blob: 083590f3b4fb4005540f2f61d2b73f4dd76fcbca [file] [log] [blame]
//===--- Serialization.cpp - Read and write Swift modules -----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "Serialization.h"
#include "SILFormat.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTMangler.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/AST/DiagnosticsCommon.h"
#include "swift/AST/Expr.h"
#include "swift/AST/FileSystem.h"
#include "swift/AST/ForeignErrorConvention.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/LazyResolver.h"
#include "swift/AST/LinkLibrary.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/PropertyWrappers.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/RawComment.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/AST/TypeVisitor.h"
#include "swift/Basic/Dwarf.h"
#include "swift/Basic/FileSystem.h"
#include "swift/Basic/STLExtras.h"
#include "swift/Basic/Timer.h"
#include "swift/Basic/Version.h"
#include "swift/ClangImporter/ClangImporter.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/Demangling/ManglingMacros.h"
#include "swift/Serialization/SerializationOptions.h"
#include "swift/Strings.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Bitcode/BitstreamWriter.h"
#include "llvm/Bitcode/RecordLayout.h"
#include "llvm/Config/config.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Chrono.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/DJB.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/OnDiskHashTable.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/SmallVectorMemoryBuffer.h"
#include <vector>
using namespace swift;
using namespace swift::serialization;
using namespace llvm::support;
using swift::version::Version;
using llvm::BCBlockRAII;
/// Used for static_assert.
static constexpr bool declIDFitsIn32Bits() {
using Int32Info = std::numeric_limits<uint32_t>;
using PtrIntInfo = std::numeric_limits<uintptr_t>;
using DeclIDTraits = llvm::PointerLikeTypeTraits<DeclID>;
return PtrIntInfo::digits - DeclIDTraits::NumLowBitsAvailable <= Int32Info::digits;
}
/// Used for static_assert.
static constexpr bool bitOffsetFitsIn32Bits() {
// FIXME: Considering BitOffset is a _bit_ offset, and we're storing it in 31
// bits of a PointerEmbeddedInt, the maximum offset inside a modulefile we can
// handle happens at 2**28 _bytes_, which is only 268MB. Considering
// Swift.swiftmodule is itself 25MB, it seems entirely possible users will
// exceed this limit.
using Int32Info = std::numeric_limits<uint32_t>;
using PtrIntInfo = std::numeric_limits<uintptr_t>;
using BitOffsetTraits = llvm::PointerLikeTypeTraits<BitOffset>;
return PtrIntInfo::digits - BitOffsetTraits::NumLowBitsAvailable <= Int32Info::digits;
}
namespace {
/// Used to serialize the on-disk decl hash table.
class DeclTableInfo {
public:
using key_type = DeclBaseName;
using key_type_ref = key_type;
using data_type = Serializer::DeclTableData;
using data_type_ref = const data_type &;
using hash_value_type = uint32_t;
using offset_type = unsigned;
hash_value_type ComputeHash(key_type_ref key) {
switch (key.getKind()) {
case DeclBaseName::Kind::Normal:
assert(!key.empty());
return llvm::djbHash(key.getIdentifier().str(),
SWIFTMODULE_HASH_SEED);
case DeclBaseName::Kind::Subscript:
return static_cast<uint8_t>(DeclNameKind::Subscript);
case DeclBaseName::Kind::Constructor:
return static_cast<uint8_t>(DeclNameKind::Constructor);
case DeclBaseName::Kind::Destructor:
return static_cast<uint8_t>(DeclNameKind::Destructor);
}
llvm_unreachable("unhandled kind");
}
std::pair<unsigned, unsigned> EmitKeyDataLength(raw_ostream &out,
key_type_ref key,
data_type_ref data) {
uint32_t keyLength = sizeof(uint8_t); // For the flag of the name's kind
if (key.getKind() == DeclBaseName::Kind::Normal) {
keyLength += key.getIdentifier().str().size(); // The name's length
}
assert(keyLength == static_cast<uint16_t>(keyLength));
uint32_t dataLength = (sizeof(uint32_t) + 1) * data.size();
assert(dataLength == static_cast<uint16_t>(dataLength));
endian::Writer writer(out, little);
writer.write<uint16_t>(keyLength);
writer.write<uint16_t>(dataLength);
return { keyLength, dataLength };
}
void EmitKey(raw_ostream &out, key_type_ref key, unsigned len) {
endian::Writer writer(out, little);
switch (key.getKind()) {
case DeclBaseName::Kind::Normal:
writer.write<uint8_t>(static_cast<uint8_t>(DeclNameKind::Normal));
writer.OS << key.getIdentifier().str();
break;
case DeclBaseName::Kind::Subscript:
writer.write<uint8_t>(static_cast<uint8_t>(DeclNameKind::Subscript));
break;
case DeclBaseName::Kind::Constructor:
writer.write<uint8_t>(static_cast<uint8_t>(DeclNameKind::Constructor));
break;
case DeclBaseName::Kind::Destructor:
writer.write<uint8_t>(static_cast<uint8_t>(DeclNameKind::Destructor));
break;
}
}
void EmitData(raw_ostream &out, key_type_ref key, data_type_ref data,
unsigned len) {
static_assert(declIDFitsIn32Bits(), "DeclID too large");
endian::Writer writer(out, little);
for (auto entry : data) {
writer.write<uint8_t>(entry.first);
writer.write<uint32_t>(entry.second);
}
}
};
class ExtensionTableInfo {
serialization::Serializer &Serializer;
llvm::SmallDenseMap<const NominalTypeDecl *,std::string,4> MangledNameCache;
public:
explicit ExtensionTableInfo(serialization::Serializer &serializer)
: Serializer(serializer) {}
using key_type = Identifier;
using key_type_ref = key_type;
using data_type = Serializer::ExtensionTableData;
using data_type_ref = const data_type &;
using hash_value_type = uint32_t;
using offset_type = unsigned;
hash_value_type ComputeHash(key_type_ref key) {
assert(!key.empty());
return llvm::djbHash(key.str(), SWIFTMODULE_HASH_SEED);
}
int32_t getNameDataForBase(const NominalTypeDecl *nominal,
StringRef *dataToWrite = nullptr) {
if (nominal->getDeclContext()->isModuleScopeContext())
return -Serializer.addContainingModuleRef(nominal->getDeclContext());
auto &mangledName = MangledNameCache[nominal];
if (mangledName.empty())
mangledName = Mangle::ASTMangler().mangleNominalType(nominal);
assert(llvm::isUInt<31>(mangledName.size()));
if (dataToWrite)
*dataToWrite = mangledName;
return mangledName.size();
}
std::pair<unsigned, unsigned> EmitKeyDataLength(raw_ostream &out,
key_type_ref key,
data_type_ref data) {
uint32_t keyLength = key.str().size();
assert(keyLength == static_cast<uint16_t>(keyLength));
uint32_t dataLength = (sizeof(uint32_t) * 2) * data.size();
for (auto dataPair : data) {
int32_t nameData = getNameDataForBase(dataPair.first);
if (nameData > 0)
dataLength += nameData;
}
assert(dataLength == static_cast<uint16_t>(dataLength));
endian::Writer writer(out, little);
writer.write<uint16_t>(keyLength);
writer.write<uint16_t>(dataLength);
return { keyLength, dataLength };
}
void EmitKey(raw_ostream &out, key_type_ref key, unsigned len) {
out << key.str();
}
void EmitData(raw_ostream &out, key_type_ref key, data_type_ref data,
unsigned len) {
static_assert(declIDFitsIn32Bits(), "DeclID too large");
endian::Writer writer(out, little);
for (auto entry : data) {
StringRef dataToWrite;
writer.write<uint32_t>(entry.second);
writer.write<int32_t>(getNameDataForBase(entry.first, &dataToWrite));
out << dataToWrite;
}
}
};
class LocalDeclTableInfo {
public:
using key_type = std::string;
using key_type_ref = StringRef;
using data_type = DeclID;
using data_type_ref = const data_type &;
using hash_value_type = uint32_t;
using offset_type = unsigned;
hash_value_type ComputeHash(key_type_ref key) {
assert(!key.empty());
return llvm::djbHash(key, SWIFTMODULE_HASH_SEED);
}
std::pair<unsigned, unsigned> EmitKeyDataLength(raw_ostream &out,
key_type_ref key,
data_type_ref data) {
uint32_t keyLength = key.size();
assert(keyLength == static_cast<uint16_t>(keyLength));
uint32_t dataLength = sizeof(uint32_t);
endian::Writer writer(out, little);
writer.write<uint16_t>(keyLength);
// No need to write the data length; it's constant.
return { keyLength, dataLength };
}
void EmitKey(raw_ostream &out, key_type_ref key, unsigned len) {
out << key;
}
void EmitData(raw_ostream &out, key_type_ref key, data_type_ref data,
unsigned len) {
static_assert(declIDFitsIn32Bits(), "DeclID too large");
endian::Writer writer(out, little);
writer.write<uint32_t>(data);
}
};
using LocalTypeHashTableGenerator =
llvm::OnDiskChainedHashTableGenerator<LocalDeclTableInfo>;
class NestedTypeDeclsTableInfo {
public:
using key_type = Identifier;
using key_type_ref = const key_type &;
using data_type = Serializer::NestedTypeDeclsData; // (parent, child) pairs
using data_type_ref = const data_type &;
using hash_value_type = uint32_t;
using offset_type = unsigned;
hash_value_type ComputeHash(key_type_ref key) {
assert(!key.empty());
return llvm::djbHash(key.str(), SWIFTMODULE_HASH_SEED);
}
std::pair<unsigned, unsigned> EmitKeyDataLength(raw_ostream &out,
key_type_ref key,
data_type_ref data) {
uint32_t keyLength = key.str().size();
assert(keyLength == static_cast<uint16_t>(keyLength));
uint32_t dataLength = (sizeof(uint32_t) * 2) * data.size();
assert(dataLength == static_cast<uint16_t>(dataLength));
endian::Writer writer(out, little);
writer.write<uint16_t>(keyLength);
writer.write<uint16_t>(dataLength);
return { keyLength, dataLength };
}
void EmitKey(raw_ostream &out, key_type_ref key, unsigned len) {
// FIXME: Avoid writing string data for identifiers here.
out << key.str();
}
void EmitData(raw_ostream &out, key_type_ref key, data_type_ref data,
unsigned len) {
static_assert(declIDFitsIn32Bits(), "DeclID too large");
endian::Writer writer(out, little);
for (auto entry : data) {
writer.write<uint32_t>(entry.first);
writer.write<uint32_t>(entry.second);
}
}
};
class DeclMemberNamesTableInfo {
public:
using key_type = DeclBaseName;
using key_type_ref = const key_type &;
using data_type = BitOffset; // Offsets to sub-tables
using data_type_ref = const data_type &;
using hash_value_type = uint32_t;
using offset_type = unsigned;
hash_value_type ComputeHash(key_type_ref key) {
switch (key.getKind()) {
case DeclBaseName::Kind::Normal:
assert(!key.empty());
return llvm::djbHash(key.getIdentifier().str(), SWIFTMODULE_HASH_SEED);
case DeclBaseName::Kind::Subscript:
return static_cast<uint8_t>(DeclNameKind::Subscript);
case DeclBaseName::Kind::Constructor:
return static_cast<uint8_t>(DeclNameKind::Constructor);
case DeclBaseName::Kind::Destructor:
return static_cast<uint8_t>(DeclNameKind::Destructor);
}
llvm_unreachable("unhandled kind");
}
std::pair<unsigned, unsigned> EmitKeyDataLength(raw_ostream &out,
key_type_ref key,
data_type_ref data) {
uint32_t keyLength = sizeof(uint8_t); // For the flag of the name's kind
if (key.getKind() == DeclBaseName::Kind::Normal) {
keyLength += key.getIdentifier().str().size(); // The name's length
}
assert(keyLength == static_cast<uint16_t>(keyLength));
uint32_t dataLength = sizeof(uint32_t);
endian::Writer writer(out, little);
writer.write<uint16_t>(keyLength);
// No need to write dataLength, it's constant.
return { keyLength, dataLength };
}
void EmitKey(raw_ostream &out, key_type_ref key, unsigned len) {
endian::Writer writer(out, little);
switch (key.getKind()) {
case DeclBaseName::Kind::Normal:
writer.write<uint8_t>(static_cast<uint8_t>(DeclNameKind::Normal));
writer.OS << key.getIdentifier().str();
break;
case DeclBaseName::Kind::Subscript:
writer.write<uint8_t>(static_cast<uint8_t>(DeclNameKind::Subscript));
break;
case DeclBaseName::Kind::Constructor:
writer.write<uint8_t>(static_cast<uint8_t>(DeclNameKind::Constructor));
break;
case DeclBaseName::Kind::Destructor:
writer.write<uint8_t>(static_cast<uint8_t>(DeclNameKind::Destructor));
break;
}
}
void EmitData(raw_ostream &out, key_type_ref key, data_type_ref data,
unsigned len) {
static_assert(bitOffsetFitsIn32Bits(), "BitOffset too large");
endian::Writer writer(out, little);
writer.write<uint32_t>(static_cast<uint32_t>(data));
}
};
class DeclMembersTableInfo {
public:
using key_type = DeclID;
using key_type_ref = const key_type &;
using data_type = Serializer::DeclMembersData; // Vector of DeclIDs
using data_type_ref = const data_type &;
using hash_value_type = uint32_t;
using offset_type = unsigned;
hash_value_type ComputeHash(key_type_ref key) {
return llvm::hash_value(static_cast<uint32_t>(key));
}
std::pair<unsigned, unsigned> EmitKeyDataLength(raw_ostream &out,
key_type_ref key,
data_type_ref data) {
// This will trap if a single ValueDecl has more than 16383 members
// with the same DeclBaseName. Seems highly unlikely.
assert((data.size() < (1 << 14)) && "Too many members");
uint32_t dataLength = sizeof(uint32_t) * data.size(); // value DeclIDs
endian::Writer writer(out, little);
// No need to write the key length; it's constant.
writer.write<uint16_t>(dataLength);
return { sizeof(uint32_t), dataLength };
}
void EmitKey(raw_ostream &out, key_type_ref key, unsigned len) {
static_assert(declIDFitsIn32Bits(), "DeclID too large");
assert(len == sizeof(uint32_t));
endian::Writer writer(out, little);
writer.write<uint32_t>(key);
}
void EmitData(raw_ostream &out, key_type_ref key, data_type_ref data,
unsigned len) {
static_assert(declIDFitsIn32Bits(), "DeclID too large");
endian::Writer writer(out, little);
for (auto entry : data) {
writer.write<uint32_t>(entry);
}
}
};
} // end anonymous namespace
static ModuleDecl *getModule(ModuleOrSourceFile DC) {
if (auto M = DC.dyn_cast<ModuleDecl *>())
return M;
return DC.get<SourceFile *>()->getParentModule();
}
static ASTContext &getContext(ModuleOrSourceFile DC) {
return getModule(DC)->getASTContext();
}
static bool shouldSerializeAsLocalContext(const DeclContext *DC) {
return DC->isLocalContext() && !isa<AbstractFunctionDecl>(DC) &&
!isa<SubscriptDecl>(DC) && !isa<EnumElementDecl>(DC);
}
namespace {
struct Accessors {
uint8_t OpaqueReadOwnership;
uint8_t ReadImpl, WriteImpl, ReadWriteImpl;
SmallVector<AccessorDecl *, 8> Decls;
};
} // end anonymous namespace
static uint8_t getRawOpaqueReadOwnership(swift::OpaqueReadOwnership ownership) {
switch (ownership) {
#define CASE(KIND) \
case swift::OpaqueReadOwnership::KIND: \
return uint8_t(serialization::OpaqueReadOwnership::KIND);
CASE(Owned)
CASE(Borrowed)
CASE(OwnedOrBorrowed)
#undef CASE
}
llvm_unreachable("bad kind");
}
static uint8_t getRawReadImplKind(swift::ReadImplKind kind) {
switch (kind) {
#define CASE(KIND) \
case swift::ReadImplKind::KIND: \
return uint8_t(serialization::ReadImplKind::KIND);
CASE(Stored)
CASE(Get)
CASE(Inherited)
CASE(Address)
CASE(Read)
#undef CASE
}
llvm_unreachable("bad kind");
}
static unsigned getRawWriteImplKind(swift::WriteImplKind kind) {
switch (kind) {
#define CASE(KIND) \
case swift::WriteImplKind::KIND: \
return uint8_t(serialization::WriteImplKind::KIND);
CASE(Immutable)
CASE(Stored)
CASE(Set)
CASE(StoredWithObservers)
CASE(InheritedWithObservers)
CASE(MutableAddress)
CASE(Modify)
#undef CASE
}
llvm_unreachable("bad kind");
}
static unsigned getRawReadWriteImplKind(swift::ReadWriteImplKind kind) {
switch (kind) {
#define CASE(KIND) \
case swift::ReadWriteImplKind::KIND: \
return uint8_t(serialization::ReadWriteImplKind::KIND);
CASE(Immutable)
CASE(Stored)
CASE(MutableAddress)
CASE(MaterializeToTemporary)
CASE(Modify)
#undef CASE
}
llvm_unreachable("bad kind");
}
static Accessors getAccessors(const AbstractStorageDecl *storage) {
Accessors accessors;
accessors.OpaqueReadOwnership =
getRawOpaqueReadOwnership(storage->getOpaqueReadOwnership());
auto impl = storage->getImplInfo();
accessors.ReadImpl = getRawReadImplKind(impl.getReadImpl());
accessors.WriteImpl = getRawWriteImplKind(impl.getWriteImpl());
accessors.ReadWriteImpl = getRawReadWriteImplKind(impl.getReadWriteImpl());
auto decls = storage->getAllAccessors();
accessors.Decls.append(decls.begin(), decls.end());
return accessors;
}
LocalDeclContextID Serializer::addLocalDeclContextRef(const DeclContext *DC) {
assert(DC->isLocalContext() && "Expected a local DeclContext");
return LocalDeclContextsToSerialize.addRef(DC);
}
GenericSignatureID
Serializer::addGenericSignatureRef(GenericSignature sig) {
if (!sig)
return 0;
return GenericSignaturesToSerialize.addRef(sig);
}
SubstitutionMapID
Serializer::addSubstitutionMapRef(SubstitutionMap substitutions) {
return SubstitutionMapsToSerialize.addRef(substitutions);
}
DeclContextID Serializer::addDeclContextRef(const DeclContext *DC) {
assert(DC && "cannot reference a null DeclContext");
switch (DC->getContextKind()) {
case DeclContextKind::Module:
case DeclContextKind::FileUnit: // Skip up to the module
return DeclContextID();
default:
break;
}
// If this decl context is a plain old serializable decl, queue it up for
// normal serialization.
if (shouldSerializeAsLocalContext(DC))
return DeclContextID::forLocalDeclContext(addLocalDeclContextRef(DC));
return DeclContextID::forDecl(addDeclRef(DC->getAsDecl()));
}
DeclID Serializer::addDeclRef(const Decl *D, bool allowTypeAliasXRef) {
assert((!D || !isDeclXRef(D) || isa<ValueDecl>(D) || isa<OperatorDecl>(D) ||
isa<PrecedenceGroupDecl>(D)) &&
"cannot cross-reference this decl");
assert((!D || !isDeclXRef(D) ||
!D->getAttrs().hasAttribute<ForbidSerializingReferenceAttr>()) &&
"cannot cross-reference this decl");
assert((!D || allowTypeAliasXRef || !isa<TypeAliasDecl>(D) ||
D->getModuleContext() == M) &&
"cannot cross-reference typealiases directly (use the TypeAliasType)");
return DeclsToSerialize.addRef(D);
}
serialization::TypeID Serializer::addTypeRef(Type ty) {
#ifndef NDEBUG
PrettyStackTraceType trace(M->getASTContext(), "serializing", ty);
assert((!ty || !ty->hasError()) && "Serializing error type");
#endif
return TypesToSerialize.addRef(ty);
}
IdentifierID Serializer::addDeclBaseNameRef(DeclBaseName ident) {
switch (ident.getKind()) {
case DeclBaseName::Kind::Normal: {
if (ident.empty())
return 0;
IdentifierID &id = IdentifierIDs[ident.getIdentifier()];
if (id != 0)
return id;
id = ++LastUniquedStringID;
StringsToWrite.push_back(ident.getIdentifier().str());
return id;
}
case DeclBaseName::Kind::Subscript:
return SUBSCRIPT_ID;
case DeclBaseName::Kind::Constructor:
return CONSTRUCTOR_ID;
case DeclBaseName::Kind::Destructor:
return DESTRUCTOR_ID;
}
llvm_unreachable("unhandled kind");
}
std::pair<StringRef, IdentifierID> Serializer::addUniquedString(StringRef str) {
if (str.empty())
return {str, 0};
decltype(UniquedStringIDs)::iterator iter;
bool isNew;
std::tie(iter, isNew) =
UniquedStringIDs.insert({str, LastUniquedStringID + 1});
if (!isNew)
return {iter->getKey(), iter->getValue()};
++LastUniquedStringID;
// Note that we use the string data stored in the StringMap.
