blob: f6f24c23234a83bb5aa50c2d916d545862865971 [file] [log] [blame]
//===--- Private.h - Private runtime declarations ---------------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Private declarations of the Swift runtime.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_RUNTIME_PRIVATE_H
#define SWIFT_RUNTIME_PRIVATE_H
#include "swift/Demangling/Demangler.h"
#include "swift/Runtime/Config.h"
#include "swift/Runtime/Metadata.h"
#include "llvm/Support/Compiler.h"
// Opaque ISAs need to use object_getClass which is in runtime.h
#if SWIFT_HAS_OPAQUE_ISAS
#include <objc/runtime.h>
#endif
namespace swift {
class ParsedTypeIdentity;
class TypeReferenceOwnership {
enum : uint8_t {
Weak = 1 << 0,
Unowned = 1 << 1,
Unmanaged = 1 << 2,
};
uint8_t Data;
constexpr TypeReferenceOwnership(uint8_t Data) : Data(Data) {}
public:
constexpr TypeReferenceOwnership() : Data(0) {}
#define REF_STORAGE(Name, ...) \
void set##Name() { Data |= Name; } \
bool is##Name() const { return Data & Name; }
#include "swift/AST/ReferenceStorage.def"
};
/// Type information consists of metadata and its ownership info,
/// such information is used by `_typeByMangledName` accessor
/// since we don't represent ownership attributes in the metadata
/// itself related info has to be bundled with it.
class TypeInfo {
const Metadata *Type;
TypeReferenceOwnership ReferenceOwnership;
public:
TypeInfo() : Type(nullptr), ReferenceOwnership() {}
TypeInfo(const Metadata *type, TypeReferenceOwnership ownership)
: Type(type), ReferenceOwnership(ownership) {}
operator const Metadata *() { return Type; }
bool isWeak() const { return ReferenceOwnership.isWeak(); }
bool isUnowned() const { return ReferenceOwnership.isUnowned(); }
bool isUnmanaged() const { return ReferenceOwnership.isUnmanaged(); }
TypeReferenceOwnership getReferenceOwnership() const {
return ReferenceOwnership;
}
};
#if SWIFT_HAS_ISA_MASKING
SWIFT_RUNTIME_EXPORT
uintptr_t swift_isaMask;
#endif
#if SWIFT_OBJC_INTEROP
bool objectConformsToObjCProtocol(const void *theObject,
ProtocolDescriptorRef protocol);
bool classConformsToObjCProtocol(const void *theClass,
ProtocolDescriptorRef protocol);
#endif
/// Is the given value a valid alignment mask?
static inline bool isAlignmentMask(size_t mask) {
// mask == xyz01111...
// mask+1 == xyz10000...
// mask&(mask+1) == xyz00000...
// So this is nonzero if and only if there any bits set
// other than an arbitrarily long sequence of low bits.
return (mask & (mask + 1)) == 0;
}
/// Is the given value an Objective-C tagged pointer?
static inline bool isObjCTaggedPointer(const void *object) {
#if SWIFT_OBJC_INTEROP
return (((uintptr_t) object) & heap_object_abi::ObjCReservedBitsMask);
#else
assert(!(((uintptr_t) object) & heap_object_abi::ObjCReservedBitsMask));
return false;
#endif
}
static inline bool isObjCTaggedPointerOrNull(const void *object) {
return object == nullptr || isObjCTaggedPointer(object);
}
/// Return the class of an object which is known to be an allocated
/// heap object.
/// Note, in this case, the object may or may not have a non-pointer ISA.
/// Masking, or otherwise, may be required to get a class pointer.
static inline const ClassMetadata *_swift_getClassOfAllocated(const void *object) {
#if SWIFT_HAS_OPAQUE_ISAS
// The ISA is opaque so masking it will not return a pointer. We instead
// need to call the objc runtime to get the class.
id idObject = reinterpret_cast<id>(const_cast<void *>(object));
return reinterpret_cast<const ClassMetadata*>(object_getClass(idObject));
#else
// Load the isa field.
uintptr_t bits = *reinterpret_cast<const uintptr_t*>(object);
#if SWIFT_HAS_ISA_MASKING
// Apply the mask.
bits &= swift_isaMask;
#endif
// The result is a class pointer.
return reinterpret_cast<const ClassMetadata *>(bits);
#endif
}
/// Return the class of an object which is known to be an allocated
/// heap object.
/// Note, in this case, the object is known to have a pointer ISA, and no
/// masking is required to convert from non-pointer to pointer ISA.
static inline const ClassMetadata *
_swift_getClassOfAllocatedFromPointer(const void *object) {
// Load the isa field.
uintptr_t bits = *reinterpret_cast<const uintptr_t*>(object);
// The result is a class pointer.
return reinterpret_cast<const ClassMetadata *>(bits);
}
#if SWIFT_OBJC_INTEROP && SWIFT_HAS_OPAQUE_ISAS
/// Return whether this object is of a class which uses non-pointer ISAs.
static inline bool _swift_isNonPointerIsaObjCClass(const void *object) {
// Load the isa field.
uintptr_t bits = *reinterpret_cast<const uintptr_t*>(object);
// If the low bit is set, then we are definitely an objc object.
