTypeWitness(assocType, resolver)) {
return nullptr;
}
return concrete->getTypeWitness(assocType, resolver);
}
void *ProtocolConformance::operator new(size_t bytes, ASTContext &context,
AllocationArena arena,
unsigned alignment) {
return context.Allocate(bytes, alignment, arena);
}
#define CONFORMANCE_SUBCLASS_DISPATCH(Method, Args) \
switch (getKind()) { \
case ProtocolConformanceKind::Normal: \
static_assert(&ProtocolConformance::Method != \
&NormalProtocolConformance::Method, \
"Must override NormalProtocolConformance::" #Method); \
return cast<NormalProtocolConformance>(this)->Method Args; \
case ProtocolConformanceKind::Specialized: \
static_assert(&ProtocolConformance::Method != \
&SpecializedProtocolConformance::Method, \
"Must override SpecializedProtocolConformance::" #Method); \
return cast<SpecializedProtocolConformance>(this)->Method Args; \
case ProtocolConformanceKind::Inherited: \
static_assert(&ProtocolConformance::Method != \
&InheritedProtocolConformance::Method, \
"Must override InheritedProtocolConformance::" #Method); \
return cast<InheritedProtocolConformance>(this)->Method Args; \
} \
llvm_unreachable("bad ProtocolConformanceKind");
/// Get the protocol being conformed to.
ProtocolDecl *ProtocolConformance::getProtocol() const {
CONFORMANCE_SUBCLASS_DISPATCH(getProtocol, ())
}
DeclContext *ProtocolConformance::getDeclContext() const {
CONFORMANCE_SUBCLASS_DISPATCH(getDeclContext, ())
}
/// Retrieve the state of this conformance.
ProtocolConformanceState ProtocolConformance::getState() const {
CONFORMANCE_SUBCLASS_DISPATCH(getState, ())
}
bool
ProtocolConformance::hasTypeWitness(AssociatedTypeDecl *assocType,
LazyResolver *resolver) const {
CONFORMANCE_SUBCLASS_DISPATCH(hasTypeWitness, (assocType, resolver));
}
std::pair<Type, TypeDecl *>
ProtocolConformance::getTypeWitnessAndDecl(AssociatedTypeDecl *assocType,
LazyResolver *resolver) const {
CONFORMANCE_SUBCLASS_DISPATCH(getTypeWitnessAndDecl, (assocType, resolver))
}
Type ProtocolConformance::getTypeWitness(AssociatedTypeDecl *assocType,
LazyResolver *resolver) const {
return getTypeWitnessAndDecl(assocType, resolver).first;
}
Witness ProtocolConformance::getWitness(ValueDecl *requirement,
LazyResolver *resolver) const {
CONFORMANCE_SUBCLASS_DISPATCH(getWitness, (requirement, resolver))
}
/// Determine whether the witness for the given requirement
/// is either the default definition or was otherwise deduced.
bool ProtocolConformance::
usesDefaultDefinition(AssociatedTypeDecl *requirement) const {
CONFORMANCE_SUBCLASS_DISPATCH(usesDefaultDefinition, (requirement))
}
bool ProtocolConformance::hasFixedLayout() const {
// A conformance/witness table has fixed layout if type has a fixed layout in
// all resilience domains, and the conformance is externally visible.
if (auto nominal = getInterfaceType()->getAnyNominal())
if (nominal->hasFixedLayout() &&
getProtocol()->getEffectiveAccess() >= Accessibility::Public &&
nominal->getEffectiveAccess() >= Accessibility::Public)
return true;
return false;
}
GenericEnvironment *ProtocolConformance::getGenericEnvironment() const {
switch (getKind()) {
case ProtocolConformanceKind::Inherited:
case ProtocolConformanceKind::Normal:
// If we have a normal or inherited protocol conformance, look for its
// generic parameters.
return getDeclContext()->getGenericEnvironmentOfContext();
case ProtocolConformanceKind::Specialized:
// If we have a specialized protocol conformance, since we do not support
// currently partial specialization, we know that it cannot have any open
// type variables.