StringsToWrite.push_back(iter->getKey());
return {iter->getKey(), LastUniquedStringID};
}
IdentifierID Serializer::addFilename(StringRef filename) {
assert(!filename.empty() && "Attemping to add an empty filename");
return addUniquedString(filename).second;
}
IdentifierID Serializer::addContainingModuleRef(const DeclContext *DC) {
assert(!isa<ModuleDecl>(DC) &&
"References should be to things within modules");
const FileUnit *file = cast<FileUnit>(DC->getModuleScopeContext());
const ModuleDecl *M = file->getParentModule();
if (M == this->M)
return CURRENT_MODULE_ID;
if (M == this->M->getASTContext().TheBuiltinModule)
return BUILTIN_MODULE_ID;
auto clangImporter =
static_cast<ClangImporter *>(
this->M->getASTContext().getClangModuleLoader());
if (M == clangImporter->getImportedHeaderModule())
return OBJC_HEADER_MODULE_ID;
auto exportedModuleName = file->getExportedModuleName();
assert(!exportedModuleName.empty());
auto exportedModuleID = M->getASTContext().getIdentifier(exportedModuleName);
return addDeclBaseNameRef(exportedModuleID);
}
SILLayoutID Serializer::addSILLayoutRef(const SILLayout *layout) {
return SILLayoutsToSerialize.addRef(layout);
}
NormalConformanceID
Serializer::addConformanceRef(const NormalProtocolConformance *conformance) {
assert(conformance->getDeclContext()->getParentModule() == M &&
"cannot reference conformance from another module");
return NormalConformancesToSerialize.addRef(conformance);
}
/// Record the name of a block.
void SerializerBase::emitBlockID(unsigned ID, StringRef name,
SmallVectorImpl<unsigned char> &nameBuffer) {
SmallVector<unsigned, 1> idBuffer;
idBuffer.push_back(ID);
Out.EmitRecord(llvm::bitc::BLOCKINFO_CODE_SETBID, idBuffer);
// Emit the block name if present.
if (name.empty())
return;
nameBuffer.resize(name.size());
memcpy(nameBuffer.data(), name.data(), name.size());
Out.EmitRecord(llvm::bitc::BLOCKINFO_CODE_BLOCKNAME, nameBuffer);
}
void SerializerBase::emitRecordID(unsigned ID, StringRef name,
SmallVectorImpl<unsigned char> &nameBuffer) {
assert(ID < 256 && "can't fit record ID in next to name");
nameBuffer.resize(name.size()+1);
nameBuffer[0] = ID;
memcpy(nameBuffer.data()+1, name.data(), name.size());
Out.EmitRecord(llvm::bitc::BLOCKINFO_CODE_SETRECORDNAME, nameBuffer);
}
void Serializer::writeBlockInfoBlock() {
BCBlockRAII restoreBlock(Out, llvm::bitc::BLOCKINFO_BLOCK_ID, 2);
SmallVector<unsigned char, 64> nameBuffer;
#define BLOCK(X) emitBlockID(X ## _ID, #X, nameBuffer)
#define BLOCK_RECORD(K, X) emitRecordID(K::X, #X, nameBuffer)
BLOCK(MODULE_BLOCK);
BLOCK(CONTROL_BLOCK);
BLOCK_RECORD(control_block, METADATA);
BLOCK_RECORD(control_block, MODULE_NAME);
BLOCK_RECORD(control_block, TARGET);
BLOCK(OPTIONS_BLOCK);
BLOCK_RECORD(options_block, SDK_PATH);
BLOCK_RECORD(options_block, XCC);
BLOCK_RECORD(options_block, IS_SIB);
BLOCK_RECORD(options_block, IS_TESTABLE);
BLOCK_RECORD(options_block, ARE_PRIVATE_IMPORTS_ENABLED);
BLOCK_RECORD(options_block, RESILIENCE_STRATEGY);
BLOCK(INPUT_BLOCK);
BLOCK_RECORD(input_block, IMPORTED_MODULE);
BLOCK_RECORD(input_block, LINK_LIBRARY);
BLOCK_RECORD(input_block, IMPORTED_HEADER);
BLOCK_RECORD(input_block, IMPORTED_HEADER_CONTENTS);
BLOCK_RECORD(input_block, MODULE_FLAGS);
BLOCK_RECORD(input_block, SEARCH_PATH);
BLOCK_RECORD(input_block, FILE_DEPENDENCY);
BLOCK_RECORD(input_block, DEPENDENCY_DIRECTORY);
BLOCK_RECORD(input_block, MODULE_INTERFACE_PATH);
BLOCK(DECLS_AND_TYPES_BLOCK);
#define RECORD(X) BLOCK_RECORD(decls_block, X);
#include "DeclTypeRecordNodes.def"
BLOCK(IDENTIFIER_DATA_BLOCK);
BLOCK_RECORD(identifier_block, IDENTIFIER_DATA);
BLOCK(INDEX_BLOCK);
BLOCK_RECORD(index_block, TYPE_OFFSETS);
BLOCK_RECORD(index_block, DECL_OFFSETS);
BLOCK_RECORD(index_block, IDENTIFIER_OFFSETS);
BLOCK_RECORD(index_block, TOP_LEVEL_DECLS);
BLOCK_RECORD(index_block, OPERATORS);
BLOCK_RECORD(index_block, EXTENSIONS);
BLOCK_RECORD(index_block, CLASS_MEMBERS_FOR_DYNAMIC_LOOKUP);
BLOCK_RECORD(index_block, OPERATOR_METHODS);
BLOCK_RECORD(index_block, OBJC_METHODS);
BLOCK_RECORD(index_block, ENTRY_POINT);
BLOCK_RECORD(index_block, LOCAL_DECL_CONTEXT_OFFSETS);
BLOCK_RECORD(index_block, GENERIC_SIGNATURE_OFFSETS);
BLOCK_RECORD(index_block, SUBSTITUTION_MAP_OFFSETS);
BLOCK_RECORD(index_block, LOCAL_TYPE_DECLS);
BLOCK_RECORD(index_block, NORMAL_CONFORMANCE_OFFSETS);
BLOCK_RECORD(index_block, SIL_LAYOUT_OFFSETS);
BLOCK_RECORD(index_block, PRECEDENCE_GROUPS);
BLOCK_RECORD(index_block, NESTED_TYPE_DECLS);
BLOCK_RECORD(index_block, DECL_MEMBER_NAMES);
BLOCK_RECORD(index_block, ORDERED_TOP_LEVEL_DECLS);
BLOCK(DECL_MEMBER_TABLES_BLOCK);
BLOCK_RECORD(decl_member_tables_block, DECL_MEMBERS);
BLOCK(SIL_BLOCK);
BLOCK_RECORD(sil_block, SIL_FUNCTION);
BLOCK_RECORD(sil_block, SIL_BASIC_BLOCK);
BLOCK_RECORD(sil_block, SIL_ONE_VALUE_ONE_OPERAND);
BLOCK_RECORD(sil_block, SIL_ONE_TYPE);
BLOCK_RECORD(sil_block, SIL_ONE_OPERAND);
BLOCK_RECORD(sil_block, SIL_ONE_TYPE_ONE_OPERAND);
BLOCK_RECORD(sil_block, SIL_ONE_TYPE_VALUES);
BLOCK_RECORD(sil_block, SIL_TWO_OPERANDS);
BLOCK_RECORD(sil_block, SIL_TAIL_ADDR);
BLOCK_RECORD(sil_block, SIL_INST_APPLY);
BLOCK_RECORD(sil_block, SIL_INST_NO_OPERAND);
BLOCK_RECORD(sil_block, SIL_VTABLE);
BLOCK_RECORD(sil_block, SIL_VTABLE_ENTRY);
BLOCK_RECORD(sil_block, SIL_GLOBALVAR);
BLOCK_RECORD(sil_block, SIL_INST_CAST);
BLOCK_RECORD(sil_block, SIL_INIT_EXISTENTIAL);
BLOCK_RECORD(sil_block, SIL_WITNESS_TABLE);
BLOCK_RECORD(sil_block, SIL_WITNESS_METHOD_ENTRY);
BLOCK_RECORD(sil_block, SIL_WITNESS_BASE_ENTRY);
BLOCK_RECORD(sil_block, SIL_WITNESS_ASSOC_PROTOCOL);
BLOCK_RECORD(sil_block, SIL_WITNESS_ASSOC_ENTRY);
BLOCK_RECORD(sil_block, SIL_WITNESS_CONDITIONAL_CONFORMANCE);
BLOCK_RECORD(sil_block, SIL_DEFAULT_WITNESS_TABLE);
BLOCK_RECORD(sil_block, SIL_DEFAULT_WITNESS_TABLE_NO_ENTRY);
BLOCK_RECORD(sil_block, SIL_INST_WITNESS_METHOD);
BLOCK_RECORD(sil_block, SIL_SPECIALIZE_ATTR);
BLOCK_RECORD(sil_block, SIL_ONE_OPERAND_EXTRA_ATTR);
BLOCK_RECORD(sil_block, SIL_TWO_OPERANDS_EXTRA_ATTR);
// SWIFT_ENABLE_TENSORFLOW
BLOCK_RECORD(sil_block, SIL_DIFFERENTIABLE_ATTR);
BLOCK_RECORD(sil_block, SIL_INST_DIFFERENTIABLE_FUNCTION);
BLOCK_RECORD(sil_block, SIL_INST_LINEAR_FUNCTION);
BLOCK_RECORD(sil_block, SIL_INST_DIFFERENTIABLE_FUNCTION_EXTRACT);
BLOCK_RECORD(sil_block, SIL_INST_LINEAR_FUNCTION_EXTRACT);
BLOCK_RECORD(sil_block, SIL_DIFFERENTIABILITY_WITNESS);
BLOCK_RECORD(sil_block, SIL_INST_DIFFERENTIABILITY_WITNESS_FUNCTION);
// SWIFT_ENABLE_TENSORFLOW END
// These layouts can exist in both decl blocks and sil blocks.
#define BLOCK_RECORD_WITH_NAMESPACE(K, X) emitRecordID(X, #X, nameBuffer)
BLOCK_RECORD_WITH_NAMESPACE(sil_block,
decls_block::INVALID_PROTOCOL_CONFORMANCE);
BLOCK_RECORD_WITH_NAMESPACE(sil_block,
decls_block::ABSTRACT_PROTOCOL_CONFORMANCE);
BLOCK_RECORD_WITH_NAMESPACE(sil_block,
decls_block::NORMAL_PROTOCOL_CONFORMANCE);
BLOCK_RECORD_WITH_NAMESPACE(sil_block,
decls_block::SELF_PROTOCOL_CONFORMANCE);
BLOCK_RECORD_WITH_NAMESPACE(sil_block,
decls_block::SPECIALIZED_PROTOCOL_CONFORMANCE);
BLOCK_RECORD_WITH_NAMESPACE(sil_block,
decls_block::INHERITED_PROTOCOL_CONFORMANCE);
BLOCK_RECORD_WITH_NAMESPACE(sil_block,
decls_block::NORMAL_PROTOCOL_CONFORMANCE_ID);
BLOCK_RECORD_WITH_NAMESPACE(sil_block,
decls_block::PROTOCOL_CONFORMANCE_XREF);
BLOCK_RECORD_WITH_NAMESPACE(sil_block,
decls_block::GENERIC_PARAM_LIST);
BLOCK_RECORD_WITH_NAMESPACE(sil_block,
decls_block::GENERIC_REQUIREMENT);
BLOCK_RECORD_WITH_NAMESPACE(sil_block,
decls_block::LAYOUT_REQUIREMENT);
BLOCK(SIL_INDEX_BLOCK);
BLOCK_RECORD(sil_index_block, SIL_FUNC_NAMES);
BLOCK_RECORD(sil_index_block, SIL_FUNC_OFFSETS);
BLOCK_RECORD(sil_index_block, SIL_VTABLE_NAMES);
BLOCK_RECORD(sil_index_block, SIL_VTABLE_OFFSETS);
BLOCK_RECORD(sil_index_block, SIL_GLOBALVAR_NAMES);
BLOCK_RECORD(sil_index_block, SIL_GLOBALVAR_OFFSETS);
BLOCK_RECORD(sil_index_block, SIL_WITNESS_TABLE_NAMES);
BLOCK_RECORD(sil_index_block, SIL_WITNESS_TABLE_OFFSETS);
BLOCK_RECORD(sil_index_block, SIL_DEFAULT_WITNESS_TABLE_NAMES);
BLOCK_RECORD(sil_index_block, SIL_DEFAULT_WITNESS_TABLE_OFFSETS);
BLOCK_RECORD(sil_index_block, SIL_PROPERTY_OFFSETS);
// SWIFT_ENABLE_TENSORFLOW
BLOCK_RECORD(sil_index_block, SIL_DIFFERENTIABILITY_WITNESS_NAMES);
BLOCK_RECORD(sil_index_block, SIL_DIFFERENTIABILITY_WITNESS_OFFSETS);
// SWIFT_ENABLE_TENSORFLOW END
#undef BLOCK
#undef BLOCK_RECORD
}
void Serializer::writeHeader(const SerializationOptions &options) {
{
BCBlockRAII restoreBlock(Out, CONTROL_BLOCK_ID, 3);
control_block::ModuleNameLayout ModuleName(Out);
control_block::MetadataLayout Metadata(Out);
control_block::TargetLayout Target(Out);
ModuleName.emit(ScratchRecord, M->getName().str());
SmallString<32> versionStringBuf;
llvm::raw_svector_ostream versionString(versionStringBuf);
versionString << Version::getCurrentLanguageVersion();
size_t shortVersionStringLength = versionString.tell();
versionString << '('
<< M->getASTContext().LangOpts.EffectiveLanguageVersion;
size_t compatibilityVersionStringLength =
versionString.tell() - shortVersionStringLength - 1;
versionString << ")/" << version::getSwiftFullVersion();
Metadata.emit(ScratchRecord,
SWIFTMODULE_VERSION_MAJOR, SWIFTMODULE_VERSION_MINOR,
shortVersionStringLength,
compatibilityVersionStringLength,
versionString.str());
Target.emit(ScratchRecord, M->getASTContext().LangOpts.Target.str());
{
llvm::BCBlockRAII restoreBlock(Out, OPTIONS_BLOCK_ID, 4);
options_block::IsSIBLayout IsSIB(Out);
IsSIB.emit(ScratchRecord, options.IsSIB);
if (M->isTestingEnabled()) {
options_block::IsTestableLayout IsTestable(Out);
IsTestable.emit(ScratchRecord);
}
if (M->arePrivateImportsEnabled()) {
options_block::ArePrivateImportsEnabledLayout PrivateImports(Out);
PrivateImports.emit(ScratchRecord);
}
if (M->getResilienceStrategy() != ResilienceStrategy::Default) {
options_block::ResilienceStrategyLayout Strategy(Out);
Strategy.emit(ScratchRecord, unsigned(M->getResilienceStrategy()));
}
if (options.SerializeOptionsForDebugging) {
options_block::SDKPathLayout SDKPath(Out);
options_block::XCCLayout XCC(Out);
SDKPath.emit(ScratchRecord, M->getASTContext().SearchPathOpts.SDKPath);
auto &Opts = options.ExtraClangOptions;
for (auto Arg = Opts.begin(), E = Opts.end(); Arg != E; ++Arg) {
// FIXME: This is a hack and calls for a better design.
//
// Filter out any -ivfsoverlay options that include an
// unextended-module-overlay.yaml overlay. By convention the Xcode
// buildsystem uses these while *building* mixed Objective-C and Swift
// frameworks; but they should never be used to *import* the module
// defined in the framework.
if (StringRef(*Arg).startswith("-ivfsoverlay")) {
auto Next = std::next(Arg);
if (Next != E &&
StringRef(*Next).endswith("unextended-module-overlay.yaml")) {
++Arg;
continue;
}
}
XCC.emit(ScratchRecord, *Arg);
}
}
}
}
}
static void flattenImportPath(const ModuleDecl::ImportedModule &import,
SmallVectorImpl<char> &out) {
llvm::raw_svector_ostream outStream(out);
import.second->getReverseFullModuleName().printForward(outStream,
StringRef("\0", 1));
if (import.first.empty())
return;
outStream << '\0';
assert(import.first.size() == 1 && "can only handle top-level decl imports");
auto accessPathElem = import.first.front();
outStream << accessPathElem.first.str();
}
uint64_t getRawModTimeOrHash(const SerializationOptions::FileDependency &dep) {
if (dep.isHashBased()) return dep.getContentHash();
return dep.getModificationTime();
}
using ImportSet = llvm::SmallSet<ModuleDecl::ImportedModule, 8,
ModuleDecl::OrderImportedModules>;
static ImportSet getImportsAsSet(const ModuleDecl *M,
ModuleDecl::ImportFilter filter) {
SmallVector<ModuleDecl::ImportedModule, 8> imports;
M->getImportedModules(imports, filter);
ImportSet importSet;
importSet.insert(imports.begin(), imports.end());
return importSet;
}
void Serializer::writeInputBlock(const SerializationOptions &options) {
BCBlockRAII restoreBlock(Out, INPUT_BLOCK_ID, 4);
input_block::ImportedModuleLayout ImportedModule(Out);
input_block::LinkLibraryLayout LinkLibrary(Out);
input_block::ImportedHeaderLayout ImportedHeader(Out);
input_block::ImportedHeaderContentsLayout ImportedHeaderContents(Out);
input_block::SearchPathLayout SearchPath(Out);
input_block::FileDependencyLayout FileDependency(Out);
input_block::DependencyDirectoryLayout DependencyDirectory(Out);
input_block::ModuleInterfaceLayout ModuleInterface(Out);
if (options.SerializeOptionsForDebugging) {
const SearchPathOptions &searchPathOpts = M->getASTContext().SearchPathOpts;
// Put the framework search paths first so that they'll be preferred upon
// deserialization.
for (auto &framepath : searchPathOpts.FrameworkSearchPaths)
SearchPath.emit(ScratchRecord, /*framework=*/true, framepath.IsSystem,
framepath.Path);
for (auto &path : searchPathOpts.ImportSearchPaths)
SearchPath.emit(ScratchRecord, /*framework=*/false, /*system=*/false, path);
}
// Note: We're not using StringMap here because we don't need to own the
// strings.
llvm::DenseMap<StringRef, unsigned> dependencyDirectories;
for (auto const &dep : options.Dependencies) {
StringRef directoryName = llvm::sys::path::parent_path(dep.getPath());
unsigned &dependencyDirectoryIndex = dependencyDirectories[directoryName];
if (!dependencyDirectoryIndex) {
// This name must be newly-added. Give it a new ID (and skip 0).
dependencyDirectoryIndex = dependencyDirectories.size();
DependencyDirectory.emit(ScratchRecord, directoryName);
}
FileDependency.emit(ScratchRecord,
dep.getSize(),
getRawModTimeOrHash(dep),
dep.isHashBased(),
dep.isSDKRelative(),
dependencyDirectoryIndex,
llvm::sys::path::filename(dep.getPath()));
}
if (!options.ModuleInterface.empty())
ModuleInterface.emit(ScratchRecord, options.ModuleInterface);
ModuleDecl::ImportFilter allImportFilter;
allImportFilter |= ModuleDecl::ImportFilterKind::Public;
allImportFilter |= ModuleDecl::ImportFilterKind::Private;
allImportFilter |= ModuleDecl::ImportFilterKind::ImplementationOnly;
SmallVector<ModuleDecl::ImportedModule, 8> allImports;
M->getImportedModules(allImports, allImportFilter);
ModuleDecl::removeDuplicateImports(allImports);
// Collect the public and private imports as a subset so that we can
// distinguish them.
ImportSet publicImportSet =
getImportsAsSet(M, ModuleDecl::ImportFilterKind::Public);
ImportSet privateImportSet =
getImportsAsSet(M, ModuleDecl::ImportFilterKind::Private);
auto clangImporter =
static_cast<ClangImporter *>(M->getASTContext().getClangModuleLoader());
ModuleDecl *bridgingHeaderModule = clangImporter->getImportedHeaderModule();
ModuleDecl::ImportedModule bridgingHeaderImport{{}, bridgingHeaderModule};
// Make sure the bridging header module is always at the top of the import
// list, mimicking how it is processed before any module imports when
// compiling source files.
if (llvm::is_contained(allImports, bridgingHeaderImport)) {
off_t importedHeaderSize = 0;
time_t importedHeaderModTime = 0;
std::string contents;
if (!options.ImportedHeader.empty()) {
contents = clangImporter->getBridgingHeaderContents(
options.ImportedHeader, importedHeaderSize, importedHeaderModTime);
}
assert(publicImportSet.count(bridgingHeaderImport));
ImportedHeader.emit(ScratchRecord,
publicImportSet.count(bridgingHeaderImport),
importedHeaderSize, importedHeaderModTime,
options.ImportedHeader);
if (!contents.empty()) {
contents.push_back('\0');
ImportedHeaderContents.emit(ScratchRecord, contents);
}
}
ModuleDecl *theBuiltinModule = M->getASTContext().TheBuiltinModule;
for (auto import : allImports) {
if (import.second == theBuiltinModule ||
import.second == bridgingHeaderModule) {
continue;
}
SmallString<64> importPath;
flattenImportPath(import, importPath);
serialization::ImportControl stableImportControl;
// The order of checks here is important, since a module can be imported
// differently in different files, and we need to record the "most visible"
// form here.
if (publicImportSet.count(import))
stableImportControl = ImportControl::Exported;
else if (privateImportSet.count(import))
stableImportControl = ImportControl::Normal;
else
stableImportControl = ImportControl::ImplementationOnly;
ImportedModule.emit(ScratchRecord,
static_cast<uint8_t>(stableImportControl),
!import.first.empty(), importPath);
}
if (!options.ModuleLinkName.empty()) {
LinkLibrary.emit(ScratchRecord, serialization::LibraryKind::Library,
options.AutolinkForceLoad, options.ModuleLinkName);
}
}
/// Translate AST default argument kind to the Serialization enum values, which
/// are guaranteed to be stable.
static uint8_t getRawStableDefaultArgumentKind(swift::DefaultArgumentKind kind) {
switch (kind) {
#define CASE(X) \
case swift::DefaultArgumentKind::X: \
return static_cast<uint8_t>(serialization::DefaultArgumentKind::X);
CASE(None)
CASE(Normal)
CASE(Inherited)
CASE(Column)
CASE(File)
CASE(Line)
CASE(Function)
CASE(DSOHandle)
CASE(NilLiteral)
CASE(EmptyArray)
CASE(EmptyDictionary)
CASE(StoredProperty)
#undef CASE
}
llvm_unreachable("Unhandled DefaultArgumentKind in switch.");
}
static uint8_t
getRawStableMetatypeRepresentation(const AnyMetatypeType *metatype) {
if (!metatype->hasRepresentation()) {
return serialization::MetatypeRepresentation::MR_None;
}
switch (metatype->getRepresentation()) {
case swift::MetatypeRepresentation::Thin:
return serialization::MetatypeRepresentation::MR_Thin;
case swift::MetatypeRepresentation::Thick:
return serialization::MetatypeRepresentation::MR_Thick;
case swift::MetatypeRepresentation::ObjC:
return serialization::MetatypeRepresentation::MR_ObjC;
}
llvm_unreachable("bad representation");
}
/// Translate from the requirement kind to the Serialization enum
/// values, which are guaranteed to be stable.
static uint8_t getRawStableRequirementKind(RequirementKind kind) {
#define CASE(KIND) \
case RequirementKind::KIND: \
return GenericRequirementKind::KIND;
switch (kind) {
CASE(Conformance)
CASE(Superclass)
CASE(SameType)
CASE(Layout)
}
#undef CASE
llvm_unreachable("Unhandled RequirementKind in switch.");
}
void Serializer::writeGenericRequirements(ArrayRef<Requirement> requirements,
const std::array<unsigned, 256> &abbrCodes) {
using namespace decls_block;
if (requirements.empty())
return;
auto reqAbbrCode = abbrCodes[GenericRequirementLayout::Code];
auto layoutReqAbbrCode = abbrCodes[LayoutRequirementLayout::Code];
for (const auto &req : requirements) {
if (req.getKind() != RequirementKind::Layout)
GenericRequirementLayout::emitRecord(
Out, ScratchRecord, reqAbbrCode,
getRawStableRequirementKind(req.getKind()),
addTypeRef(req.getFirstType()), addTypeRef(req.getSecondType()));
else {
// Write layout requirement.
auto layout = req.getLayoutConstraint();
unsigned size = 0;
unsigned alignment = 0;
if (layout->isKnownSizeTrivial()) {
size = layout->getTrivialSizeInBits();
alignment = layout->getAlignmentInBits();
}
LayoutRequirementKind rawKind = LayoutRequirementKind::UnknownLayout;
switch (layout->getKind()) {
case LayoutConstraintKind::NativeRefCountedObject:
rawKind = LayoutRequirementKind::NativeRefCountedObject;
break;
case LayoutConstraintKind::RefCountedObject:
rawKind = LayoutRequirementKind::RefCountedObject;
break;
case LayoutConstraintKind::Trivial:
rawKind = LayoutRequirementKind::Trivial;
break;
case LayoutConstraintKind::TrivialOfExactSize:
rawKind = LayoutRequirementKind::TrivialOfExactSize;
break;
case LayoutConstraintKind::TrivialOfAtMostSize:
rawKind = LayoutRequirementKind::TrivialOfAtMostSize;
break;
case LayoutConstraintKind::Class:
rawKind = LayoutRequirementKind::Class;
break;
case LayoutConstraintKind::NativeClass:
rawKind = LayoutRequirementKind::NativeClass;
break;
case LayoutConstraintKind::UnknownLayout:
rawKind = LayoutRequirementKind::UnknownLayout;
break;
}
LayoutRequirementLayout::emitRecord(
Out, ScratchRecord, layoutReqAbbrCode, rawKind,
addTypeRef(req.getFirstType()), size, alignment);
}
}
}
void Serializer::writeASTBlockEntity(GenericSignature sig) {
using namespace decls_block;
assert(sig);
assert(GenericSignaturesToSerialize.hasRef(sig));
// Determine whether we can just write the param types as is, or whether we
// have to encode them manually because one of them has a declaration with
// module context (which can happen in SIL).
bool mustEncodeParamsManually =
llvm::any_of(sig->getGenericParams(),
[](const GenericTypeParamType *paramTy) {
auto *decl = paramTy->getDecl();
return decl && decl->getDeclContext()->isModuleScopeContext();
});
if (!mustEncodeParamsManually) {
// Record the generic parameters.