// FIXME: Use a variable for this.
return bits & 1;
}
#endif
LLVM_LIBRARY_VISIBILITY
const ClassMetadata *_swift_getClass(const void *object);
LLVM_LIBRARY_VISIBILITY
bool usesNativeSwiftReferenceCounting(const ClassMetadata *theClass);
static inline
bool objectUsesNativeSwiftReferenceCounting(const void *object) {
assert(!isObjCTaggedPointerOrNull(object));
#if SWIFT_HAS_OPAQUE_ISAS
// Fast path for opaque ISAs. We don't want to call
// _swift_getClassOfAllocated as that will call object_getClass.
// Instead we can look at the bits in the ISA and tell if its a
// non-pointer opaque ISA which means it is definitely an ObjC
// object and doesn't use native swift reference counting.
if (_swift_isNonPointerIsaObjCClass(object))
return false;
return usesNativeSwiftReferenceCounting(_swift_getClassOfAllocatedFromPointer(object));
#else
return usesNativeSwiftReferenceCounting(_swift_getClassOfAllocated(object));
#endif
}
/// Get the superclass pointer value used for Swift root classes.
/// Note that this function may return a nullptr on non-objc platforms,
/// where there is no common root class. rdar://problem/18987058
const ClassMetadata *getRootSuperclass();
/// Check if a class has a formal superclass in the AST.
static inline
bool classHasSuperclass(const ClassMetadata *c) {
return (c->Superclass && c->Superclass != getRootSuperclass());
}
/// Replace entries of a freshly-instantiated value witness table with more
/// efficient common implementations where applicable.
///
/// All information is taken from the passed-in layout rather than the VWT.
/// This is so that we can delay "publishing" the flags in the actual
/// value witness table until all required changes have been made.
///
/// For instance, if the value witness table represents a POD type, this will
/// insert POD value witnesses into the table. The vwtable's flags must have
/// been initialized before calling this function.
///
/// Returns true if common value witnesses were used, false otherwise.
void installCommonValueWitnesses(const TypeLayout &layout,
ValueWitnessTable *vwtable);
const Metadata *
_matchMetadataByMangledTypeName(const llvm::StringRef metadataNameRef,
const Metadata *metadata,
const TypeContextDescriptor *ntd);
bool
_contextDescriptorMatchesMangling(const ContextDescriptor *context,
Demangle::NodePointer node);
const ContextDescriptor *
_searchConformancesByMangledTypeName(Demangle::NodePointer node);
Demangle::NodePointer _swift_buildDemanglingForMetadata(const Metadata *type,
Demangle::Demangler &Dem);
/// Callback used to provide the substitution of a generic parameter
/// (described by depth/index) to its metadata.
using SubstGenericParameterFn =
std::function<const Metadata *(unsigned depth, unsigned index)>;
/// Callback used to provide the substitution of a witness table based on
/// its index into the enclosing generic environment.
using SubstDependentWitnessTableFn =
std::function<const WitnessTable *(const Metadata *type, unsigned index)>;
/// Function object that produces substitutions for the generic parameters
/// that occur within a mangled name, using the generic arguments from
/// the given metadata.
///
/// Use with \c _getTypeByMangledName to decode potentially-generic
/// types.
class SWIFT_RUNTIME_LIBRARY_VISIBILITY SubstGenericParametersFromMetadata {
/// Whether the source is metadata (vs. a generic environment);
const bool sourceIsMetadata;
union {
const Metadata *base;
const TargetGenericEnvironment<InProcess> *environment;
};
/// The generic arguments.
const void * const *genericArgs;
/// An element in the descriptor path.
struct PathElement {
/// The generic parameters local to this element.
ArrayRef<GenericParamDescriptor> localGenericParams;
/// The total number of generic parameters.
unsigned numTotalGenericParams;
/// The number of key parameters in the parent.
unsigned numKeyGenericParamsInParent;
/// The number of key parameters locally introduced here.
unsigned numKeyGenericParamsHere;
/// Whether this context has any non-key generic parameters.
bool hasNonKeyGenericParams;
};
/// Information about the generic context descriptors that make up \c
/// descriptor, from the outermost to the innermost.
mutable std::vector<PathElement> descriptorPath;
/// The number of key generic parameters.
mutable unsigned numKeyGenericParameters = 0;
/// Builds the descriptor path.