//
// FIXME: We could return a meaningful GenericEnvironment here
return nullptr;
}
llvm_unreachable("Unhandled ProtocolConformanceKind in switch.");
}
GenericSignature *ProtocolConformance::getGenericSignature() const {
switch (getKind()) {
case ProtocolConformanceKind::Inherited:
case ProtocolConformanceKind::Normal:
// If we have a normal or inherited protocol conformance, look for its
// generic signature.
return getDeclContext()->getGenericSignatureOfContext();
case ProtocolConformanceKind::Specialized:
// If we have a specialized protocol conformance, since we do not support
// currently partial specialization, we know that it cannot have any open
// type variables.
return nullptr;
}
llvm_unreachable("Unhandled ProtocolConformanceKind in switch.");
}
bool ProtocolConformance::isBehaviorConformance() const {
return getRootNormalConformance()->isBehaviorConformance();
}
AbstractStorageDecl *ProtocolConformance::getBehaviorDecl() const {
return getRootNormalConformance()->getBehaviorDecl();
}
void NormalProtocolConformance::setSignatureConformances(
ArrayRef<ProtocolConformanceRef> conformances) {
auto &ctx = getProtocol()->getASTContext();
SignatureConformances = ctx.AllocateCopy(conformances);
#if !NDEBUG
unsigned idx = 0;
for (auto req : getProtocol()->getRequirementSignature()->getRequirements()) {
if (req.getKind() == RequirementKind::Conformance) {
assert(idx < conformances.size());
assert(conformances[idx].getRequirement() ==
req.getSecondType()->castTo<ProtocolType>()->getDecl());
++idx;
}
}
assert(idx == conformances.size() && "Too many conformances");
#endif
}
void NormalProtocolConformance::resolveLazyInfo() const {
assert(Resolver);
assert(isComplete());
auto *resolver = Resolver;
auto *mutableThis = const_cast<NormalProtocolConformance *>(this);
mutableThis->Resolver = nullptr;
mutableThis->setState(ProtocolConformanceState::Incomplete);
resolver->finishNormalConformance(mutableThis, ResolverContextData);
mutableThis->setState(ProtocolConformanceState::Complete);
}
void NormalProtocolConformance::setLazyLoader(LazyMemberLoader *resolver,
uint64_t contextData) {
assert(!Resolver && "already has a resolver");
Resolver = resolver;
ResolverContextData = contextData;
}
bool NormalProtocolConformance::hasTypeWitness(AssociatedTypeDecl *assocType,
LazyResolver *resolver) const {
if (Resolver)
resolveLazyInfo();
if (TypeWitnesses.find(assocType) != TypeWitnesses.end()) {
return true;
}
if (resolver) {
resolver->resolveTypeWitness(this, assocType);
if (TypeWitnesses.find(assocType) != TypeWitnesses.end()) {
return true;
}
}
return false;
}
std::pair<Type, TypeDecl *>
NormalProtocolConformance::getTypeWitnessAndDecl(AssociatedTypeDecl *assocType,
LazyResolver *resolver) const {
if (Resolver)
resolveLazyInfo();
auto known = TypeWitnesses.find(assocType);
if (known == TypeWitnesses.end()) {
assert(resolver && "Unable to resolve type witness");
resolver->resolveTypeWitness(this, assocType);
known = TypeWitnesses.find(assocType);
assert(known != TypeWitnesses.end() && "Didn't resolve witness?");
}
return known->second;
}
void NormalProtocolConformance::setTypeWitness(AssociatedTypeDecl *assocType,
Type type,
TypeDecl *typeDecl) const {
assert(getProtocol() == cast<ProtocolDecl>(assocType->getDeclContext()) &&
"associated type in wrong protocol");
assert(TypeWitnesses.count(assocType) == 0 && "Type witness already known");
assert((!isComplete() || isInvalid()) && "Conformance already complete?");
TypeWitnesses[assocType] = std::make_pair(type, typeDecl);
}
Type ProtocolConformance::getAssociatedType(Type assocType,
LazyResolver *resolver) const {
assert(assocType->isTypeParameter() &&
"associated type must be a type parameter");
ProtocolConformanceRef ref(const_cast<ProtocolConformance*>(this));
return ref.getAssociatedType(getType(), assocType, resolver);
}
Type ProtocolConformanceRef::getAssociatedType(Type conformingType,
Type assocType,
LazyResolver *resolver) const {
assert(!isConcrete() || getConcrete()->getType()->isEqual(conformingType));
auto type = assocType->getCanonicalType();
auto proto = getRequirement();
#if false
// Fast path for generic parameters.
if (isa<GenericTypeParamType>(type)) {
assert(type->isEqual(proto->getSelfInterfaceType()) &&
"type parameter in protocol was not Self");
return getType();
}
// Fast path for dependent member types on 'Self' of our associated types.