SmallVector<uint64_t, 4> rawParamIDs;
for (auto *paramTy : sig->getGenericParams()) {
rawParamIDs.push_back(addTypeRef(paramTy));
}
auto abbrCode = DeclTypeAbbrCodes[GenericSignatureLayout::Code];
GenericSignatureLayout::emitRecord(Out, ScratchRecord, abbrCode,
rawParamIDs);
} else {
// Record the generic parameters.
SmallVector<uint64_t, 4> rawParamIDs;
for (auto *paramTy : sig->getGenericParams()) {
auto *decl = paramTy->getDecl();
// For a full environment, add the name and canonicalize the param type.
Identifier paramName = decl ? decl->getName() : Identifier();
rawParamIDs.push_back(addDeclBaseNameRef(paramName));
paramTy = paramTy->getCanonicalType()->castTo<GenericTypeParamType>();
rawParamIDs.push_back(addTypeRef(paramTy));
}
auto envAbbrCode = DeclTypeAbbrCodes[SILGenericSignatureLayout::Code];
SILGenericSignatureLayout::emitRecord(Out, ScratchRecord, envAbbrCode,
rawParamIDs);
}
writeGenericRequirements(sig->getRequirements(), DeclTypeAbbrCodes);
}
void Serializer::writeASTBlockEntity(const SubstitutionMap substitutions) {
using namespace decls_block;
assert(substitutions);
assert(SubstitutionMapsToSerialize.hasRef(substitutions));
// Collect the replacement types.
SmallVector<uint64_t, 4> rawReplacementTypes;
for (auto type : substitutions.getReplacementTypes())
rawReplacementTypes.push_back(addTypeRef(type));
auto substitutionsAbbrCode = DeclTypeAbbrCodes[SubstitutionMapLayout::Code];
SubstitutionMapLayout::emitRecord(Out, ScratchRecord, substitutionsAbbrCode,
addGenericSignatureRef(
substitutions.getGenericSignature()),
substitutions.getConformances().size(),
rawReplacementTypes);
writeConformances(substitutions.getConformances(), DeclTypeAbbrCodes);
}
void Serializer::writeASTBlockEntity(const SILLayout *layout) {
using namespace decls_block;
assert(SILLayoutsToSerialize.hasRef(layout));
SmallVector<unsigned, 16> data;
// Save field types.
for (auto &field : layout->getFields()) {
unsigned typeRef = addTypeRef(field.getLoweredType());
// Set the high bit if mutable.
if (field.isMutable())
typeRef |= 0x80000000U;
data.push_back(typeRef);
}
unsigned abbrCode
= DeclTypeAbbrCodes[SILLayoutLayout::Code];
SILLayoutLayout::emitRecord(
Out, ScratchRecord, abbrCode,
addGenericSignatureRef(layout->getGenericSignature()),
layout->getFields().size(),
data);
}
void Serializer::writeASTBlockEntity(
const NormalProtocolConformance *conformance) {
using namespace decls_block;
// The conformance must be complete, or we can't serialize it.
assert(conformance->isComplete());
assert(NormalConformancesToSerialize.hasRef(conformance));
auto protocol = conformance->getProtocol();
SmallVector<DeclID, 32> data;
unsigned numValueWitnesses = 0;
unsigned numTypeWitnesses = 0;
conformance->forEachTypeWitness([&](AssociatedTypeDecl *assocType,
Type type, TypeDecl *typeDecl) {
data.push_back(addDeclRef(assocType));
data.push_back(addTypeRef(type));
data.push_back(addDeclRef(typeDecl, /*allowTypeAliasXRef*/true));
++numTypeWitnesses;
return false;
});
conformance->forEachValueWitness([&](ValueDecl *req, Witness witness) {
++numValueWitnesses;
data.push_back(addDeclRef(req));
data.push_back(addDeclRef(witness.getDecl()));
assert(witness.getDecl() || req->getAttrs().hasAttribute<OptionalAttr>()
|| req->getAttrs().isUnavailable(req->getASTContext()));
// If there is no witness, we're done.
if (!witness.getDecl()) return;
auto subs = witness.getSubstitutions();
// Canonicalize away typealiases, since these substitutions aren't used
// for diagnostics and we reference fewer declarations that way.
subs = subs.getCanonical();
// Map archetypes to type parameters, since we always substitute them
// away. Note that in a merge-modules pass, we're serializing conformances
// that we deserialized, so they will already have their replacement types
// in terms of interface types; hence the hasArchetypes() check is
// necessary for correctness, not just as a fast path.
if (subs.hasArchetypes())
subs = subs.mapReplacementTypesOutOfContext();
data.push_back(addSubstitutionMapRef(subs));
});
unsigned numSignatureConformances =
conformance->getSignatureConformances().size();
unsigned abbrCode
= DeclTypeAbbrCodes[NormalProtocolConformanceLayout::Code];
auto ownerID = addDeclContextRef(conformance->getDeclContext());
NormalProtocolConformanceLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclRef(protocol),
ownerID.getOpaqueValue(),
numTypeWitnesses,
numValueWitnesses,
numSignatureConformances,
data);
// Write requirement signature conformances.
for (auto reqConformance : conformance->getSignatureConformances())
writeConformance(reqConformance, DeclTypeAbbrCodes);
}
void
Serializer::writeConformance(ProtocolConformance *conformance,
const std::array<unsigned, 256> &abbrCodes,
GenericEnvironment *genericEnv) {
writeConformance(ProtocolConformanceRef(conformance), abbrCodes, genericEnv);
}
void
Serializer::writeConformance(ProtocolConformanceRef conformanceRef,
const std::array<unsigned, 256> &abbrCodes,
GenericEnvironment *genericEnv) {
using namespace decls_block;
if (conformanceRef.isInvalid()) {
unsigned abbrCode = abbrCodes[InvalidProtocolConformanceLayout::Code];
InvalidProtocolConformanceLayout::emitRecord(Out, ScratchRecord, abbrCode);
return;
}
if (conformanceRef.isAbstract()) {
unsigned abbrCode = abbrCodes[AbstractProtocolConformanceLayout::Code];
AbstractProtocolConformanceLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclRef(conformanceRef.getAbstract()));
return;
}
auto conformance = conformanceRef.getConcrete();
switch (conformance->getKind()) {
case ProtocolConformanceKind::Normal: {
auto normal = cast<NormalProtocolConformance>(conformance);
if (!isDeclXRef(normal->getDeclContext()->getAsDecl())
&& !isa<ClangModuleUnit>(normal->getDeclContext()
->getModuleScopeContext())) {
// A normal conformance in this module file.
unsigned abbrCode = abbrCodes[NormalProtocolConformanceIdLayout::Code];
NormalProtocolConformanceIdLayout::emitRecord(Out, ScratchRecord,
abbrCode,
addConformanceRef(normal));
} else {
// A conformance in a different module file.
unsigned abbrCode = abbrCodes[ProtocolConformanceXrefLayout::Code];
ProtocolConformanceXrefLayout::emitRecord(
Out, ScratchRecord,
abbrCode,
addDeclRef(normal->getProtocol()),
addDeclRef(normal->getType()->getAnyNominal()),
addContainingModuleRef(normal->getDeclContext()));
}
break;
}
case ProtocolConformanceKind::Self: {
auto self = cast<SelfProtocolConformance>(conformance);
unsigned abbrCode = abbrCodes[SelfProtocolConformanceLayout::Code];
auto protocolID = addDeclRef(self->getProtocol());
SelfProtocolConformanceLayout::emitRecord(Out, ScratchRecord, abbrCode,
protocolID);
break;
}
case ProtocolConformanceKind::Specialized: {
auto conf = cast<SpecializedProtocolConformance>(conformance);
unsigned abbrCode = abbrCodes[SpecializedProtocolConformanceLayout::Code];
auto type = conf->getType();
if (genericEnv && type->hasArchetype())
type = type->mapTypeOutOfContext();
SpecializedProtocolConformanceLayout::emitRecord(
Out, ScratchRecord,
abbrCode,
addTypeRef(type),
addSubstitutionMapRef(conf->getSubstitutionMap()));
writeConformance(conf->getGenericConformance(), abbrCodes, genericEnv);
break;
}
case ProtocolConformanceKind::Inherited: {
auto conf = cast<InheritedProtocolConformance>(conformance);
unsigned abbrCode
= abbrCodes[InheritedProtocolConformanceLayout::Code];
auto type = conf->getType();
if (genericEnv && type->hasArchetype())
type = type->mapTypeOutOfContext();
InheritedProtocolConformanceLayout::emitRecord(
Out, ScratchRecord, abbrCode, addTypeRef(type));
writeConformance(conf->getInheritedConformance(), abbrCodes, genericEnv);
break;
}
}
}
void
Serializer::writeConformances(ArrayRef<ProtocolConformanceRef> conformances,
const std::array<unsigned, 256> &abbrCodes) {
using namespace decls_block;
for (auto conformance : conformances)
writeConformance(conformance, abbrCodes);
}
void
Serializer::writeConformances(ArrayRef<ProtocolConformance*> conformances,
const std::array<unsigned, 256> &abbrCodes) {
using namespace decls_block;
for (auto conformance : conformances)
writeConformance(conformance, abbrCodes);
}
static bool shouldSerializeMember(Decl *D) {
switch (D->getKind()) {
case DeclKind::Import:
case DeclKind::InfixOperator:
case DeclKind::PrefixOperator:
case DeclKind::PostfixOperator:
case DeclKind::TopLevelCode:
case DeclKind::Extension:
case DeclKind::Module:
case DeclKind::PrecedenceGroup:
llvm_unreachable("decl should never be a member");
case DeclKind::MissingMember:
llvm_unreachable("should never need to reserialize a member placeholder");
case DeclKind::IfConfig:
case DeclKind::PoundDiagnostic:
return false;
case DeclKind::EnumCase:
return false;
case DeclKind::OpaqueType:
return true;
case DeclKind::EnumElement:
case DeclKind::Protocol:
case DeclKind::Constructor:
case DeclKind::Destructor:
case DeclKind::PatternBinding:
case DeclKind::Subscript:
case DeclKind::TypeAlias:
case DeclKind::GenericTypeParam:
case DeclKind::AssociatedType:
case DeclKind::Enum:
case DeclKind::Struct:
case DeclKind::Class:
case DeclKind::Var:
case DeclKind::Param:
case DeclKind::Func:
case DeclKind::Accessor:
return true;
}
llvm_unreachable("Unhandled DeclKind in switch.");
}
static serialization::AccessorKind getStableAccessorKind(swift::AccessorKind K){
switch (K) {
#define ACCESSOR(ID) \
case swift::AccessorKind::ID: return serialization::ID;
#include "swift/AST/AccessorKinds.def"
}
llvm_unreachable("Unhandled AccessorKind in switch.");
}
static serialization::CtorInitializerKind
getStableCtorInitializerKind(swift::CtorInitializerKind K){
switch (K) {
#define CASE(NAME) \
case swift::CtorInitializerKind::NAME: return serialization::NAME;
CASE(Designated)
CASE(Convenience)
CASE(Factory)
CASE(ConvenienceFactory)
#undef CASE
}
llvm_unreachable("Unhandled CtorInitializerKind in switch.");
}
void Serializer::writeCrossReference(const DeclContext *DC, uint32_t pathLen) {
using namespace decls_block;
unsigned abbrCode;
switch (DC->getContextKind()) {
case DeclContextKind::AbstractClosureExpr:
case DeclContextKind::Initializer:
case DeclContextKind::TopLevelCodeDecl:
case DeclContextKind::SerializedLocal:
case DeclContextKind::EnumElementDecl:
llvm_unreachable("cannot cross-reference this context");
case DeclContextKind::Module:
llvm_unreachable("should only cross-reference something within a file");
case DeclContextKind::FileUnit:
abbrCode = DeclTypeAbbrCodes[XRefLayout::Code];
XRefLayout::emitRecord(Out, ScratchRecord, abbrCode,
addContainingModuleRef(DC), pathLen);
break;
case DeclContextKind::GenericTypeDecl: {
auto generic = cast<GenericTypeDecl>(DC);
writeCrossReference(DC->getParent(), pathLen + 1);
// Opaque return types are unnamed and need a special xref.
if (auto opaque = dyn_cast<OpaqueTypeDecl>(generic)) {
if (!opaque->hasName()) {
abbrCode = DeclTypeAbbrCodes[XRefOpaqueReturnTypePathPieceLayout::Code];
XRefOpaqueReturnTypePathPieceLayout::emitRecord(Out, ScratchRecord,
abbrCode,
addDeclBaseNameRef(opaque->getOpaqueReturnTypeIdentifier()));
break;
}
}
assert(generic->hasName());
abbrCode = DeclTypeAbbrCodes[XRefTypePathPieceLayout::Code];
Identifier discriminator;
if (generic->isOutermostPrivateOrFilePrivateScope()) {
auto *containingFile = cast<FileUnit>(generic->getModuleScopeContext());
discriminator = containingFile->getDiscriminatorForPrivateValue(generic);
}
bool isProtocolExt = DC->getParent()->getExtendedProtocolDecl();
XRefTypePathPieceLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclBaseNameRef(generic->getName()),
addDeclBaseNameRef(discriminator),
isProtocolExt,
generic->hasClangNode());
break;
}
case DeclContextKind::ExtensionDecl: {
auto ext = cast<ExtensionDecl>(DC);
auto nominal = ext->getExtendedNominal();
assert(nominal);
writeCrossReference(nominal, pathLen + 1);
abbrCode = DeclTypeAbbrCodes[XRefExtensionPathPieceLayout::Code];
CanGenericSignature genericSig(nullptr);
if (ext->isConstrainedExtension()) {
genericSig = ext->getGenericSignature()->getCanonicalSignature();
}
XRefExtensionPathPieceLayout::emitRecord(
Out, ScratchRecord, abbrCode, addContainingModuleRef(DC),
addGenericSignatureRef(genericSig));
break;
}
case DeclContextKind::SubscriptDecl: {
auto SD = cast<SubscriptDecl>(DC);
writeCrossReference(DC->getParent(), pathLen + 1);
Type ty = SD->getInterfaceType()->getCanonicalType();
abbrCode = DeclTypeAbbrCodes[XRefValuePathPieceLayout::Code];
bool isProtocolExt = SD->getDeclContext()->getExtendedProtocolDecl();
XRefValuePathPieceLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(ty), SUBSCRIPT_ID,
isProtocolExt, SD->hasClangNode(),
SD->isStatic());
break;
}
case DeclContextKind::AbstractFunctionDecl: {
if (auto fn = dyn_cast<AccessorDecl>(DC)) {
auto storage = fn->getStorage();
writeCrossReference(storage->getDeclContext(), pathLen + 2);
Type ty = storage->getInterfaceType()->getCanonicalType();
IdentifierID nameID = addDeclBaseNameRef(storage->getBaseName());
bool isProtocolExt = fn->getDeclContext()->getExtendedProtocolDecl();
abbrCode = DeclTypeAbbrCodes[XRefValuePathPieceLayout::Code];
XRefValuePathPieceLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(ty), nameID,
isProtocolExt,
storage->hasClangNode(),
storage->isStatic());
abbrCode =
DeclTypeAbbrCodes[XRefOperatorOrAccessorPathPieceLayout::Code];
auto emptyID = addDeclBaseNameRef(Identifier());
auto accessorKind = getStableAccessorKind(fn->getAccessorKind());
assert(!fn->isObservingAccessor() &&
"cannot form cross-reference to observing accessors");
XRefOperatorOrAccessorPathPieceLayout::emitRecord(Out, ScratchRecord,
abbrCode, emptyID,
accessorKind);
break;
}
auto fn = cast<AbstractFunctionDecl>(DC);
writeCrossReference(DC->getParent(), pathLen + 1 + fn->isOperator());
Type ty = fn->getInterfaceType()->getCanonicalType();
if (auto ctor = dyn_cast<ConstructorDecl>(DC)) {
abbrCode = DeclTypeAbbrCodes[XRefInitializerPathPieceLayout::Code];
XRefInitializerPathPieceLayout::emitRecord(
Out, ScratchRecord, abbrCode, addTypeRef(ty),
(bool)ctor->getDeclContext()->getExtendedProtocolDecl(),
ctor->hasClangNode(),
getStableCtorInitializerKind(ctor->getInitKind()));
break;
}
abbrCode = DeclTypeAbbrCodes[XRefValuePathPieceLayout::Code];
bool isProtocolExt = fn->getDeclContext()->getExtendedProtocolDecl();
XRefValuePathPieceLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(ty),
addDeclBaseNameRef(fn->getBaseName()),
isProtocolExt, fn->hasClangNode(),
fn->isStatic());
if (fn->isOperator()) {
// Encode the fixity as a filter on the func decls, to distinguish prefix
// and postfix operators.
auto op = cast<FuncDecl>(fn)->getOperatorDecl();
assert(op);
abbrCode = DeclTypeAbbrCodes[XRefOperatorOrAccessorPathPieceLayout::Code];
auto emptyID = addDeclBaseNameRef(Identifier());
auto fixity = getStableFixity(op->getKind());
XRefOperatorOrAccessorPathPieceLayout::emitRecord(Out, ScratchRecord,
abbrCode, emptyID,
fixity);
}
break;
}
}
}
void Serializer::writeCrossReference(const Decl *D) {
using namespace decls_block;
unsigned abbrCode;
if (auto op = dyn_cast<OperatorDecl>(D)) {
writeCrossReference(op->getDeclContext(), 1);
abbrCode = DeclTypeAbbrCodes[XRefOperatorOrAccessorPathPieceLayout::Code];
auto nameID = addDeclBaseNameRef(op->getName());
auto fixity = getStableFixity(op->getKind());
XRefOperatorOrAccessorPathPieceLayout::emitRecord(Out, ScratchRecord,
abbrCode, nameID,
fixity);
return;
}
if (auto prec = dyn_cast<PrecedenceGroupDecl>(D)) {
writeCrossReference(prec->getDeclContext(), 1);
abbrCode = DeclTypeAbbrCodes[XRefOperatorOrAccessorPathPieceLayout::Code];
auto nameID = addDeclBaseNameRef(prec->getName());
uint8_t fixity = OperatorKind::PrecedenceGroup;
XRefOperatorOrAccessorPathPieceLayout::emitRecord(Out, ScratchRecord,
abbrCode, nameID,
fixity);
return;
}
if (auto fn = dyn_cast<AbstractFunctionDecl>(D)) {
// Functions are special because they might be operators.
writeCrossReference(fn, 0);
return;
}
writeCrossReference(D->getDeclContext());
if (auto opaque = dyn_cast<OpaqueTypeDecl>(D)) {
abbrCode = DeclTypeAbbrCodes[XRefOpaqueReturnTypePathPieceLayout::Code];
XRefOpaqueReturnTypePathPieceLayout::emitRecord(Out, ScratchRecord,
abbrCode,
addDeclBaseNameRef(opaque->getOpaqueReturnTypeIdentifier()));
return;
}
if (auto genericParam = dyn_cast<GenericTypeParamDecl>(D)) {
assert(!D->getDeclContext()->isModuleScopeContext() &&
"Cannot cross reference a generic type decl at module scope.");
abbrCode = DeclTypeAbbrCodes[XRefGenericParamPathPieceLayout::Code];
XRefGenericParamPathPieceLayout::emitRecord(Out, ScratchRecord, abbrCode,
genericParam->getDepth(),
genericParam->getIndex());
return;
}
bool isProtocolExt = D->getDeclContext()->getExtendedProtocolDecl();
if (auto type = dyn_cast<TypeDecl>(D)) {
abbrCode = DeclTypeAbbrCodes[XRefTypePathPieceLayout::Code];
Identifier discriminator;
if (type->isOutermostPrivateOrFilePrivateScope()) {
auto *containingFile =
cast<FileUnit>(type->getDeclContext()->getModuleScopeContext());
discriminator = containingFile->getDiscriminatorForPrivateValue(type);
}
XRefTypePathPieceLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclBaseNameRef(type->getName()),
addDeclBaseNameRef(discriminator),
isProtocolExt, D->hasClangNode());
return;
}
auto val = cast<ValueDecl>(D);
auto ty = val->getInterfaceType()->getCanonicalType();
abbrCode = DeclTypeAbbrCodes[XRefValuePathPieceLayout::Code];
IdentifierID iid = addDeclBaseNameRef(val->getBaseName());
XRefValuePathPieceLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(ty), iid, isProtocolExt,
D->hasClangNode(), val->isStatic());
}
/// Translate from the AST associativity enum to the Serialization enum
/// values, which are guaranteed to be stable.
static uint8_t getRawStableAssociativity(swift::Associativity assoc) {
switch (assoc) {
case swift::Associativity::Left:
return serialization::Associativity::LeftAssociative;
case swift::Associativity::Right:
return serialization::Associativity::RightAssociative;
case swift::Associativity::None:
return serialization::Associativity::NonAssociative;
}
llvm_unreachable("Unhandled Associativity in switch.");
}
static serialization::StaticSpellingKind
getStableStaticSpelling(swift::StaticSpellingKind SS) {
switch (SS) {
case swift::StaticSpellingKind::None:
return serialization::StaticSpellingKind::None;
case swift::StaticSpellingKind::KeywordStatic:
return serialization::StaticSpellingKind::KeywordStatic;
case swift::StaticSpellingKind::KeywordClass:
return serialization::StaticSpellingKind::KeywordClass;
}
llvm_unreachable("Unhandled StaticSpellingKind in switch.");
}
static uint8_t getRawStableAccessLevel(swift::AccessLevel access) {
switch (access) {
#define CASE(NAME) \
case swift::AccessLevel::NAME: \
return static_cast<uint8_t>(serialization::AccessLevel::NAME);
CASE(Private)
CASE(FilePrivate)
CASE(Internal)
CASE(Public)
CASE(Open)
#undef CASE
}
llvm_unreachable("Unhandled AccessLevel in switch.");
}
static serialization::SelfAccessKind
getStableSelfAccessKind(swift::SelfAccessKind MM) {
switch (MM) {
case swift::SelfAccessKind::NonMutating:
return serialization::SelfAccessKind::NonMutating;
case swift::SelfAccessKind::Mutating:
return serialization::SelfAccessKind::Mutating;
case swift::SelfAccessKind::Consuming:
return serialization::SelfAccessKind::Consuming;
}
llvm_unreachable("Unhandled StaticSpellingKind in switch.");
}
#ifndef NDEBUG
// This is done with a macro so that we get a slightly more useful assertion.
