blob: 2e0dd2e473376c41cff0be7c4f56d8e440c85c5e [file] [log] [blame]
//===--- DeserializeSIL.cpp - Read SIL ------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "deserialize"
#include "DeserializeSIL.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/PrettyStackTrace.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/Serialization/ModuleFile.h"
#include "SILFormat.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILDebugScope.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILUndef.h"
#include "swift/Serialization/BCReadingExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/OnDiskHashTable.h"
#include <type_traits>
using namespace swift;
using namespace swift::serialization;
using namespace swift::serialization::sil_block;
using namespace llvm::support;
STATISTIC(NumDeserializedFunc, "Number of deserialized SIL functions");
static Optional<StringLiteralInst::Encoding>
fromStableStringEncoding(unsigned value) {
switch (value) {
case SIL_UTF8: return StringLiteralInst::Encoding::UTF8;
case SIL_UTF16: return StringLiteralInst::Encoding::UTF16;
case SIL_OBJC_SELECTOR: return StringLiteralInst::Encoding::ObjCSelector;
default: return None;
}
}
static Optional<ConstStringLiteralInst::Encoding>
fromStableConstStringEncoding(unsigned value) {
switch (value) {
case SIL_UTF8:
return ConstStringLiteralInst::Encoding::UTF8;
case SIL_UTF16:
return ConstStringLiteralInst::Encoding::UTF16;
default:
return None;
}
}
static Optional<SILLinkage>
fromStableSILLinkage(unsigned value) {
switch (value) {
case SIL_LINKAGE_PUBLIC: return SILLinkage::Public;
case SIL_LINKAGE_HIDDEN: return SILLinkage::Hidden;
case SIL_LINKAGE_SHARED: return SILLinkage::Shared;
case SIL_LINKAGE_PRIVATE: return SILLinkage::Private;
case SIL_LINKAGE_PUBLIC_EXTERNAL: return SILLinkage::PublicExternal;
case SIL_LINKAGE_HIDDEN_EXTERNAL: return SILLinkage::HiddenExternal;
case SIL_LINKAGE_SHARED_EXTERNAL: return SILLinkage::SharedExternal;
case SIL_LINKAGE_PRIVATE_EXTERNAL: return SILLinkage::PrivateExternal;
default: return None;
}
}
static Optional<SILVTable::Entry::Kind>
fromStableVTableEntryKind(unsigned value) {
switch (value) {
case SIL_VTABLE_ENTRY_NORMAL: return SILVTable::Entry::Kind::Normal;
case SIL_VTABLE_ENTRY_INHERITED: return SILVTable::Entry::Kind::Inherited;
case SIL_VTABLE_ENTRY_OVERRIDE: return SILVTable::Entry::Kind::Override;
default: return None;
}
}
/// Used to deserialize entries in the on-disk func hash table.
class SILDeserializer::FuncTableInfo {
public:
using internal_key_type = StringRef;
using external_key_type = StringRef;
using data_type = DeclID;
using hash_value_type = uint32_t;
using offset_type = unsigned;
internal_key_type GetInternalKey(external_key_type ID) { return ID; }
external_key_type GetExternalKey(internal_key_type ID) { return ID; }
hash_value_type ComputeHash(internal_key_type key) {
return llvm::HashString(key);
}
static bool EqualKey(internal_key_type lhs, internal_key_type rhs) {
return lhs == rhs;
}
static std::pair<unsigned, unsigned> ReadKeyDataLength(const uint8_t *&data) {
unsigned keyLength = endian::readNext<uint16_t, little, unaligned>(data);
unsigned dataLength = endian::readNext<uint16_t, little, unaligned>(data);
return { keyLength, dataLength };
}
static internal_key_type ReadKey(const uint8_t *data, unsigned length) {
return StringRef(reinterpret_cast<const char *>(data), length);
}
static data_type ReadData(internal_key_type key, const uint8_t *data,
unsigned length) {
assert(length == 4 && "Expect a single DeclID.");
data_type result = endian::readNext<uint32_t, little, unaligned>(data);
return result;
}
};
SILDeserializer::SILDeserializer(ModuleFile *MF, SILModule &M,
SerializedSILLoader::Callback *callback)
: MF(MF), SILMod(M), Callback(callback) {
SILCursor = MF->getSILCursor();
SILIndexCursor = MF->getSILIndexCursor();
// Early return if either sil block or sil index block does not exist.
if (SILCursor.AtEndOfStream() || SILIndexCursor.AtEndOfStream())
return;
// Load any abbrev records at the start of the block.
SILCursor.advance();
llvm::BitstreamCursor cursor = SILIndexCursor;
// We expect SIL_FUNC_NAMES first, then SIL_VTABLE_NAMES, then
// SIL_GLOBALVAR_NAMES, then SIL_WITNESS_TABLE_NAMES, and finally
// SIL_DEFAULT_WITNESS_TABLE_NAMES. But each one can be
// omitted if no entries exist in the module file.
unsigned kind = 0;
while (kind != sil_index_block::SIL_DEFAULT_WITNESS_TABLE_NAMES) {
auto next = cursor.advance();
if (next.Kind == llvm::BitstreamEntry::EndBlock)
return;
SmallVector<uint64_t, 4> scratch;
StringRef blobData;
unsigned prevKind = kind;
kind = cursor.readRecord(next.ID, scratch, &blobData);
assert((next.Kind == llvm::BitstreamEntry::Record &&
kind > prevKind &&
(kind == sil_index_block::SIL_FUNC_NAMES ||
kind == sil_index_block::SIL_VTABLE_NAMES ||
kind == sil_index_block::SIL_GLOBALVAR_NAMES ||
kind == sil_index_block::SIL_WITNESS_TABLE_NAMES ||
kind == sil_index_block::SIL_DEFAULT_WITNESS_TABLE_NAMES)) &&
"Expect SIL_FUNC_NAMES, SIL_VTABLE_NAMES, SIL_GLOBALVAR_NAMES, \
SIL_WITNESS_TABLE_NAMES, or SIL_DEFAULT_WITNESS_TABLE_NAMES.");
(void)prevKind;
if (kind == sil_index_block::SIL_FUNC_NAMES)
FuncTable = readFuncTable(scratch, blobData);
else if (kind == sil_index_block::SIL_VTABLE_NAMES)
VTableList = readFuncTable(scratch, blobData);
else if (kind == sil_index_block::SIL_GLOBALVAR_NAMES)
GlobalVarList = readFuncTable(scratch, blobData);
else if (kind == sil_index_block::SIL_WITNESS_TABLE_NAMES)
WitnessTableList = readFuncTable(scratch, blobData);
else if (kind == sil_index_block::SIL_DEFAULT_WITNESS_TABLE_NAMES)
DefaultWitnessTableList = readFuncTable(scratch, blobData);
// Read SIL_FUNC|VTABLE|GLOBALVAR_OFFSETS record.
next = cursor.advance();
scratch.clear();
unsigned offKind = cursor.readRecord(next.ID, scratch, &blobData);
(void)offKind;
if (kind == sil_index_block::SIL_FUNC_NAMES) {
assert((next.Kind == llvm::BitstreamEntry::Record &&
offKind == sil_index_block::SIL_FUNC_OFFSETS) &&
"Expect a SIL_FUNC_OFFSETS record.");
Funcs.assign(scratch.begin(), scratch.end());
} else if (kind == sil_index_block::SIL_VTABLE_NAMES) {
assert((next.Kind == llvm::BitstreamEntry::Record &&
offKind == sil_index_block::SIL_VTABLE_OFFSETS) &&
"Expect a SIL_VTABLE_OFFSETS record.");
VTables.assign(scratch.begin(), scratch.end());
} else if (kind == sil_index_block::SIL_GLOBALVAR_NAMES) {
assert((next.Kind == llvm::BitstreamEntry::Record &&
offKind == sil_index_block::SIL_GLOBALVAR_OFFSETS) &&
"Expect a SIL_GLOBALVAR_OFFSETS record.");
GlobalVars.assign(scratch.begin(), scratch.end());
} else if (kind == sil_index_block::SIL_WITNESS_TABLE_NAMES) {
assert((next.Kind == llvm::BitstreamEntry::Record &&
offKind == sil_index_block::SIL_WITNESS_TABLE_OFFSETS) &&
"Expect a SIL_WITNESS_TABLE_OFFSETS record.");
WitnessTables.assign(scratch.begin(), scratch.end());
} else if (kind == sil_index_block::SIL_DEFAULT_WITNESS_TABLE_NAMES) {
assert((next.Kind == llvm::BitstreamEntry::Record &&
offKind == sil_index_block::SIL_DEFAULT_WITNESS_TABLE_OFFSETS) &&
"Expect a SIL_DEFAULT_WITNESS_TABLE_OFFSETS record.");
DefaultWitnessTables.assign(scratch.begin(), scratch.end());
}
}
}
std::unique_ptr<SILDeserializer::SerializedFuncTable>
SILDeserializer::readFuncTable(ArrayRef<uint64_t> fields, StringRef blobData) {
uint32_t tableOffset;
sil_index_block::ListLayout::readRecord(fields, tableOffset);
auto base = reinterpret_cast<const uint8_t *>(blobData.data());
using OwnedTable = std::unique_ptr<SerializedFuncTable>;
return OwnedTable(SerializedFuncTable::Create(base + tableOffset,
base + sizeof(uint32_t), base));
}
/// A high-level overview of how forward references work in serializer and
/// deserializer:
/// In serializer, we pre-assign a value ID in order, to each basic block
/// argument and each SILInstruction that has a value.
/// In deserializer, we use LocalValues to store the definitions and
/// ForwardLocalValues for forward-referenced values (values that are
/// used but not yet defined). LocalValues are updated in setLocalValue where
/// the ID passed in assumes the same ordering as in serializer: in-order
/// for each basic block argument and each SILInstruction that has a value.
/// We update ForwardLocalValues in getLocalValue and when a value is defined
/// in setLocalValue, the corresponding entry in ForwardLocalValues will be
/// erased.
void SILDeserializer::setLocalValue(ValueBase *Value, ValueID Id) {
ValueBase *&Entry = LocalValues[Id];
assert(!Entry && "We should not redefine the same value.");
auto It = ForwardLocalValues.find(Id);
if (It != ForwardLocalValues.end()) {
// Take the information about the forward ref out of the map.
ValueBase *Placeholder = It->second;
// Remove the entries from the map.
ForwardLocalValues.erase(It);
Placeholder->replaceAllUsesWith(Value);
}
// Store it in our map.
Entry = Value;
}
SILValue SILDeserializer::getLocalValue(ValueID Id,
SILType Type) {
if (Id == 0)
return SILUndef::get(Type, &SILMod);
// Check to see if this is already defined.
ValueBase *Entry = LocalValues.lookup(Id);
if (Entry) {
// If this value was already defined, check it to make sure types match.
assert(Entry->getType() == Type && "Value Type mismatch?");
return Entry;
}
// Otherwise, this is a forward reference. Create a dummy node to represent
// it until we see a real definition.
ValueBase *&Placeholder = ForwardLocalValues[Id];
if (!Placeholder)
Placeholder = new (SILMod) GlobalAddrInst(SILDebugLocation(), Type);
return Placeholder;
}
/// Return the SILBasicBlock of a given ID.
SILBasicBlock *SILDeserializer::getBBForDefinition(SILFunction *Fn,
SILBasicBlock *Prev,
unsigned ID) {
SILBasicBlock *&BB = BlocksByID[ID];
// If the block has never been named yet, just create it.
if (BB == nullptr)
return BB = Fn->createBasicBlock(Prev);
// If it already exists, it was either a forward reference or a redefinition.
// The latter should never happen.
bool wasForwardReferenced = UndefinedBlocks.erase(BB);
assert(wasForwardReferenced);
(void)wasForwardReferenced;
if (Prev)
BB->moveAfter(Prev);
return BB;
}
/// Return the SILBasicBlock of a given ID.
SILBasicBlock *SILDeserializer::getBBForReference(SILFunction *Fn,
unsigned ID) {
SILBasicBlock *&BB = BlocksByID[ID];
if (BB != nullptr)
return BB;
// Otherwise, create it and remember that this is a forward reference
BB = Fn->createBasicBlock();
UndefinedBlocks[BB] = ID;
return BB;
}
/// Helper function to convert from Type to SILType.
static SILType getSILType(Type Ty, SILValueCategory Category) {
auto TyLoc = TypeLoc::withoutLoc(Ty);
return SILType::getPrimitiveType(TyLoc.getType()->getCanonicalType(),
Category);
}
/// Helper function to create a bogus SILFunction to appease error paths.
static SILFunction *createBogusSILFunction(SILModule &M,
StringRef name,
SILType type) {
SourceLoc loc;
return M.createFunction(
SILLinkage::Private, name, type.castTo<SILFunctionType>(), nullptr,
RegularLocation(loc), IsNotBare, IsNotTransparent, IsNotSerialized,
ProfileCounter(), IsNotThunk, SubclassScope::NotApplicable);
}
/// Helper function to find a SILFunction, given its name and type.
SILFunction *SILDeserializer::getFuncForReference(StringRef name,
SILType type) {
// Check to see if we have a function by this name already.
SILFunction *fn = SILMod.lookUpFunction(name);
if (!fn) {
// Otherwise, look for a function with this name in the module.
auto iter = FuncTable->find(name);
if (iter != FuncTable->end()) {
fn = readSILFunction(*iter, nullptr, name, /*declarationOnly*/ true);
}
}
// FIXME: check for matching types.
// Always return something of the right type.
if (!fn) fn = createBogusSILFunction(SILMod, name, type);
return fn;
}
/// Helper function to find a SILFunction, given its name and type.
SILFunction *SILDeserializer::getFuncForReference(StringRef name) {
// Check to see if we have a function by this name already.
SILFunction *fn = SILMod.lookUpFunction(name);
if (fn)
return fn;
// Otherwise, look for a function with this name in the module.
auto iter = FuncTable->find(name);
if (iter == FuncTable->end())
return nullptr;
return readSILFunction(*iter, nullptr, name, /*declarationOnly*/ true);
}
/// Helper function to find a SILGlobalVariable given its name. It first checks
/// in the module. If we cannot find it in the module, we attempt to
/// deserialize it.
SILGlobalVariable *SILDeserializer::getGlobalForReference(StringRef name) {
// Check to see if we have a global by this name already.
if (SILGlobalVariable *g = SILMod.lookUpGlobalVariable(name))
return g;
// Otherwise, look for a global with this name in the module.
return readGlobalVar(name);
}
/// Deserialize a SILFunction if it is not already deserialized. The input
/// SILFunction can either be an empty declaration or null. If it is an empty
/// declaration, we fill in the contents. If the input SILFunction is
/// null, we create a SILFunction.