auto memberType = cast<DependentMemberType>(type);
if (memberType.getBase()->isEqual(proto->getProtocolSelfType()) &&
memberType->getAssocType()->getProtocol() == proto)
return getTypeWitness(memberType->getAssocType(), nullptr);
#endif
// General case: consult the substitution map.
auto substMap =
SubstitutionMap::getProtocolSubstitutions(proto, conformingType, *this);
return type.subst(substMap);
}
ProtocolConformanceRef
ProtocolConformanceRef::getAssociatedConformance(Type conformingType,
Type assocType,
ProtocolDecl *protocol,
LazyResolver *resolver) const {
// If this is a concrete conformance, look up the associated conformance.
if (isConcrete()) {
auto conformance = getConcrete();
assert(conformance->getType()->isEqual(conformingType));
return conformance->getAssociatedConformance(assocType, protocol, resolver);
}
// Otherwise, apply the substitution {self -> conformingType}
// to the abstract conformance requirement laid upon the dependent type
// by the protocol.
auto subMap =
SubstitutionMap::getProtocolSubstitutions(getRequirement(),
conformingType, *this);
auto abstractConf = ProtocolConformanceRef(protocol);
return abstractConf.subst(assocType,
QuerySubstitutionMap{subMap},
LookUpConformanceInSubstitutionMap(subMap));
}
ProtocolConformanceRef
ProtocolConformance::getAssociatedConformance(Type assocType,
ProtocolDecl *protocol,
LazyResolver *resolver) const {
CONFORMANCE_SUBCLASS_DISPATCH(getAssociatedConformance,
(assocType, protocol, resolver))
}
ProtocolConformanceRef
NormalProtocolConformance::getAssociatedConformance(Type assocType,
ProtocolDecl *protocol,
LazyResolver *resolver) const {
assert(assocType->isTypeParameter() &&
"associated type must be a type parameter");
assert(!getSignatureConformances().empty() &&
"signature conformances not yet computed");
unsigned conformanceIndex = 0;
for (auto &reqt :
getProtocol()->getRequirementSignature()->getRequirements()) {
if (reqt.getKind() == RequirementKind::Conformance) {
// Is this the conformance we're looking for?
if (reqt.getFirstType()->isEqual(assocType) &&
reqt.getSecondType()->castTo<ProtocolType>()->getDecl() == protocol)
return getSignatureConformances()[conformanceIndex];
++conformanceIndex;
}
}
llvm_unreachable(
"requested conformance was not a direct requirement of the protocol");
}
/// Retrieve the value witness corresponding to the given requirement.
Witness NormalProtocolConformance::getWitness(ValueDecl *requirement,
LazyResolver *resolver) const {
assert(!isa<AssociatedTypeDecl>(requirement) && "Request type witness");
assert(requirement->isProtocolRequirement() && "Not a requirement");
if (Resolver)
resolveLazyInfo();
auto known = Mapping.find(requirement);
if (known == Mapping.end()) {
assert(resolver && "Unable to resolve witness without resolver");
resolver->resolveWitness(this, requirement);
known = Mapping.find(requirement);
}
if (known != Mapping.end()) {
return known->second;
} else {
assert((!isComplete() || isInvalid()) &&
"Resolver did not resolve requirement");
return Witness();
}
}
void NormalProtocolConformance::setWitness(ValueDecl *requirement,
Witness witness) const {
assert(!isa<AssociatedTypeDecl>(requirement) && "Request type witness");
assert(getProtocol() == cast<ProtocolDecl>(requirement->getDeclContext()) &&
"requirement in wrong protocol");
assert(Mapping.count(requirement) == 0 && "Witness already known");
assert((!isComplete() || isInvalid() ||
requirement->getAttrs().hasAttribute<OptionalAttr>() ||
requirement->getAttrs().isUnavailable(
requirement->getASTContext())) &&
"Conformance already complete?");
Mapping[requirement] = witness;
}
SpecializedProtocolConformance::SpecializedProtocolConformance(
Type conformingType,
ProtocolConformance *genericConformance,
SubstitutionList substitutions)
: ProtocolConformance(ProtocolConformanceKind::Specialized, conformingType,
// FIXME: interface type should be passed in.