# define DECL(KIND, PARENT)\
LLVM_ATTRIBUTE_UNUSED \
static void verifyAttrSerializable(const KIND ## Decl *D) {\
for (auto Attr : D->getAttrs()) {\
assert(Attr->canAppearOnDecl(D) && "attribute cannot appear on a " #KIND);\
}\
}
# include "swift/AST/DeclNodes.def"
#else
static void verifyAttrSerializable(const Decl *D) {}
#endif
bool Serializer::isDeclXRef(const Decl *D) const {
const DeclContext *topLevel = D->getDeclContext()->getModuleScopeContext();
if (topLevel->getParentModule() != M)
return true;
if (!SF || topLevel == SF)
return false;
// Special-case for SIL generic parameter decls, which don't have a real
// DeclContext.
if (!isa<FileUnit>(topLevel)) {
// SWIFT_ENABLE_TENSORFLOW
// FIXME(TF-623): Find a robust way to special-casing structs/enums
// synthesized during SIL differentiation transform.
auto isDifferentiationDataStructure = [](const Decl *D) {
auto *valueDecl = dyn_cast<ValueDecl>(D);
if (!valueDecl)
return false;
if (auto *structDecl =
valueDecl->getInterfaceType()->getStructOrBoundGenericStruct())
return structDecl->getNameStr().contains("__PB__");
if (auto *enumDecl =
valueDecl->getInterfaceType()->getEnumOrBoundGenericEnum())
return enumDecl->getNameStr().contains("__Pred__");
return false;
};
assert(
(isa<GenericTypeParamDecl>(D) || isDifferentiationDataStructure(D)) &&
"unexpected decl kind");
return false;
}
return true;
}
void Serializer::writePatternBindingInitializer(PatternBindingDecl *binding,
unsigned bindingIndex) {
using namespace decls_block;
auto abbrCode = DeclTypeAbbrCodes[PatternBindingInitializerLayout::Code];
StringRef initStr;
SmallString<128> scratch;
auto &entry = binding->getPatternList()[bindingIndex];
auto varDecl = entry.getAnchoringVarDecl();
if (entry.hasInitStringRepresentation() &&
varDecl->isInitExposedToClients()) {
initStr = entry.getInitStringRepresentation(scratch);
}
PatternBindingInitializerLayout::emitRecord(Out, ScratchRecord,
abbrCode, addDeclRef(binding),
bindingIndex, initStr);
}
void
Serializer::writeDefaultArgumentInitializer(const DeclContext *parentContext,
unsigned index) {
using namespace decls_block;
auto abbrCode = DeclTypeAbbrCodes[DefaultArgumentInitializerLayout::Code];
auto parentID = addDeclContextRef(parentContext);
DefaultArgumentInitializerLayout::emitRecord(Out, ScratchRecord, abbrCode,
parentID.getOpaqueValue(),
index);
}
void Serializer::writeAbstractClosureExpr(const DeclContext *parentContext,
Type Ty, bool isImplicit,
unsigned discriminator) {
using namespace decls_block;
auto abbrCode = DeclTypeAbbrCodes[AbstractClosureExprLayout::Code];
auto parentID = addDeclContextRef(parentContext);
AbstractClosureExprLayout::emitRecord(Out, ScratchRecord, abbrCode,
addTypeRef(Ty), isImplicit,
discriminator,
parentID.getOpaqueValue());
}
void Serializer::writeASTBlockEntity(const DeclContext *DC) {
using namespace decls_block;
assert(shouldSerializeAsLocalContext(DC) &&
"should be serialized as a Decl instead");
assert(LocalDeclContextsToSerialize.hasRef(DC));
switch (DC->getContextKind()) {
case DeclContextKind::AbstractClosureExpr: {
auto ACE = cast<AbstractClosureExpr>(DC);
writeAbstractClosureExpr(ACE->getParent(), ACE->getType(),
ACE->isImplicit(), ACE->getDiscriminator());
break;
}
case DeclContextKind::Initializer: {
if (auto PBI = dyn_cast<PatternBindingInitializer>(DC)) {
writePatternBindingInitializer(PBI->getBinding(), PBI->getBindingIndex());
} else if (auto DAI = dyn_cast<DefaultArgumentInitializer>(DC)) {
writeDefaultArgumentInitializer(DAI->getParent(), DAI->getIndex());
}
break;
}
case DeclContextKind::TopLevelCodeDecl: {
auto abbrCode = DeclTypeAbbrCodes[TopLevelCodeDeclContextLayout::Code];
TopLevelCodeDeclContextLayout::emitRecord(Out, ScratchRecord, abbrCode,
addDeclContextRef(DC->getParent()).getOpaqueValue());
break;
}
// If we are merging already serialized modules with local decl contexts,
// we handle them here in a similar fashion.
case DeclContextKind::SerializedLocal: {
auto local = cast<SerializedLocalDeclContext>(DC);
switch (local->getLocalDeclContextKind()) {
case LocalDeclContextKind::AbstractClosure: {
auto SACE = cast<SerializedAbstractClosureExpr>(local);
writeAbstractClosureExpr(SACE->getParent(), SACE->getType(),
SACE->isImplicit(), SACE->getDiscriminator());
return;
}
case LocalDeclContextKind::DefaultArgumentInitializer: {
auto DAI = cast<SerializedDefaultArgumentInitializer>(local);
writeDefaultArgumentInitializer(DAI->getParent(), DAI->getIndex());
return;
}
case LocalDeclContextKind::PatternBindingInitializer: {
auto PBI = cast<SerializedPatternBindingInitializer>(local);
writePatternBindingInitializer(PBI->getBinding(), PBI->getBindingIndex());
return;
}
case LocalDeclContextKind::TopLevelCodeDecl: {
auto abbrCode = DeclTypeAbbrCodes[TopLevelCodeDeclContextLayout::Code];
TopLevelCodeDeclContextLayout::emitRecord(Out, ScratchRecord,
abbrCode, addDeclContextRef(DC->getParent()).getOpaqueValue());
return;
}
}
}
default:
llvm_unreachable("Trying to write a DeclContext that isn't local");
}
}
static ForeignErrorConventionKind getRawStableForeignErrorConventionKind(
ForeignErrorConvention::Kind kind) {
switch (kind) {
case ForeignErrorConvention::ZeroResult:
return ForeignErrorConventionKind::ZeroResult;
case ForeignErrorConvention::NonZeroResult:
return ForeignErrorConventionKind::NonZeroResult;
case ForeignErrorConvention::ZeroPreservedResult:
return ForeignErrorConventionKind::ZeroPreservedResult;
case ForeignErrorConvention::NilResult:
return ForeignErrorConventionKind::NilResult;
case ForeignErrorConvention::NonNilError:
return ForeignErrorConventionKind::NonNilError;
}
llvm_unreachable("Unhandled ForeignErrorConvention in switch.");
}
/// Translate from the AST VarDeclSpecifier enum to the
/// Serialization enum values, which are guaranteed to be stable.
static uint8_t getRawStableParamDeclSpecifier(swift::ParamDecl::Specifier sf) {
switch (sf) {
case swift::ParamDecl::Specifier::Default:
return uint8_t(serialization::ParamDeclSpecifier::Default);
case swift::ParamDecl::Specifier::InOut:
return uint8_t(serialization::ParamDeclSpecifier::InOut);
case swift::ParamDecl::Specifier::Shared:
return uint8_t(serialization::ParamDeclSpecifier::Shared);
case swift::ParamDecl::Specifier::Owned:
return uint8_t(serialization::ParamDeclSpecifier::Owned);
}
llvm_unreachable("bad param decl specifier kind");
}
static uint8_t getRawStableVarDeclIntroducer(swift::VarDecl::Introducer intr) {
switch (intr) {
case swift::VarDecl::Introducer::Let:
return uint8_t(serialization::VarDeclIntroducer::Let);
case swift::VarDecl::Introducer::Var:
return uint8_t(serialization::VarDeclIntroducer::Var);
}
llvm_unreachable("bad variable decl introducer kind");
}
/// Returns true if the declaration of \p decl depends on \p problemContext
/// based on lexical nesting.
///
/// - \p decl is \p problemContext
/// - \p decl is declared within \p problemContext
/// - \p decl is declared in an extension of a type that depends on
/// \p problemContext
static bool contextDependsOn(const NominalTypeDecl *decl,
const DeclContext *problemContext) {
SmallPtrSet<const ExtensionDecl *, 8> seenExtensionDCs;
const DeclContext *dc = decl;
do {
if (dc == problemContext)
return true;
if (auto *extension = dyn_cast<ExtensionDecl>(dc)) {
if (extension->isChildContextOf(problemContext))
return true;
// Avoid cycles when Left.Nested depends on Right.Nested somehow.
bool isNewlySeen = seenExtensionDCs.insert(extension).second;
if (!isNewlySeen)
break;
dc = extension->getSelfNominalTypeDecl();
} else {
dc = dc->getParent();
}
} while (dc);
return false;
}
static void collectDependenciesFromType(llvm::SmallSetVector<Type, 4> &seen,
Type ty,
const DeclContext *excluding) {
ty.visit([&](Type next) {
auto *nominal = next->getAnyNominal();
if (!nominal)
return;
if (contextDependsOn(nominal, excluding))
return;
seen.insert(nominal->getDeclaredInterfaceType());
});
}
static void
collectDependenciesFromRequirement(llvm::SmallSetVector<Type, 4> &seen,
const Requirement &req,
const DeclContext *excluding) {
collectDependenciesFromType(seen, req.getFirstType(), excluding);
if (req.getKind() != RequirementKind::Layout)
collectDependenciesFromType(seen, req.getSecondType(), excluding);
}
static SmallVector<Type, 4> collectDependenciesFromType(Type ty) {
llvm::SmallSetVector<Type, 4> result;
collectDependenciesFromType(result, ty, /*excluding*/nullptr);
return result.takeVector();
}
class Serializer::DeclSerializer : public DeclVisitor<DeclSerializer> {
Serializer &S;
DeclID id;
bool didVerifyAttrs = false;
template <typename DeclKind>
void verifyAttrSerializable(const DeclKind *D) {
::verifyAttrSerializable(D);
didVerifyAttrs = true;
}
void writeDeclAttribute(const DeclAttribute *DA) {
using namespace decls_block;
// Completely ignore attributes that aren't serialized.
if (DA->isNotSerialized())
return;
// Ignore attributes that have been marked invalid. (This usually means
// type-checking removed them, but only provided a warning rather than an
// error.)
if (DA->isInvalid())
return;
switch (DA->getKind()) {
case DAK_RawDocComment:
case DAK_ReferenceOwnership: // Serialized as part of the type.
case DAK_AccessControl:
case DAK_SetterAccess:
case DAK_ObjCBridged:
case DAK_SynthesizedProtocol:
case DAK_Implements:
case DAK_ObjCRuntimeName:
case DAK_RestatedObjCConformance:
case DAK_ClangImporterSynthesizedType:
case DAK_PrivateImport:
llvm_unreachable("cannot serialize attribute");
// SWIFT_ENABLE_TENSORFLOW
case DAK_Differentiating:
llvm_unreachable("cannot serialize attribute");
case DAK_Transposing:
llvm_unreachable("cannot serialize attribute");
case DAK_Count:
llvm_unreachable("not a real attribute");
#define SIMPLE_DECL_ATTR(_, CLASS, ...)\
case DAK_##CLASS: { \
auto abbrCode = S.DeclTypeAbbrCodes[CLASS##DeclAttrLayout::Code]; \
CLASS##DeclAttrLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode, \
DA->isImplicit()); \
return; \
}
#include "swift/AST/Attr.def"
case DAK_SILGenName: {
auto *theAttr = cast<SILGenNameAttr>(DA);
auto abbrCode = S.DeclTypeAbbrCodes[SILGenNameDeclAttrLayout::Code];
SILGenNameDeclAttrLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
theAttr->isImplicit(),
theAttr->Name);
return;
}
case DAK_CDecl: {
auto *theAttr = cast<CDeclAttr>(DA);
auto abbrCode = S.DeclTypeAbbrCodes[CDeclDeclAttrLayout::Code];
CDeclDeclAttrLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
theAttr->isImplicit(),
theAttr->Name);
return;
}
case DAK_Alignment: {
auto *theAlignment = cast<AlignmentAttr>(DA);
auto abbrCode = S.DeclTypeAbbrCodes[AlignmentDeclAttrLayout::Code];
AlignmentDeclAttrLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
theAlignment->isImplicit(),
theAlignment->getValue());
return;
}
case DAK_SwiftNativeObjCRuntimeBase: {
auto *theBase = cast<SwiftNativeObjCRuntimeBaseAttr>(DA);
auto abbrCode
= S.DeclTypeAbbrCodes[SwiftNativeObjCRuntimeBaseDeclAttrLayout::Code];
auto nameID = S.addDeclBaseNameRef(theBase->BaseClassName);
SwiftNativeObjCRuntimeBaseDeclAttrLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
theBase->isImplicit(), nameID);
return;
}
case DAK_Semantics: {
auto *theAttr = cast<SemanticsAttr>(DA);
auto abbrCode = S.DeclTypeAbbrCodes[SemanticsDeclAttrLayout::Code];
SemanticsDeclAttrLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
theAttr->isImplicit(),
theAttr->Value);
return;
}
case DAK_Inline: {
auto *theAttr = cast<InlineAttr>(DA);
auto abbrCode = S.DeclTypeAbbrCodes[InlineDeclAttrLayout::Code];
InlineDeclAttrLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
(unsigned)theAttr->getKind());
return;
}
case DAK_Optimize: {
auto *theAttr = cast<OptimizeAttr>(DA);
auto abbrCode = S.DeclTypeAbbrCodes[OptimizeDeclAttrLayout::Code];
OptimizeDeclAttrLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
(unsigned)theAttr->getMode());
return;
}
case DAK_Effects: {
auto *theAttr = cast<EffectsAttr>(DA);
auto abbrCode = S.DeclTypeAbbrCodes[EffectsDeclAttrLayout::Code];
EffectsDeclAttrLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
(unsigned)theAttr->getKind());
return;
}
case DAK_Available: {
auto *theAttr = cast<AvailableAttr>(DA);
ENCODE_VER_TUPLE(Introduced, theAttr->Introduced)
ENCODE_VER_TUPLE(Deprecated, theAttr->Deprecated)
ENCODE_VER_TUPLE(Obsoleted, theAttr->Obsoleted)
llvm::SmallString<32> blob;
blob.append(theAttr->Message);
blob.append(theAttr->Rename);
auto abbrCode = S.DeclTypeAbbrCodes[AvailableDeclAttrLayout::Code];
AvailableDeclAttrLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
theAttr->isImplicit(),
theAttr->isUnconditionallyUnavailable(),
theAttr->isUnconditionallyDeprecated(),
theAttr->isPackageDescriptionVersionSpecific(),
LIST_VER_TUPLE_PIECES(Introduced),
LIST_VER_TUPLE_PIECES(Deprecated),
LIST_VER_TUPLE_PIECES(Obsoleted),
static_cast<unsigned>(theAttr->Platform),
theAttr->Message.size(),
theAttr->Rename.size(),
blob);
return;
}
case DAK_ObjC: {
auto *theAttr = cast<ObjCAttr>(DA);
SmallVector<IdentifierID, 4> pieces;
unsigned numArgs = 0;
if (auto name = theAttr->getName()) {
numArgs = name->getNumArgs() + 1;
for (auto piece : name->getSelectorPieces()) {
pieces.push_back(S.addDeclBaseNameRef(piece));
}
}
auto abbrCode = S.DeclTypeAbbrCodes[ObjCDeclAttrLayout::Code];
ObjCDeclAttrLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
theAttr->isImplicit(),
theAttr->isSwift3Inferred(),
theAttr->isNameImplicit(), numArgs, pieces);
return;
}
case DAK_Specialize: {
auto abbrCode = S.DeclTypeAbbrCodes[SpecializeDeclAttrLayout::Code];
auto SA = cast<SpecializeAttr>(DA);
SpecializeDeclAttrLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
(unsigned)SA->isExported(),
(unsigned)SA->getSpecializationKind(),
S.addGenericSignatureRef(SA->getSpecializedSgnature()));
return;
}
case DAK_DynamicReplacement: {
auto abbrCode =
S.DeclTypeAbbrCodes[DynamicReplacementDeclAttrLayout::Code];
auto theAttr = cast<DynamicReplacementAttr>(DA);
auto replacedFun = theAttr->getReplacedFunctionName();
SmallVector<IdentifierID, 4> pieces;
pieces.push_back(S.addDeclBaseNameRef(replacedFun.getBaseName()));
for (auto argName : replacedFun.getArgumentNames())
pieces.push_back(S.addDeclBaseNameRef(argName));
assert(theAttr->getReplacedFunction());
DynamicReplacementDeclAttrLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode, false, /*implicit flag*/
S.addDeclRef(theAttr->getReplacedFunction()), pieces.size(), pieces);
return;
}
case DAK_Custom: {
auto abbrCode = S.DeclTypeAbbrCodes[CustomDeclAttrLayout::Code];
auto theAttr = cast<CustomAttr>(DA);
CustomDeclAttrLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode, theAttr->isImplicit(),
S.addTypeRef(theAttr->getTypeLoc().getType()));
return;
}
case DAK_ProjectedValueProperty: {
auto abbrCode =
S.DeclTypeAbbrCodes[ProjectedValuePropertyDeclAttrLayout::Code];
auto theAttr = cast<ProjectedValuePropertyAttr>(DA);
ProjectedValuePropertyDeclAttrLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode, theAttr->isImplicit(),
S.addDeclBaseNameRef(theAttr->ProjectionPropertyName));
break;
}
// SWIFT_ENABLE_TENSORFLOW
case DAK_Differentiable: {
auto abbrCode = S.DeclTypeAbbrCodes[DifferentiableDeclAttrLayout::Code];
auto *attr = cast<DifferentiableAttr>(DA);
IdentifierID jvpName = 0;
DeclID jvpRef = 0;
if (auto jvp = attr->getJVP())
jvpName = S.addDeclBaseNameRef(jvp->Name.getBaseName());
if (auto jvpFunction = attr->getJVPFunction())
jvpRef = S.addDeclRef(jvpFunction);
IdentifierID vjpName = 0;
DeclID vjpRef = 0;
if (auto vjp = attr->getVJP())
vjpName = S.addDeclBaseNameRef(vjp->Name.getBaseName());
if (auto vjpFunction = attr->getVJPFunction())
vjpRef = S.addDeclRef(vjpFunction);
auto paramIndices = attr->getParameterIndices();
assert(paramIndices && "Checked parameter indices must be resolved");
SmallVector<bool, 4> indices;
for (unsigned i : range(paramIndices->getCapacity()))
indices.push_back(paramIndices->contains(i));
DifferentiableDeclAttrLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode, attr->isImplicit(),
attr->isLinear(), jvpName, jvpRef, vjpName, vjpRef,
S.addGenericSignatureRef(attr->getDerivativeGenericSignature()),
indices);
return;
}
case DAK_Quoted: {
auto abbrCode = S.DeclTypeAbbrCodes[QuotedDeclAttrLayout::Code];
auto attr = cast<QuotedAttr>(DA);
assert(attr->getQuoteDecl());
QuotedDeclAttrLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
attr->isImplicit(),
S.addDeclRef(attr->getQuoteDecl()));
return;
}
}
}
void writeDiscriminatorsIfNeeded(const ValueDecl *value) {
using namespace decls_block;
auto *storage = dyn_cast<AbstractStorageDecl>(value);
auto access = value->getFormalAccess();
// Emit the private descriminator for private decls.
// FIXME: We shouldn't need to encode this for /all/ private decls.
// In theory we can follow the same rules as mangling and only include
// the outermost private context.
bool shouldEmitPrivateDescriminator =
access <= swift::AccessLevel::FilePrivate &&
!value->getDeclContext()->isLocalContext();
// Emit the the filename for private mapping for private decls and
// decls with private accessors if compiled with -enable-private-imports.
bool shouldEmitFilenameForPrivate =
S.M->arePrivateImportsEnabled() &&
!value->getDeclContext()->isLocalContext() &&
(access <= swift::AccessLevel::FilePrivate ||
(storage &&
storage->getFormalAccess() >= swift::AccessLevel::Internal &&
storage->hasPrivateAccessor()));
if (shouldEmitFilenameForPrivate || shouldEmitPrivateDescriminator) {
auto topLevelContext = value->getDeclContext()->getModuleScopeContext();
if (auto *enclosingFile = dyn_cast<FileUnit>(topLevelContext)) {
if (shouldEmitPrivateDescriminator) {
Identifier discriminator =
enclosingFile->getDiscriminatorForPrivateValue(value);
unsigned abbrCode =
S.DeclTypeAbbrCodes[PrivateDiscriminatorLayout::Code];
PrivateDiscriminatorLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
S.addDeclBaseNameRef(discriminator));
}
auto getFilename = [](FileUnit *enclosingFile,
const ValueDecl *decl) -> StringRef {
if (auto *SF = dyn_cast<SourceFile>(enclosingFile)) {
return llvm::sys::path::filename(SF->getFilename());
} else if (auto *LF = dyn_cast<LoadedFile>(enclosingFile)) {
return LF->getFilenameForPrivateDecl(decl);
}
return StringRef();
};
if (shouldEmitFilenameForPrivate) {
auto filename = getFilename(enclosingFile, value);
if (!filename.empty()) {
auto filenameID = S.addFilename(filename);
FilenameForPrivateLayout::emitRecord(
S.Out, S.ScratchRecord,
S.DeclTypeAbbrCodes[FilenameForPrivateLayout::Code],
filenameID);
}
}
}
}
if (value->getDeclContext()->isLocalContext()) {
auto discriminator = value->getLocalDiscriminator();
auto abbrCode = S.DeclTypeAbbrCodes[LocalDiscriminatorLayout::Code];
LocalDiscriminatorLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
discriminator);
}
}
void writeForeignErrorConvention(const ForeignErrorConvention &fec) {
using namespace decls_block;
auto kind = getRawStableForeignErrorConventionKind(fec.getKind());
uint8_t isOwned = fec.isErrorOwned() == ForeignErrorConvention::IsOwned;
uint8_t isReplaced = bool(fec.isErrorParameterReplacedWithVoid());
TypeID errorParameterTypeID = S.addTypeRef(fec.getErrorParameterType());
TypeID resultTypeID;
switch (fec.getKind()) {
case ForeignErrorConvention::ZeroResult:
case ForeignErrorConvention::NonZeroResult:
resultTypeID = S.addTypeRef(fec.getResultType());
break;
case ForeignErrorConvention::ZeroPreservedResult:
case ForeignErrorConvention::NilResult:
case ForeignErrorConvention::NonNilError:
resultTypeID = 0;
break;
}
auto abbrCode = S.DeclTypeAbbrCodes[ForeignErrorConventionLayout::Code];
ForeignErrorConventionLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
static_cast<uint8_t>(kind),
isOwned,
isReplaced,
fec.getErrorParameterIndex(),
errorParameterTypeID,
resultTypeID);
}
void writeGenericParams(const GenericParamList *genericParams) {
using namespace decls_block;
// Don't write anything if there are no generic params.
if (!genericParams)
return;
SmallVector<DeclID, 4> paramIDs;
for (auto next : genericParams->getParams())
paramIDs.push_back(S.addDeclRef(next));
unsigned abbrCode = S.DeclTypeAbbrCodes[GenericParamListLayout::Code];
GenericParamListLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
paramIDs);
}
void writeParameterList(const ParameterList *PL) {
using namespace decls_block;
SmallVector<DeclID, 8> paramIDs;
for (const ParamDecl *param : *PL)
paramIDs.push_back(S.addDeclRef(param));
unsigned abbrCode = S.DeclTypeAbbrCodes[ParameterListLayout::Code];
ParameterListLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode, paramIDs);
}
/// Writes an array of members for a decl context.
///
/// \param parentID The DeclID of the context.
/// \param members The decls within the context.