SILFunction *SILDeserializer::readSILFunction(DeclID FID,
SILFunction *existingFn,
StringRef name,
bool declarationOnly,
bool errorIfEmptyBody) {
if (FID == 0)
return nullptr;
assert(FID <= Funcs.size() && "invalid SILFunction ID");
PrettyStackTraceStringAction trace("deserializing SIL function", name);
auto &cacheEntry = Funcs[FID-1];
if (cacheEntry.isFullyDeserialized() ||
(cacheEntry.isDeserialized() && declarationOnly))
return cacheEntry.get();
BCOffsetRAII restoreOffset(SILCursor);
SILCursor.JumpToBit(cacheEntry.getOffset());
auto entry = SILCursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind == llvm::BitstreamEntry::Error) {
DEBUG(llvm::dbgs() << "Cursor advance error in readSILFunction.\n");
MF->error();
return nullptr;
}
SmallVector<uint64_t, 64> scratch;
StringRef blobData;
unsigned kind = SILCursor.readRecord(entry.ID, scratch, &blobData);
assert(kind == SIL_FUNCTION && "expect a sil function");
(void)kind;
DeclID clangNodeOwnerID;
TypeID funcTyID;
GenericEnvironmentID genericEnvID;
unsigned rawLinkage, isTransparent, isSerialized, isThunk, isGlobal,
inlineStrategy, optimizationMode, effect, numSpecAttrs,
hasQualifiedOwnership;
ArrayRef<uint64_t> SemanticsIDs;
SILFunctionLayout::readRecord(scratch, rawLinkage, isTransparent, isSerialized,
isThunk, isGlobal, inlineStrategy,
optimizationMode, effect,
numSpecAttrs, hasQualifiedOwnership, funcTyID,
genericEnvID, clangNodeOwnerID, SemanticsIDs);
if (funcTyID == 0) {
DEBUG(llvm::dbgs() << "SILFunction typeID is 0.\n");
MF->error();
return nullptr;
}
auto ty = getSILType(MF->getType(funcTyID), SILValueCategory::Object);
if (!ty.is<SILFunctionType>()) {
DEBUG(llvm::dbgs() << "not a function type for SILFunction\n");
MF->error();
return nullptr;
}
auto linkage = fromStableSILLinkage(rawLinkage);
if (!linkage) {
DEBUG(llvm::dbgs() << "invalid linkage code " << rawLinkage
<< " for SILFunction\n");
MF->error();
return nullptr;
}
ValueDecl *clangNodeOwner = nullptr;
if (clangNodeOwnerID != 0) {
clangNodeOwner = dyn_cast_or_null<ValueDecl>(MF->getDecl(clangNodeOwnerID));
if (!clangNodeOwner) {
DEBUG(llvm::dbgs() << "invalid clang node owner for SILFunction\n");
MF->error();
return nullptr;
}
}
// If we weren't handed a function, check for an existing
// declaration in the output module.
if (!existingFn) existingFn = SILMod.lookUpFunction(name);
auto fn = existingFn;
// TODO: use the correct SILLocation from module.
SILLocation loc = RegularLocation(SourceLoc());
// If we have an existing function, verify that the types match up.
if (fn) {
if (fn->getLoweredType() != ty) {
DEBUG(llvm::dbgs() << "SILFunction type mismatch.\n");
MF->error();
return nullptr;
}
fn->setSerialized(IsSerialized_t(isSerialized));
// Don't override the transparency or linkage of a function with
// an existing declaration.
// Otherwise, create a new function.
} else {
fn = SILMod.createFunction(
linkage.getValue(), name, ty.castTo<SILFunctionType>(), nullptr, loc,
IsNotBare, IsTransparent_t(isTransparent == 1),
IsSerialized_t(isSerialized), ProfileCounter(), IsThunk_t(isThunk),
SubclassScope::NotApplicable, (Inline_t)inlineStrategy);
fn->setGlobalInit(isGlobal == 1);
fn->setEffectsKind((EffectsKind)effect);
fn->setOptimizationMode((OptimizationMode)optimizationMode);
if (clangNodeOwner)
fn->setClangNodeOwner(clangNodeOwner);
for (auto ID : SemanticsIDs) {
fn->addSemanticsAttr(MF->getIdentifier(ID).str());
}
if (Callback) Callback->didDeserialize(MF->getAssociatedModule(), fn);
}
assert(fn->empty() &&
"SILFunction to be deserialized starts being empty.");
fn->setBare(IsBare);
const SILDebugScope *DS = fn->getDebugScope();
if (!DS) {
DS = new (SILMod) SILDebugScope(loc, fn);
fn->setDebugScope(DS);
}
// Read and instantiate the specialize attributes.
while (numSpecAttrs--) {
auto next = SILCursor.advance(AF_DontPopBlockAtEnd);
assert(next.Kind == llvm::BitstreamEntry::Record);
scratch.clear();
kind = SILCursor.readRecord(next.ID, scratch);
assert(kind == SIL_SPECIALIZE_ATTR && "Missing specialization attribute");
unsigned exported;
unsigned specializationKindVal;
SILSpecializeAttrLayout::readRecord(scratch, exported, specializationKindVal);
SILSpecializeAttr::SpecializationKind specializationKind =
specializationKindVal ? SILSpecializeAttr::SpecializationKind::Partial
: SILSpecializeAttr::SpecializationKind::Full;
SmallVector<Requirement, 8> requirements;
MF->readGenericRequirements(requirements, SILCursor);
// Read the substitution list and construct a SILSpecializeAttr.
fn->addSpecializeAttr(SILSpecializeAttr::create(
SILMod, requirements, exported != 0, specializationKind));
}
GenericEnvironment *genericEnv = nullptr;
if (!declarationOnly)
genericEnv = MF->getGenericEnvironment(genericEnvID);
// If the next entry is the end of the block, then this function has
// no contents.
entry = SILCursor.advance(AF_DontPopBlockAtEnd);
bool isEmptyFunction = (entry.Kind == llvm::BitstreamEntry::EndBlock);
assert((!isEmptyFunction || !genericEnv) &&
"generic environment without body?!");
// Remember this in our cache in case it's a recursive function.
// Increase the reference count to keep it alive.
bool isFullyDeserialized = (isEmptyFunction || !declarationOnly);
if (cacheEntry.isDeserialized()) {
assert(fn == cacheEntry.get() && "changing SIL function during deserialization!");
} else {
fn->incrementRefCount();
}
cacheEntry.set(fn, isFullyDeserialized);
// Stop here if we have nothing else to do.
if (isEmptyFunction || declarationOnly) {
return fn;
}
if (!hasQualifiedOwnership)
fn->setUnqualifiedOwnership();
NumDeserializedFunc++;
assert(!(fn->getGenericEnvironment() && !fn->empty())
&& "function already has context generic params?!");
if (genericEnv)
fn->setGenericEnvironment(genericEnv);
scratch.clear();
kind = SILCursor.readRecord(entry.ID, scratch);
SILBasicBlock *CurrentBB = nullptr;
// Clear up at the beginning of each SILFunction.
BasicBlockID = 0;
BlocksByID.clear();
UndefinedBlocks.clear();
LastValueID = 0;
LocalValues.clear();
ForwardLocalValues.clear();
SILOpenedArchetypesTracker OpenedArchetypesTracker(fn);
SILBuilder Builder(*fn);
// Track the archetypes just like SILGen. This
// is required for adding typedef operands to instructions.
Builder.setOpenedArchetypesTracker(&OpenedArchetypesTracker);
// Define a callback to be invoked on the deserialized types.
auto OldDeserializedTypeCallback = MF->DeserializedTypeCallback;
SWIFT_DEFER {
MF->DeserializedTypeCallback = OldDeserializedTypeCallback;
};
MF->DeserializedTypeCallback = [&OpenedArchetypesTracker] (Type ty) {
// We can't call getCanonicalType() immediately on everything we
// deserialize, but fortunately we only need to register opened
// existentials.
if (ty->isOpenedExistential())
OpenedArchetypesTracker.registerUsedOpenedArchetypes(CanType(ty));
};
// Another SIL_FUNCTION record means the end of this SILFunction.
// SIL_VTABLE or SIL_GLOBALVAR or SIL_WITNESS_TABLE record also means the end
// of this SILFunction.
while (kind != SIL_FUNCTION && kind != SIL_VTABLE && kind != SIL_GLOBALVAR &&
kind != SIL_WITNESS_TABLE) {
if (kind == SIL_BASIC_BLOCK)
// Handle a SILBasicBlock record.
CurrentBB = readSILBasicBlock(fn, CurrentBB, scratch);
else {
// If CurrentBB is empty, just return fn. The code in readSILInstruction
// assumes that such a situation means that fn is a declaration. Thus it
// is using return false to mean two different things, error a failure
// occurred and this is a declaration. Work around that for now.
if (!CurrentBB)
return fn;
// Handle a SILInstruction record.
if (readSILInstruction(fn, CurrentBB, Builder, kind, scratch)) {
DEBUG(llvm::dbgs() << "readSILInstruction returns error.\n");
MF->error();
return fn;
}
}
// Fetch the next record.
scratch.clear();
entry = SILCursor.advance(AF_DontPopBlockAtEnd);
// EndBlock means the end of this SILFunction.
if (entry.Kind == llvm::BitstreamEntry::EndBlock)
break;
kind = SILCursor.readRecord(entry.ID, scratch);
}
// If fn is empty, we failed to deserialize its body. Return nullptr to signal
// error.
if (fn->empty() && errorIfEmptyBody)
return nullptr;
// Check that there are no unresolved forward definitions of opened
// archetypes.
if (OpenedArchetypesTracker.hasUnresolvedOpenedArchetypeDefinitions())
llvm_unreachable(
"All forward definitions of opened archetypes should be resolved");
if (Callback)
Callback->didDeserializeFunctionBody(MF->getAssociatedModule(), fn);
return fn;
}
// We put these static asserts here to formalize our assumption that both
// SILValueCategory and ValueOwnershipKind have uint8_t as their underlying
// pointer values.
static_assert(
std::is_same<std::underlying_type<SILValueCategory>::type, uint8_t>::value,
"Expected an underlying uint8_t type");
// We put these static asserts here to formalize our assumption that both
// SILValueCategory and ValueOwnershipKind have uint8_t as their underlying
// pointer values.
static_assert(
std::is_same<std::underlying_type<ValueOwnershipKind::innerty>::type,
uint8_t>::value,
"Expected an underlying uint8_t type");
SILBasicBlock *SILDeserializer::readSILBasicBlock(SILFunction *Fn,
SILBasicBlock *Prev,
SmallVectorImpl<uint64_t> &scratch) {
ArrayRef<uint64_t> Args;
SILBasicBlockLayout::readRecord(scratch, Args);
// Args should be a list of triples of the following form:
//
// 1. A TypeID.
// 2. A flag of metadata. This currently includes the SILValueCategory and
// ValueOwnershipKind. We enforce size constraints of these types above.
// 3. A ValueID.
SILBasicBlock *CurrentBB = getBBForDefinition(Fn, Prev, BasicBlockID++);
bool IsEntry = CurrentBB->isEntry();
for (unsigned I = 0, E = Args.size(); I < E; I += 3) {
TypeID TyID = Args[I];
if (!TyID) return nullptr;
ValueID ValId = Args[I+2];
if (!ValId) return nullptr;
auto ArgTy = MF->getType(TyID);
SILArgument *Arg;
auto ValueCategory = SILValueCategory(Args[I + 1] & 0xF);
SILType SILArgTy = getSILType(ArgTy, ValueCategory);
if (IsEntry) {
Arg = CurrentBB->createFunctionArgument(SILArgTy);
} else {
auto OwnershipKind = ValueOwnershipKind((Args[I + 1] >> 8) & 0xF);
Arg = CurrentBB->createPHIArgument(SILArgTy, OwnershipKind);
}
LastValueID = LastValueID + 1;
setLocalValue(Arg, LastValueID);
}
return CurrentBB;
}
static CastConsumptionKind getCastConsumptionKind(unsigned attr) {
switch (attr) {
case SIL_CAST_CONSUMPTION_TAKE_ALWAYS:
return CastConsumptionKind::TakeAlways;
case SIL_CAST_CONSUMPTION_TAKE_ON_SUCCESS:
return CastConsumptionKind::TakeOnSuccess;
case SIL_CAST_CONSUMPTION_COPY_ON_SUCCESS:
return CastConsumptionKind::CopyOnSuccess;
default:
llvm_unreachable("not a valid CastConsumptionKind for SIL");
}
}
/// Construct a SILDeclRef from ListOfValues.
static SILDeclRef getSILDeclRef(ModuleFile *MF,
ArrayRef<uint64_t> ListOfValues,
unsigned &NextIdx) {
assert(ListOfValues.size() >= NextIdx+5 &&
"Expect 5 numbers for SILDeclRef");
SILDeclRef DRef(cast<ValueDecl>(MF->getDecl(ListOfValues[NextIdx])),
(SILDeclRef::Kind)ListOfValues[NextIdx+1],
(swift::ResilienceExpansion)ListOfValues[NextIdx+2],
/*isCurried=*/false, ListOfValues[NextIdx+4] > 0);
if (ListOfValues[NextIdx+3] < DRef.getParameterListCount() - 1)
DRef = DRef.asCurried();
NextIdx += 5;
return DRef;
}
bool SILDeserializer::readSILInstruction(SILFunction *Fn, SILBasicBlock *BB,
SILBuilder &Builder,
unsigned RecordKind,
SmallVectorImpl<uint64_t> &scratch) {
// Return error if Basic Block is null.