// assumes specialized conformance is always fully
// specialized
conformingType),
GenericConformance(genericConformance),
GenericSubstitutions(substitutions)
{
assert(genericConformance->getKind() != ProtocolConformanceKind::Specialized);
}
bool SpecializedProtocolConformance::hasTypeWitness(
AssociatedTypeDecl *assocType,
LazyResolver *resolver) const {
return TypeWitnesses.find(assocType) != TypeWitnesses.end() ||
GenericConformance->hasTypeWitness(assocType, resolver);
}
std::pair<Type, TypeDecl *>
SpecializedProtocolConformance::getTypeWitnessAndDecl(
AssociatedTypeDecl *assocType,
LazyResolver *resolver) const {
// If we've already created this type witness, return it.
auto known = TypeWitnesses.find(assocType);
if (known != TypeWitnesses.end()) {
return known->second;
}
// Otherwise, perform substitutions to create this witness now.
auto *genericEnv = GenericConformance->getGenericEnvironment();
auto substitutionMap =
genericEnv->getSubstitutionMap(GenericSubstitutions);
auto genericWitnessAndDecl
= GenericConformance->getTypeWitnessAndDecl(assocType, resolver);
auto &genericWitness = genericWitnessAndDecl.first;
auto *typeDecl = genericWitnessAndDecl.second;
// Apply the substitution we computed above
auto specializedType
= genericWitness.subst(substitutionMap);
if (!specializedType)
specializedType = ErrorType::get(genericWitness);
// If the type witness was unchanged, just copy it directly.
if (specializedType.getPointer() == genericWitness.getPointer()) {
TypeWitnesses[assocType] = genericWitnessAndDecl;
return TypeWitnesses[assocType];
}
TypeWitnesses[assocType] = std::make_pair(specializedType, typeDecl);
return TypeWitnesses[assocType];
}
Witness
SpecializedProtocolConformance::getWitness(ValueDecl *requirement,
LazyResolver *resolver) const {
// FIXME: Apply substitutions here!
return GenericConformance->getWitness(requirement, resolver);
}
ProtocolConformanceRef
SpecializedProtocolConformance::getAssociatedConformance(Type assocType,
ProtocolDecl *protocol,
LazyResolver *resolver) const {
ProtocolConformanceRef conformance =
GenericConformance->getAssociatedConformance(assocType, protocol, resolver);
auto genericEnv = GenericConformance->getGenericEnvironment();
auto subMap = genericEnv->getSubstitutionMap(GenericSubstitutions);
Type origType =
(conformance.isConcrete()
? conformance.getConcrete()->getType()
: GenericConformance->getAssociatedType(assocType, resolver));
return conformance.subst(origType,
QuerySubstitutionMap{subMap},
LookUpConformanceInSubstitutionMap(subMap));
}
ProtocolConformanceRef
InheritedProtocolConformance::getAssociatedConformance(Type assocType,
ProtocolDecl *protocol,
LazyResolver *resolver) const {
auto underlying =
InheritedConformance->getAssociatedConformance(assocType, protocol,
resolver);
// If the conformance is for Self, return an inherited conformance.
if (underlying.isConcrete() &&
assocType->isEqual(getProtocol()->getSelfInterfaceType())) {
auto subclassType = getType();
ASTContext &ctx = subclassType->getASTContext();
return ProtocolConformanceRef(
ctx.getInheritedConformance(subclassType,
underlying.getConcrete()));
}
return underlying;
}
const NormalProtocolConformance *
ProtocolConformance::getRootNormalConformance() const {
const ProtocolConformance *C = this;
while (!isa<NormalProtocolConformance>(C)) {
switch (C->getKind()) {
case ProtocolConformanceKind::Normal:
llvm_unreachable("should have broken out of loop");
case ProtocolConformanceKind::Inherited:
C = cast<InheritedProtocolConformance>(C)
->getInheritedConformance();
break;
case ProtocolConformanceKind::Specialized:
C = cast<SpecializedProtocolConformance>(C)
->getGenericConformance();
break;
}
}
return cast<NormalProtocolConformance>(C);
}
bool ProtocolConformance::isVisibleFrom(const DeclContext *dc) const {
// FIXME: Implement me!
return true;
}
ProtocolConformance *
ProtocolConformance::subst(Type substType,
TypeSubstitutionFn subs,
LookupConformanceFn conformances) const {
if (getType()->isEqual(substType))
return const_cast<ProtocolConformance *>(this);
switch (getKind()) {
case ProtocolConformanceKind::Normal:
if (substType->isSpecialized()) {
assert(getType()->isSpecialized()
&& "substitution mapped non-specialized to specialized?!");
assert(getType()->getNominalOrBoundGenericNominal()
== substType->getNominalOrBoundGenericNominal()
&& "substitution mapped to different nominal?!");
// Since this is a normal conformance, the substitution maps archetypes
// in the environment of the conformance to types containing archetypes
// of some other generic environment.