/// \param isClass True if the context could be a class context (class,
/// class extension, or protocol).
void writeMembers(DeclID parentID, DeclRange members, bool isClass) {
using namespace decls_block;
SmallVector<DeclID, 16> memberIDs;
for (auto member : members) {
if (!shouldSerializeMember(member))
continue;
DeclID memberID = S.addDeclRef(member);
memberIDs.push_back(memberID);
if (auto VD = dyn_cast<ValueDecl>(member)) {
// Record parent->members in subtable of DeclMemberNames
if (VD->hasName() &&
!VD->getBaseName().empty()) {
std::unique_ptr<DeclMembersTable> &memberTable =
S.DeclMemberNames[VD->getBaseName()].second;
if (!memberTable) {
memberTable = llvm::make_unique<DeclMembersTable>();
}
(*memberTable)[parentID].push_back(memberID);
}
// Same as above, but for @_implements attributes
if (auto A = VD->getAttrs().getAttribute<ImplementsAttr>()) {
std::unique_ptr<DeclMembersTable> &memberTable =
S.DeclMemberNames[A->getMemberName().getBaseName()].second;
if (!memberTable) {
memberTable = llvm::make_unique<DeclMembersTable>();
}
(*memberTable)[parentID].push_back(memberID);
}
// Possibly add a record to ClassMembersForDynamicLookup too.
if (isClass) {
if (VD->canBeAccessedByDynamicLookup()) {
auto &list = S.ClassMembersForDynamicLookup[VD->getBaseName()];
list.push_back({getKindForTable(VD), memberID});
}
}
}
}
unsigned abbrCode = S.DeclTypeAbbrCodes[MembersLayout::Code];
MembersLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode, memberIDs);
}
/// Writes the given pattern, recursively.
void writePattern(const Pattern *pattern) {
using namespace decls_block;
// Retrieve the type of the pattern.
auto getPatternType = [&] {
Type type = pattern->getType();
// If we have a contextual type, map out to an interface type.
if (type->hasArchetype())
type = type->mapTypeOutOfContext();
return type;
};
assert(pattern && "null pattern");
switch (pattern->getKind()) {
case PatternKind::Paren: {
unsigned abbrCode = S.DeclTypeAbbrCodes[ParenPatternLayout::Code];
ParenPatternLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
pattern->isImplicit());
writePattern(cast<ParenPattern>(pattern)->getSubPattern());
break;
}
case PatternKind::Tuple: {
auto tuple = cast<TuplePattern>(pattern);
unsigned abbrCode = S.DeclTypeAbbrCodes[TuplePatternLayout::Code];
TuplePatternLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addTypeRef(getPatternType()),
tuple->getNumElements(),
tuple->isImplicit());
abbrCode = S.DeclTypeAbbrCodes[TuplePatternEltLayout::Code];
for (auto &elt : tuple->getElements()) {
// FIXME: Default argument expressions?
TuplePatternEltLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addDeclBaseNameRef(elt.getLabel()));
writePattern(elt.getPattern());
}
break;
}
case PatternKind::Named: {
auto named = cast<NamedPattern>(pattern);
unsigned abbrCode = S.DeclTypeAbbrCodes[NamedPatternLayout::Code];
NamedPatternLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addDeclRef(named->getDecl()),
S.addTypeRef(getPatternType()),
named->isImplicit());
break;
}
case PatternKind::Any: {
unsigned abbrCode = S.DeclTypeAbbrCodes[AnyPatternLayout::Code];
AnyPatternLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addTypeRef(getPatternType()),
pattern->isImplicit());
break;
}
case PatternKind::Typed: {
auto typed = cast<TypedPattern>(pattern);
unsigned abbrCode = S.DeclTypeAbbrCodes[TypedPatternLayout::Code];
TypedPatternLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addTypeRef(getPatternType()),
typed->isImplicit());
writePattern(typed->getSubPattern());
break;
}
case PatternKind::Is:
case PatternKind::EnumElement:
case PatternKind::OptionalSome:
case PatternKind::Bool:
case PatternKind::Expr:
llvm_unreachable("Refutable patterns cannot be serialized");
case PatternKind::Var: {
auto var = cast<VarPattern>(pattern);
unsigned abbrCode = S.DeclTypeAbbrCodes[VarPatternLayout::Code];
VarPatternLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
var->isLet(), var->isImplicit());
writePattern(var->getSubPattern());
break;
}
}
}
void writeDefaultWitnessTable(const ProtocolDecl *proto) {
using namespace decls_block;
SmallVector<DeclID, 16> witnessIDs;
for (auto member : proto->getMembers()) {
if (auto *value = dyn_cast<ValueDecl>(member)) {
auto witness = proto->getDefaultWitness(value);
if (!witness)
continue;
DeclID requirementID = S.addDeclRef(value);
DeclID witnessID = S.addDeclRef(witness.getDecl());
witnessIDs.push_back(requirementID);
witnessIDs.push_back(witnessID);
// FIXME: Substitutions
}
}
unsigned abbrCode = S.DeclTypeAbbrCodes[DefaultWitnessTableLayout::Code];
DefaultWitnessTableLayout::emitRecord(S.Out, S.ScratchRecord,
abbrCode, witnessIDs);
}
/// Writes the body text of the provided funciton, if the function is
/// inlinable and has body text.
void writeInlinableBodyTextIfNeeded(const AbstractFunctionDecl *AFD) {
using namespace decls_block;
// Only serialize the text for an inlinable function body if we're emitting
// a partial module. It's not needed in the final module file, but it's
// needed in partial modules so you can emit a module interface after
// merging them.
if (!S.SF) return;
if (AFD->getResilienceExpansion() != swift::ResilienceExpansion::Minimal)
return;
if (!AFD->hasInlinableBodyText()) return;
SmallString<128> scratch;
auto body = AFD->getInlinableBodyText(scratch);
unsigned abbrCode = S.DeclTypeAbbrCodes[InlinableBodyTextLayout::Code];
InlinableBodyTextLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode, body);
}
unsigned getNumberOfRequiredVTableEntries(
const AbstractStorageDecl *storage) const {
unsigned count = 0;
for (auto *accessor : storage->getAllAccessors()) {
if (accessor->needsNewVTableEntry())
count++;
}
return count;
}
public:
DeclSerializer(Serializer &S, DeclID id) : S(S), id(id) {}
~DeclSerializer() {
assert(didVerifyAttrs);
}
void visit(const Decl *D) {
// Emit attributes (if any).
for (auto Attr : D->getAttrs())
writeDeclAttribute(Attr);
if (auto *value = dyn_cast<ValueDecl>(D))
writeDiscriminatorsIfNeeded(value);
DeclVisitor<DeclSerializer>::visit(const_cast<Decl *>(D));
}
/// If this gets referenced, we forgot to handle a decl.
void visitDecl(const Decl *) = delete;
void visitExtensionDecl(const ExtensionDecl *extension) {
using namespace decls_block;
verifyAttrSerializable(extension);
auto contextID = S.addDeclContextRef(extension->getDeclContext());
Type extendedType = extension->getExtendedType();
assert(!extendedType->hasArchetype());
// FIXME: Use the canonical type here in order to minimize circularity
// issues at deserialization time. A known problematic case here is
// "extension of typealias Foo"; "typealias Foo = SomeKit.Bar"; and then
// trying to import Bar accidentally asking for all of its extensions
// (perhaps because we're searching for a conformance).
//
// We could limit this to only the problematic cases, but it seems like a
// simpler user model to just always desugar extension types.
extendedType = extendedType->getCanonicalType();
auto conformances = extension->getLocalConformances(
ConformanceLookupKind::All, nullptr);
SmallVector<TypeID, 8> inheritedAndDependencyTypes;
for (auto inherited : extension->getInherited()) {
assert(!inherited.getType()->hasArchetype());
inheritedAndDependencyTypes.push_back(S.addTypeRef(inherited.getType()));
}
size_t numInherited = inheritedAndDependencyTypes.size();
llvm::SmallSetVector<Type, 4> dependencies;
collectDependenciesFromType(
dependencies, extendedType, /*excluding*/nullptr);
for (Requirement req : extension->getGenericRequirements()) {
collectDependenciesFromRequirement(dependencies, req,
/*excluding*/nullptr);
}
for (auto dependencyTy : dependencies)
inheritedAndDependencyTypes.push_back(S.addTypeRef(dependencyTy));
unsigned abbrCode = S.DeclTypeAbbrCodes[ExtensionLayout::Code];
auto extendedNominal = extension->getExtendedNominal();
ExtensionLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addTypeRef(extendedType),
S.addDeclRef(extendedNominal),
contextID.getOpaqueValue(),
extension->isImplicit(),
S.addGenericSignatureRef(
extension->getGenericSignature()),
conformances.size(),
numInherited,
inheritedAndDependencyTypes);
bool isClassExtension = false;
if (extendedNominal) {
isClassExtension = isa<ClassDecl>(extendedNominal) ||
isa<ProtocolDecl>(extendedNominal);
}
// Extensions of nested generic types have multiple generic parameter
// lists. Collect them all, from the innermost to outermost.
SmallVector<GenericParamList *, 2> allGenericParams;
for (auto *genericParams = extension->getGenericParams();
genericParams != nullptr;
genericParams = genericParams->getOuterParameters()) {
allGenericParams.push_back(genericParams);
}
// Reverse the list, and write the parameter lists, from outermost
// to innermost.
for (auto *genericParams : llvm::reverse(allGenericParams))
writeGenericParams(genericParams);
writeMembers(id, extension->getMembers(), isClassExtension);
S.writeConformances(conformances, S.DeclTypeAbbrCodes);
}
void visitPatternBindingDecl(const PatternBindingDecl *binding) {
using namespace decls_block;
verifyAttrSerializable(binding);
auto contextID = S.addDeclContextRef(binding->getDeclContext());
SmallVector<uint64_t, 2> initContextIDs;
for (unsigned i : range(binding->getNumPatternEntries())) {
auto initContextID =
S.addDeclContextRef(binding->getPatternList()[i].getInitContext());
if (!initContextIDs.empty()) {
initContextIDs.push_back(initContextID.getOpaqueValue());
} else if (initContextID) {
initContextIDs.append(i, 0);
initContextIDs.push_back(initContextID.getOpaqueValue());
}
}
unsigned abbrCode = S.DeclTypeAbbrCodes[PatternBindingLayout::Code];
PatternBindingLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode, contextID.getOpaqueValue(),
binding->isImplicit(), binding->isStatic(),
uint8_t(getStableStaticSpelling(binding->getStaticSpelling())),
binding->getNumPatternEntries(),
initContextIDs);
DeclContext *owningDC = nullptr;
if (binding->getDeclContext()->isTypeContext())
owningDC = binding->getDeclContext();
for (auto entry : binding->getPatternList()) {
writePattern(entry.getPattern());
// Ignore initializer; external clients don't need to know about it.
}
}
void visitPrecedenceGroupDecl(const PrecedenceGroupDecl *group) {
using namespace decls_block;
verifyAttrSerializable(group);
auto contextID = S.addDeclContextRef(group->getDeclContext());
auto nameID = S.addDeclBaseNameRef(group->getName());
auto associativity = getRawStableAssociativity(group->getAssociativity());
SmallVector<DeclID, 8> relations;
for (auto &rel : group->getHigherThan())
relations.push_back(S.addDeclRef(rel.Group));
for (auto &rel : group->getLowerThan())
relations.push_back(S.addDeclRef(rel.Group));
unsigned abbrCode = S.DeclTypeAbbrCodes[PrecedenceGroupLayout::Code];
PrecedenceGroupLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
nameID, contextID.getOpaqueValue(),
associativity, group->isAssignment(),
group->getHigherThan().size(),
relations);
}
void visitInfixOperatorDecl(const InfixOperatorDecl *op) {
using namespace decls_block;
verifyAttrSerializable(op);
auto contextID = S.addDeclContextRef(op->getDeclContext());
auto nameID = S.addDeclBaseNameRef(op->getName());
auto groupID = S.addDeclRef(op->getPrecedenceGroup());
SmallVector<DeclID, 1> designatedNominalTypeDeclIDs;
for (auto *decl : op->getDesignatedNominalTypes())
designatedNominalTypeDeclIDs.push_back(S.addDeclRef(decl));
unsigned abbrCode = S.DeclTypeAbbrCodes[InfixOperatorLayout::Code];
InfixOperatorLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode, nameID,
contextID.getOpaqueValue(), groupID,
designatedNominalTypeDeclIDs);
}
template <typename Layout>
void visitUnaryOperatorDecl(const OperatorDecl *op) {
auto contextID = S.addDeclContextRef(op->getDeclContext());
SmallVector<DeclID, 1> designatedNominalTypeDeclIDs;
for (auto *decl : op->getDesignatedNominalTypes())
designatedNominalTypeDeclIDs.push_back(S.addDeclRef(decl));
unsigned abbrCode = S.DeclTypeAbbrCodes[Layout::Code];
Layout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addDeclBaseNameRef(op->getName()),
contextID.getOpaqueValue(),
designatedNominalTypeDeclIDs);
}
void visitPrefixOperatorDecl(const PrefixOperatorDecl *op) {
using namespace decls_block;
verifyAttrSerializable(op);
visitUnaryOperatorDecl<PrefixOperatorLayout>(op);
}
void visitPostfixOperatorDecl(const PostfixOperatorDecl *op) {
using namespace decls_block;
verifyAttrSerializable(op);
visitUnaryOperatorDecl<PostfixOperatorLayout>(op);
}
void visitTypeAliasDecl(const TypeAliasDecl *typeAlias) {
using namespace decls_block;
assert(!typeAlias->isObjC() && "ObjC typealias is not meaningful");
verifyAttrSerializable(typeAlias);
auto contextID = S.addDeclContextRef(typeAlias->getDeclContext());
auto underlying = typeAlias->getUnderlyingType();
llvm::SmallSetVector<Type, 4> dependencies;
collectDependenciesFromType(dependencies, underlying->getCanonicalType(),
/*excluding*/nullptr);
for (Requirement req : typeAlias->getGenericRequirements()) {
collectDependenciesFromRequirement(dependencies, req,
/*excluding*/nullptr);
}
SmallVector<TypeID, 4> dependencyIDs;
for (Type dep : dependencies)
dependencyIDs.push_back(S.addTypeRef(dep));
uint8_t rawAccessLevel =
getRawStableAccessLevel(typeAlias->getFormalAccess());
unsigned abbrCode = S.DeclTypeAbbrCodes[TypeAliasLayout::Code];
TypeAliasLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addDeclBaseNameRef(typeAlias->getName()),
contextID.getOpaqueValue(),
S.addTypeRef(underlying),
/*no longer used*/TypeID(),
typeAlias->isImplicit(),
S.addGenericSignatureRef(
typeAlias->getGenericSignature()),
rawAccessLevel,
dependencyIDs);
writeGenericParams(typeAlias->getGenericParams());
}
void visitGenericTypeParamDecl(const GenericTypeParamDecl *genericParam) {
using namespace decls_block;
verifyAttrSerializable(genericParam);
unsigned abbrCode = S.DeclTypeAbbrCodes[GenericTypeParamDeclLayout::Code];
GenericTypeParamDeclLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addDeclBaseNameRef(genericParam->getName()),
genericParam->isImplicit(),
genericParam->getDepth(),
genericParam->getIndex());
}
void visitAssociatedTypeDecl(const AssociatedTypeDecl *assocType) {
using namespace decls_block;
verifyAttrSerializable(assocType);
auto contextID = S.addDeclContextRef(assocType->getDeclContext());
SmallVector<DeclID, 4> overriddenAssocTypeIDs;
for (auto overridden : assocType->getOverriddenDecls()) {
overriddenAssocTypeIDs.push_back(S.addDeclRef(overridden));
}
unsigned abbrCode = S.DeclTypeAbbrCodes[AssociatedTypeDeclLayout::Code];
AssociatedTypeDeclLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
S.addDeclBaseNameRef(assocType->getName()),
contextID.getOpaqueValue(),
S.addTypeRef(assocType->getDefaultDefinitionType()),
assocType->isImplicit(),
overriddenAssocTypeIDs);
}
void visitStructDecl(const StructDecl *theStruct) {
using namespace decls_block;
verifyAttrSerializable(theStruct);
auto contextID = S.addDeclContextRef(theStruct->getDeclContext());
auto conformances = theStruct->getLocalConformances(
ConformanceLookupKind::All, nullptr);
SmallVector<TypeID, 4> inheritedAndDependencyTypes;
for (auto inherited : theStruct->getInherited()) {
assert(!inherited.getType()->hasArchetype());
inheritedAndDependencyTypes.push_back(S.addTypeRef(inherited.getType()));
}
llvm::SmallSetVector<Type, 4> dependencyTypes;
for (Requirement req : theStruct->getGenericRequirements()) {
collectDependenciesFromRequirement(dependencyTypes, req,
/*excluding*/nullptr);
}
for (Type ty : dependencyTypes)
inheritedAndDependencyTypes.push_back(S.addTypeRef(ty));
uint8_t rawAccessLevel =
getRawStableAccessLevel(theStruct->getFormalAccess());
unsigned abbrCode = S.DeclTypeAbbrCodes[StructLayout::Code];
StructLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addDeclBaseNameRef(theStruct->getName()),
contextID.getOpaqueValue(),
theStruct->isImplicit(),
theStruct->isObjC(),
S.addGenericSignatureRef(
theStruct->getGenericSignature()),
rawAccessLevel,
conformances.size(),
theStruct->getInherited().size(),
inheritedAndDependencyTypes);
writeGenericParams(theStruct->getGenericParams());
writeMembers(id, theStruct->getMembers(), false);
S.writeConformances(conformances, S.DeclTypeAbbrCodes);
}
void visitEnumDecl(const EnumDecl *theEnum) {
using namespace decls_block;
verifyAttrSerializable(theEnum);
auto contextID = S.addDeclContextRef(theEnum->getDeclContext());
auto conformances = theEnum->getLocalConformances(
ConformanceLookupKind::All, nullptr);
SmallVector<TypeID, 4> inheritedAndDependencyTypes;
for (auto inherited : theEnum->getInherited()) {
assert(!inherited.getType()->hasArchetype());
inheritedAndDependencyTypes.push_back(S.addTypeRef(inherited.getType()));
}
llvm::SmallSetVector<Type, 4> dependencyTypes;
for (const EnumElementDecl *nextElt : theEnum->getAllElements()) {
if (!nextElt->hasAssociatedValues())
continue;
// FIXME: Types in the same module are still important for enums. It's
// possible an enum element has a payload that references a type
// declaration from the same module that can't be imported (for whatever
// reason). However, we need a more robust handling of deserialization
// dependencies that can handle circularities. rdar://problem/32359173
collectDependenciesFromType(dependencyTypes,
nextElt->getArgumentInterfaceType(),
/*excluding*/theEnum->getParentModule());
}
for (Requirement req : theEnum->getGenericRequirements()) {
collectDependenciesFromRequirement(dependencyTypes, req,
/*excluding*/nullptr);
}
for (Type ty : dependencyTypes)
inheritedAndDependencyTypes.push_back(S.addTypeRef(ty));
uint8_t rawAccessLevel =
getRawStableAccessLevel(theEnum->getFormalAccess());
unsigned abbrCode = S.DeclTypeAbbrCodes[EnumLayout::Code];
EnumLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addDeclBaseNameRef(theEnum->getName()),
contextID.getOpaqueValue(),
theEnum->isImplicit(),
theEnum->isObjC(),
S.addGenericSignatureRef(
theEnum->getGenericSignature()),
S.addTypeRef(theEnum->getRawType()),
rawAccessLevel,
conformances.size(),
theEnum->getInherited().size(),
inheritedAndDependencyTypes);
writeGenericParams(theEnum->getGenericParams());
writeMembers(id, theEnum->getMembers(), false);
S.writeConformances(conformances, S.DeclTypeAbbrCodes);
}
void visitClassDecl(const ClassDecl *theClass) {
using namespace decls_block;
verifyAttrSerializable(theClass);
assert(!theClass->isForeign());
auto contextID = S.addDeclContextRef(theClass->getDeclContext());
auto conformances = theClass->getLocalConformances(
ConformanceLookupKind::NonInherited, nullptr);
SmallVector<TypeID, 4> inheritedAndDependencyTypes;
for (auto inherited : theClass->getInherited()) {
assert(!inherited.getType()->hasArchetype());
inheritedAndDependencyTypes.push_back(S.addTypeRef(inherited.getType()));
}
llvm::SmallSetVector<Type, 4> dependencyTypes;
if (theClass->hasSuperclass()) {
// FIXME: Nested types can still be a problem here: it's possible that (for
// whatever reason) they won't be able to be deserialized, in which case
// we'll be in trouble forming the actual superclass type. However, we
// need a more robust handling of deserialization dependencies that can
// handle circularities. rdar://problem/50835214
collectDependenciesFromType(dependencyTypes, theClass->getSuperclass(),
/*excluding*/theClass);
}
for (Requirement req : theClass->getGenericRequirements()) {
collectDependenciesFromRequirement(dependencyTypes, req,
/*excluding*/nullptr);
}
for (Type ty : dependencyTypes)
inheritedAndDependencyTypes.push_back(S.addTypeRef(ty));
uint8_t rawAccessLevel =
getRawStableAccessLevel(theClass->getFormalAccess());
bool inheritsSuperclassInitializers =
const_cast<ClassDecl *>(theClass)->
inheritsSuperclassInitializers();
unsigned abbrCode = S.DeclTypeAbbrCodes[ClassLayout::Code];
ClassLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addDeclBaseNameRef(theClass->getName()),
contextID.getOpaqueValue(),
theClass->isImplicit(),
theClass->isObjC(),
inheritsSuperclassInitializers,
S.addGenericSignatureRef(
theClass->getGenericSignature()),
S.addTypeRef(theClass->getSuperclass()),
rawAccessLevel,
conformances.size(),
theClass->getInherited().size(),
inheritedAndDependencyTypes);
writeGenericParams(theClass->getGenericParams());
writeMembers(id, theClass->getMembers(), true);
S.writeConformances(conformances, S.DeclTypeAbbrCodes);
}
void visitProtocolDecl(const ProtocolDecl *proto) {
using namespace decls_block;
verifyAttrSerializable(proto);
auto contextID = S.addDeclContextRef(proto->getDeclContext());
SmallVector<TypeID, 4> inheritedAndDependencyTypes;
llvm::SmallSetVector<Type, 4> dependencyTypes;
for (auto element : proto->getInherited()) {
assert(!element.getType()->hasArchetype());
inheritedAndDependencyTypes.push_back(S.addTypeRef(element.getType()));
if (element.getType()->is<ProtocolType>())
dependencyTypes.insert(element.getType());
}
for (Requirement req : proto->getRequirementSignature()) {
// Requirements can be cyclic, so for now filter out any requirements
// from elsewhere in the module. This isn't perfect---something else in
// the module could very well fail to compile for its own reasons---but
// it's better than nothing.
collectDependenciesFromRequirement(dependencyTypes, req,
/*excluding*/S.M);
}
for (Type ty : dependencyTypes)
inheritedAndDependencyTypes.push_back(S.addTypeRef(ty));
uint8_t rawAccessLevel = getRawStableAccessLevel(proto->getFormalAccess());
unsigned abbrCode = S.DeclTypeAbbrCodes[ProtocolLayout::Code];
ProtocolLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addDeclBaseNameRef(proto->getName()),
contextID.getOpaqueValue(),
proto->isImplicit(),
const_cast<ProtocolDecl *>(proto)
->requiresClass(),
proto->isObjC(),
proto->existentialTypeSupported(),
rawAccessLevel, proto->getInherited().size(),
inheritedAndDependencyTypes);
writeGenericParams(proto->getGenericParams());
S.writeGenericRequirements(
proto->getRequirementSignature(), S.DeclTypeAbbrCodes);
writeMembers(id, proto->getMembers(), true);
writeDefaultWitnessTable(proto);
}
void visitVarDecl(const VarDecl *var) {
using namespace decls_block;
verifyAttrSerializable(var);
auto contextID = S.addDeclContextRef(var->getDeclContext());
Accessors accessors = getAccessors(var);
uint8_t rawAccessLevel = getRawStableAccessLevel(var->getFormalAccess());
uint8_t rawSetterAccessLevel = rawAccessLevel;
if (var->isSettable(nullptr))
rawSetterAccessLevel =
getRawStableAccessLevel(var->getSetterFormalAccess());
unsigned numBackingProperties = 0;
Type ty = var->getInterfaceType();
SmallVector<TypeID, 2> arrayFields;
for (auto accessor : accessors.Decls)
arrayFields.push_back(S.addDeclRef(accessor));
if (auto backingInfo = var->getPropertyWrapperBackingPropertyInfo()) {
if (backingInfo.backingVar) {
++numBackingProperties;
arrayFields.push_back(S.addDeclRef(backingInfo.backingVar));
}
if (backingInfo.storageWrapperVar) {
++numBackingProperties;
arrayFields.push_back(S.addDeclRef(backingInfo.storageWrapperVar));
}
}
for (Type dependency : collectDependenciesFromType(ty->getCanonicalType()))
arrayFields.push_back(S.addTypeRef(dependency));
VarDecl *lazyStorage = nullptr;
if (var->getAttrs().hasAttribute<LazyAttr>())
lazyStorage = var->getLazyStorageProperty();
auto rawIntroducer = getRawStableVarDeclIntroducer(var->getIntroducer());
unsigned numVTableEntries = getNumberOfRequiredVTableEntries(var);
unsigned abbrCode = S.DeclTypeAbbrCodes[VarLayout::Code];
VarLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addDeclBaseNameRef(var->getName()),
contextID.getOpaqueValue(),
var->isImplicit(),
var->isObjC(),
var->isStatic(),
rawIntroducer,
var->hasNonPatternBindingInit(),
var->isGetterMutating(),
var->isSetterMutating(),
var->isLazyStorageProperty(),
S.addDeclRef(lazyStorage),
accessors.OpaqueReadOwnership,
accessors.ReadImpl,
accessors.WriteImpl,
accessors.ReadWriteImpl,
accessors.Decls.size(),
S.addTypeRef(ty),
var->isImplicitlyUnwrappedOptional(),
S.addDeclRef(var->getOverriddenDecl()),
rawAccessLevel, rawSetterAccessLevel,
S.addDeclRef(var->getOpaqueResultTypeDecl()),
numBackingProperties,
numVTableEntries,
arrayFields);
}
void visitParamDecl(const ParamDecl *param) {
using namespace decls_block;
verifyAttrSerializable(param);
auto contextID = S.addDeclContextRef(param->getDeclContext());
Type interfaceType = param->getInterfaceType();
// Only save the text for normal and stored property default arguments, not
// any of the special ones.