if (!BB)
return true;
Builder.setInsertionPoint(BB);
Builder.setCurrentDebugScope(Fn->getDebugScope());
unsigned RawOpCode = 0, TyCategory = 0, TyCategory2 = 0, TyCategory3 = 0,
Attr = 0, NumSubs = 0, NumConformances = 0, IsNonThrowingApply = 0;
ValueID ValID, ValID2, ValID3;
TypeID TyID, TyID2, TyID3;
TypeID ConcreteTyID;
SourceLoc SLoc;
ArrayRef<uint64_t> ListOfValues;
SILLocation Loc = RegularLocation(SLoc);
switch (RecordKind) {
default:
llvm_unreachable("Record kind for a SIL instruction is not supported.");
case SIL_ONE_VALUE_ONE_OPERAND:
SILOneValueOneOperandLayout::readRecord(scratch, RawOpCode, Attr,
ValID, TyID, TyCategory,
ValID2);
break;
case SIL_ONE_TYPE:
SILOneTypeLayout::readRecord(scratch, RawOpCode, TyID, TyCategory);
break;
case SIL_ONE_OPERAND:
SILOneOperandLayout::readRecord(scratch, RawOpCode, Attr,
TyID, TyCategory, ValID);
break;
case SIL_ONE_TYPE_ONE_OPERAND:
SILOneTypeOneOperandLayout::readRecord(scratch, RawOpCode, Attr,
TyID, TyCategory,
TyID2, TyCategory2,
ValID);
break;
case SIL_INIT_EXISTENTIAL:
SILInitExistentialLayout::readRecord(scratch, RawOpCode,
TyID, TyCategory,
TyID2, TyCategory2,
ValID,
ConcreteTyID,
NumConformances);
break;
case SIL_INST_CAST:
SILInstCastLayout::readRecord(scratch, RawOpCode, Attr,
TyID, TyCategory,
TyID2, TyCategory2,
ValID);
break;
case SIL_ONE_TYPE_VALUES:
SILOneTypeValuesLayout::readRecord(scratch, RawOpCode, TyID, TyCategory,
ListOfValues);
break;
case SIL_TWO_OPERANDS:
SILTwoOperandsLayout::readRecord(scratch, RawOpCode, Attr,
TyID, TyCategory, ValID,
TyID2, TyCategory2, ValID2);
break;
case SIL_TAIL_ADDR:
SILTailAddrLayout::readRecord(scratch, RawOpCode,
TyID, ValID,
TyID2, ValID2,
TyID3);
break;
case SIL_INST_APPLY: {
unsigned IsPartial;
SILInstApplyLayout::readRecord(scratch, IsPartial, NumSubs,
TyID, TyID2, ValID, ListOfValues);
switch (IsPartial) {
case SIL_APPLY:
RawOpCode = (unsigned)SILInstructionKind::ApplyInst;
break;
case SIL_PARTIAL_APPLY:
RawOpCode = (unsigned)SILInstructionKind::PartialApplyInst;
break;
case SIL_BUILTIN:
RawOpCode = (unsigned)SILInstructionKind::BuiltinInst;
break;
case SIL_TRY_APPLY:
RawOpCode = (unsigned)SILInstructionKind::TryApplyInst;
break;
case SIL_NON_THROWING_APPLY:
RawOpCode = (unsigned)SILInstructionKind::ApplyInst;
IsNonThrowingApply = true;
break;
case SIL_BEGIN_APPLY:
RawOpCode = (unsigned)SILInstructionKind::BeginApplyInst;
break;
case SIL_NON_THROWING_BEGIN_APPLY:
RawOpCode = (unsigned)SILInstructionKind::BeginApplyInst;
IsNonThrowingApply = true;
break;
default:
llvm_unreachable("unexpected apply inst kind");
}
break;
}
case SIL_INST_NO_OPERAND:
SILInstNoOperandLayout::readRecord(scratch, RawOpCode);
break;
case SIL_INST_WITNESS_METHOD:
SILInstWitnessMethodLayout::readRecord(
scratch, TyID, TyCategory, Attr, TyID2, TyCategory2, TyID3,
TyCategory3, ValID3, ListOfValues);
RawOpCode = (unsigned)SILInstructionKind::WitnessMethodInst;
break;
}
// FIXME: validate
SILInstructionKind OpCode = (SILInstructionKind) RawOpCode;
SILInstruction *ResultVal;
switch (OpCode) {
case SILInstructionKind::DebugValueInst:
case SILInstructionKind::DebugValueAddrInst:
llvm_unreachable("not supported");
case SILInstructionKind::AllocBoxInst:
assert(RecordKind == SIL_ONE_TYPE && "Layout should be OneType.");
ResultVal = Builder.createAllocBox(Loc,
cast<SILBoxType>(MF->getType(TyID)->getCanonicalType()));
break;
#define ONETYPE_INST(ID) \
case SILInstructionKind::ID##Inst: \
assert(RecordKind == SIL_ONE_TYPE && "Layout should be OneType."); \
ResultVal = Builder.create##ID(Loc, \
getSILType(MF->getType(TyID), (SILValueCategory)TyCategory));\
break;
ONETYPE_INST(AllocStack)
ONETYPE_INST(Metatype)
#undef ONETYPE_INST
#define ONETYPE_ONEOPERAND_INST(ID) \
case SILInstructionKind::ID##Inst: \
assert(RecordKind == SIL_ONE_TYPE_ONE_OPERAND && \
"Layout should be OneTypeOneOperand."); \
ResultVal = Builder.create##ID(Loc, \
getSILType(MF->getType(TyID), (SILValueCategory)TyCategory), \
getLocalValue(ValID, \
getSILType(MF->getType(TyID2), \
(SILValueCategory)TyCategory2))); \
break;
ONETYPE_ONEOPERAND_INST(ValueMetatype)
ONETYPE_ONEOPERAND_INST(ExistentialMetatype)
ONETYPE_ONEOPERAND_INST(AllocValueBuffer)
ONETYPE_ONEOPERAND_INST(ProjectValueBuffer)
ONETYPE_ONEOPERAND_INST(ProjectExistentialBox)
ONETYPE_ONEOPERAND_INST(DeallocValueBuffer)
#undef ONETYPE_ONEOPERAND_INST
case SILInstructionKind::DeallocBoxInst:
assert(RecordKind == SIL_ONE_TYPE_ONE_OPERAND &&
"Layout should be OneTypeOneOperand.");
ResultVal = Builder.createDeallocBox(Loc,
getLocalValue(ValID,
getSILType(MF->getType(TyID2),
(SILValueCategory)TyCategory2)));
break;
case SILInstructionKind::OpenExistentialAddrInst:
assert(RecordKind == SIL_ONE_TYPE_ONE_OPERAND &&
"Layout should be OneTypeOneOperand.");
ResultVal = Builder.createOpenExistentialAddr(
Loc, getLocalValue(ValID, getSILType(MF->getType(TyID2),
(SILValueCategory)TyCategory2)),
getSILType(MF->getType(TyID), (SILValueCategory)TyCategory),
Attr == 0 ? OpenedExistentialAccess::Immutable
: OpenedExistentialAccess::Mutable);
break;
#define ONEOPERAND_ONETYPE_INST(ID) \
case SILInstructionKind::ID##Inst: \
assert(RecordKind == SIL_ONE_TYPE_ONE_OPERAND && \
"Layout should be OneTypeOneOperand."); \
ResultVal = Builder.create##ID(Loc, \
getLocalValue(ValID, \
getSILType(MF->getType(TyID2), \
(SILValueCategory)TyCategory2)), \
getSILType(MF->getType(TyID), (SILValueCategory)TyCategory));\
break;
ONEOPERAND_ONETYPE_INST(OpenExistentialRef)
ONEOPERAND_ONETYPE_INST(OpenExistentialMetatype)
ONEOPERAND_ONETYPE_INST(OpenExistentialBox)
ONEOPERAND_ONETYPE_INST(OpenExistentialValue)
ONEOPERAND_ONETYPE_INST(OpenExistentialBoxValue)
// Conversion instructions.
ONEOPERAND_ONETYPE_INST(UncheckedRefCast)
ONEOPERAND_ONETYPE_INST(UncheckedAddrCast)
ONEOPERAND_ONETYPE_INST(UncheckedTrivialBitCast)
ONEOPERAND_ONETYPE_INST(UncheckedBitwiseCast)
ONEOPERAND_ONETYPE_INST(BridgeObjectToRef)
ONEOPERAND_ONETYPE_INST(BridgeObjectToWord)
ONEOPERAND_ONETYPE_INST(Upcast)
ONEOPERAND_ONETYPE_INST(AddressToPointer)
ONEOPERAND_ONETYPE_INST(RefToRawPointer)
ONEOPERAND_ONETYPE_INST(RawPointerToRef)
ONEOPERAND_ONETYPE_INST(RefToUnowned)
ONEOPERAND_ONETYPE_INST(UnownedToRef)
ONEOPERAND_ONETYPE_INST(RefToUnmanaged)
ONEOPERAND_ONETYPE_INST(UnmanagedToRef)
ONEOPERAND_ONETYPE_INST(ThinToThickFunction)
ONEOPERAND_ONETYPE_INST(ThickToObjCMetatype)
ONEOPERAND_ONETYPE_INST(ObjCToThickMetatype)
ONEOPERAND_ONETYPE_INST(ObjCMetatypeToObject)
ONEOPERAND_ONETYPE_INST(ObjCExistentialMetatypeToObject)
ONEOPERAND_ONETYPE_INST(ConvertFunction)
ONEOPERAND_ONETYPE_INST(ThinFunctionToPointer)
ONEOPERAND_ONETYPE_INST(PointerToThinFunction)
ONEOPERAND_ONETYPE_INST(ProjectBlockStorage)
#undef ONEOPERAND_ONETYPE_INST
case SILInstructionKind::ProjectBoxInst: {
assert(RecordKind == SIL_ONE_TYPE_ONE_OPERAND &&
"Layout should be OneTypeOneOperand.");
ResultVal = Builder.createProjectBox(Loc,
getLocalValue(ValID,
getSILType(MF->getType(TyID2),
(SILValueCategory)TyCategory2)),
TyID);
break;
}
case SILInstructionKind::PointerToAddressInst: {
assert(RecordKind == SIL_ONE_TYPE_ONE_OPERAND &&
"Layout should be OneTypeOneOperand.");
bool isStrict = Attr & 0x01;
bool isInvariant = Attr & 0x02;
ResultVal = Builder.createPointerToAddress(
Loc,
getLocalValue(ValID, getSILType(MF->getType(TyID2),
(SILValueCategory)TyCategory2)),
getSILType(MF->getType(TyID), (SILValueCategory)TyCategory),
isStrict, isInvariant);
break;
}
case SILInstructionKind::DeallocExistentialBoxInst: {
assert(RecordKind == SIL_ONE_TYPE_ONE_OPERAND &&
"Layout should be OneTypeOneOperand.");
ResultVal = Builder.createDeallocExistentialBox(Loc,
MF->getType(TyID)->getCanonicalType(),
getLocalValue(ValID,
getSILType(MF->getType(TyID2),
(SILValueCategory)TyCategory2)));
break;
}
case SILInstructionKind::RefToBridgeObjectInst: {
auto RefTy = getSILType(MF->getType(TyID), (SILValueCategory)TyCategory);
auto Ref = getLocalValue(ValID, RefTy);
auto BitsTy = getSILType(MF->getType(TyID2), (SILValueCategory)TyCategory2);
auto Bits = getLocalValue(ValID2, BitsTy);
ResultVal = Builder.createRefToBridgeObject(Loc, Ref, Bits);
break;
}
case SILInstructionKind::ObjCProtocolInst: {
auto Ty = getSILType(MF->getType(TyID), (SILValueCategory)TyCategory);
auto Proto = MF->getDecl(ValID);
ResultVal = Builder.createObjCProtocol(Loc, cast<ProtocolDecl>(Proto), Ty);
break;
}
case SILInstructionKind::InitExistentialAddrInst:
case SILInstructionKind::InitExistentialValueInst:
case SILInstructionKind::InitExistentialMetatypeInst:
case SILInstructionKind::InitExistentialRefInst:
case SILInstructionKind::AllocExistentialBoxInst: {
auto Ty = getSILType(MF->getType(TyID), (SILValueCategory)TyCategory);
auto Ty2 = MF->getType(TyID2);
CanType ConcreteTy;
if (OpCode != SILInstructionKind::InitExistentialMetatypeInst)
ConcreteTy = MF->getType(ConcreteTyID)->getCanonicalType();
SILValue operand;
if (OpCode != SILInstructionKind::AllocExistentialBoxInst)
operand = getLocalValue(ValID,
getSILType(Ty2, (SILValueCategory)TyCategory2));
SmallVector<ProtocolConformanceRef, 2> conformances;
while (NumConformances--) {
auto conformance = MF->readConformance(SILCursor);
conformances.push_back(conformance);
}
auto ctxConformances = MF->getContext().AllocateCopy(conformances);
switch (OpCode) {
default: llvm_unreachable("Out of sync with parent switch");
case SILInstructionKind::InitExistentialAddrInst:
ResultVal = Builder.createInitExistentialAddr(Loc, operand,
ConcreteTy,
Ty,
ctxConformances);
break;
case SILInstructionKind::InitExistentialValueInst:
ResultVal = Builder.createInitExistentialValue(Loc, Ty, ConcreteTy,
operand, ctxConformances);
break;
case SILInstructionKind::InitExistentialMetatypeInst:
ResultVal = Builder.createInitExistentialMetatype(Loc, operand, Ty,
ctxConformances);
break;
case SILInstructionKind::InitExistentialRefInst:
ResultVal = Builder.createInitExistentialRef(Loc, Ty,
ConcreteTy,
operand,
ctxConformances);
break;
case SILInstructionKind::AllocExistentialBoxInst:
ResultVal = Builder.createAllocExistentialBox(Loc, Ty, ConcreteTy,
ctxConformances);
break;
}
break;
}
case SILInstructionKind::AllocRefInst:
case SILInstructionKind::AllocRefDynamicInst: {
assert(RecordKind == SIL_ONE_TYPE_VALUES &&
"Layout should be OneTypeValues.");
unsigned NumVals = ListOfValues.size();
assert(NumVals >= 1 && "Not enough values");
unsigned Flags = ListOfValues[0];
bool isObjC = (bool)(Flags & 1);
bool canAllocOnStack = (bool)((Flags >> 1) & 1);
SILType ClassTy = getSILType(MF->getType(TyID), (SILValueCategory)TyCategory);
SmallVector<SILValue, 4> Counts;
SmallVector<SILType, 4> TailTypes;
unsigned i = 1;
for (; i + 2 < NumVals; i += 3) {
SILType TailType = getSILType(MF->getType(ListOfValues[i]),
SILValueCategory::Object);
TailTypes.push_back(TailType);
SILType CountType = getSILType(MF->getType(ListOfValues[i+2]),
SILValueCategory::Object);
SILValue CountVal = getLocalValue(ListOfValues[i+1], CountType);
Counts.push_back(CountVal);
}
if (OpCode == SILInstructionKind::AllocRefDynamicInst) {
assert(i + 2 == NumVals);
assert(!canAllocOnStack);
SILType MetadataType = getSILType(MF->getType(ListOfValues[i+1]),
SILValueCategory::Object);
SILValue MetadataOp = getLocalValue(ListOfValues[i], MetadataType);
ResultVal = Builder.createAllocRefDynamic(Loc, MetadataOp, ClassTy,
isObjC, TailTypes, Counts);
} else {
assert(i == NumVals);
ResultVal = Builder.createAllocRef(Loc, ClassTy, isObjC, canAllocOnStack,
TailTypes, Counts);
}
break;
}
case SILInstructionKind::ApplyInst:
case SILInstructionKind::BeginApplyInst: {
// Format: attributes such as transparent, the callee's type, a value for
// the callee and a list of values for the arguments. Each value in the list
// is represented with 2 IDs: ValueID and ValueResultNumber.
auto Ty = MF->getType(TyID);
auto Ty2 = MF->getType(TyID2);
SILType FnTy = getSILType(Ty, SILValueCategory::Object);
SILType SubstFnTy = getSILType(Ty2, SILValueCategory::Object);
SILFunctionConventions substConventions(SubstFnTy.castTo<SILFunctionType>(),
Builder.getModule());
assert(substConventions.getNumSILArguments() == ListOfValues.size()
&& "Argument number mismatch in ApplyInst.");
SmallVector<SILValue, 4> Args;
for (unsigned I = 0, E = ListOfValues.size(); I < E; I++)
Args.push_back(getLocalValue(ListOfValues[I],
substConventions.getSILArgumentType(I)));
unsigned NumSub = NumSubs;
SmallVector<Substitution, 4> Substitutions;
while (NumSub--) {
auto sub = MF->maybeReadSubstitution(SILCursor);
assert(sub.hasValue() && "missing substitution");
Substitutions.push_back(*sub);
}
if (OpCode == SILInstructionKind::ApplyInst) {
ResultVal = Builder.createApply(Loc, getLocalValue(ValID, FnTy),
Substitutions, Args,
IsNonThrowingApply != 0);
} else {
ResultVal = Builder.createBeginApply(Loc, getLocalValue(ValID, FnTy),
Substitutions, Args,
IsNonThrowingApply != 0);
}
break;
}
case SILInstructionKind::TryApplyInst: {
// Format: attributes such as transparent, the callee's type, a value for
// the callee and a list of values for the arguments. Each value in the list
// is represented with 2 IDs: ValueID and ValueResultNumber. The final
// two values in the list are the basic block identifiers.