///
/// \returns a pair containing the number of key generic parameters in
/// the path up to this point.
unsigned buildDescriptorPath(const ContextDescriptor *context) const;
/// Builds a path from the generic environment.
unsigned buildEnvironmentPath(
const TargetGenericEnvironment<InProcess> *environment) const;
// Set up the state we need to compute substitutions.
void setup() const;
public:
/// Produce substitutions entirely from the given metadata.
explicit SubstGenericParametersFromMetadata(const Metadata *base)
: sourceIsMetadata(true), base(base),
genericArgs(base ? (const void * const *)base->getGenericArgs()
: nullptr) { }
/// Produce substitutions from the given instantiation arguments for the
/// given generic environment.
explicit SubstGenericParametersFromMetadata(
const TargetGenericEnvironment<InProcess> *environment,
const void * const *arguments)
: sourceIsMetadata(false), environment(environment),
genericArgs(arguments) { }
const Metadata *operator()(unsigned depth, unsigned index) const;
const WitnessTable *operator()(const Metadata *type, unsigned index) const;
};
/// Retrieve the type metadata described by the given demangled type name.
///
/// \p substGenericParam Function that provides generic argument metadata
/// given a particular generic parameter specified by depth/index.
/// \p substWitnessTable Function that provides witness tables given a
/// particular dependent conformance index.
TypeInfo swift_getTypeByMangledNode(
Demangler &demangler,
Demangle::NodePointer node,
SubstGenericParameterFn substGenericParam,
SubstDependentWitnessTableFn substWitnessTable);
/// Retrieve the type metadata described by the given type name.
///
/// \p substGenericParam Function that provides generic argument metadata
/// given a particular generic parameter specified by depth/index.
/// \p substWitnessTable Function that provides witness tables given a
/// particular dependent conformance index.
TypeInfo swift_getTypeByMangledName(
StringRef typeName,
SubstGenericParameterFn substGenericParam,
SubstDependentWitnessTableFn substWitnessTable);
/// Function object that produces substitutions for the generic parameters
/// that occur within a mangled name, using the complete set of generic
/// arguments "as written".
///
/// Use with \c _getTypeByMangledName to decode potentially-generic types.
class SWIFT_RUNTIME_LIBRARY_VISIBILITY SubstGenericParametersFromWrittenArgs {
/// The complete set of generic arguments.
const std::vector<const Metadata *> &allGenericArgs;
/// The counts of generic parameters at each level.
const std::vector<unsigned> &genericParamCounts;
public:
/// Initialize a new function object to handle substitutions. Both
/// parameters are references to vectors that must live longer than
/// this function object.
///
/// \param allGenericArgs The complete set of generic arguments, as written.
/// This could come directly from "source" (where all generic arguments are
/// encoded) or from metadata via gatherWrittenGenericArgs().
///
/// \param genericParamCounts The count of generic parameters at each
/// generic level, typically gathered by _gatherGenericParameterCounts.
explicit SubstGenericParametersFromWrittenArgs(
const std::vector<const Metadata *> &allGenericArgs,
const std::vector<unsigned> &genericParamCounts)
: allGenericArgs(allGenericArgs), genericParamCounts(genericParamCounts) {
}
const Metadata *operator()(unsigned depth, unsigned index) const;
const WitnessTable *operator()(const Metadata *type, unsigned index) const;
};
/// Gather generic parameter counts from a context descriptor.
///
/// \returns true if the innermost descriptor is generic.
bool _gatherGenericParameterCounts(const ContextDescriptor *descriptor,
std::vector<unsigned> &genericParamCounts);
/// Map depth/index to a flat index.
llvm::Optional<unsigned> _depthIndexToFlatIndex(
unsigned depth, unsigned index,
llvm::ArrayRef<unsigned> paramCounts);
/// Check the given generic requirements using the given set of generic
/// arguments, collecting the key arguments (e.g., witness tables) for
/// the caller.
///
/// \param requirements The set of requirements to evaluate.
///
/// \param extraArguments The extra arguments determined while checking
/// generic requirements (e.g., those that need to be
/// passed to an instantiation function) will be added to this vector.
///
/// \returns true if an error occurred, false otherwise.
bool _checkGenericRequirements(
llvm::ArrayRef<GenericRequirementDescriptor> requirements,
std::vector<const void *> &extraArguments,
SubstGenericParameterFn substGenericParam,
SubstDependentWitnessTableFn substWitnessTable);
/// A helper function which avoids performing a store if the destination
/// address already contains the source value. This is useful when
/// "initializing" memory that might have been initialized to the correct
/// value statically. In such a case, the compiler might have gone so far
/// as to map the entire object readonly, or we might just want to avoid
/// dirtying memory unnecessarily.
template <class T>
static void assignUnlessEqual(T &dest, T newValue) {
if (dest != newValue)
dest = newValue;
}
#if defined(__CYGWIN__)
void _swift_once_f(uintptr_t *predicate, void *context,
void (*function)(void *));
#endif
static inline const Metadata *getMetadataForClass(const ClassMetadata *c) {
#if SWIFT_OBJC_INTEROP
return swift_getObjCClassMetadata(c);
#else
return c;
#endif
}
void *allocateMetadata(size_t size, size_t align);
/// Gather the set of generic arguments that would be written in the
/// source, as a f
///
/// This function computes generic arguments even when they are not
/// directly represented in the metadata, e.g., generic parameters that
/// are canonicalized away by same-type constraints and are therefore not
/// "key" parameters.