StringRef defaultArgumentText;
SmallString<128> scratch;
swift::DefaultArgumentKind argKind = param->getDefaultArgumentKind();
if (argKind == swift::DefaultArgumentKind::Normal ||
argKind == swift::DefaultArgumentKind::StoredProperty)
defaultArgumentText =
param->getDefaultValueStringRepresentation(scratch);
unsigned abbrCode = S.DeclTypeAbbrCodes[ParamLayout::Code];
ParamLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addDeclBaseNameRef(param->getArgumentName()),
S.addDeclBaseNameRef(param->getName()),
contextID.getOpaqueValue(),
getRawStableParamDeclSpecifier(param->getSpecifier()),
S.addTypeRef(interfaceType),
param->isImplicitlyUnwrappedOptional(),
param->isVariadic(),
param->isAutoClosure(),
getRawStableDefaultArgumentKind(argKind),
defaultArgumentText);
if (interfaceType->hasError()) {
param->getDeclContext()->dumpContext();
interfaceType->dump();
llvm_unreachable("error in interface type of parameter");
}
}
void visitFuncDecl(const FuncDecl *fn) {
using namespace decls_block;
verifyAttrSerializable(fn);
auto contextID = S.addDeclContextRef(fn->getDeclContext());
unsigned abbrCode = S.DeclTypeAbbrCodes[FuncLayout::Code];
SmallVector<IdentifierID, 4> nameComponentsAndDependencies;
nameComponentsAndDependencies.push_back(
S.addDeclBaseNameRef(fn->getFullName().getBaseName()));
for (auto argName : fn->getFullName().getArgumentNames())
nameComponentsAndDependencies.push_back(S.addDeclBaseNameRef(argName));
uint8_t rawAccessLevel = getRawStableAccessLevel(fn->getFormalAccess());
Type ty = fn->getInterfaceType();
for (auto dependency : collectDependenciesFromType(ty->getCanonicalType()))
nameComponentsAndDependencies.push_back(S.addTypeRef(dependency));
FuncLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
contextID.getOpaqueValue(),
fn->isImplicit(),
fn->isStatic(),
uint8_t(
getStableStaticSpelling(fn->getStaticSpelling())),
fn->isObjC(),
uint8_t(
getStableSelfAccessKind(fn->getSelfAccessKind())),
fn->hasForcedStaticDispatch(),
fn->hasThrows(),
S.addGenericSignatureRef(
fn->getGenericSignature()),
S.addTypeRef(fn->getResultInterfaceType()),
fn->isImplicitlyUnwrappedOptional(),
S.addDeclRef(fn->getOperatorDecl()),
S.addDeclRef(fn->getOverriddenDecl()),
fn->getFullName().getArgumentNames().size() +
fn->getFullName().isCompoundName(),
rawAccessLevel,
fn->needsNewVTableEntry(),
S.addDeclRef(fn->getOpaqueResultTypeDecl()),
nameComponentsAndDependencies);
writeGenericParams(fn->getGenericParams());
// Write the body parameters.
writeParameterList(fn->getParameters());
if (auto errorConvention = fn->getForeignErrorConvention())
writeForeignErrorConvention(*errorConvention);
writeInlinableBodyTextIfNeeded(fn);
}
void visitOpaqueTypeDecl(const OpaqueTypeDecl *opaqueDecl) {
using namespace decls_block;
verifyAttrSerializable(opaqueDecl);
auto namingDeclID = S.addDeclRef(opaqueDecl->getNamingDecl());
auto contextID = S.addDeclContextRef(opaqueDecl->getDeclContext());
auto interfaceSigID = S.addGenericSignatureRef(
opaqueDecl->getOpaqueInterfaceGenericSignature());
auto interfaceTypeID =
S.addTypeRef(opaqueDecl->getUnderlyingInterfaceType());
auto genericSigID = S.addGenericSignatureRef(opaqueDecl->getGenericSignature());
SubstitutionMapID underlyingTypeID = 0;
if (auto underlying = opaqueDecl->getUnderlyingTypeSubstitutions())
underlyingTypeID = S.addSubstitutionMapRef(*underlying);
unsigned abbrCode = S.DeclTypeAbbrCodes[OpaqueTypeLayout::Code];
OpaqueTypeLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
contextID.getOpaqueValue(), namingDeclID,
interfaceSigID, interfaceTypeID, genericSigID,
underlyingTypeID);
writeGenericParams(opaqueDecl->getGenericParams());
}
void visitAccessorDecl(const AccessorDecl *fn) {
using namespace decls_block;
verifyAttrSerializable(fn);
auto contextID = S.addDeclContextRef(fn->getDeclContext());
unsigned abbrCode = S.DeclTypeAbbrCodes[AccessorLayout::Code];
uint8_t rawAccessLevel = getRawStableAccessLevel(fn->getFormalAccess());
uint8_t rawAccessorKind =
uint8_t(getStableAccessorKind(fn->getAccessorKind()));
Type ty = fn->getInterfaceType();
SmallVector<IdentifierID, 4> dependencies;
for (auto dependency : collectDependenciesFromType(ty->getCanonicalType()))
dependencies.push_back(S.addTypeRef(dependency));
AccessorLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
contextID.getOpaqueValue(),
fn->isImplicit(),
fn->isStatic(),
uint8_t(getStableStaticSpelling(
fn->getStaticSpelling())),
fn->isObjC(),
uint8_t(getStableSelfAccessKind(
fn->getSelfAccessKind())),
fn->hasForcedStaticDispatch(),
fn->hasThrows(),
S.addGenericSignatureRef(
fn->getGenericSignature()),
S.addTypeRef(fn->getResultInterfaceType()),
fn->isImplicitlyUnwrappedOptional(),
S.addDeclRef(fn->getOverriddenDecl()),
S.addDeclRef(fn->getStorage()),
rawAccessorKind,
rawAccessLevel,
fn->needsNewVTableEntry(),
fn->isTransparent(),
dependencies);
writeGenericParams(fn->getGenericParams());
// Write the body parameters.
writeParameterList(fn->getParameters());
if (auto errorConvention = fn->getForeignErrorConvention())
writeForeignErrorConvention(*errorConvention);
writeInlinableBodyTextIfNeeded(fn);
}
void visitEnumElementDecl(const EnumElementDecl *elem) {
using namespace decls_block;
verifyAttrSerializable(elem);
auto contextID = S.addDeclContextRef(elem->getDeclContext());
SmallVector<IdentifierID, 4> nameComponentsAndDependencies;
auto baseName = S.addDeclBaseNameRef(elem->getBaseName());
nameComponentsAndDependencies.push_back(baseName);
for (auto argName : elem->getFullName().getArgumentNames())
nameComponentsAndDependencies.push_back(S.addDeclBaseNameRef(argName));
Type ty = elem->getInterfaceType();
for (Type dependency : collectDependenciesFromType(ty->getCanonicalType()))
nameComponentsAndDependencies.push_back(S.addTypeRef(dependency));
// We only serialize the raw values of @objc enums, because they're part
// of the ABI. That isn't the case for Swift enums.
auto rawValueKind = EnumElementRawValueKind::None;
bool isNegative = false, isRawValueImplicit = false;
StringRef RawValueText;
if (elem->getParentEnum()->isObjC()) {
// Currently ObjC enums always have integer raw values.
rawValueKind = EnumElementRawValueKind::IntegerLiteral;
auto ILE = cast<IntegerLiteralExpr>(elem->getStructuralRawValueExpr());
RawValueText = ILE->getDigitsText();
isNegative = ILE->isNegative();
isRawValueImplicit = ILE->isImplicit();
}
unsigned abbrCode = S.DeclTypeAbbrCodes[EnumElementLayout::Code];
EnumElementLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
contextID.getOpaqueValue(),
elem->isImplicit(),
elem->hasAssociatedValues(),
(unsigned)rawValueKind,
isRawValueImplicit,
isNegative,
S.addUniquedStringRef(RawValueText),
elem->getFullName().getArgumentNames().size()+1,
nameComponentsAndDependencies);
if (auto *PL = elem->getParameterList())
writeParameterList(PL);
}
void visitSubscriptDecl(const SubscriptDecl *subscript) {
using namespace decls_block;
verifyAttrSerializable(subscript);
auto contextID = S.addDeclContextRef(subscript->getDeclContext());
Accessors accessors = getAccessors(subscript);
SmallVector<IdentifierID, 4> nameComponentsAndDependencies;
for (auto argName : subscript->getFullName().getArgumentNames())
nameComponentsAndDependencies.push_back(S.addDeclBaseNameRef(argName));
for (auto accessor : accessors.Decls)
nameComponentsAndDependencies.push_back(S.addDeclRef(accessor));
Type ty = subscript->getInterfaceType();
for (Type dependency : collectDependenciesFromType(ty->getCanonicalType()))
nameComponentsAndDependencies.push_back(S.addTypeRef(dependency));
uint8_t rawAccessLevel =
getRawStableAccessLevel(subscript->getFormalAccess());
uint8_t rawSetterAccessLevel = rawAccessLevel;
if (subscript->supportsMutation())
rawSetterAccessLevel =
getRawStableAccessLevel(subscript->getSetterFormalAccess());
uint8_t rawStaticSpelling =
uint8_t(getStableStaticSpelling(subscript->getStaticSpelling()));
unsigned numVTableEntries = getNumberOfRequiredVTableEntries(subscript);
unsigned abbrCode = S.DeclTypeAbbrCodes[SubscriptLayout::Code];
SubscriptLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
contextID.getOpaqueValue(),
subscript->isImplicit(),
subscript->isObjC(),
subscript->isGetterMutating(),
subscript->isSetterMutating(),
accessors.OpaqueReadOwnership,
accessors.ReadImpl,
accessors.WriteImpl,
accessors.ReadWriteImpl,
accessors.Decls.size(),
S.addGenericSignatureRef(
subscript->getGenericSignature()),
S.addTypeRef(subscript->getElementInterfaceType()),
subscript->isImplicitlyUnwrappedOptional(),
S.addDeclRef(subscript->getOverriddenDecl()),
rawAccessLevel,
rawSetterAccessLevel,
rawStaticSpelling,
subscript->
getFullName().getArgumentNames().size(),
S.addDeclRef(subscript->getOpaqueResultTypeDecl()),
numVTableEntries,
nameComponentsAndDependencies);
writeGenericParams(subscript->getGenericParams());
writeParameterList(subscript->getIndices());
}
void visitConstructorDecl(const ConstructorDecl *ctor) {
using namespace decls_block;
verifyAttrSerializable(ctor);
auto contextID = S.addDeclContextRef(ctor->getDeclContext());
SmallVector<IdentifierID, 4> nameComponentsAndDependencies;
for (auto argName : ctor->getFullName().getArgumentNames())
nameComponentsAndDependencies.push_back(S.addDeclBaseNameRef(argName));
Type ty = ctor->getInterfaceType();
for (Type dependency : collectDependenciesFromType(ty->getCanonicalType()))
nameComponentsAndDependencies.push_back(S.addTypeRef(dependency));
uint8_t rawAccessLevel = getRawStableAccessLevel(ctor->getFormalAccess());
bool firstTimeRequired = ctor->isRequired();
if (auto *overridden = ctor->getOverriddenDecl())
if (firstTimeRequired && overridden->isRequired())
firstTimeRequired = false;
unsigned abbrCode = S.DeclTypeAbbrCodes[ConstructorLayout::Code];
ConstructorLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
contextID.getOpaqueValue(),
ctor->isFailable(),
ctor->isImplicitlyUnwrappedOptional(),
ctor->isImplicit(),
ctor->isObjC(),
ctor->hasStubImplementation(),
ctor->hasThrows(),
getStableCtorInitializerKind(
ctor->getInitKind()),
S.addGenericSignatureRef(
ctor->getGenericSignature()),
S.addDeclRef(ctor->getOverriddenDecl()),
rawAccessLevel,
ctor->needsNewVTableEntry(),
firstTimeRequired,
ctor->getFullName().getArgumentNames().size(),
nameComponentsAndDependencies);
writeGenericParams(ctor->getGenericParams());
writeParameterList(ctor->getParameters());
if (auto errorConvention = ctor->getForeignErrorConvention())
writeForeignErrorConvention(*errorConvention);
writeInlinableBodyTextIfNeeded(ctor);
}
void visitDestructorDecl(const DestructorDecl *dtor) {
using namespace decls_block;
verifyAttrSerializable(dtor);
auto contextID = S.addDeclContextRef(dtor->getDeclContext());
unsigned abbrCode = S.DeclTypeAbbrCodes[DestructorLayout::Code];
DestructorLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
contextID.getOpaqueValue(),
dtor->isImplicit(),
dtor->isObjC(),
S.addGenericSignatureRef(
dtor->getGenericSignature()));
writeInlinableBodyTextIfNeeded(dtor);
}
void visitTopLevelCodeDecl(const TopLevelCodeDecl *) {
// Top-level code is ignored; external clients don't need to know about it.
}
void visitImportDecl(const ImportDecl *) {
llvm_unreachable("import decls should not be serialized");
}
void visitIfConfigDecl(const IfConfigDecl *) {
llvm_unreachable("#if block declarations should not be serialized");
}
void visitPoundDiagnosticDecl(const PoundDiagnosticDecl *) {
llvm_unreachable("#warning/#error declarations should not be serialized");
}
void visitEnumCaseDecl(const EnumCaseDecl *) {
llvm_unreachable("enum case decls should not be serialized");
}
void visitModuleDecl(const ModuleDecl *) {
llvm_unreachable("module decls are not serialized");
}
void visitMissingMemberDecl(const MissingMemberDecl *) {
llvm_unreachable("member placeholders shouldn't be serialized");
}
};
void Serializer::writeASTBlockEntity(const Decl *D) {
using namespace decls_block;
PrettyStackTraceDecl trace("serializing", D);
assert(DeclsToSerialize.hasRef(D));
BitOffset initialOffset = Out.GetCurrentBitNo();
SWIFT_DEFER {
// This is important enough to leave on in Release builds.
if (initialOffset == Out.GetCurrentBitNo()) {
llvm::PrettyStackTraceString message("failed to serialize anything");
abort();
}
};
assert(!D->isInvalid() && "cannot create a module with an invalid decl");
if (isDeclXRef(D)) {
writeCrossReference(D);
return;
}
assert(!D->hasClangNode() && "imported decls should use cross-references");
DeclSerializer(*this, DeclsToSerialize.addRef(D)).visit(D);
}
#define SIMPLE_CASE(TYPENAME, VALUE) \
case swift::TYPENAME::VALUE: return uint8_t(serialization::TYPENAME::VALUE);
/// Translate from the AST function representation enum to the Serialization enum
/// values, which are guaranteed to be stable.
static uint8_t getRawStableFunctionTypeRepresentation(
swift::FunctionType::Representation cc) {
switch (cc) {
SIMPLE_CASE(FunctionTypeRepresentation, Swift)
SIMPLE_CASE(FunctionTypeRepresentation, Block)
SIMPLE_CASE(FunctionTypeRepresentation, Thin)
SIMPLE_CASE(FunctionTypeRepresentation, CFunctionPointer)
}
llvm_unreachable("bad calling convention");
}
/// Translate from the AST function representation enum to the Serialization enum
/// values, which are guaranteed to be stable.
static uint8_t getRawStableSILFunctionTypeRepresentation(
swift::SILFunctionType::Representation cc) {
switch (cc) {
SIMPLE_CASE(SILFunctionTypeRepresentation, Thick)
SIMPLE_CASE(SILFunctionTypeRepresentation, Block)
SIMPLE_CASE(SILFunctionTypeRepresentation, Thin)
SIMPLE_CASE(SILFunctionTypeRepresentation, CFunctionPointer)
SIMPLE_CASE(SILFunctionTypeRepresentation, Method)
SIMPLE_CASE(SILFunctionTypeRepresentation, ObjCMethod)
SIMPLE_CASE(SILFunctionTypeRepresentation, WitnessMethod)
SIMPLE_CASE(SILFunctionTypeRepresentation, Closure)
}
llvm_unreachable("bad calling convention");
}
/// Translate from the AST coroutine-kind enum to the Serialization enum
/// values, which are guaranteed to be stable.
static uint8_t getRawStableSILCoroutineKind(
swift::SILCoroutineKind kind) {
switch (kind) {
SIMPLE_CASE(SILCoroutineKind, None)
SIMPLE_CASE(SILCoroutineKind, YieldOnce)
SIMPLE_CASE(SILCoroutineKind, YieldMany)
}
llvm_unreachable("bad kind");
}
// SWIFT_ENABLE_TENSORFLOW
/// Translate from the AST differentiability kind enum to the Serialization enum
/// values, which are guaranteed to be stable.
static uint8_t getRawStableDifferentiabilityKind(
swift::DifferentiabilityKind kind) {
switch (kind) {
SIMPLE_CASE(DifferentiabilityKind, NonDifferentiable)
SIMPLE_CASE(DifferentiabilityKind, Normal)
SIMPLE_CASE(DifferentiabilityKind, Linear)
}
llvm_unreachable("bad differentiability kind");
}
/// Translate from the AST ownership enum to the Serialization enum
/// values, which are guaranteed to be stable.
static uint8_t
getRawStableReferenceOwnership(swift::ReferenceOwnership ownership) {
switch (ownership) {
SIMPLE_CASE(ReferenceOwnership, Strong)
#define REF_STORAGE(Name, ...) \
SIMPLE_CASE(ReferenceOwnership, Name)
#include "swift/AST/ReferenceStorage.def"
}
llvm_unreachable("bad ownership kind");
}
/// Translate from the AST ownership enum to the Serialization enum
/// values, which are guaranteed to be stable.
static uint8_t getRawStableValueOwnership(swift::ValueOwnership ownership) {
switch (ownership) {
SIMPLE_CASE(ValueOwnership, Default)
SIMPLE_CASE(ValueOwnership, InOut)
SIMPLE_CASE(ValueOwnership, Shared)
SIMPLE_CASE(ValueOwnership, Owned)
}
llvm_unreachable("bad ownership kind");
}
/// Translate from the AST ParameterConvention enum to the
/// Serialization enum values, which are guaranteed to be stable.
static uint8_t getRawStableParameterConvention(swift::ParameterConvention pc) {
switch (pc) {
SIMPLE_CASE(ParameterConvention, Indirect_In)
SIMPLE_CASE(ParameterConvention, Indirect_In_Constant)
SIMPLE_CASE(ParameterConvention, Indirect_In_Guaranteed)
SIMPLE_CASE(ParameterConvention, Indirect_Inout)
SIMPLE_CASE(ParameterConvention, Indirect_InoutAliasable)
SIMPLE_CASE(ParameterConvention, Direct_Owned)
SIMPLE_CASE(ParameterConvention, Direct_Unowned)
SIMPLE_CASE(ParameterConvention, Direct_Guaranteed)
}
llvm_unreachable("bad parameter convention kind");
}
/// Translate from AST SILParameterDifferentiability enum to the Serialization
/// enum values, which are guaranteed to be stable.
static uint8_t
getRawSILParameterDifferentiability(swift::SILParameterDifferentiability pd) {
switch (pd) {
SIMPLE_CASE(SILParameterDifferentiability, DifferentiableOrNotApplicable)
SIMPLE_CASE(SILParameterDifferentiability, NotDifferentiable)
}
llvm_unreachable("bad parameter differentiability kind");
}
/// Translate from the AST ResultConvention enum to the
/// Serialization enum values, which are guaranteed to be stable.
static uint8_t getRawStableResultConvention(swift::ResultConvention rc) {
switch (rc) {
SIMPLE_CASE(ResultConvention, Indirect)
SIMPLE_CASE(ResultConvention, Owned)
SIMPLE_CASE(ResultConvention, Unowned)
SIMPLE_CASE(ResultConvention, UnownedInnerPointer)
SIMPLE_CASE(ResultConvention, Autoreleased)
}
llvm_unreachable("bad result convention kind");
}
#undef SIMPLE_CASE
/// Find the typealias given a builtin type.
static TypeAliasDecl *findTypeAliasForBuiltin(ASTContext &Ctx, Type T) {
/// Get the type name by chopping off "Builtin.".
llvm::SmallString<32> FullName;
llvm::raw_svector_ostream OS(FullName);
T->print(OS);
assert(FullName.startswith(BUILTIN_TYPE_NAME_PREFIX));
StringRef TypeName = FullName.substr(8);
SmallVector<ValueDecl*, 4> CurModuleResults;
Ctx.TheBuiltinModule->lookupValue(Ctx.getIdentifier(TypeName),
NLKind::QualifiedLookup,
CurModuleResults);
assert(CurModuleResults.size() == 1);
return cast<TypeAliasDecl>(CurModuleResults[0]);
}
class Serializer::TypeSerializer : public TypeVisitor<TypeSerializer> {
Serializer &S;
public:
explicit TypeSerializer(Serializer &S) : S(S) {}
/// If this gets referenced, we forgot to handle a type.