auto Ty = MF->getType(TyID);
auto Ty2 = MF->getType(TyID2);
SILType FnTy = getSILType(Ty, SILValueCategory::Object);
SILType SubstFnTy = getSILType(Ty2, SILValueCategory::Object);
SILBasicBlock *errorBB = getBBForReference(Fn, ListOfValues.back());
ListOfValues = ListOfValues.drop_back();
SILBasicBlock *normalBB = getBBForReference(Fn, ListOfValues.back());
ListOfValues = ListOfValues.drop_back();
SILFunctionConventions substConventions(SubstFnTy.castTo<SILFunctionType>(),
Builder.getModule());
assert(substConventions.getNumSILArguments() == ListOfValues.size()
&& "Argument number mismatch in ApplyInst.");
SmallVector<SILValue, 4> Args;
for (unsigned I = 0, E = ListOfValues.size(); I < E; I++)
Args.push_back(getLocalValue(ListOfValues[I],
substConventions.getSILArgumentType(I)));
unsigned NumSub = NumSubs;
SmallVector<Substitution, 4> Substitutions;
while (NumSub--) {
auto sub = MF->maybeReadSubstitution(SILCursor);
assert(sub.hasValue() && "missing substitution");
Substitutions.push_back(*sub);
}
ResultVal = Builder.createTryApply(Loc, getLocalValue(ValID, FnTy),
Substitutions, Args, normalBB, errorBB);
break;
}
case SILInstructionKind::PartialApplyInst: {
auto Ty = MF->getType(TyID);
auto Ty2 = MF->getType(TyID2);
SILType FnTy = getSILType(Ty, SILValueCategory::Object);
SILType closureTy = getSILType(Ty2, SILValueCategory::Object);
unsigned NumSub = NumSubs;
SmallVector<Substitution, 4> Substitutions;
while (NumSub--) {
auto sub = MF->maybeReadSubstitution(SILCursor);
assert(sub.hasValue() && "missing substitution");
Substitutions.push_back(*sub);
}
auto SubstFnTy = SILType::getPrimitiveObjectType(
FnTy.castTo<SILFunctionType>()
->substGenericArgs(Builder.getModule(), Substitutions));
SILFunctionConventions fnConv(SubstFnTy.castTo<SILFunctionType>(),
Builder.getModule());
unsigned numArgs = fnConv.getNumSILArguments();
assert(numArgs >= ListOfValues.size()
&& "Argument number mismatch in PartialApplyInst.");
SILValue FnVal = getLocalValue(ValID, FnTy);
SmallVector<SILValue, 4> Args;
unsigned unappliedArgs = numArgs - ListOfValues.size();
for (unsigned I = 0, E = ListOfValues.size(); I < E; I++)
Args.push_back(getLocalValue(
ListOfValues[I], fnConv.getSILArgumentType(I + unappliedArgs)));
// FIXME: Why the arbitrary order difference in IRBuilder type argument?
ResultVal = Builder.createPartialApply(
Loc, FnVal, Substitutions, Args,
closureTy.getAs<SILFunctionType>()->getCalleeConvention());
break;
}
case SILInstructionKind::BuiltinInst: {
auto ASTTy = MF->getType(TyID);
auto ResultTy = getSILType(ASTTy, (SILValueCategory)(unsigned)TyID2);
SmallVector<SILValue, 4> Args;
for (unsigned i = 0, e = ListOfValues.size(); i < e; i += 3) {
auto ArgASTTy = MF->getType(ListOfValues[i+1]);
auto ArgTy = getSILType(ArgASTTy,
(SILValueCategory)(unsigned)ListOfValues[i+2]);
Args.push_back(getLocalValue(ListOfValues[i], ArgTy));
}
unsigned NumSub = NumSubs;
SmallVector<Substitution, 4> Substitutions;
while (NumSub--) {
auto sub = MF->maybeReadSubstitution(SILCursor);
assert(sub.hasValue() && "missing substitution");
Substitutions.push_back(*sub);
}
Identifier Name = MF->getIdentifier(ValID);
ResultVal = Builder.createBuiltin(Loc, Name, ResultTy, Substitutions,
Args);
break;
}
case SILInstructionKind::AllocGlobalInst: {
// Format: Name and type. Use SILOneOperandLayout.
Identifier Name = MF->getIdentifier(ValID);
// Find the global variable.
SILGlobalVariable *g = getGlobalForReference(Name.str());
assert(g && "Can't deserialize global variable");
ResultVal = Builder.createAllocGlobal(Loc, g);
break;
}
case SILInstructionKind::GlobalAddrInst:
case SILInstructionKind::GlobalValueInst: {
// Format: Name and type. Use SILOneOperandLayout.
auto Ty = MF->getType(TyID);
Identifier Name = MF->getIdentifier(ValID);
// Find the global variable.
SILGlobalVariable *g = getGlobalForReference(Name.str());
assert(g && "Can't deserialize global variable");
SILType expectedType = (OpCode == SILInstructionKind::GlobalAddrInst ?
g->getLoweredType().getAddressType() :
g->getLoweredType());
assert(expectedType == getSILType(Ty, (SILValueCategory)TyCategory) &&
"Type of a global variable does not match GlobalAddr.");
(void)Ty;
if (OpCode == SILInstructionKind::GlobalAddrInst) {
ResultVal = Builder.createGlobalAddr(Loc, g);
} else {
ResultVal = Builder.createGlobalValue(Loc, g);
}
break;
}
case SILInstructionKind::DeallocStackInst: {
auto Ty = MF->getType(TyID);
ResultVal = Builder.createDeallocStack(Loc,
getLocalValue(ValID,
getSILType(Ty, (SILValueCategory)TyCategory)));
break;
}
case SILInstructionKind::DeallocRefInst: {
auto Ty = MF->getType(TyID);
bool OnStack = (bool)Attr;
ResultVal = Builder.createDeallocRef(Loc,
getLocalValue(ValID,
getSILType(Ty, (SILValueCategory)TyCategory)), OnStack);
break;
}
case SILInstructionKind::DeallocPartialRefInst: {
auto Ty = MF->getType(TyID);
auto Ty2 = MF->getType(TyID2);
ResultVal = Builder.createDeallocPartialRef(Loc,
getLocalValue(ValID,
getSILType(Ty, (SILValueCategory)TyCategory)),
getLocalValue(ValID2,
getSILType(Ty2, (SILValueCategory)TyCategory2)));
break;
}
case SILInstructionKind::FunctionRefInst: {
auto Ty = MF->getType(TyID);
Identifier FuncName = MF->getIdentifier(ValID);
ResultVal = Builder.createFunctionRef(Loc,
getFuncForReference(FuncName.str(),
getSILType(Ty, (SILValueCategory)TyCategory)));
break;
}
case SILInstructionKind::MarkDependenceInst: {
auto Ty = MF->getType(TyID);
auto Ty2 = MF->getType(TyID2);
ResultVal = Builder.createMarkDependence(Loc,
getLocalValue(ValID,
getSILType(Ty, (SILValueCategory)TyCategory)),
getLocalValue(ValID2,
getSILType(Ty2, (SILValueCategory)TyCategory2)));
break;
}
case SILInstructionKind::IndexAddrInst: {
auto Ty = MF->getType(TyID);
auto Ty2 = MF->getType(TyID2);
ResultVal = Builder.createIndexAddr(Loc,
getLocalValue(ValID,
getSILType(Ty, (SILValueCategory)TyCategory)),
getLocalValue(ValID2,
getSILType(Ty2, (SILValueCategory)TyCategory2)));
break;
}
case SILInstructionKind::TailAddrInst: {
auto Ty = MF->getType(TyID);
auto Ty2 = MF->getType(TyID2);
auto ResultTy = MF->getType(TyID3);
ResultVal = Builder.createTailAddr(Loc,
getLocalValue(ValID, getSILType(Ty, SILValueCategory::Address)),
getLocalValue(ValID2, getSILType(Ty2, SILValueCategory::Object)),
getSILType(ResultTy, SILValueCategory::Address));
break;
}
case SILInstructionKind::IndexRawPointerInst: {
auto Ty = MF->getType(TyID);
auto Ty2 = MF->getType(TyID2);
ResultVal = Builder.createIndexRawPointer(Loc,
getLocalValue(ValID,
getSILType(Ty, (SILValueCategory)TyCategory)),
getLocalValue(ValID2,
getSILType(Ty2, (SILValueCategory)TyCategory2)));
break;
}
case SILInstructionKind::IntegerLiteralInst: {
auto Ty = MF->getType(TyID);
auto intTy = Ty->getAs<BuiltinIntegerType>();
Identifier StringVal = MF->getIdentifier(ValID);
// Build APInt from string.
APInt value(intTy->getGreatestWidth(), StringVal.str(), 10);
ResultVal = Builder.createIntegerLiteral(Loc,
getSILType(Ty, (SILValueCategory)TyCategory),
value);
break;
}
case SILInstructionKind::FloatLiteralInst: {
auto Ty = MF->getType(TyID);
auto floatTy = Ty->getAs<BuiltinFloatType>();
Identifier StringVal = MF->getIdentifier(ValID);
// Build APInt from string.
APInt bits(floatTy->getBitWidth(), StringVal.str(), 16);
if (bits.getBitWidth() != floatTy->getBitWidth())
bits = bits.zextOrTrunc(floatTy->getBitWidth());
APFloat value(floatTy->getAPFloatSemantics(), bits);
ResultVal = Builder.createFloatLiteral(Loc,
getSILType(Ty, (SILValueCategory)TyCategory),
value);
break;
}
case SILInstructionKind::StringLiteralInst: {
Identifier StringVal = MF->getIdentifier(ValID);
auto encoding = fromStableStringEncoding(Attr);
if (!encoding) return true;
ResultVal = Builder.createStringLiteral(Loc, StringVal.str(),
encoding.getValue());
break;
}
case SILInstructionKind::ConstStringLiteralInst: {
Identifier StringVal = MF->getIdentifier(ValID);
auto encoding = fromStableConstStringEncoding(Attr);
if (!encoding)
return true;
ResultVal = Builder.createConstStringLiteral(Loc, StringVal.str(),
encoding.getValue());
break;
}
case SILInstructionKind::MarkFunctionEscapeInst: {
// Format: a list of typed values. A typed value is expressed by 4 IDs:
// TypeID, TypeCategory, ValueID, ValueResultNumber.
SmallVector<SILValue, 4> OpList;
for (unsigned I = 0, E = ListOfValues.size(); I < E; I += 3) {
auto EltTy = MF->getType(ListOfValues[I]);
OpList.push_back(
getLocalValue(ListOfValues[I+2],
getSILType(EltTy, (SILValueCategory)ListOfValues[I+1])));
}
ResultVal = Builder.createMarkFunctionEscape(Loc, OpList);
break;
}
// Checked Conversion instructions.
case SILInstructionKind::UnconditionalCheckedCastInst: {
SILValue Val = getLocalValue(ValID,
getSILType(MF->getType(TyID2), (SILValueCategory)TyCategory2));
SILType Ty = getSILType(MF->getType(TyID), (SILValueCategory)TyCategory);
ResultVal = Builder.createUnconditionalCheckedCast(Loc, Val, Ty);
break;
}
#define UNARY_INSTRUCTION(ID) \
case SILInstructionKind::ID##Inst: \
assert(RecordKind == SIL_ONE_OPERAND && \
"Layout should be OneOperand."); \
ResultVal = Builder.create##ID(Loc, getLocalValue(ValID, \
getSILType(MF->getType(TyID), \
(SILValueCategory)TyCategory))); \
break;
#define REFCOUNTING_INSTRUCTION(ID) \
case SILInstructionKind::ID##Inst: \
assert(RecordKind == SIL_ONE_OPERAND && \
"Layout should be OneOperand."); \
ResultVal = Builder.create##ID(Loc, getLocalValue(ValID, \
getSILType(MF->getType(TyID), \
(SILValueCategory)TyCategory)), \
(Atomicity)Attr); \
break;
UNARY_INSTRUCTION(CondFail)
REFCOUNTING_INSTRUCTION(RetainValue)
REFCOUNTING_INSTRUCTION(RetainValueAddr)
REFCOUNTING_INSTRUCTION(UnmanagedRetainValue)
UNARY_INSTRUCTION(CopyValue)
UNARY_INSTRUCTION(CopyUnownedValue)
UNARY_INSTRUCTION(DestroyValue)
REFCOUNTING_INSTRUCTION(ReleaseValue)
REFCOUNTING_INSTRUCTION(ReleaseValueAddr)
REFCOUNTING_INSTRUCTION(UnmanagedReleaseValue)
REFCOUNTING_INSTRUCTION(AutoreleaseValue)
REFCOUNTING_INSTRUCTION(UnmanagedAutoreleaseValue)
REFCOUNTING_INSTRUCTION(SetDeallocating)
UNARY_INSTRUCTION(DeinitExistentialAddr)
UNARY_INSTRUCTION(DeinitExistentialValue)
UNARY_INSTRUCTION(EndBorrowArgument)
UNARY_INSTRUCTION(DestroyAddr)
UNARY_INSTRUCTION(Return)
UNARY_INSTRUCTION(Throw)
UNARY_INSTRUCTION(FixLifetime)
UNARY_INSTRUCTION(EndLifetime)
UNARY_INSTRUCTION(CopyBlock)
UNARY_INSTRUCTION(LoadBorrow)
UNARY_INSTRUCTION(BeginBorrow)
REFCOUNTING_INSTRUCTION(StrongPin)
REFCOUNTING_INSTRUCTION(StrongUnpin)
REFCOUNTING_INSTRUCTION(StrongRetain)
REFCOUNTING_INSTRUCTION(StrongRelease)
REFCOUNTING_INSTRUCTION(StrongRetainUnowned)
REFCOUNTING_INSTRUCTION(UnownedRetain)
REFCOUNTING_INSTRUCTION(UnownedRelease)
UNARY_INSTRUCTION(IsUnique)
UNARY_INSTRUCTION(IsUniqueOrPinned)
UNARY_INSTRUCTION(AbortApply)
UNARY_INSTRUCTION(EndApply)
#undef UNARY_INSTRUCTION
#undef REFCOUNTING_INSTRUCTION
case SILInstructionKind::DestructureTupleInst: {
assert(RecordKind == SIL_ONE_OPERAND && "Layout should be OneOperand.");
SILValue Operand = getLocalValue(
ValID, getSILType(MF->getType(TyID), (SILValueCategory)TyCategory));
ResultVal = Builder.createDestructureTuple(Loc, Operand);
break;
}
case SILInstructionKind::DestructureStructInst: {
assert(RecordKind == SIL_ONE_OPERAND && "Layout should be OneOperand.");
SILValue Operand = getLocalValue(
ValID, getSILType(MF->getType(TyID), (SILValueCategory)TyCategory));
ResultVal = Builder.createDestructureStruct(Loc, Operand);
break;
}
case SILInstructionKind::UncheckedOwnershipConversionInst: {
auto Ty = MF->getType(TyID);
auto ResultKind = ValueOwnershipKind(Attr);
ResultVal = Builder.createUncheckedOwnershipConversion(
Loc, getLocalValue(ValID, getSILType(Ty, (SILValueCategory)TyCategory)),
ResultKind);
break;
}
case SILInstructionKind::LoadInst: {
auto Ty = MF->getType(TyID);
auto Qualifier = LoadOwnershipQualifier(Attr);
ResultVal = Builder.createLoad(
Loc, getLocalValue(ValID, getSILType(Ty, (SILValueCategory)TyCategory)),
Qualifier);
break;
}
case SILInstructionKind::LoadUnownedInst: {