//
// ASTContext::getSpecializedConformance() wants a substitution map
// with interface types as keys, so do the mapping here.
//
// Once the type of a normal conformance becomes an interface type,
// we can remove this.
SubstitutionMap subMap;
if (auto *genericSig = getGenericSignature()) {
auto *genericEnv = getGenericEnvironment();
subMap = genericSig->getSubstitutionMap(
[&](SubstitutableType *t) -> Type {
return genericEnv->mapTypeIntoContext(
t).subst(subs, conformances, SubstFlags::UseErrorType);
},
[&](CanType origType, Type substType, ProtocolType *protoType)
-> Optional<ProtocolConformanceRef> {
origType = CanType(
genericEnv->mapTypeIntoContext(
origType)->castTo<ArchetypeType>());
return conformances(origType, substType, protoType);
});
}
return substType->getASTContext()
.getSpecializedConformance(substType,
const_cast<ProtocolConformance *>(this),
subMap);
}
assert(substType->isEqual(getType())
&& "substitution changed non-specialized type?!");
return const_cast<ProtocolConformance *>(this);
case ProtocolConformanceKind::Inherited: {
// Substitute the base.
auto inheritedConformance
= cast<InheritedProtocolConformance>(this)->getInheritedConformance();
ProtocolConformance *newBase;
if (inheritedConformance->getType()->isSpecialized()) {
newBase = inheritedConformance->subst(substType, subs, conformances);
} else {
newBase = inheritedConformance;
}
return substType->getASTContext()
.getInheritedConformance(substType, newBase);
}
case ProtocolConformanceKind::Specialized: {
// Substitute the substitutions in the specialized conformance.
auto spec = cast<SpecializedProtocolConformance>(this);
auto genericConformance
= cast<SpecializedProtocolConformance>(this)->getGenericConformance();
auto subMap =
genericConformance->getGenericSignature()
->getSubstitutionMap(spec->getGenericSubstitutions());
return substType->getASTContext()
.getSpecializedConformance(substType, genericConformance,
subMap.subst(subs, conformances));
}
}
llvm_unreachable("bad ProtocolConformanceKind");
}
ProtocolConformance *
ProtocolConformance::getInheritedConformance(ProtocolDecl *protocol) const {
auto result =
getAssociatedConformance(getProtocol()->getSelfInterfaceType(), protocol);
return result.isConcrete() ? result.getConcrete() : nullptr;
}
#pragma mark Protocol conformance lookup
void NominalTypeDecl::prepareConformanceTable() const {
if (ConformanceTable)
return;
auto mutableThis = const_cast<NominalTypeDecl *>(this);
ASTContext &ctx = getASTContext();
auto resolver = ctx.getLazyResolver();
ConformanceTable = new (ctx) ConformanceLookupTable(ctx, mutableThis,
resolver);
// If this type declaration was not parsed from source code or introduced
// via the Clang importer, don't add any synthesized conformances.
if (!getParentSourceFile() && !hasClangNode())
return;
// Add any synthesized conformances.
if (isa<ClassDecl>(this)) {
if (auto anyObject = getASTContext().getProtocol(
KnownProtocolKind::AnyObject)) {
ConformanceTable->addSynthesizedConformance(mutableThis, anyObject);
}
} else if (auto theEnum = dyn_cast<EnumDecl>(mutableThis)) {
if (theEnum->hasOnlyCasesWithoutAssociatedValues()) {
// Simple enumerations conform to Equatable.
if (auto equatable = ctx.getProtocol(KnownProtocolKind::Equatable)) {
ConformanceTable->addSynthesizedConformance(mutableThis, equatable);
}
// Simple enumerations conform to Hashable.
if (auto hashable = getASTContext().getProtocol(
KnownProtocolKind::Hashable)) {
ConformanceTable->addSynthesizedConformance(mutableThis, hashable);
}
}
// Enumerations with a raw type conform to RawRepresentable.
if (resolver)
resolver->resolveRawType(theEnum);
if (theEnum->hasRawType()) {
if (auto rawRepresentable =
ctx.getProtocol(KnownProtocolKind::RawRepresentable)) {
ConformanceTable->addSynthesizedConformance(mutableThis,
rawRepresentable);
}
}
}
// Add protocols for any synthesized protocol attributes.