void visitType(const TypeBase *) = delete;
void visitErrorType(const ErrorType *) {
llvm_unreachable("should not serialize an invalid type");
}
void visitUnresolvedType(const UnresolvedType *) {
llvm_unreachable("should not serialize an invalid type");
}
void visitModuleType(const ModuleType *) {
llvm_unreachable("modules are currently not first-class values");
}
void visitInOutType(const InOutType *) {
llvm_unreachable("inout types are only used in function type parameters");
}
void visitLValueType(const LValueType *) {
llvm_unreachable("lvalue types are only used in function bodies");
}
void visitTypeVariableType(const TypeVariableType *) {
llvm_unreachable("type variables should not escape the type checker");
}
void visitBuiltinTypeImpl(Type ty) {
using namespace decls_block;
TypeAliasDecl *typeAlias =
findTypeAliasForBuiltin(S.M->getASTContext(), ty);
unsigned abbrCode = S.DeclTypeAbbrCodes[BuiltinAliasTypeLayout::Code];
BuiltinAliasTypeLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addDeclRef(typeAlias,
/*allowTypeAliasXRef*/true),
TypeID());
}
void visitBuiltinType(BuiltinType *ty) {
visitBuiltinTypeImpl(ty);
}
void visitSILTokenType(SILTokenType *ty) {
// This is serialized like a BuiltinType, even though it isn't one.
visitBuiltinTypeImpl(ty);
}
void visitTypeAliasType(const TypeAliasType *alias) {
using namespace decls_block;
const TypeAliasDecl *typeAlias = alias->getDecl();
auto underlyingType = typeAlias->getUnderlyingType();
unsigned abbrCode = S.DeclTypeAbbrCodes[TypeAliasTypeLayout::Code];
TypeAliasTypeLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
S.addDeclRef(typeAlias, /*allowTypeAliasXRef*/true),
S.addTypeRef(alias->getParent()),
S.addTypeRef(underlyingType),
S.addTypeRef(alias->getSinglyDesugaredType()),
S.addSubstitutionMapRef(alias->getSubstitutionMap()));
}
template <typename Layout>
void serializeSimpleWrapper(Type wrappedTy) {
unsigned abbrCode = S.DeclTypeAbbrCodes[Layout::Code];
Layout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addTypeRef(wrappedTy));
}
void visitParenType(const ParenType *parenTy) {
using namespace decls_block;
assert(parenTy->getParameterFlags().isNone());
serializeSimpleWrapper<ParenTypeLayout>(parenTy->getUnderlyingType());
}
void visitTupleType(const TupleType *tupleTy) {
using namespace decls_block;
unsigned abbrCode = S.DeclTypeAbbrCodes[TupleTypeLayout::Code];
TupleTypeLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode);
abbrCode = S.DeclTypeAbbrCodes[TupleTypeEltLayout::Code];
for (auto &elt : tupleTy->getElements()) {
assert(elt.getParameterFlags().isNone());
TupleTypeEltLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
S.addDeclBaseNameRef(elt.getName()),
S.addTypeRef(elt.getType()));
}
}
void visitNominalType(const NominalType *nominalTy) {
using namespace decls_block;
unsigned abbrCode = S.DeclTypeAbbrCodes[NominalTypeLayout::Code];
NominalTypeLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addDeclRef(nominalTy->getDecl()),
S.addTypeRef(nominalTy->getParent()));
}
template <typename Layout>
void visitMetatypeImpl(const AnyMetatypeType *metatypeTy) {
unsigned abbrCode = S.DeclTypeAbbrCodes[Layout::Code];
// Map the metatype representation.
auto repr = getRawStableMetatypeRepresentation(metatypeTy);
Layout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addTypeRef(metatypeTy->getInstanceType()),
static_cast<uint8_t>(repr));
}
void visitExistentialMetatypeType(const ExistentialMetatypeType *metatypeTy) {
using namespace decls_block;
visitMetatypeImpl<ExistentialMetatypeTypeLayout>(metatypeTy);
}
void visitMetatypeType(const MetatypeType *metatypeTy) {
using namespace decls_block;
visitMetatypeImpl<MetatypeTypeLayout>(metatypeTy);
}
void visitDynamicSelfType(const DynamicSelfType *dynamicSelfTy) {
using namespace decls_block;
unsigned abbrCode = S.DeclTypeAbbrCodes[DynamicSelfTypeLayout::Code];
DynamicSelfTypeLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
S.addTypeRef(dynamicSelfTy->getSelfType()));
}
void visitPrimaryArchetypeType(const PrimaryArchetypeType *archetypeTy) {
using namespace decls_block;
auto sig = archetypeTy->getGenericEnvironment()->getGenericSignature();
GenericSignatureID sigID = S.addGenericSignatureRef(sig);
auto interfaceType = archetypeTy->getInterfaceType()
->castTo<GenericTypeParamType>();
unsigned abbrCode = S.DeclTypeAbbrCodes[PrimaryArchetypeTypeLayout::Code];
PrimaryArchetypeTypeLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
sigID,
interfaceType->getDepth(),
interfaceType->getIndex());
}
void visitOpenedArchetypeType(const OpenedArchetypeType *archetypeTy) {
using namespace decls_block;
serializeSimpleWrapper<OpenedArchetypeTypeLayout>(
archetypeTy->getOpenedExistentialType());
}
void
visitOpaqueTypeArchetypeType(const OpaqueTypeArchetypeType *archetypeTy) {
using namespace decls_block;
auto declID = S.addDeclRef(archetypeTy->getDecl());
auto substMapID = S.addSubstitutionMapRef(archetypeTy->getSubstitutions());
unsigned abbrCode = S.DeclTypeAbbrCodes[OpaqueArchetypeTypeLayout::Code];
OpaqueArchetypeTypeLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
declID, substMapID);
}
void visitNestedArchetypeType(const NestedArchetypeType *archetypeTy) {
using namespace decls_block;
auto rootTypeID = S.addTypeRef(archetypeTy->getRoot());
auto interfaceTypeID = S.addTypeRef(archetypeTy->getInterfaceType());
unsigned abbrCode = S.DeclTypeAbbrCodes[NestedArchetypeTypeLayout::Code];
NestedArchetypeTypeLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
rootTypeID, interfaceTypeID);
}
void visitGenericTypeParamType(const GenericTypeParamType *genericParam) {
using namespace decls_block;
unsigned abbrCode = S.DeclTypeAbbrCodes[GenericTypeParamTypeLayout::Code];
DeclID declIDOrDepth;
unsigned indexPlusOne;
if (genericParam->getDecl() &&
!(genericParam->getDecl()->getDeclContext()->isModuleScopeContext() &&
S.isDeclXRef(genericParam->getDecl()))) {
declIDOrDepth = S.addDeclRef(genericParam->getDecl());
indexPlusOne = 0;
} else {
declIDOrDepth = genericParam->getDepth();
indexPlusOne = genericParam->getIndex() + 1;
}
GenericTypeParamTypeLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
declIDOrDepth, indexPlusOne);
}
void visitDependentMemberType(const DependentMemberType *dependent) {
using namespace decls_block;
unsigned abbrCode = S.DeclTypeAbbrCodes[DependentMemberTypeLayout::Code];
assert(dependent->getAssocType() && "Unchecked dependent member type");
DependentMemberTypeLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
S.addTypeRef(dependent->getBase()),
S.addDeclRef(dependent->getAssocType()));
}
void serializeFunctionTypeParams(const AnyFunctionType *fnTy) {
using namespace decls_block;
unsigned abbrCode = S.DeclTypeAbbrCodes[FunctionParamLayout::Code];
for (auto &param : fnTy->getParams()) {
auto paramFlags = param.getParameterFlags();
auto rawOwnership =
getRawStableValueOwnership(paramFlags.getValueOwnership());
FunctionParamLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
S.addDeclBaseNameRef(param.getLabel()),
S.addTypeRef(param.getPlainType()), paramFlags.isVariadic(),
// SWIFT_ENABLE_TENSORFLOW
paramFlags.isAutoClosure(), rawOwnership,
paramFlags.isNonDifferentiable());
}
}
void visitFunctionType(const FunctionType *fnTy) {
using namespace decls_block;
unsigned abbrCode = S.DeclTypeAbbrCodes[FunctionTypeLayout::Code];
FunctionTypeLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addTypeRef(fnTy->getResult()),
getRawStableFunctionTypeRepresentation(fnTy->getRepresentation()),
fnTy->isNoEscape(),
// SWIFT_ENABLE_TENSORFLOW
fnTy->throws(),
(uint8_t)fnTy->getDifferentiabilityKind());
serializeFunctionTypeParams(fnTy);
}
void visitGenericFunctionType(const GenericFunctionType *fnTy) {
using namespace decls_block;
assert(!fnTy->isNoEscape());
auto genericSig = fnTy->getGenericSignature();
unsigned abbrCode = S.DeclTypeAbbrCodes[GenericFunctionTypeLayout::Code];
GenericFunctionTypeLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addTypeRef(fnTy->getResult()),
getRawStableFunctionTypeRepresentation(fnTy->getRepresentation()),
// SWIFT_ENABLE_TENSORFLOW
fnTy->throws(), fnTy->isDifferentiable(),
S.addGenericSignatureRef(genericSig));
serializeFunctionTypeParams(fnTy);
}
void visitSILBlockStorageType(const SILBlockStorageType *storageTy) {
using namespace decls_block;
serializeSimpleWrapper<SILBlockStorageTypeLayout>(
storageTy->getCaptureType());
}
void visitSILBoxType(const SILBoxType *boxTy) {
using namespace decls_block;
unsigned abbrCode = S.DeclTypeAbbrCodes[SILBoxTypeLayout::Code];
SILLayoutID layoutRef = S.addSILLayoutRef(boxTy->getLayout());
SILBoxTypeLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode, layoutRef,
S.addSubstitutionMapRef(boxTy->getSubstitutions()));
}
void visitSILFunctionType(const SILFunctionType *fnTy) {
using namespace decls_block;
auto representation = fnTy->getRepresentation();
// SWIFT_ENABLE_TENSORFLOW
auto stableRepresentation =
getRawStableSILFunctionTypeRepresentation(representation);
auto stableDifferentiabilityKind =
getRawStableDifferentiabilityKind(fnTy->getDifferentiabilityKind());
SmallVector<TypeID, 8> variableData;
for (auto param : fnTy->getParameters()) {
variableData.push_back(S.addTypeRef(param.getType()));
unsigned conv = getRawStableParameterConvention(param.getConvention());
variableData.push_back(TypeID(conv));
// SWIFT_ENABLE_TENSORFLOW
if (fnTy->isDifferentiable())
variableData.push_back(TypeID(
getRawSILParameterDifferentiability(param.getDifferentiability())));
}
for (auto yield : fnTy->getYields()) {
variableData.push_back(S.addTypeRef(yield.getType()));
unsigned conv = getRawStableParameterConvention(yield.getConvention());
variableData.push_back(TypeID(conv));
}
for (auto result : fnTy->getResults()) {
variableData.push_back(S.addTypeRef(result.getType()));
unsigned conv = getRawStableResultConvention(result.getConvention());
variableData.push_back(TypeID(conv));
}
if (fnTy->hasErrorResult()) {
auto abResult = fnTy->getErrorResult();
variableData.push_back(S.addTypeRef(abResult.getType()));
unsigned conv = getRawStableResultConvention(abResult.getConvention());
variableData.push_back(TypeID(conv));
}
auto sig = fnTy->getGenericSignature();
auto stableCoroutineKind =
getRawStableSILCoroutineKind(fnTy->getCoroutineKind());
auto stableCalleeConvention =
getRawStableParameterConvention(fnTy->getCalleeConvention());
unsigned abbrCode = S.DeclTypeAbbrCodes[SILFunctionTypeLayout::Code];
SILFunctionTypeLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
stableCoroutineKind, stableCalleeConvention,
stableRepresentation, fnTy->isPseudogeneric(), fnTy->isNoEscape(),
// SWIFT_ENABLE_TENSORFLOW
stableDifferentiabilityKind, fnTy->hasErrorResult(),
fnTy->getParameters().size(), fnTy->getNumYields(),
fnTy->getNumResults(), S.addGenericSignatureRef(sig), variableData);
if (auto conformance = fnTy->getWitnessMethodConformanceOrNone())
S.writeConformance(*conformance, S.DeclTypeAbbrCodes);
}
void visitArraySliceType(const ArraySliceType *sliceTy) {
using namespace decls_block;
serializeSimpleWrapper<ArraySliceTypeLayout>(sliceTy->getBaseType());
}
void visitDictionaryType(const DictionaryType *dictTy) {
using namespace decls_block;
unsigned abbrCode = S.DeclTypeAbbrCodes[DictionaryTypeLayout::Code];
DictionaryTypeLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addTypeRef(dictTy->getKeyType()),
S.addTypeRef(dictTy->getValueType()));
}
void visitOptionalType(const OptionalType *optionalTy) {
using namespace decls_block;
serializeSimpleWrapper<OptionalTypeLayout>(optionalTy->getBaseType());
}
void
visitProtocolCompositionType(const ProtocolCompositionType *composition) {
using namespace decls_block;
SmallVector<TypeID, 4> protocols;
for (auto proto : composition->getMembers())
protocols.push_back(S.addTypeRef(proto));
unsigned abbrCode =
S.DeclTypeAbbrCodes[ProtocolCompositionTypeLayout::Code];
ProtocolCompositionTypeLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
composition->hasExplicitAnyObject(),
protocols);
}
void visitReferenceStorageType(const ReferenceStorageType *refTy) {
using namespace decls_block;
unsigned abbrCode = S.DeclTypeAbbrCodes[ReferenceStorageTypeLayout::Code];
auto stableOwnership =
getRawStableReferenceOwnership(refTy->getOwnership());
ReferenceStorageTypeLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
stableOwnership,
S.addTypeRef(refTy->getReferentType()));
}
void visitUnboundGenericType(const UnboundGenericType *generic) {
using namespace decls_block;
unsigned abbrCode = S.DeclTypeAbbrCodes[UnboundGenericTypeLayout::Code];
UnboundGenericTypeLayout::emitRecord(
S.Out, S.ScratchRecord, abbrCode,
S.addDeclRef(generic->getDecl(), /*allowTypeAliasXRef*/true),
S.addTypeRef(generic->getParent()));
}
void visitBoundGenericType(const BoundGenericType *generic) {
using namespace decls_block;
SmallVector<TypeID, 8> genericArgIDs;
for (auto next : generic->getGenericArgs())
genericArgIDs.push_back(S.addTypeRef(next));
unsigned abbrCode = S.DeclTypeAbbrCodes[BoundGenericTypeLayout::Code];
BoundGenericTypeLayout::emitRecord(S.Out, S.ScratchRecord, abbrCode,
S.addDeclRef(generic->getDecl()),
S.addTypeRef(generic->getParent()),
genericArgIDs);
}
};
void Serializer::writeASTBlockEntity(Type ty) {
using namespace decls_block;
PrettyStackTraceType traceRAII(ty->getASTContext(), "serializing", ty);
assert(TypesToSerialize.hasRef(ty));
BitOffset initialOffset = Out.GetCurrentBitNo();
SWIFT_DEFER {
// This is important enough to leave on in Release builds.
if (initialOffset == Out.GetCurrentBitNo()) {
llvm::PrettyStackTraceString message("failed to serialize anything");
abort();
}
};
TypeSerializer(*this).visit(ty);
}
template <typename SpecificASTBlockRecordKeeper>
bool Serializer::writeASTBlockEntitiesIfNeeded(
SpecificASTBlockRecordKeeper &entities) {
if (!entities.hasMoreToSerialize())
return false;
while (auto next = entities.popNext(Out.GetCurrentBitNo()))
writeASTBlockEntity(next.getValue());
return true;
}
void Serializer::writeAllDeclsAndTypes() {
BCBlockRAII restoreBlock(Out, DECLS_AND_TYPES_BLOCK_ID, 8);
using namespace decls_block;
registerDeclTypeAbbr<BuiltinAliasTypeLayout>();
registerDeclTypeAbbr<TypeAliasTypeLayout>();
registerDeclTypeAbbr<GenericTypeParamDeclLayout>();
registerDeclTypeAbbr<AssociatedTypeDeclLayout>();
registerDeclTypeAbbr<NominalTypeLayout>();
registerDeclTypeAbbr<ParenTypeLayout>();
registerDeclTypeAbbr<TupleTypeLayout>();
registerDeclTypeAbbr<TupleTypeEltLayout>();
registerDeclTypeAbbr<FunctionTypeLayout>();
registerDeclTypeAbbr<FunctionParamLayout>();
registerDeclTypeAbbr<MetatypeTypeLayout>();
registerDeclTypeAbbr<ExistentialMetatypeTypeLayout>();
registerDeclTypeAbbr<PrimaryArchetypeTypeLayout>();
registerDeclTypeAbbr<OpenedArchetypeTypeLayout>();
registerDeclTypeAbbr<OpaqueArchetypeTypeLayout>();
registerDeclTypeAbbr<NestedArchetypeTypeLayout>();
registerDeclTypeAbbr<ProtocolCompositionTypeLayout>();
registerDeclTypeAbbr<BoundGenericTypeLayout>();
registerDeclTypeAbbr<GenericFunctionTypeLayout>();
registerDeclTypeAbbr<SILBlockStorageTypeLayout>();
registerDeclTypeAbbr<SILBoxTypeLayout>();
registerDeclTypeAbbr<SILFunctionTypeLayout>();
registerDeclTypeAbbr<ArraySliceTypeLayout>();
registerDeclTypeAbbr<DictionaryTypeLayout>();
registerDeclTypeAbbr<ReferenceStorageTypeLayout>();
registerDeclTypeAbbr<UnboundGenericTypeLayout>();
registerDeclTypeAbbr<OptionalTypeLayout>();
registerDeclTypeAbbr<DynamicSelfTypeLayout>();
registerDeclTypeAbbr<TypeAliasLayout>();
registerDeclTypeAbbr<GenericTypeParamTypeLayout>();
registerDeclTypeAbbr<DependentMemberTypeLayout>();
registerDeclTypeAbbr<StructLayout>();
registerDeclTypeAbbr<ConstructorLayout>();
registerDeclTypeAbbr<VarLayout>();
registerDeclTypeAbbr<ParamLayout>();
registerDeclTypeAbbr<FuncLayout>();
registerDeclTypeAbbr<AccessorLayout>();
registerDeclTypeAbbr<OpaqueTypeLayout>();
registerDeclTypeAbbr<PatternBindingLayout>();
registerDeclTypeAbbr<ProtocolLayout>();
registerDeclTypeAbbr<DefaultWitnessTableLayout>();
registerDeclTypeAbbr<PrefixOperatorLayout>();
registerDeclTypeAbbr<PostfixOperatorLayout>();
registerDeclTypeAbbr<InfixOperatorLayout>();
registerDeclTypeAbbr<PrecedenceGroupLayout>();
registerDeclTypeAbbr<ClassLayout>();
registerDeclTypeAbbr<EnumLayout>();
registerDeclTypeAbbr<EnumElementLayout>();
registerDeclTypeAbbr<SubscriptLayout>();
registerDeclTypeAbbr<ExtensionLayout>();
registerDeclTypeAbbr<DestructorLayout>();
registerDeclTypeAbbr<ParameterListLayout>();
registerDeclTypeAbbr<ParenPatternLayout>();
registerDeclTypeAbbr<TuplePatternLayout>();
registerDeclTypeAbbr<TuplePatternEltLayout>();
registerDeclTypeAbbr<NamedPatternLayout>();
registerDeclTypeAbbr<VarPatternLayout>();
registerDeclTypeAbbr<AnyPatternLayout>();
registerDeclTypeAbbr<TypedPatternLayout>();
registerDeclTypeAbbr<InlinableBodyTextLayout>();
registerDeclTypeAbbr<GenericParamListLayout>();
registerDeclTypeAbbr<GenericSignatureLayout>();
registerDeclTypeAbbr<GenericRequirementLayout>();
registerDeclTypeAbbr<LayoutRequirementLayout>();
registerDeclTypeAbbr<SILGenericSignatureLayout>();
registerDeclTypeAbbr<SubstitutionMapLayout>();
registerDeclTypeAbbr<ForeignErrorConventionLayout>();
registerDeclTypeAbbr<AbstractClosureExprLayout>();
registerDeclTypeAbbr<PatternBindingInitializerLayout>();
registerDeclTypeAbbr<DefaultArgumentInitializerLayout>();
registerDeclTypeAbbr<TopLevelCodeDeclContextLayout>();
registerDeclTypeAbbr<XRefTypePathPieceLayout>();
registerDeclTypeAbbr<XRefOpaqueReturnTypePathPieceLayout>();
registerDeclTypeAbbr<XRefValuePathPieceLayout>();
registerDeclTypeAbbr<XRefExtensionPathPieceLayout>();
registerDeclTypeAbbr<XRefOperatorOrAccessorPathPieceLayout>();
registerDeclTypeAbbr<XRefGenericParamPathPieceLayout>();
registerDeclTypeAbbr<XRefInitializerPathPieceLayout>();
registerDeclTypeAbbr<AbstractProtocolConformanceLayout>();
registerDeclTypeAbbr<NormalProtocolConformanceLayout>();
registerDeclTypeAbbr<SelfProtocolConformanceLayout>();
registerDeclTypeAbbr<SpecializedProtocolConformanceLayout>();
registerDeclTypeAbbr<InheritedProtocolConformanceLayout>();
registerDeclTypeAbbr<InvalidProtocolConformanceLayout>();
registerDeclTypeAbbr<NormalProtocolConformanceIdLayout>();
registerDeclTypeAbbr<ProtocolConformanceXrefLayout>();
registerDeclTypeAbbr<SILLayoutLayout>();
registerDeclTypeAbbr<LocalDiscriminatorLayout>();
registerDeclTypeAbbr<PrivateDiscriminatorLayout>();
registerDeclTypeAbbr<FilenameForPrivateLayout>();
registerDeclTypeAbbr<MembersLayout>();
registerDeclTypeAbbr<XRefLayout>();
#define DECL_ATTR(X, NAME, ...) \
registerDeclTypeAbbr<NAME##DeclAttrLayout>();
#include "swift/AST/Attr.def"
bool wroteSomething;
do {
// Each of these loops can trigger the others to execute again, so repeat
// until /all/ of the pending lists are empty.
wroteSomething = false;
wroteSomething |= writeASTBlockEntitiesIfNeeded(DeclsToSerialize);
wroteSomething |= writeASTBlockEntitiesIfNeeded(TypesToSerialize);
wroteSomething |=
writeASTBlockEntitiesIfNeeded(LocalDeclContextsToSerialize);
wroteSomething |=
writeASTBlockEntitiesIfNeeded(GenericSignaturesToSerialize);
wroteSomething |=
writeASTBlockEntitiesIfNeeded(SubstitutionMapsToSerialize);
wroteSomething |=
writeASTBlockEntitiesIfNeeded(NormalConformancesToSerialize);
wroteSomething |= writeASTBlockEntitiesIfNeeded(SILLayoutsToSerialize);
} while (wroteSomething);
}
std::vector<CharOffset> Serializer::writeAllIdentifiers() {
assert(!DeclsToSerialize.hasMoreToSerialize() &&
"did not call Serializer::writeAllDeclsAndTypes?");
BCBlockRAII restoreBlock(Out, IDENTIFIER_DATA_BLOCK_ID, 3);
identifier_block::IdentifierDataLayout IdentifierData(Out);
llvm::SmallString<4096> stringData;
// Make sure no identifier has an offset of 0.
stringData.push_back('\0');
std::vector<CharOffset> identifierOffsets;
for (StringRef str : StringsToWrite) {
identifierOffsets.push_back(stringData.size());
stringData.append(str);
stringData.push_back('\0');
}
IdentifierData.emit(ScratchRecord, stringData.str());
return identifierOffsets;
}
template <typename SpecificASTBlockRecordKeeper>
void Serializer::writeOffsets(const index_block::OffsetsLayout &Offsets,
const SpecificASTBlockRecordKeeper &entities) {
Offsets.emit(ScratchRecord, SpecificASTBlockRecordKeeper::RecordCode,
entities.getOffsets());
}
/// Writes an in-memory decl table to an on-disk representation, using the
/// given layout.