auto Ty = MF->getType(TyID);
bool isTake = (Attr > 0);
ResultVal = Builder.createLoadUnowned(Loc,
getLocalValue(ValID,
getSILType(Ty, (SILValueCategory)TyCategory)),
IsTake_t(isTake));
break;
}
case SILInstructionKind::LoadWeakInst: {
auto Ty = MF->getType(TyID);
bool isTake = (Attr > 0);
ResultVal = Builder.createLoadWeak(Loc,
getLocalValue(ValID,
getSILType(Ty, (SILValueCategory)TyCategory)),
IsTake_t(isTake));
break;
}
case SILInstructionKind::MarkUninitializedInst: {
auto Ty = getSILType(MF->getType(TyID), (SILValueCategory)TyCategory);
auto Kind = (MarkUninitializedInst::Kind)Attr;
auto Val = getLocalValue(ValID, Ty);
ResultVal = Builder.createMarkUninitialized(Loc, Val, Kind);
break;
}
case SILInstructionKind::StoreInst: {
auto Ty = MF->getType(TyID);
SILType addrType = getSILType(Ty, (SILValueCategory)TyCategory);
SILType ValType = addrType.getObjectType();
auto Qualifier = StoreOwnershipQualifier(Attr);
ResultVal = Builder.createStore(Loc, getLocalValue(ValID, ValType),
getLocalValue(ValID2, addrType), Qualifier);
break;
}
case SILInstructionKind::StoreBorrowInst: {
auto Ty = MF->getType(TyID);
SILType addrType = getSILType(Ty, (SILValueCategory)TyCategory);
SILType ValType = addrType.getObjectType();
ResultVal = Builder.createStoreBorrow(Loc, getLocalValue(ValID, ValType),
getLocalValue(ValID2, addrType));
break;
}
case SILInstructionKind::EndBorrowInst: {
SILValue BorrowSource, BorrowDest;
BorrowSource = getLocalValue(
ValID, getSILType(MF->getType(TyID), (SILValueCategory)TyCategory));
BorrowDest = getLocalValue(
ValID2, getSILType(MF->getType(TyID2), (SILValueCategory)TyCategory2));
ResultVal = Builder.createEndBorrow(Loc, BorrowSource, BorrowDest);
break;
}
case SILInstructionKind::BeginAccessInst: {
SILValue op = getLocalValue(
ValID, getSILType(MF->getType(TyID), (SILValueCategory)TyCategory));
auto accessKind = SILAccessKind(Attr & 0x3);
auto enforcement = SILAccessEnforcement(Attr >> 2);
ResultVal = Builder.createBeginAccess(Loc, op, accessKind, enforcement);
break;
}
case SILInstructionKind::EndAccessInst: {
SILValue op = getLocalValue(
ValID, getSILType(MF->getType(TyID), (SILValueCategory)TyCategory));
bool aborted = Attr & 0x1;
ResultVal = Builder.createEndAccess(Loc, op, aborted);
break;
}
case SILInstructionKind::BeginUnpairedAccessInst: {
SILValue source = getLocalValue(
ValID, getSILType(MF->getType(TyID), (SILValueCategory)TyCategory));
SILValue buffer = getLocalValue(
ValID2, getSILType(MF->getType(TyID2), (SILValueCategory)TyCategory2));
auto accessKind = SILAccessKind(Attr & 0x3);
auto enforcement = SILAccessEnforcement(Attr >> 2);
ResultVal = Builder.createBeginUnpairedAccess(Loc, source, buffer,
accessKind, enforcement);
break;
}
case SILInstructionKind::EndUnpairedAccessInst: {
SILValue op = getLocalValue(
ValID, getSILType(MF->getType(TyID), (SILValueCategory)TyCategory));
bool aborted = Attr & 0x1;
auto enforcement = SILAccessEnforcement(Attr >> 1);
ResultVal = Builder.createEndUnpairedAccess(Loc, op, enforcement, aborted);
break;
}
case SILInstructionKind::StoreUnownedInst: {
auto Ty = MF->getType(TyID);
SILType addrType = getSILType(Ty, (SILValueCategory)TyCategory);
auto refType = addrType.getAs<WeakStorageType>();
auto ValType = SILType::getPrimitiveObjectType(refType.getReferentType());
bool isInit = (Attr > 0);
ResultVal = Builder.createStoreUnowned(Loc,
getLocalValue(ValID, ValType),
getLocalValue(ValID2, addrType),
IsInitialization_t(isInit));
break;
}
case SILInstructionKind::StoreWeakInst: {
auto Ty = MF->getType(TyID);
SILType addrType = getSILType(Ty, (SILValueCategory)TyCategory);
auto refType = addrType.getAs<WeakStorageType>();
auto ValType = SILType::getPrimitiveObjectType(refType.getReferentType());
bool isInit = (Attr > 0);
ResultVal = Builder.createStoreWeak(Loc,
getLocalValue(ValID, ValType),
getLocalValue(ValID2, addrType),
IsInitialization_t(isInit));
break;
}
case SILInstructionKind::CopyAddrInst: {
auto Ty = MF->getType(TyID);
SILType addrType = getSILType(Ty, (SILValueCategory)TyCategory);
bool isInit = (Attr & 0x2) > 0;
bool isTake = (Attr & 0x1) > 0;
ResultVal = Builder.createCopyAddr(Loc,
getLocalValue(ValID, addrType),
getLocalValue(ValID2, addrType),
IsTake_t(isTake),
IsInitialization_t(isInit));
break;
}
case SILInstructionKind::AssignInst: {
auto Ty = MF->getType(TyID);
SILType addrType = getSILType(Ty, (SILValueCategory)TyCategory);
SILType ValType = addrType.getObjectType();
ResultVal = Builder.createAssign(Loc,
getLocalValue(ValID, ValType),
getLocalValue(ValID2, addrType));
break;
}
case SILInstructionKind::BindMemoryInst: {
assert(RecordKind == SIL_ONE_TYPE_VALUES &&
"Layout should be OneTypeValues.");
auto Ty = MF->getType(TyID); // BoundTy
ResultVal = Builder.createBindMemory(
Loc,
getLocalValue(ListOfValues[2],
getSILType(MF->getType(ListOfValues[0]),
(SILValueCategory)ListOfValues[1])),
getLocalValue(ListOfValues[5],
getSILType(MF->getType(ListOfValues[3]),
(SILValueCategory)ListOfValues[4])),
getSILType(Ty, (SILValueCategory)TyCategory));
break;
}
case SILInstructionKind::StructElementAddrInst:
case SILInstructionKind::StructExtractInst: {
// Use SILOneValueOneOperandLayout.
VarDecl *Field = cast<VarDecl>(MF->getDecl(ValID));
auto Ty = MF->getType(TyID);
auto Val = getLocalValue(ValID2,
getSILType(Ty, (SILValueCategory)TyCategory));
auto ResultTy = Val->getType().getFieldType(Field, SILMod);
if (OpCode == SILInstructionKind::StructElementAddrInst)
ResultVal = Builder.createStructElementAddr(Loc, Val, Field,
ResultTy.getAddressType());
else
ResultVal = Builder.createStructExtract(Loc, Val, Field,
ResultTy.getObjectType());
break;
}
case SILInstructionKind::StructInst: {
// Format: a type followed by a list of typed values. A typed value is
// expressed by 4 IDs: TypeID, TypeCategory, ValueID, ValueResultNumber.
auto Ty = MF->getType(TyID);
SmallVector<SILValue, 4> OpList;
for (unsigned I = 0, E = ListOfValues.size(); I < E; I += 3) {
auto EltTy = MF->getType(ListOfValues[I]);
OpList.push_back(
getLocalValue(ListOfValues[I+2],
getSILType(EltTy, (SILValueCategory)ListOfValues[I+1])));
}
ResultVal = Builder.createStruct(Loc,
getSILType(Ty, (SILValueCategory)TyCategory),
OpList);
break;
}
case SILInstructionKind::TupleElementAddrInst:
case SILInstructionKind::TupleExtractInst: {
// Use OneTypeOneOperand layout where the field number is stored in TypeID.
auto Ty2 = MF->getType(TyID2);
SILType ST = getSILType(Ty2, (SILValueCategory)TyCategory2);
TupleType *TT = ST.getAs<TupleType>();
auto ResultTy = TT->getElement(TyID).getType();
switch (OpCode) {
default: llvm_unreachable("Out of sync with parent switch");
case SILInstructionKind::TupleElementAddrInst:
ResultVal = Builder.createTupleElementAddr(Loc,
getLocalValue(ValID, ST),
TyID, getSILType(ResultTy, SILValueCategory::Address));
break;
case SILInstructionKind::TupleExtractInst:
ResultVal = Builder.createTupleExtract(Loc,
getLocalValue(ValID,ST),
TyID,
getSILType(ResultTy, SILValueCategory::Object));
break;
}
break;
}
case SILInstructionKind::TupleInst: {
// Format: a type followed by a list of values. A value is expressed by
// 2 IDs: ValueID, ValueResultNumber.
auto Ty = MF->getType(TyID);
TupleType *TT = Ty->getAs<TupleType>();
assert(TT && "Type of a TupleInst should be TupleType");
SmallVector<SILValue, 4> OpList;
for (unsigned I = 0, E = ListOfValues.size(); I < E; I++) {
Type EltTy = TT->getElement(I).getType();
OpList.push_back(
getLocalValue(ListOfValues[I],
getSILType(EltTy, SILValueCategory::Object)));
}
ResultVal = Builder.createTuple(Loc,
getSILType(Ty, (SILValueCategory)TyCategory),
OpList);
break;
}
case SILInstructionKind::ObjectInst: {
llvm_unreachable("Serialization of global initializers not supported");
}
case SILInstructionKind::BranchInst: {
SmallVector<SILValue, 4> Args;
for (unsigned I = 0, E = ListOfValues.size(); I < E; I += 3)
Args.push_back(
getLocalValue(ListOfValues[I+2],
getSILType(MF->getType(ListOfValues[I]),
(SILValueCategory)ListOfValues[I+1])));
ResultVal = Builder.createBranch(Loc, getBBForReference(Fn, TyID),
Args);
break;
}
case SILInstructionKind::CondBranchInst: {
// Format: condition, true basic block ID, a list of arguments, false basic
// block ID, a list of arguments. Use SILOneTypeValuesLayout: the type is
// for condition, the list has value for condition, true basic block ID,
// false basic block ID, number of true arguments, and a list of true|false
// arguments.
SILValue Cond = getLocalValue(ListOfValues[0],
getSILType(MF->getType(TyID),
(SILValueCategory)TyCategory));
unsigned NumTrueArgs = ListOfValues[3];
unsigned StartOfTrueArg = 4;
unsigned StartOfFalseArg = StartOfTrueArg + 3*NumTrueArgs;
SmallVector<SILValue, 4> TrueArgs;
for (unsigned I = StartOfTrueArg, E = StartOfFalseArg; I < E; I += 3)
TrueArgs.push_back(
getLocalValue(ListOfValues[I+2],
getSILType(MF->getType(ListOfValues[I]),
(SILValueCategory)ListOfValues[I+1])));
SmallVector<SILValue, 4> FalseArgs;
for (unsigned I = StartOfFalseArg, E = ListOfValues.size(); I < E; I += 3)
FalseArgs.push_back(
getLocalValue(ListOfValues[I+2],
getSILType(MF->getType(ListOfValues[I]),
(SILValueCategory)ListOfValues[I+1])));
ResultVal = Builder.createCondBranch(Loc, Cond,
getBBForReference(Fn, ListOfValues[1]), TrueArgs,
getBBForReference(Fn, ListOfValues[2]), FalseArgs);
break;
}
case SILInstructionKind::SwitchEnumInst:
case SILInstructionKind::SwitchEnumAddrInst: {
// Format: condition, a list of cases (EnumElementDecl + Basic Block ID),
// default basic block ID. Use SILOneTypeValuesLayout: the type is
// for condition, the list has value for condition, hasDefault, default
// basic block ID, a list of (DeclID, BasicBlock ID).
SILValue Cond = getLocalValue(ListOfValues[0],
getSILType(MF->getType(TyID),
(SILValueCategory)TyCategory));
SILBasicBlock *DefaultBB = nullptr;
if (ListOfValues[1])
DefaultBB = getBBForReference(Fn, ListOfValues[2]);
SmallVector<std::pair<EnumElementDecl*, SILBasicBlock*>, 4> CaseBBs;
for (unsigned I = 3, E = ListOfValues.size(); I < E; I += 2) {
CaseBBs.push_back( {cast<EnumElementDecl>(MF->getDecl(ListOfValues[I])),
getBBForReference(Fn, ListOfValues[I+1])} );
}
if (OpCode == SILInstructionKind::SwitchEnumInst)
ResultVal = Builder.createSwitchEnum(Loc, Cond, DefaultBB, CaseBBs);
else
ResultVal = Builder.createSwitchEnumAddr(Loc, Cond,
DefaultBB, CaseBBs);
break;
}
case SILInstructionKind::SelectEnumInst:
case SILInstructionKind::SelectEnumAddrInst: {
// Format: condition, a list of cases (EnumElementDecl + Value ID),
// default value ID. Use SILOneTypeValuesLayout: the type is
// for condition, the list has value for condition, result type,
// hasDefault, default
// basic block ID, a list of (DeclID, BasicBlock ID).
SILValue Cond = getLocalValue(ListOfValues[0],
getSILType(MF->getType(TyID),
(SILValueCategory)TyCategory));
Type ResultLoweredTy = MF->getType(ListOfValues[1]);
SILValueCategory ResultCategory = (SILValueCategory)ListOfValues[2];
SILType ResultTy = getSILType(ResultLoweredTy, ResultCategory);
SILValue DefaultVal = nullptr;
if (ListOfValues[3])
DefaultVal = getLocalValue(ListOfValues[4], ResultTy);
SmallVector<std::pair<EnumElementDecl*, SILValue>, 4> CaseVals;
for (unsigned I = 5, E = ListOfValues.size(); I < E; I += 2) {
auto Value = getLocalValue(ListOfValues[I+1], ResultTy);
CaseVals.push_back({cast<EnumElementDecl>(MF->getDecl(ListOfValues[I])),
Value});
}
if (OpCode == SILInstructionKind::SelectEnumInst)
ResultVal = Builder.createSelectEnum(Loc, Cond, ResultTy,
DefaultVal, CaseVals);
else
ResultVal = Builder.createSelectEnumAddr(Loc, Cond, ResultTy,
DefaultVal, CaseVals);
break;
}
case SILInstructionKind::SwitchValueInst: {
// Format: condition, a list of cases (Value ID + Basic Block ID),
// default basic block ID. Use SILOneTypeValuesLayout: the type is
// for condition, the list contains value for condition, hasDefault, default
// basic block ID, a list of (Value ID, BasicBlock ID).