///
/// \code
/// extension Array where Element == String { }
/// extension Dictionary where Key == Value { }
/// \endcode
void gatherWrittenGenericArgs(const Metadata *metadata,
const TypeContextDescriptor *description,
std::vector<const Metadata *> &allGenericArgs);
Demangle::NodePointer
_buildDemanglingForContext(const ContextDescriptor *context,
llvm::ArrayRef<NodePointer> demangledGenerics,
Demangle::Demangler &Dem);
/// Symbolic reference resolver that produces the demangling tree for the
/// referenced context.
class ResolveToDemanglingForContext {
Demangle::Demangler &Dem;
public:
explicit ResolveToDemanglingForContext(Demangle::Demangler &Dem)
: Dem(Dem) {}
Demangle::NodePointer operator()(Demangle::SymbolicReferenceKind kind,
Demangle::Directness isIndirect,
int32_t offset,
const void *base);
};
/// Symbolic reference resolver that resolves the absolute addresses of
/// symbolic references but leaves them as references.
class ResolveAsSymbolicReference {
Demangle::Demangler &Dem;
public:
explicit ResolveAsSymbolicReference(Demangle::Demangler &Dem)
: Dem(Dem) {}
Demangle::NodePointer operator()(Demangle::SymbolicReferenceKind kind,
Demangle::Directness isIndirect,
int32_t offset,
const void *base);
};
/// Demangler resolver that turns resolved symbolic references into their
/// demangling trees.
class ExpandResolvedSymbolicReferences {
Demangle::Demangler &Dem;
public:
explicit ExpandResolvedSymbolicReferences(Demangle::Demangler &Dem)
: Dem(Dem) {}
Demangle::NodePointer operator()(Demangle::SymbolicReferenceKind kind,
const void *resolvedReference);
};
/// Is the given type imported from a C tag type?
bool _isCImportedTagType(const TypeContextDescriptor *type,
const ParsedTypeIdentity &identity);
/// Check whether a type conforms to a protocol.
///
/// \param value - can be null, in which case the question should
/// be answered abstractly if possible
/// \param conformance - if non-null, and the protocol requires a
/// witness table, and the type implements the protocol, the witness
/// table will be placed here
bool _conformsToProtocol(const OpaqueValue *value,
const Metadata *type,
ProtocolDescriptorRef protocol,
const WitnessTable **conformance);
/// Construct type metadata for the given protocol.
const Metadata *
_getSimpleProtocolTypeMetadata(const ProtocolDescriptor *protocol);
/// Given a type that we know can be used with the given conformance, find
/// the superclass that introduced the conformance.
const Metadata *findConformingSuperclass(
const Metadata *type,
const ProtocolConformanceDescriptor *conformance);
/// Determine whether the given type conforms to the given Swift protocol,
/// returning the appropriate protocol conformance descriptor when it does.
const ProtocolConformanceDescriptor *
_conformsToSwiftProtocol(const Metadata * const type,
const ProtocolDescriptor *protocol);
/// Retrieve an associated type witness from the given witness table.
///
/// \param wtable The witness table.
/// \param conformingType Metadata for the conforming type.
/// \param reqBase "Base" requirement used to compute the witness index
/// \param assocType Associated type descriptor.
///
/// \returns metadata for the associated type witness.
SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_INTERNAL
MetadataResponse swift_getAssociatedTypeWitnessSlow(
MetadataRequest request,
WitnessTable *wtable,
const Metadata *conformingType,
const ProtocolRequirement *reqBase,
const ProtocolRequirement *assocType);
/// Retrieve an associated conformance witness table from the given witness
/// table.
///
/// \param wtable The witness table.
/// \param conformingType Metadata for the conforming type.
/// \param assocType Metadata for the associated type.
/// \param reqBase "Base" requirement used to compute the witness index
/// \param assocConformance Associated conformance descriptor.
///
/// \returns corresponding witness table.
SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_INTERNAL
const WitnessTable *swift_getAssociatedConformanceWitnessSlow(
WitnessTable *wtable,
const Metadata *conformingType,
const Metadata *assocType,
const ProtocolRequirement *reqBase,
const ProtocolRequirement *assocConformance);
} // end namespace swift
#endif /* SWIFT_RUNTIME_PRIVATE_H */