static void writeDeclTable(const index_block::DeclListLayout &DeclList,
index_block::RecordKind kind,
const Serializer::DeclTable &table) {
if (table.empty())
return;
SmallVector<uint64_t, 8> scratch;
llvm::SmallString<4096> hashTableBlob;
uint32_t tableOffset;
{
llvm::OnDiskChainedHashTableGenerator<DeclTableInfo> generator;
for (auto &entry : table)
generator.insert(entry.first, entry.second);
llvm::raw_svector_ostream blobStream(hashTableBlob);
// Make sure that no bucket is at offset 0
endian::write<uint32_t>(blobStream, 0, little);
tableOffset = generator.Emit(blobStream);
}
DeclList.emit(scratch, kind, tableOffset, hashTableBlob);
}
static void
writeExtensionTable(const index_block::ExtensionTableLayout &ExtensionTable,
const Serializer::ExtensionTable &table,
Serializer &serializer) {
if (table.empty())
return;
SmallVector<uint64_t, 8> scratch;
llvm::SmallString<4096> hashTableBlob;
uint32_t tableOffset;
{
llvm::OnDiskChainedHashTableGenerator<ExtensionTableInfo> generator;
ExtensionTableInfo info{serializer};
for (auto &entry : table) {
generator.insert(entry.first, entry.second, info);
}
llvm::raw_svector_ostream blobStream(hashTableBlob);
// Make sure that no bucket is at offset 0
endian::write<uint32_t>(blobStream, 0, little);
tableOffset = generator.Emit(blobStream, info);
}
ExtensionTable.emit(scratch, tableOffset, hashTableBlob);
}
static void writeLocalDeclTable(const index_block::DeclListLayout &DeclList,
index_block::RecordKind kind,
LocalTypeHashTableGenerator &generator) {
SmallVector<uint64_t, 8> scratch;
llvm::SmallString<4096> hashTableBlob;
uint32_t tableOffset;
{
llvm::raw_svector_ostream blobStream(hashTableBlob);
// Make sure that no bucket is at offset 0
endian::write<uint32_t>(blobStream, 0, little);
tableOffset = generator.Emit(blobStream);
}
DeclList.emit(scratch, kind, tableOffset, hashTableBlob);
}
static void
writeNestedTypeDeclsTable(const index_block::NestedTypeDeclsLayout &declList,
const Serializer::NestedTypeDeclsTable &table) {
SmallVector<uint64_t, 8> scratch;
llvm::SmallString<4096> hashTableBlob;
uint32_t tableOffset;
{
llvm::OnDiskChainedHashTableGenerator<NestedTypeDeclsTableInfo> generator;
for (auto &entry : table)
generator.insert(entry.first, entry.second);
llvm::raw_svector_ostream blobStream(hashTableBlob);
// Make sure that no bucket is at offset 0
endian::write<uint32_t>(blobStream, 0, little);
tableOffset = generator.Emit(blobStream);
}
declList.emit(scratch, tableOffset, hashTableBlob);
}
static void
writeDeclMemberNamesTable(const index_block::DeclMemberNamesLayout &declNames,
const Serializer::DeclMemberNamesTable &table) {
SmallVector<uint64_t, 8> scratch;
llvm::SmallString<4096> hashTableBlob;
uint32_t tableOffset;
{
llvm::OnDiskChainedHashTableGenerator<DeclMemberNamesTableInfo> generator;
// Emit the offsets of the sub-tables; the tables themselves have been
// separately emitted into DECL_MEMBER_TABLES_BLOCK by now.
for (auto &entry : table) {
// Or they _should_ have been; check for nonzero offsets.
assert(static_cast<unsigned>(entry.second.first) != 0);
generator.insert(entry.first, entry.second.first);
}
llvm::raw_svector_ostream blobStream(hashTableBlob);
// Make sure that no bucket is at offset 0
endian::write<uint32_t>(blobStream, 0, little);
tableOffset = generator.Emit(blobStream);
}
declNames.emit(scratch, tableOffset, hashTableBlob);
}
static void
writeDeclMembersTable(const decl_member_tables_block::DeclMembersLayout &mems,
const Serializer::DeclMembersTable &table) {
SmallVector<uint64_t, 8> scratch;
llvm::SmallString<4096> hashTableBlob;
uint32_t tableOffset;
{
llvm::OnDiskChainedHashTableGenerator<DeclMembersTableInfo> generator;
for (auto &entry : table)
generator.insert(entry.first, entry.second);
llvm::raw_svector_ostream blobStream(hashTableBlob);
// Make sure that no bucket is at offset 0
endian::write<uint32_t>(blobStream, 0, little);
tableOffset = generator.Emit(blobStream);
}
mems.emit(scratch, tableOffset, hashTableBlob);
}
namespace {
/// Used to serialize the on-disk Objective-C method hash table.
class ObjCMethodTableInfo {
public:
using key_type = ObjCSelector;
using key_type_ref = key_type;
using data_type = Serializer::ObjCMethodTableData;
using data_type_ref = const data_type &;
using hash_value_type = uint32_t;
using offset_type = unsigned;
hash_value_type ComputeHash(key_type_ref key) {
llvm::SmallString<32> scratch;
return llvm::djbHash(key.getString(scratch), SWIFTMODULE_HASH_SEED);
}
std::pair<unsigned, unsigned> EmitKeyDataLength(raw_ostream &out,
key_type_ref key,
data_type_ref data) {
llvm::SmallString<32> scratch;
auto keyLength = key.getString(scratch).size();
assert(keyLength <= std::numeric_limits<uint16_t>::max() &&
"selector too long");
uint32_t dataLength = 0;
for (const auto &entry : data) {
dataLength += sizeof(uint32_t) + 1 + sizeof(uint32_t);
dataLength += std::get<0>(entry).size();
}
endian::Writer writer(out, little);
writer.write<uint16_t>(keyLength);
writer.write<uint32_t>(dataLength);
return { keyLength, dataLength };
}
void EmitKey(raw_ostream &out, key_type_ref key, unsigned len) {
#ifndef NDEBUG
uint64_t start = out.tell();
#endif
out << key;
assert((out.tell() - start == len) && "measured key length incorrectly");
}
void EmitData(raw_ostream &out, key_type_ref key, data_type_ref data,
unsigned len) {
static_assert(declIDFitsIn32Bits(), "DeclID too large");
endian::Writer writer(out, little);
for (const auto &entry : data) {
writer.write<uint32_t>(std::get<0>(entry).size());
writer.write<uint8_t>(std::get<1>(entry));
writer.write<uint32_t>(std::get<2>(entry));
out.write(std::get<0>(entry).c_str(), std::get<0>(entry).size());
}
}
};
} // end anonymous namespace
static void writeObjCMethodTable(const index_block::ObjCMethodTableLayout &out,
Serializer::ObjCMethodTable &objcMethods) {
// Collect all of the Objective-C selectors in the method table.
std::vector<ObjCSelector> selectors;
for (const auto &entry : objcMethods) {
selectors.push_back(entry.first);
}
// Sort the Objective-C selectors so we emit them in a stable order.
llvm::array_pod_sort(selectors.begin(), selectors.end());
// Create the on-disk hash table.
llvm::OnDiskChainedHashTableGenerator<ObjCMethodTableInfo> generator;
llvm::SmallString<32> hashTableBlob;
uint32_t tableOffset;
{
llvm::raw_svector_ostream blobStream(hashTableBlob);
for (auto selector : selectors) {
generator.insert(selector, objcMethods[selector]);
}
// Make sure that no bucket is at offset 0
endian::write<uint32_t>(blobStream, 0, little);
tableOffset = generator.Emit(blobStream);
}
SmallVector<uint64_t, 8> scratch;
out.emit(scratch, tableOffset, hashTableBlob);
}
/// Recursively walks the members and derived global decls of any nominal types
/// to build up global tables.
template<typename Range>
static void collectInterestingNestedDeclarations(
Serializer &S,
Range members,
Serializer::DeclTable &operatorMethodDecls,
Serializer::ObjCMethodTable &objcMethods,
Serializer::NestedTypeDeclsTable &nestedTypeDecls,
bool isLocal = false) {
const NominalTypeDecl *nominalParent = nullptr;
for (const Decl *member : members) {
// If there is a corresponding Objective-C method, record it.
auto recordObjCMethod = [&](const AbstractFunctionDecl *func) {
if (isLocal)
return;
if (auto owningClass = func->getDeclContext()->getSelfClassDecl()) {
if (func->isObjC()) {
Mangle::ASTMangler mangler;
std::string ownerName = mangler.mangleNominalType(owningClass);
assert(!ownerName.empty() && "Mangled type came back empty!");
objcMethods[func->getObjCSelector()].push_back(
std::make_tuple(ownerName,
func->isObjCInstanceMethod(),
S.addDeclRef(func)));
}
}
};
if (auto memberValue = dyn_cast<ValueDecl>(member)) {
if (memberValue->hasName() &&
memberValue->isOperator()) {
// Add operator methods.
// Note that we don't have to add operators that are already in the
// top-level list.
operatorMethodDecls[memberValue->getBaseName()].push_back({
/*ignored*/0,
S.addDeclRef(memberValue)
});
}
}
// Record Objective-C methods.
if (auto *func = dyn_cast<AbstractFunctionDecl>(member))
recordObjCMethod(func);
// Handle accessors.
if (auto storage = dyn_cast<AbstractStorageDecl>(member)) {
for (auto *accessor : storage->getAllAccessors()) {
recordObjCMethod(accessor);
}
}
if (auto nestedType = dyn_cast<TypeDecl>(member)) {
if (nestedType->getEffectiveAccess() > swift::AccessLevel::FilePrivate) {
if (!nominalParent) {
const DeclContext *DC = member->getDeclContext();
nominalParent = DC->getSelfNominalTypeDecl();
assert(nominalParent && "parent context is not a type or extension");
}
nestedTypeDecls[nestedType->getName()].push_back({
S.addDeclRef(nominalParent),
S.addDeclRef(nestedType)
});
}
}
// Recurse into nested declarations.
if (auto iterable = dyn_cast<IterableDeclContext>(member)) {
collectInterestingNestedDeclarations(S, iterable->getMembers(),
operatorMethodDecls,
objcMethods, nestedTypeDecls,
isLocal);
}
}
}
void Serializer::writeAST(ModuleOrSourceFile DC,
bool enableNestedTypeLookupTable) {
DeclTable topLevelDecls, operatorDecls, operatorMethodDecls;
DeclTable precedenceGroupDecls;
ObjCMethodTable objcMethods;
NestedTypeDeclsTable nestedTypeDecls;
LocalTypeHashTableGenerator localTypeGenerator, opaqueReturnTypeGenerator;
ExtensionTable extensionDecls;
bool hasLocalTypes = false;
bool hasOpaqueReturnTypes = false;
Optional<DeclID> entryPointClassID;
SmallVector<DeclID, 16> orderedTopLevelDecls;
ArrayRef<const FileUnit *> files;
SmallVector<const FileUnit *, 1> Scratch;
if (SF) {
Scratch.push_back(SF);
files = llvm::makeArrayRef(Scratch);
} else {
files = M->getFiles();
}
for (auto nextFile : files) {
if (nextFile->hasEntryPoint())
entryPointClassID = addDeclRef(nextFile->getMainClass());
// FIXME: Switch to a visitor interface?
SmallVector<Decl *, 32> fileDecls;
nextFile->getTopLevelDecls(fileDecls);
for (auto D : fileDecls) {
if (isa<ImportDecl>(D) || isa<IfConfigDecl>(D) ||
isa<PoundDiagnosticDecl>(D) || isa<TopLevelCodeDecl>(D)) {
continue;
}
if (auto VD = dyn_cast<ValueDecl>(D)) {
if (!VD->hasName())
continue;
topLevelDecls[VD->getBaseName()]
.push_back({ getKindForTable(D), addDeclRef(D) });
} else if (auto ED = dyn_cast<ExtensionDecl>(D)) {
const NominalTypeDecl *extendedNominal = ED->getExtendedNominal();
extensionDecls[extendedNominal->getName()]
.push_back({ extendedNominal, addDeclRef(D) });
} else if (auto OD = dyn_cast<OperatorDecl>(D)) {
operatorDecls[OD->getName()]
.push_back({ getStableFixity(OD->getKind()), addDeclRef(D) });
} else if (auto PGD = dyn_cast<PrecedenceGroupDecl>(D)) {
precedenceGroupDecls[PGD->getName()]
.push_back({ decls_block::PRECEDENCE_GROUP_DECL, addDeclRef(D) });
} else if (isa<PatternBindingDecl>(D)) {
// No special handling needed.
} else {
llvm_unreachable("all top-level declaration kinds accounted for");
}
orderedTopLevelDecls.push_back(addDeclRef(D));
// If this nominal type has associated top-level decls for a
// derived conformance (for example, ==), force them to be
// serialized.
if (auto IDC = dyn_cast<IterableDeclContext>(D)) {
collectInterestingNestedDeclarations(*this, IDC->getMembers(),
operatorMethodDecls, objcMethods,
nestedTypeDecls);
}
}
SmallVector<TypeDecl *, 16> localTypeDecls;
nextFile->getLocalTypeDecls(localTypeDecls);
SmallVector<OpaqueTypeDecl *, 16> opaqueReturnTypeDecls;
nextFile->getOpaqueReturnTypeDecls(opaqueReturnTypeDecls);
for (auto TD : localTypeDecls) {
// FIXME: We should delay parsing function bodies so these type decls
// don't even get added to the file.
if (TD->getDeclContext()->getInnermostSkippedFunctionContext())
continue;
hasLocalTypes = true;
Mangle::ASTMangler Mangler;
std::string MangledName =
evaluateOrDefault(M->getASTContext().evaluator,
MangleLocalTypeDeclRequest { TD },
std::string());
assert(!MangledName.empty() && "Mangled type came back empty!");
localTypeGenerator.insert(MangledName, addDeclRef(TD));
if (auto IDC = dyn_cast<IterableDeclContext>(TD)) {
collectInterestingNestedDeclarations(*this, IDC->getMembers(),
operatorMethodDecls, objcMethods,
nestedTypeDecls, /*isLocal=*/true);
}
}
for (auto OTD : opaqueReturnTypeDecls) {
hasOpaqueReturnTypes = true;
Mangle::ASTMangler Mangler;
auto MangledName = Mangler.mangleDeclAsUSR(OTD->getNamingDecl(),
MANGLING_PREFIX_STR);
opaqueReturnTypeGenerator.insert(MangledName, addDeclRef(OTD));
}
}
writeAllDeclsAndTypes();
std::vector<CharOffset> identifierOffsets = writeAllIdentifiers();
{
BCBlockRAII restoreBlock(Out, INDEX_BLOCK_ID, 4);
index_block::OffsetsLayout Offsets(Out);
writeOffsets(Offsets, DeclsToSerialize);
writeOffsets(Offsets, TypesToSerialize);
writeOffsets(Offsets, LocalDeclContextsToSerialize);
writeOffsets(Offsets, GenericSignaturesToSerialize);
writeOffsets(Offsets, SubstitutionMapsToSerialize);
writeOffsets(Offsets, NormalConformancesToSerialize);
writeOffsets(Offsets, SILLayoutsToSerialize);
Offsets.emit(ScratchRecord, index_block::IDENTIFIER_OFFSETS,
identifierOffsets);
index_block::DeclListLayout DeclList(Out);
writeDeclTable(DeclList, index_block::TOP_LEVEL_DECLS, topLevelDecls);
writeDeclTable(DeclList, index_block::OPERATORS, operatorDecls);
writeDeclTable(DeclList, index_block::PRECEDENCE_GROUPS, precedenceGroupDecls);
writeDeclTable(DeclList, index_block::CLASS_MEMBERS_FOR_DYNAMIC_LOOKUP,
ClassMembersForDynamicLookup);
writeDeclTable(DeclList, index_block::OPERATOR_METHODS, operatorMethodDecls);
if (hasLocalTypes)
writeLocalDeclTable(DeclList, index_block::LOCAL_TYPE_DECLS,
localTypeGenerator);
if (hasOpaqueReturnTypes)
writeLocalDeclTable(DeclList, index_block::OPAQUE_RETURN_TYPE_DECLS,
opaqueReturnTypeGenerator);
if (!extensionDecls.empty()) {
index_block::ExtensionTableLayout ExtensionTable(Out);
writeExtensionTable(ExtensionTable, extensionDecls, *this);
}
index_block::OrderedDeclsLayout OrderedDecls(Out);
OrderedDecls.emit(ScratchRecord, index_block::ORDERED_TOP_LEVEL_DECLS,
orderedTopLevelDecls);
index_block::ObjCMethodTableLayout ObjCMethodTable(Out);
writeObjCMethodTable(ObjCMethodTable, objcMethods);
if (enableNestedTypeLookupTable &&
!nestedTypeDecls.empty()) {
index_block::NestedTypeDeclsLayout NestedTypeDeclsTable(Out);
writeNestedTypeDeclsTable(NestedTypeDeclsTable, nestedTypeDecls);
}
if (entryPointClassID.hasValue()) {
index_block::EntryPointLayout EntryPoint(Out);
EntryPoint.emit(ScratchRecord, entryPointClassID.getValue());
}
{
// Write sub-tables to a skippable sub-block.
BCBlockRAII restoreBlock(Out, DECL_MEMBER_TABLES_BLOCK_ID, 4);
decl_member_tables_block::DeclMembersLayout DeclMembersTable(Out);
for (auto &entry : DeclMemberNames) {
// Save BitOffset we're writing sub-table to.
static_assert(bitOffsetFitsIn32Bits(), "BitOffset too large");
assert(Out.GetCurrentBitNo() < (1ull << 32));
entry.second.first = Out.GetCurrentBitNo();
// Write sub-table.
writeDeclMembersTable(DeclMembersTable, *entry.second.second);
}
}
// Write top-level table mapping names to sub-tables.
index_block::DeclMemberNamesLayout DeclMemberNamesTable(Out);
writeDeclMemberNamesTable(DeclMemberNamesTable, DeclMemberNames);
}
}
void SerializerBase::writeToStream(raw_ostream &os) {
os.write(Buffer.data(), Buffer.size());
os.flush();
}
SerializerBase::SerializerBase(ArrayRef<unsigned char> signature,
ModuleOrSourceFile DC) {
for (unsigned char byte : signature)
Out.Emit(byte, 8);
this->M = getModule(DC);
this->SF = DC.dyn_cast<SourceFile *>();
}
void Serializer::writeToStream(raw_ostream &os, ModuleOrSourceFile DC,
const SILModule *SILMod,
const SerializationOptions &options) {
Serializer S{SWIFTMODULE_SIGNATURE, DC};
// FIXME: This is only really needed for debugging. We don't actually use it.
S.writeBlockInfoBlock();
{
BCBlockRAII moduleBlock(S.Out, MODULE_BLOCK_ID, 2);
S.writeHeader(options);
S.writeInputBlock(options);
S.writeSIL(SILMod, options.SerializeAllSIL);
S.writeAST(DC, options.EnableNestedTypeLookupTable);
}
S.writeToStream(os);
}
void swift::serializeToBuffers(
ModuleOrSourceFile DC, const SerializationOptions &options,
std::unique_ptr<llvm::MemoryBuffer> *moduleBuffer,
std::unique_ptr<llvm::MemoryBuffer> *moduleDocBuffer,
std::unique_ptr<llvm::MemoryBuffer> *moduleSourceInfoBuffer,
const SILModule *M) {
assert(!StringRef::withNullAsEmpty(options.OutputPath).empty());
{
SharedTimer timer("Serialization, swiftmodule, to buffer");
llvm::SmallString<1024> buf;
llvm::raw_svector_ostream stream(buf);
Serializer::writeToStream(stream, DC, M, options);
bool hadError = withOutputFile(getContext(DC).Diags,
options.OutputPath,
[&](raw_ostream &out) {
out << stream.str();
return false;
});
if (hadError)
return;
if (moduleBuffer)
*moduleBuffer = llvm::make_unique<llvm::SmallVectorMemoryBuffer>(
std::move(buf), options.OutputPath);
}
if (!StringRef::withNullAsEmpty(options.DocOutputPath).empty()) {
SharedTimer timer("Serialization, swiftdoc, to buffer");
llvm::SmallString<1024> buf;
llvm::raw_svector_ostream stream(buf);
writeDocToStream(stream, DC, options.GroupInfoPath);
(void)withOutputFile(getContext(DC).Diags,
options.DocOutputPath,
[&](raw_ostream &out) {
out << stream.str();
return false;
});
if (moduleDocBuffer)
*moduleDocBuffer = llvm::make_unique<llvm::SmallVectorMemoryBuffer>(
std::move(buf), options.DocOutputPath);
}
if (!StringRef::withNullAsEmpty(options.SourceInfoOutputPath).empty()) {
SharedTimer timer("Serialization, swiftsourceinfo, to buffer");
llvm::SmallString<1024> buf;
llvm::raw_svector_ostream stream(buf);
writeSourceInfoToStream(stream, DC);
(void)withOutputFile(getContext(DC).Diags,
options.SourceInfoOutputPath,
[&](raw_ostream &out) {
out << stream.str();
return false;
});
if (moduleSourceInfoBuffer)
*moduleSourceInfoBuffer = llvm::make_unique<llvm::SmallVectorMemoryBuffer>(
std::move(buf), options.SourceInfoOutputPath);
}
}
// SWIFT_ENABLE_TENSORFLOW
void swift::serializeToMemory(
ModuleOrSourceFile DC, const SerializationOptions &options,
std::unique_ptr<llvm::MemoryBuffer> *moduleBuffer,
std::unique_ptr<llvm::MemoryBuffer> *moduleDocBuffer, const SILModule *M) {
if (moduleBuffer) {
SharedTimer timer("Serialization, swiftmodule, to memory");
llvm::SmallString<1024> buf;
llvm::raw_svector_ostream stream(buf);
Serializer::writeToStream(stream, DC, M, options);
*moduleBuffer =
llvm::make_unique<llvm::SmallVectorMemoryBuffer>(std::move(buf));
}
if (moduleDocBuffer) {
SharedTimer timer("Serialization, swiftdoc, to memory");
llvm::SmallString<1024> buf;
llvm::raw_svector_ostream stream(buf);
writeDocToStream(stream, DC, options.GroupInfoPath);
*moduleDocBuffer =
llvm::make_unique<llvm::SmallVectorMemoryBuffer>(std::move(buf));
}
}
void swift::serialize(ModuleOrSourceFile DC,
const SerializationOptions &options,
const SILModule *M) {
assert(!StringRef::withNullAsEmpty(options.OutputPath).empty());
if (StringRef(options.OutputPath) == "-") {
// Special-case writing to stdout.
Serializer::writeToStream(llvm::outs(), DC, M, options);
assert(StringRef::withNullAsEmpty(options.DocOutputPath).empty());
return;
}
bool hadError = withOutputFile(getContext(DC).Diags,
options.OutputPath,
[&](raw_ostream &out) {
SharedTimer timer("Serialization, swiftmodule");
Serializer::writeToStream(out, DC, M, options);
return false;
});
if (hadError)
return;
if (!StringRef::withNullAsEmpty(options.DocOutputPath).empty()) {
(void)withOutputFile(getContext(DC).Diags,
options.DocOutputPath,
[&](raw_ostream &out) {
SharedTimer timer("Serialization, swiftdoc");
writeDocToStream(out, DC, options.GroupInfoPath);
return false;
});
}
if (!StringRef::withNullAsEmpty(options.SourceInfoOutputPath).empty()) {
(void)withOutputFile(getContext(DC).Diags,
options.SourceInfoOutputPath,
[&](raw_ostream &out) {
SharedTimer timer("Serialization, swiftsourceinfo");
writeSourceInfoToStream(out, DC);
return false;
});
}
}