SILType ResultTy = getSILType(MF->getType(TyID),
(SILValueCategory)TyCategory);
SILValue Cond = getLocalValue(ListOfValues[0], getSILType(MF->getType(TyID),
(SILValueCategory)TyCategory));
SILBasicBlock *DefaultBB = nullptr;
if (ListOfValues[1])
DefaultBB = getBBForReference(Fn, ListOfValues[2]);
SmallVector<std::pair<SILValue, SILBasicBlock*>, 4> CaseBBs;
for (unsigned I = 3, E = ListOfValues.size(); I < E; I += 2) {
auto value = getLocalValue(ListOfValues[I], ResultTy);
CaseBBs.push_back( {value, getBBForReference(Fn, ListOfValues[I+1])} );
}
ResultVal = Builder.createSwitchValue(Loc, Cond, DefaultBB, CaseBBs);
break;
}
case SILInstructionKind::SelectValueInst: {
// Format: condition, a list of cases (ValueID + Value ID),
// default value ID. Use SILOneTypeValuesLayout: the type is
// for condition, the list has value for condition, result type,
// hasDefault, default,
// basic block ID, a list of (Value ID, Value ID).
SILValue Cond = getLocalValue(ListOfValues[0], getSILType(MF->getType(TyID),
(SILValueCategory)TyCategory));
Type ResultLoweredTy = MF->getType(ListOfValues[1]);
SILValueCategory ResultCategory = (SILValueCategory)ListOfValues[2];
SILType ResultTy = getSILType(ResultLoweredTy, ResultCategory);
SILValue DefaultVal = nullptr;
if (ListOfValues[3])
DefaultVal = getLocalValue(ListOfValues[4], ResultTy);
SmallVector<std::pair<SILValue, SILValue>, 4> CaseValuesAndResults;
for (unsigned I = 5, E = ListOfValues.size(); I < E; I += 2) {
auto CaseValue = getLocalValue(ListOfValues[I], Cond->getType());
auto Result = getLocalValue(ListOfValues[I+1], ResultTy);
CaseValuesAndResults.push_back({CaseValue, Result});
}
ResultVal = Builder.createSelectValue(Loc, Cond, ResultTy,
DefaultVal, CaseValuesAndResults);
break;
}
case SILInstructionKind::EnumInst: {
// Format: a type, an operand and a decl ID. Use SILTwoOperandsLayout: type,
// (DeclID + hasOperand), and an operand.
SILValue Operand;
if (Attr)
Operand = getLocalValue(ValID2,
getSILType(MF->getType(TyID2),
(SILValueCategory)TyCategory2));
ResultVal = Builder.createEnum(Loc, Operand,
cast<EnumElementDecl>(MF->getDecl(ValID)),
getSILType(MF->getType(TyID),
(SILValueCategory)TyCategory));
break;
}
case SILInstructionKind::InitEnumDataAddrInst: {
// Use SILOneValueOneOperandLayout.
EnumElementDecl *Elt = cast<EnumElementDecl>(MF->getDecl(ValID));
SILType OperandTy = getSILType(MF->getType(TyID),
(SILValueCategory) TyCategory);
SILType ResultTy = OperandTy.getEnumElementType(Elt, SILMod);
ResultVal = Builder.createInitEnumDataAddr(Loc,
getLocalValue(ValID2, OperandTy),
Elt, ResultTy);
break;
}
case SILInstructionKind::UncheckedEnumDataInst: {
// Use SILOneValueOneOperandLayout.
EnumElementDecl *Elt = cast<EnumElementDecl>(MF->getDecl(ValID));
SILType OperandTy = getSILType(MF->getType(TyID),
(SILValueCategory) TyCategory);
SILType ResultTy = OperandTy.getEnumElementType(Elt, SILMod);
ResultVal = Builder.createUncheckedEnumData(Loc,
getLocalValue(ValID2, OperandTy),
Elt, ResultTy);
break;
}
case SILInstructionKind::UncheckedTakeEnumDataAddrInst: {
// Use SILOneValueOneOperandLayout.
EnumElementDecl *Elt = cast<EnumElementDecl>(MF->getDecl(ValID));
SILType OperandTy = getSILType(MF->getType(TyID),
(SILValueCategory) TyCategory);
SILType ResultTy = OperandTy.getEnumElementType(Elt, SILMod);
ResultVal = Builder.createUncheckedTakeEnumDataAddr(Loc,
getLocalValue(ValID2, OperandTy),
Elt, ResultTy);
break;
}
case SILInstructionKind::InjectEnumAddrInst: {
// Use SILOneValueOneOperandLayout.
EnumElementDecl *Elt = cast<EnumElementDecl>(MF->getDecl(ValID));
auto Ty = MF->getType(TyID);
ResultVal = Builder.createInjectEnumAddr(Loc,
getLocalValue(ValID2,
getSILType(Ty, (SILValueCategory)TyCategory)),
Elt);
break;
}
case SILInstructionKind::RefElementAddrInst: {
// Use SILOneValueOneOperandLayout.
VarDecl *Field = cast<VarDecl>(MF->getDecl(ValID));
auto Ty = MF->getType(TyID);
auto Val = getLocalValue(ValID2,
getSILType(Ty, (SILValueCategory)TyCategory));
auto ResultTy = Val->getType().getFieldType(Field, SILMod);
ResultVal = Builder.createRefElementAddr(Loc, Val, Field,
ResultTy);
break;
}
case SILInstructionKind::RefTailAddrInst: {
assert(RecordKind == SIL_ONE_TYPE_ONE_OPERAND &&
"Layout should be OneTypeOneOperand.");
assert(Attr == 0);
assert((SILValueCategory)TyCategory == SILValueCategory::Address);
ResultVal = Builder.createRefTailAddr(
Loc,
getLocalValue(ValID, getSILType(MF->getType(TyID2),
(SILValueCategory)TyCategory2)),
getSILType(MF->getType(TyID), SILValueCategory::Address));
break;
}
case SILInstructionKind::ClassMethodInst:
case SILInstructionKind::SuperMethodInst:
case SILInstructionKind::ObjCMethodInst:
case SILInstructionKind::ObjCSuperMethodInst: {
// Format: a type, an operand and a SILDeclRef. Use SILOneTypeValuesLayout:
// type, Attr, SILDeclRef (DeclID, Kind, uncurryLevel), and an operand.
unsigned NextValueIndex = 0;
SILDeclRef DRef = getSILDeclRef(MF, ListOfValues, NextValueIndex);
SILType Ty = getSILType(MF->getType(TyID), (SILValueCategory)TyCategory);
assert(ListOfValues.size() >= NextValueIndex + 2 &&
"Out of entries for MethodInst");
SILType operandTy = getSILType(MF->getType(ListOfValues[NextValueIndex]),
(SILValueCategory)ListOfValues[NextValueIndex+1]);
NextValueIndex += 2;
switch (OpCode) {
default: llvm_unreachable("Out of sync with parent switch");
case SILInstructionKind::ClassMethodInst:
ResultVal = Builder.createClassMethod(Loc,
getLocalValue(ListOfValues[NextValueIndex], operandTy),
DRef, Ty);
break;
case SILInstructionKind::SuperMethodInst:
ResultVal = Builder.createSuperMethod(Loc,
getLocalValue(ListOfValues[NextValueIndex], operandTy),
DRef, Ty);
break;
case SILInstructionKind::ObjCMethodInst:
ResultVal = Builder.createObjCMethod(Loc,
getLocalValue(ListOfValues[NextValueIndex], operandTy),
DRef, Ty);
break;
case SILInstructionKind::ObjCSuperMethodInst:
ResultVal = Builder.createObjCSuperMethod(Loc,
getLocalValue(ListOfValues[NextValueIndex], operandTy),
DRef, Ty);
break;
}
break;
}
case SILInstructionKind::WitnessMethodInst: {
unsigned NextValueIndex = 0;
SILDeclRef DRef = getSILDeclRef(MF, ListOfValues, NextValueIndex);
assert(ListOfValues.size() >= NextValueIndex &&
"Out of entries for MethodInst");
CanType Ty = MF->getType(TyID)->getCanonicalType();
SILType OperandTy = getSILType(MF->getType(TyID2),
(SILValueCategory)TyCategory2);
auto Conformance = MF->readConformance(SILCursor);
// Read the optional opened existential.
SILValue ExistentialOperand;
if (TyID3) {
SILType ExistentialOperandTy =
getSILType(MF->getType(TyID3), (SILValueCategory)TyCategory3);
if (ValID3)
ExistentialOperand = getLocalValue(ValID3, ExistentialOperandTy);
}
ResultVal = Builder.createWitnessMethod(
Loc, Ty, Conformance, DRef, OperandTy);
break;
}
case SILInstructionKind::DynamicMethodBranchInst: {
// Format: a typed value, a SILDeclRef, a BasicBlock ID for method,
// a BasicBlock ID for no method. Use SILOneTypeValuesLayout.
unsigned NextValueIndex = 1;
SILDeclRef DRef = getSILDeclRef(MF, ListOfValues, NextValueIndex);
assert(ListOfValues.size() == NextValueIndex + 2 &&
"Wrong number of entries for DynamicMethodBranchInst");
ResultVal = Builder.createDynamicMethodBranch(Loc,
getLocalValue(ListOfValues[0], getSILType(MF->getType(TyID),
(SILValueCategory)TyCategory)),
DRef, getBBForReference(Fn, ListOfValues[NextValueIndex]),
getBBForReference(Fn, ListOfValues[NextValueIndex+1]));
break;
}
case SILInstructionKind::CheckedCastBranchInst: {
// Format: the cast kind, a typed value, a BasicBlock ID for success,
// a BasicBlock ID for failure. Uses SILOneTypeValuesLayout.
assert(ListOfValues.size() == 6 &&
"expect 7 numbers for CheckedCastBranchInst");
bool isExact = ListOfValues[0] != 0;
SILType opTy = getSILType(MF->getType(ListOfValues[2]),
(SILValueCategory)ListOfValues[3]);
SILValue op = getLocalValue(ListOfValues[1], opTy);
SILType castTy = getSILType(MF->getType(TyID),
(SILValueCategory)TyCategory);
auto *successBB = getBBForReference(Fn, ListOfValues[4]);
auto *failureBB = getBBForReference(Fn, ListOfValues[5]);
ResultVal = Builder.createCheckedCastBranch(Loc, isExact, op, castTy,
successBB, failureBB);
break;
}
case SILInstructionKind::CheckedCastValueBranchInst: {
// Format: the cast kind, a typed value, a BasicBlock ID for success,
// a BasicBlock ID for failure. Uses SILOneTypeValuesLayout.
assert(ListOfValues.size() == 5 &&
"expect 6 numbers for CheckedCastValueBranchInst");
SILType opTy = getSILType(MF->getType(ListOfValues[1]),
(SILValueCategory)ListOfValues[2]);
SILValue op = getLocalValue(ListOfValues[0], opTy);
SILType castTy =
getSILType(MF->getType(TyID), (SILValueCategory)TyCategory);
auto *successBB = getBBForReference(Fn, ListOfValues[3]);
auto *failureBB = getBBForReference(Fn, ListOfValues[4]);
ResultVal = Builder.createCheckedCastValueBranch(Loc, op, castTy, successBB,
failureBB);
break;
}
case SILInstructionKind::UnconditionalCheckedCastValueInst: {
SILValue Val = getLocalValue(
ValID, getSILType(MF->getType(TyID2), (SILValueCategory)TyCategory2));
SILType Ty = getSILType(MF->getType(TyID), (SILValueCategory)TyCategory);
ResultVal = Builder.createUnconditionalCheckedCastValue(Loc, Val, Ty);
break;
}
case SILInstructionKind::UnconditionalCheckedCastAddrInst: {
// ignore attr.
CanType sourceType = MF->getType(ListOfValues[0])->getCanonicalType();
SILType srcAddrTy = getSILType(MF->getType(ListOfValues[2]),
(SILValueCategory)ListOfValues[3]);
SILValue src = getLocalValue(ListOfValues[1], srcAddrTy);
CanType targetType = MF->getType(ListOfValues[4])->getCanonicalType();
SILType destAddrTy =
getSILType(MF->getType(TyID), (SILValueCategory)TyCategory);
SILValue dest = getLocalValue(ListOfValues[5], destAddrTy);
ResultVal = Builder.createUnconditionalCheckedCastAddr(Loc, src, sourceType,
dest, targetType);
break;
}
case SILInstructionKind::CheckedCastAddrBranchInst: {
CastConsumptionKind consumption = getCastConsumptionKind(ListOfValues[0]);
CanType sourceType = MF->getType(ListOfValues[1])->getCanonicalType();
SILType srcAddrTy = getSILType(MF->getType(ListOfValues[3]),
(SILValueCategory)ListOfValues[4]);
SILValue src = getLocalValue(ListOfValues[2], srcAddrTy);
CanType targetType = MF->getType(ListOfValues[5])->getCanonicalType();
SILType destAddrTy =
getSILType(MF->getType(TyID), (SILValueCategory) TyCategory);
SILValue dest = getLocalValue(ListOfValues[6], destAddrTy);
auto *successBB = getBBForReference(Fn, ListOfValues[7]);
auto *failureBB = getBBForReference(Fn, ListOfValues[8]);
ResultVal = Builder.createCheckedCastAddrBranch(Loc, consumption,
src, sourceType,
dest, targetType,
successBB, failureBB);
break;
}
case SILInstructionKind::UncheckedRefCastAddrInst: {
CanType sourceType = MF->getType(ListOfValues[0])->getCanonicalType();
// ignore attr.