for (auto attr : getAttrs()) {
if (auto synthesizedProto = dyn_cast<SynthesizedProtocolAttr>(attr)) {
if (auto proto = getASTContext().getProtocol(
synthesizedProto->getProtocolKind())) {
ConformanceTable->addSynthesizedConformance(mutableThis, proto);
}
}
}
}
bool NominalTypeDecl::lookupConformance(
ModuleDecl *module, ProtocolDecl *protocol,
SmallVectorImpl<ProtocolConformance *> &conformances) const {
prepareConformanceTable();
return ConformanceTable->lookupConformance(
module,
const_cast<NominalTypeDecl *>(this),
protocol,
getASTContext().getLazyResolver(),
conformances);
}
SmallVector<ProtocolDecl *, 2> NominalTypeDecl::getAllProtocols() const {
prepareConformanceTable();
SmallVector<ProtocolDecl *, 2> result;
ConformanceTable->getAllProtocols(const_cast<NominalTypeDecl *>(this),
getASTContext().getLazyResolver(),
result);
return result;
}
SmallVector<ProtocolConformance *, 2> NominalTypeDecl::getAllConformances(
bool sorted) const
{
prepareConformanceTable();
SmallVector<ProtocolConformance *, 2> result;
ConformanceTable->getAllConformances(const_cast<NominalTypeDecl *>(this),
getASTContext().getLazyResolver(),
sorted,
result);
return result;
}
void NominalTypeDecl::getImplicitProtocols(
SmallVectorImpl<ProtocolDecl *> &protocols) {
prepareConformanceTable();
ConformanceTable->getImplicitProtocols(this, protocols);
}
void NominalTypeDecl::registerProtocolConformance(
ProtocolConformance *conformance) {
prepareConformanceTable();
ConformanceTable->registerProtocolConformance(conformance);
}
ArrayRef<ValueDecl *>
NominalTypeDecl::getSatisfiedProtocolRequirementsForMember(
const ValueDecl *member,
bool sorted) const {
assert(member->getDeclContext()->getAsNominalTypeOrNominalTypeExtensionContext()
== this);
assert(!isa<ProtocolDecl>(this));
prepareConformanceTable();
return ConformanceTable->getSatisfiedProtocolRequirementsForMember(member,
const_cast<NominalTypeDecl *>(this),
getASTContext().getLazyResolver(),
sorted);
}
SmallVector<ProtocolDecl *, 2>
DeclContext::getLocalProtocols(
ConformanceLookupKind lookupKind,
SmallVectorImpl<ConformanceDiagnostic> *diagnostics,
bool sorted) const
{
SmallVector<ProtocolDecl *, 2> result;
// Dig out the nominal type.
NominalTypeDecl *nominal = getAsNominalTypeOrNominalTypeExtensionContext();
if (!nominal)
return result;
// Update to record all potential conformances.
nominal->prepareConformanceTable();
nominal->ConformanceTable->lookupConformances(
nominal,
const_cast<DeclContext *>(this),
getASTContext().getLazyResolver(),
lookupKind,
&result,
nullptr,
diagnostics);
// Sort if required.
if (sorted) {
llvm::array_pod_sort(result.begin(), result.end(),
&ProtocolType::compareProtocols);
}
return result;
}
SmallVector<ProtocolConformance *, 2>
DeclContext::getLocalConformances(
ConformanceLookupKind lookupKind,
SmallVectorImpl<ConformanceDiagnostic> *diagnostics,
bool sorted) const
{
SmallVector<ProtocolConformance *, 2> result;
// Dig out the nominal type.
NominalTypeDecl *nominal = getAsNominalTypeOrNominalTypeExtensionContext();
if (!nominal)
return result;
// Protocols don't have conformances.
if (isa<ProtocolDecl>(nominal))
return { };
// Update to record all potential conformances.
nominal->prepareConformanceTable();
nominal->ConformanceTable->lookupConformances(
nominal,
const_cast<DeclContext *>(this),
nominal->getASTContext().getLazyResolver(),
lookupKind,
nullptr,
&result,
diagnostics);
// If requested, sort the results.
if (sorted) {
llvm::array_pod_sort(result.begin(), result.end(),
&ConformanceLookupTable::compareProtocolConformances);
}
return result;
}