SILType srcAddrTy = getSILType(MF->getType(ListOfValues[2]),
(SILValueCategory)ListOfValues[3]);
SILValue src = getLocalValue(ListOfValues[1], srcAddrTy);
CanType targetType = MF->getType(ListOfValues[4])->getCanonicalType();
SILType destAddrTy =
getSILType(MF->getType(TyID), (SILValueCategory) TyCategory);
SILValue dest = getLocalValue(ListOfValues[5], destAddrTy);
ResultVal = Builder.createUncheckedRefCastAddr(Loc, src, sourceType,
dest, targetType);
break;
}
case SILInstructionKind::InitBlockStorageHeaderInst: {
assert(ListOfValues.size() == 5 &&
"expected 5 values for InitBlockStorageHeader");
SILType blockTy
= getSILType(MF->getType(TyID), (SILValueCategory)TyCategory);
SILType storageTy = getSILType(MF->getType(ListOfValues[1]),
SILValueCategory::Address);
SILValue storage
= getLocalValue(ListOfValues[0], storageTy);
SILType invokeTy = getSILType(MF->getType(ListOfValues[3]),
SILValueCategory::Object);
SILValue invoke
= getLocalValue(ListOfValues[2], invokeTy);
unsigned NumSub = ListOfValues[4];
SmallVector<Substitution, 4> Substitutions;
while (NumSub--) {
auto sub = MF->maybeReadSubstitution(SILCursor);
assert(sub.hasValue() && "missing substitution");
Substitutions.push_back(*sub);
}
ResultVal = Builder.createInitBlockStorageHeader(Loc, storage, invoke,
blockTy, Substitutions);
break;
}
case SILInstructionKind::UnreachableInst: {
ResultVal = Builder.createUnreachable(Loc);
break;
}
case SILInstructionKind::UnwindInst: {
ResultVal = Builder.createUnwind(Loc);
break;
}
case SILInstructionKind::YieldInst: {
SILBasicBlock *unwindBB = getBBForReference(Fn, ListOfValues.back());
ListOfValues = ListOfValues.drop_back();
SILBasicBlock *resumeBB = getBBForReference(Fn, ListOfValues.back());
ListOfValues = ListOfValues.drop_back();
SmallVector<SILValue, 4> yieldedValues;
for (unsigned I = 0, E = ListOfValues.size(); I < E; I += 3) {
auto valueTy = MF->getType(ListOfValues[I]);
auto valueCategory = (SILValueCategory) ListOfValues[I+1];
yieldedValues.push_back(
getLocalValue(ListOfValues[I+2], getSILType(valueTy, valueCategory)));
}
ResultVal = Builder.createYield(Loc, yieldedValues, resumeBB, unwindBB);
break;
}
case SILInstructionKind::KeyPathInst: {
unsigned nextValue = 0;
SILType kpTy
= getSILType(MF->getType(TyID), (SILValueCategory)TyCategory);
auto rootTy = MF->getType(ListOfValues[nextValue++]);
auto valueTy = MF->getType(ListOfValues[nextValue++]);
auto numComponents = ListOfValues[nextValue++];
auto numOperands = ListOfValues[nextValue++];
auto numSubstitutions = ListOfValues[nextValue++];
auto objcString = MF->getIdentifier(ListOfValues[nextValue++]).str();
auto numGenericParams = ListOfValues[nextValue++];
SmallVector<GenericTypeParamType *, 4> genericParams;
while (numGenericParams-- > 0) {
genericParams.push_back(MF->getType(ListOfValues[nextValue++])
->castTo<GenericTypeParamType>());
}
SmallVector<KeyPathPatternComponent, 4> components;
components.reserve(numComponents);
while (numComponents-- > 0) {
auto kind =
(KeyPathComponentKindEncoding)ListOfValues[nextValue++];
auto type = MF->getType(ListOfValues[nextValue++])
->getCanonicalType();
auto handleComputedId =
[&]() -> KeyPathPatternComponent::ComputedPropertyId {
auto kind =
(KeyPathComputedComponentIdKindEncoding)ListOfValues[nextValue++];
switch (kind) {
case KeyPathComputedComponentIdKindEncoding::Property:
return cast<VarDecl>(MF->getDecl(ListOfValues[nextValue++]));
case KeyPathComputedComponentIdKindEncoding::Function: {
auto name = MF->getIdentifier(ListOfValues[nextValue++]);
return getFuncForReference(name.str());
}
case KeyPathComputedComponentIdKindEncoding::DeclRef: {
// read SILDeclRef
return getSILDeclRef(MF, ListOfValues, nextValue);
}
}
};
ArrayRef<KeyPathPatternComponent::Index> indices;
SILFunction *indicesEquals = nullptr;
SILFunction *indicesHash = nullptr;
auto handleComputedIndices = [&] {
SmallVector<KeyPathPatternComponent::Index, 4> indicesBuf;
auto numIndexes = ListOfValues[nextValue++];
indicesBuf.reserve(numIndexes);
while (numIndexes-- > 0) {
unsigned operand = ListOfValues[nextValue++];
auto formalType = MF->getType(ListOfValues[nextValue++]);
auto loweredType = MF->getType(ListOfValues[nextValue++]);
auto loweredCategory = (SILValueCategory)ListOfValues[nextValue++];
auto conformance = MF->readConformance(SILCursor);
indicesBuf.push_back({
operand, formalType->getCanonicalType(),
SILType::getPrimitiveType(loweredType->getCanonicalType(),
loweredCategory),
conformance});
}
indices = MF->getContext().AllocateCopy(indicesBuf);
if (!indices.empty()) {
auto indicesEqualsName = MF->getIdentifier(ListOfValues[nextValue++]);
auto indicesHashName = MF->getIdentifier(ListOfValues[nextValue++]);
indicesEquals = getFuncForReference(indicesEqualsName.str());
indicesHash = getFuncForReference(indicesHashName.str());
}
};
switch (kind) {
case KeyPathComponentKindEncoding::StoredProperty: {
auto decl = cast<VarDecl>(MF->getDecl(ListOfValues[nextValue++]));
components.push_back(
KeyPathPatternComponent::forStoredProperty(decl, type));
break;
}
case KeyPathComponentKindEncoding::GettableProperty: {
auto id = handleComputedId();
auto getterName = MF->getIdentifier(ListOfValues[nextValue++]);
auto getter = getFuncForReference(getterName.str());
handleComputedIndices();
components.push_back(
KeyPathPatternComponent::forComputedGettableProperty(
id, getter, indices, indicesEquals, indicesHash, type));
break;
}
case KeyPathComponentKindEncoding::SettableProperty: {
auto id = handleComputedId();
auto getterName = MF->getIdentifier(ListOfValues[nextValue++]);
auto getter = getFuncForReference(getterName.str());
auto setterName = MF->getIdentifier(ListOfValues[nextValue++]);
auto setter = getFuncForReference(setterName.str());
handleComputedIndices();
components.push_back(
KeyPathPatternComponent::forComputedSettableProperty(
id, getter, setter, indices, indicesEquals, indicesHash, type));
break;
}
case KeyPathComponentKindEncoding::OptionalChain:
components.push_back(KeyPathPatternComponent::forOptional(
KeyPathPatternComponent::Kind::OptionalChain, type));
break;
case KeyPathComponentKindEncoding::OptionalForce:
components.push_back(KeyPathPatternComponent::forOptional(
KeyPathPatternComponent::Kind::OptionalForce, type));
break;
case KeyPathComponentKindEncoding::OptionalWrap:
components.push_back(KeyPathPatternComponent::forOptional(
KeyPathPatternComponent::Kind::OptionalWrap, type));
break;
}
}
SmallVector<Requirement, 4> requirements;
MF->readGenericRequirements(requirements, SILCursor);
SmallVector<Substitution, 4> substitutions;
while (numSubstitutions-- > 0) {
auto sub = MF->maybeReadSubstitution(SILCursor);
substitutions.push_back(*sub);
}
CanGenericSignature sig = nullptr;
if (!genericParams.empty() || !requirements.empty())
sig = GenericSignature::get(genericParams, requirements)
->getCanonicalSignature();
auto pattern = KeyPathPattern::get(SILMod, sig,
rootTy->getCanonicalType(),
valueTy->getCanonicalType(),
components,
objcString);
SmallVector<SILValue, 4> operands;
operands.reserve(numOperands);
while (numOperands-- > 0) {
auto opValue = ListOfValues[nextValue++];
auto opTy = MF->getType(ListOfValues[nextValue++]);
auto opCat = (SILValueCategory)ListOfValues[nextValue++];
operands.push_back(getLocalValue(opValue, getSILType(opTy, opCat)));
}
ResultVal = Builder.createKeyPath(Loc, pattern,
substitutions, operands, kpTy);
break;
}
case SILInstructionKind::MarkUninitializedBehaviorInst:
llvm_unreachable("todo");
}
for (auto result : ResultVal->getResults()) {
LastValueID = LastValueID + 1;
setLocalValue(result, LastValueID);
}
return false;
}
SILFunction *SILDeserializer::lookupSILFunction(SILFunction *InFunc) {
StringRef name = InFunc->getName();
if (!FuncTable)
return nullptr;
auto iter = FuncTable->find(name);
if (iter == FuncTable->end())
return nullptr;
auto Func = readSILFunction(*iter, InFunc, name, /*declarationOnly*/ false);
if (Func) {
DEBUG(llvm::dbgs() << "Deserialize SIL:\n";
Func->dump());
assert(InFunc->getName() == Func->getName());
}
return Func;
}
/// Check for existence of a function with a given name and required linkage.
/// This function is modeled after readSILFunction. But it does not
/// create a SILFunction object.
bool SILDeserializer::hasSILFunction(StringRef Name,
Optional<SILLinkage> Linkage) {
if (!FuncTable)
return false;
auto iter = FuncTable->find(Name);
if (iter == FuncTable->end())
return false;
// There is a function with the required name.
// Find out which linkage it has.
auto FID = *iter;
auto &cacheEntry = Funcs[FID-1];
if (cacheEntry.isFullyDeserialized() ||
(cacheEntry.isDeserialized()))
return !Linkage || cacheEntry.get()->getLinkage() == *Linkage;
BCOffsetRAII restoreOffset(SILCursor);
SILCursor.JumpToBit(cacheEntry.getOffset());
auto entry = SILCursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind == llvm::BitstreamEntry::Error) {
DEBUG(llvm::dbgs() << "Cursor advance error in hasSILFunction.\n");
MF->error();
return false;
}
SmallVector<uint64_t, 64> scratch;
StringRef blobData;
unsigned kind = SILCursor.readRecord(entry.ID, scratch, &blobData);
assert(kind == SIL_FUNCTION && "expect a sil function");
(void)kind;
// Read function properties only, e.g. its linkage and other attributes.
// TODO: If this results in any noticeable performance problems, Cache the
// linkage to avoid re-reading it from the bitcode each time?
DeclID clangOwnerID;
TypeID funcTyID;
GenericEnvironmentID genericEnvID;
unsigned rawLinkage, isTransparent, isSerialized, isThunk, isGlobal,
inlineStrategy, optimizationMode, effect, numSpecAttrs,
hasQualifiedOwnership;
ArrayRef<uint64_t> SemanticsIDs;
SILFunctionLayout::readRecord(scratch, rawLinkage, isTransparent, isSerialized,
isThunk, isGlobal, inlineStrategy,
optimizationMode, effect,
numSpecAttrs, hasQualifiedOwnership, funcTyID,
genericEnvID, clangOwnerID, SemanticsIDs);
auto linkage = fromStableSILLinkage(rawLinkage);
if (!linkage) {
DEBUG(llvm::dbgs() << "invalid linkage code " << rawLinkage
<< " for SIL function " << Name << "\n");
return false;
}
// Bail if it is not a required linkage.
if (Linkage && linkage.getValue() != *Linkage)
return false;
DEBUG(llvm::dbgs() << "Found SIL Function: " << Name << "\n");
return true;
}
SILFunction *SILDeserializer::lookupSILFunction(StringRef name,
bool declarationOnly) {
if (!FuncTable)
return nullptr;
auto iter = FuncTable->find(name);
if (iter == FuncTable->end())
return nullptr;
auto Func = readSILFunction(*iter, nullptr, name, declarationOnly);
if (Func)
DEBUG(llvm::dbgs() << "Deserialize SIL:\n";
Func->dump());
return Func;
}
SILGlobalVariable *SILDeserializer::readGlobalVar(StringRef Name) {
if (!GlobalVarList)
return nullptr;
PrettyStackTraceStringAction trace("deserializing SIL global", Name);
// If we already deserialized this global variable, just return it.
if (auto *GV = SILMod.lookUpGlobalVariable(Name))
return GV;
// Find Id for the given name.
auto iter = GlobalVarList->find(Name);
if (iter == GlobalVarList->end())
return nullptr;
auto VId = *iter;
if (VId == 0)
return nullptr;
assert(VId <= GlobalVars.size() && "invalid GlobalVar ID");
auto &globalVarOrOffset = GlobalVars[VId-1];
if (globalVarOrOffset.isComplete())
return globalVarOrOffset;
BCOffsetRAII restoreOffset(SILCursor);
SILCursor.JumpToBit(globalVarOrOffset);
auto entry = SILCursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind == llvm::BitstreamEntry::Error) {
DEBUG(llvm::dbgs() << "Cursor advance error in readGlobalVar.\n");
return nullptr;
}
SmallVector<uint64_t, 64> scratch;
StringRef blobData;
unsigned kind = SILCursor.readRecord(entry.ID, scratch, &blobData);
assert(kind == SIL_GLOBALVAR && "expect a sil global var");
(void)kind;
TypeID TyID;
DeclID dID;
unsigned rawLinkage, isSerialized, IsDeclaration, IsLet;
SILGlobalVarLayout::readRecord(scratch, rawLinkage, isSerialized,
IsDeclaration, IsLet, TyID, dID);
if (TyID == 0) {
DEBUG(llvm::dbgs() << "SILGlobalVariable typeID is 0.\n");
return nullptr;
}
auto linkage = fromStableSILLinkage(rawLinkage);
if (!linkage) {
DEBUG(llvm::dbgs() << "invalid linkage code " << rawLinkage
<< " for SILGlobalVariable\n");
return nullptr;
}
auto Ty = MF->getType(TyID);
SILGlobalVariable *v = SILGlobalVariable::create(
SILMod, linkage.getValue(),
isSerialized ? IsSerialized : IsNotSerialized,
Name.str(), getSILType(Ty, SILValueCategory::Object),
None,
dID ? cast<VarDecl>(MF->getDecl(dID)): nullptr);
v->setLet(IsLet);
globalVarOrOffset = v;
v->setDeclaration(IsDeclaration);
if (Callback) Callback->didDeserialize(MF->getAssociatedModule(), v);
return v;
}
void SILDeserializer::getAllSILGlobalVariables() {
if (!GlobalVarList)
return;
for (auto Key : GlobalVarList->keys()) {
readGlobalVar(Key);
}
}
void SILDeserializer::getAllSILFunctions() {
if (!FuncTable)
return;
for (auto KI = FuncTable->key_begin(), KE = FuncTable->key_end(); KI != KE;
++KI) {
// Attempt to lookup our name from the output module. If we have a
// definition already, don't do anything.
if (SILFunction *F = SILMod.lookUpFunction(*KI))
if (!F->isExternalDeclaration())
continue;
auto DI = FuncTable->find(*KI);
assert(DI != FuncTable->end() && "There should never be a key without data.");
readSILFunction(*DI, nullptr, *KI, false,
false/*errorIfEmptyBody*/);
}
}
SILVTable *SILDeserializer::readVTable(DeclID VId) {
if (VId == 0)
return nullptr;
assert(VId <= VTables.size() && "invalid VTable ID");
auto &vTableOrOffset = VTables[VId-1];
if (vTableOrOffset.isComplete())
return vTableOrOffset;
BCOffsetRAII restoreOffset(SILCursor);
SILCursor.JumpToBit(vTableOrOffset);
auto entry = SILCursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind == llvm::BitstreamEntry::Error) {
DEBUG(llvm::dbgs() << "Cursor advance error in readVTable.\n");
return nullptr;
}
SmallVector<uint64_t, 64> scratch;
StringRef blobData;
unsigned kind = SILCursor.readRecord(entry.ID, scratch, &blobData);
assert(kind == SIL_VTABLE && "expect a sil vtable");
(void)kind;
DeclID ClassID;
unsigned Serialized;
VTableLayout::readRecord(scratch, ClassID, Serialized);
if (ClassID == 0) {
DEBUG(llvm::dbgs() << "VTable classID is 0.\n");
return nullptr;
}
ClassDecl *theClass = cast<ClassDecl>(MF->getDecl(ClassID));
PrettyStackTraceDecl trace("deserializing SIL vtable for", theClass);
// Fetch the next record.
scratch.clear();
entry = SILCursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind == llvm::BitstreamEntry::EndBlock)
// This vtable has no contents.
return nullptr;
kind = SILCursor.readRecord(entry.ID, scratch);
std::vector<SILVTable::Entry> vtableEntries;
// Another SIL_VTABLE record means the end of this VTable.
while (kind != SIL_VTABLE && kind != SIL_WITNESS_TABLE &&
kind != SIL_DEFAULT_WITNESS_TABLE &&
kind != SIL_FUNCTION) {
assert(kind == SIL_VTABLE_ENTRY &&
"Content of Vtable should be in SIL_VTABLE_ENTRY.");
ArrayRef<uint64_t> ListOfValues;
DeclID NameID;
unsigned RawLinkage;
unsigned RawEntryKind;
VTableEntryLayout::readRecord(scratch, NameID, RawEntryKind, RawLinkage, ListOfValues);
auto Linkage = fromStableSILLinkage(RawLinkage);
if (!Linkage) {
DEBUG(llvm::dbgs() << "invalid linkage code " << RawLinkage
<< " for VTable Entry\n");
MF->error();
return nullptr;
}
auto EntryKind = fromStableVTableEntryKind(RawEntryKind);
SILFunction *Func = getFuncForReference(MF->getIdentifier(NameID).str());
if (Func) {
unsigned NextValueIndex = 0;
vtableEntries.emplace_back(getSILDeclRef(MF, ListOfValues, NextValueIndex),
Func, EntryKind.getValue(), Linkage.getValue());
}
// Fetch the next record.
scratch.clear();
entry = SILCursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind == llvm::BitstreamEntry::EndBlock)
// EndBlock means the end of this VTable.
break;
kind = SILCursor.readRecord(entry.ID, scratch);
}
SILVTable *vT = SILVTable::create(
SILMod, theClass,
(Serialized) ? IsSerialized : IsNotSerialized,
vtableEntries);
vTableOrOffset = vT;
if (Callback) Callback->didDeserialize(MF->getAssociatedModule(), vT);
return vT;
}
SILVTable *SILDeserializer::lookupVTable(Identifier Name) {
if (!VTableList)
return nullptr;
auto iter = VTableList->find(Name.str());
if (iter == VTableList->end())
return nullptr;
auto VT = readVTable(*iter);
return VT;
}
/// Deserialize all VTables inside the module and add them to SILMod.
void SILDeserializer::getAllVTables() {
if (!VTableList)
return;
for (unsigned I = 0, E = VTables.size(); I < E; I++)
readVTable(I+1);
}
SILWitnessTable *SILDeserializer::readWitnessTable(DeclID WId,
SILWitnessTable *existingWt) {
if (WId == 0)
return nullptr;
assert(WId <= WitnessTables.size() && "invalid WitnessTable ID");
auto &wTableOrOffset = WitnessTables[WId-1];
if (wTableOrOffset.isFullyDeserialized())
return wTableOrOffset.get();
BCOffsetRAII restoreOffset(SILCursor);
SILCursor.JumpToBit(wTableOrOffset.getOffset());
auto entry = SILCursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind == llvm::BitstreamEntry::Error) {
DEBUG(llvm::dbgs() << "Cursor advance error in readWitnessTable.\n");
return nullptr;
}
SmallVector<uint64_t, 64> scratch;
StringRef blobData;
unsigned kind = SILCursor.readRecord(entry.ID, scratch, &blobData);
assert(kind == SIL_WITNESS_TABLE && "expect a sil witnesstable");
(void)kind;
unsigned RawLinkage;
unsigned IsDeclaration;
unsigned Serialized;
WitnessTableLayout::readRecord(scratch, RawLinkage,
IsDeclaration, Serialized);
auto Linkage = fromStableSILLinkage(RawLinkage);
if (!Linkage) {
DEBUG(llvm::dbgs() << "invalid linkage code " << RawLinkage
<< " for SILFunction\n");
MF->error();
return nullptr;
}
// Deserialize Conformance.
auto theConformance = cast<NormalProtocolConformance>(
MF->readConformance(SILCursor).getConcrete());
PrettyStackTraceType trace(SILMod.getASTContext(),
"deserializing SIL witness table for",
theConformance->getType());
PrettyStackTraceDecl trace2("... to", theConformance->getProtocol());
if (!existingWt)
existingWt = SILMod.lookUpWitnessTable(theConformance, false);
auto wT = existingWt;
// If we have an existing witness table, verify that the conformance matches
// up.
if (wT) {
if (wT->getConformance() != theConformance) {
DEBUG(llvm::dbgs() << "Conformance mismatch.\n");
MF->error();
return nullptr;
}
// Don't override the linkage of a witness table with an existing
// declaration.
} else {
// Otherwise, create a new witness table declaration.
wT = SILWitnessTable::create(SILMod, *Linkage, theConformance);
if (Callback)
Callback->didDeserialize(MF->getAssociatedModule(), wT);
}
assert(wT->isDeclaration() && "Our witness table at this point must be a "
"declaration.");
// If we are asked to just emit a declaration, return the declaration and say
// that the witness table is not fully deserialized.
if (IsDeclaration) {
wTableOrOffset.set(wT, /*fully deserialized*/ false);
return wT;
}
// Fetch the next record.
scratch.clear();
entry = SILCursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind == llvm::BitstreamEntry::EndBlock)
return nullptr;
kind = SILCursor.readRecord(entry.ID, scratch);
std::vector<SILWitnessTable::Entry> witnessEntries;
std::vector<SILWitnessTable::ConditionalConformance> conditionalConformances;
// Another record means the end of this WitnessTable.
while (kind != SIL_WITNESS_TABLE &&
kind != SIL_DEFAULT_WITNESS_TABLE &&
kind != SIL_FUNCTION) {
if (kind == SIL_WITNESS_BASE_ENTRY) {
DeclID protoId;
WitnessBaseEntryLayout::readRecord(scratch, protoId);
ProtocolDecl *proto = cast<ProtocolDecl>(MF->getDecl(protoId));
auto conformance = MF->readConformance(SILCursor);
witnessEntries.push_back(SILWitnessTable::BaseProtocolWitness{
proto, conformance.getConcrete()
});
} else if (kind == SIL_WITNESS_ASSOC_PROTOCOL) {
TypeID assocId;
DeclID protoId;
WitnessAssocProtocolLayout::readRecord(scratch, assocId, protoId);
CanType type = MF->getType(assocId)->getCanonicalType();
ProtocolDecl *proto = cast<ProtocolDecl>(MF->getDecl(protoId));
auto conformance = MF->readConformance(SILCursor);
witnessEntries.push_back(SILWitnessTable::AssociatedTypeProtocolWitness{
type, proto, conformance
});
} else if (kind == SIL_WITNESS_ASSOC_ENTRY) {
DeclID assocId;
TypeID tyId;
WitnessAssocEntryLayout::readRecord(scratch, assocId, tyId);
AssociatedTypeDecl *assoc = cast<AssociatedTypeDecl>(MF->getDecl(assocId));
witnessEntries.push_back(SILWitnessTable::AssociatedTypeWitness{
assoc, MF->getType(tyId)->getCanonicalType()
});
} else if (kind == SIL_WITNESS_METHOD_ENTRY) {
ArrayRef<uint64_t> ListOfValues;
DeclID NameID;
WitnessMethodEntryLayout::readRecord(scratch, NameID, ListOfValues);
SILFunction *Func = nullptr;
if (NameID != 0) {
Func = getFuncForReference(MF->getIdentifier(NameID).str());
}
if (Func || NameID == 0) {
unsigned NextValueIndex = 0;
witnessEntries.push_back(SILWitnessTable::MethodWitness{
getSILDeclRef(MF, ListOfValues, NextValueIndex), Func
});
}
} else {
assert(kind == SIL_WITNESS_CONDITIONAL_CONFORMANCE &&
"Content of WitnessTable should be in "
"SIL_WITNESS_CONDITIONAL_CONFORMANCE.");
TypeID assocId;
WitnessConditionalConformanceLayout::readRecord(scratch, assocId);
CanType type = MF->getType(assocId)->getCanonicalType();
auto conformance = MF->readConformance(SILCursor);
conditionalConformances.push_back(
SILWitnessTable::ConditionalConformance{type, conformance});
}
// Fetch the next record.
scratch.clear();
entry = SILCursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind == llvm::BitstreamEntry::EndBlock)
// EndBlock means the end of this WitnessTable.
break;
kind = SILCursor.readRecord(entry.ID, scratch);
}
wT->convertToDefinition(witnessEntries, conditionalConformances,
Serialized ? IsSerialized : IsNotSerialized);
wTableOrOffset.set(wT, /*fully deserialized*/ true);
if (Callback)
Callback->didDeserializeWitnessTableEntries(MF->getAssociatedModule(), wT);
return wT;
}
/// Deserialize all WitnessTables inside the module and add them to SILMod.
void SILDeserializer::getAllWitnessTables() {
if (!WitnessTableList)
return;
for (unsigned I = 0, E = WitnessTables.size(); I < E; I++)
readWitnessTable(I + 1, nullptr);
}
SILWitnessTable *
SILDeserializer::lookupWitnessTable(SILWitnessTable *existingWt) {
assert(existingWt && "Cannot deserialize a null witness table declaration.");
assert(existingWt->isDeclaration() && "Cannot deserialize a witness table "
"definition.");
// If we don't have a witness table list, we can't look anything up.
if (!WitnessTableList)
return nullptr;
// Use the name of the given witness table to lookup the partially
// deserialized value from the witness table list.
auto iter = WitnessTableList->find(existingWt->getName());
if (iter == WitnessTableList->end())
return nullptr;
// Attempt to read the witness table.
auto Wt = readWitnessTable(*iter, existingWt);
if (Wt)
DEBUG(llvm::dbgs() << "Deserialize SIL:\n"; Wt->dump());
return Wt;
}
SILDefaultWitnessTable *SILDeserializer::
readDefaultWitnessTable(DeclID WId, SILDefaultWitnessTable *existingWt) {
if (WId == 0)
return nullptr;
assert(WId <= DefaultWitnessTables.size() &&
"invalid DefaultWitnessTable ID");
auto &wTableOrOffset = DefaultWitnessTables[WId-1];
if (wTableOrOffset.isFullyDeserialized())
return wTableOrOffset.get();
BCOffsetRAII restoreOffset(SILCursor);
SILCursor.JumpToBit(wTableOrOffset.getOffset());
auto entry = SILCursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind == llvm::BitstreamEntry::Error) {
DEBUG(llvm::dbgs() << "Cursor advance error in "
"readDefaultWitnessTable.\n");
return nullptr;
}
SmallVector<uint64_t, 64> scratch;
StringRef blobData;
unsigned kind = SILCursor.readRecord(entry.ID, scratch, &blobData);
assert(kind == SIL_DEFAULT_WITNESS_TABLE && "expect a sil default witness table");
(void)kind;
unsigned RawLinkage;
DeclID protoId;
DefaultWitnessTableLayout::readRecord(scratch, protoId, RawLinkage);
auto Linkage = fromStableSILLinkage(RawLinkage);
if (!Linkage) {
DEBUG(llvm::dbgs() << "invalid linkage code " << RawLinkage
<< " for SILFunction\n");
MF->error();
return nullptr;
}
ProtocolDecl *proto = cast<ProtocolDecl>(MF->getDecl(protoId));
if (proto == nullptr) {
DEBUG(llvm::dbgs() << "invalid protocol code " << protoId << "\n");
MF->error();
return nullptr;
}
PrettyStackTraceDecl trace("deserializing default witness table for", proto);
if (!existingWt)
existingWt = SILMod.lookUpDefaultWitnessTable(proto, /*deserializeLazily=*/ false);
auto wT = existingWt;
// If we have an existing default witness table, verify that the protocol
// matches up.
if (wT) {
if (wT->getProtocol() != proto) {
DEBUG(llvm::dbgs() << "Protocol mismatch.\n");
MF->error();
return nullptr;
}
// Don't override the linkage of a default witness table with an existing
// declaration.
} else {
// Otherwise, create a new witness table declaration.
wT = SILDefaultWitnessTable::create(SILMod, *Linkage, proto);
if (Callback)
Callback->didDeserialize(MF->getAssociatedModule(), wT);
}
// Fetch the next record.
scratch.clear();
entry = SILCursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind == llvm::BitstreamEntry::EndBlock)
return nullptr;
kind = SILCursor.readRecord(entry.ID, scratch);
std::vector<SILDefaultWitnessTable::Entry> witnessEntries;
// Another SIL_DEFAULT_WITNESS_TABLE record means the end of this WitnessTable.
while (kind != SIL_DEFAULT_WITNESS_TABLE && kind != SIL_FUNCTION) {
if (kind == SIL_DEFAULT_WITNESS_TABLE_NO_ENTRY) {
witnessEntries.push_back(SILDefaultWitnessTable::Entry());
} else {
assert(kind == SIL_DEFAULT_WITNESS_TABLE_ENTRY &&
"Content of DefaultWitnessTable should be in "
"SIL_DEFAULT_WITNESS_TABLE_ENTRY.");
ArrayRef<uint64_t> ListOfValues;
DeclID NameID;
DefaultWitnessTableEntryLayout::readRecord(scratch, NameID, ListOfValues);
SILFunction *Func = nullptr;
if (NameID != 0) {
Func = getFuncForReference(MF->getIdentifier(NameID).str());
}
if (Func || NameID == 0) {
unsigned NextValueIndex = 0;
witnessEntries.push_back(SILDefaultWitnessTable::Entry(
getSILDeclRef(MF, ListOfValues, NextValueIndex), Func));
}
}
// Fetch the next record.
scratch.clear();
entry = SILCursor.advance(AF_DontPopBlockAtEnd);
if (entry.Kind == llvm::BitstreamEntry::EndBlock)
// EndBlock means the end of this WitnessTable.
break;
kind = SILCursor.readRecord(entry.ID, scratch);
}
wT->convertToDefinition(witnessEntries);
wTableOrOffset.set(wT, /*fully deserialized*/ true);
if (Callback)
Callback->didDeserializeDefaultWitnessTableEntries(MF->getAssociatedModule(), wT);
return wT;
}
/// Deserialize all DefaultWitnessTables inside the module and add them to SILMod.
void SILDeserializer::getAllDefaultWitnessTables() {
if (!DefaultWitnessTableList)
return;
for (unsigned I = 0, E = DefaultWitnessTables.size(); I < E; I++)
readDefaultWitnessTable(I + 1, nullptr);
}
SILDefaultWitnessTable *
SILDeserializer::lookupDefaultWitnessTable(SILDefaultWitnessTable *existingWt) {
assert(existingWt && "Cannot deserialize a null default witness table declaration.");
assert(existingWt->isDeclaration() && "Cannot deserialize a default witness table "
"definition.");
// If we don't have a default witness table list, we can't look anything up.
if (!DefaultWitnessTableList)
return nullptr;
// Use the mangled name of the protocol to lookup the partially
// deserialized value from the default witness table list.
auto iter = DefaultWitnessTableList->find(existingWt->getIdentifier().str());
if (iter == DefaultWitnessTableList->end())
return nullptr;
// Attempt to read the default witness table.
auto Wt = readDefaultWitnessTable(*iter, existingWt);
if (Wt)
DEBUG(llvm::dbgs() << "Deserialize SIL:\n"; Wt->dump());
return Wt;
}
SILDeserializer::~SILDeserializer() {
// Drop our references to anything we've deserialized.
for (auto &fnEntry : Funcs) {
if (fnEntry.isDeserialized())
fnEntry.get()->decrementRefCount();
}
}
// Invalidate all cached SILFunctions.
void SILDeserializer::invalidateFunctionCache() {
for (auto &fnEntry : Funcs)
if (fnEntry.isDeserialized()) {
fnEntry.get()->decrementRefCount();
fnEntry.reset();
}
}
bool SILDeserializer::invalidateFunction(SILFunction *F) {
for (auto &fnEntry : Funcs) {
if (fnEntry.isDeserialized() && fnEntry.get() == F) {
fnEntry.get()->decrementRefCount();
fnEntry.reset();
return true;
}
}
return false;
}