blob: 1b4134ca3ed4c89ae39d31f7bd2fe7f3ddfc25d0 [file] [log] [blame]
//===--- ConstraintGraph.cpp - Constraint Graph ---------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the \c ConstraintGraph class, which describes the
// relationships among the type variables within a constraint system.
//
//===----------------------------------------------------------------------===//
#include "ConstraintGraph.h"
#include "ConstraintGraphScope.h"
#include "ConstraintSystem.h"
#include "swift/Basic/Statistic.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/SaveAndRestore.h"
#include <algorithm>
#include <memory>
#include <numeric>
using namespace swift;
using namespace constraints;
#define DEBUG_TYPE "ConstraintGraph"
#pragma mark Graph construction/destruction
ConstraintGraph::ConstraintGraph(ConstraintSystem &cs) : CS(cs) { }
ConstraintGraph::~ConstraintGraph() {
assert(Changes.empty() && "Scope stack corrupted");
for (unsigned i = 0, n = TypeVariables.size(); i != n; ++i) {
auto &impl = TypeVariables[i]->getImpl();
delete impl.getGraphNode();
impl.setGraphNode(nullptr);
}
}
#pragma mark Graph accessors
std::pair<ConstraintGraphNode &, unsigned>
ConstraintGraph::lookupNode(TypeVariableType *typeVar) {
// Check whether we've already created a node for this type variable.
auto &impl = typeVar->getImpl();
if (auto nodePtr = impl.getGraphNode()) {
assert(impl.getGraphIndex() < TypeVariables.size() && "Out-of-bounds index");
assert(TypeVariables[impl.getGraphIndex()] == typeVar &&
"Type variable mismatch");
return { *nodePtr, impl.getGraphIndex() };
}
// Allocate the new node.
auto nodePtr = new ConstraintGraphNode(typeVar);
unsigned index = TypeVariables.size();
impl.setGraphNode(nodePtr);
impl.setGraphIndex(index);
// Record this type variable.
TypeVariables.push_back(typeVar);
// Record the change, if there are active scopes.
if (ActiveScope)
Changes.push_back(Change::addedTypeVariable(typeVar));
// If this type variable is not the representative of its equivalence class,
// add it to its representative's set of equivalences.
auto typeVarRep = CS.getRepresentative(typeVar);
if (typeVar != typeVarRep)
mergeNodes(typeVar, typeVarRep);
else if (auto fixed = CS.getFixedType(typeVarRep)) {
// Bind the type variable.
bindTypeVariable(typeVar, fixed);
}
return { *nodePtr, index };
}
ArrayRef<TypeVariableType *> ConstraintGraphNode::getEquivalenceClass() const{
assert(TypeVar == TypeVar->getImpl().getRepresentative(nullptr) &&
"Can't request equivalence class from non-representative type var");
return getEquivalenceClassUnsafe();
}
ArrayRef<TypeVariableType *>
ConstraintGraphNode::getEquivalenceClassUnsafe() const{
if (EquivalenceClass.empty())
EquivalenceClass.push_back(TypeVar);
return EquivalenceClass;
}
#pragma mark Node mutation
void ConstraintGraphNode::addConstraint(Constraint *constraint) {
assert(ConstraintIndex.count(constraint) == 0 && "Constraint re-insertion");
ConstraintIndex[constraint] = Constraints.size();
Constraints.push_back(constraint);
}
void ConstraintGraphNode::removeConstraint(Constraint *constraint) {
auto pos = ConstraintIndex.find(constraint);
assert(pos != ConstraintIndex.end());
// Remove this constraint from the constraint mapping.
auto index = pos->second;
ConstraintIndex.erase(pos);
assert(Constraints[index] == constraint && "Mismatched constraint");
// If this is the last constraint, just pop it off the list and we're done.
unsigned lastIndex = Constraints.size()-1;
if (index == lastIndex) {
Constraints.pop_back();
return;
}
// This constraint is somewhere in the middle; swap it with the last
// constraint, so we can remove the constraint from the vector in O(1)
// time rather than O(n) time.
auto lastConstraint = Constraints[lastIndex];
Constraints[index] = lastConstraint;
ConstraintIndex[lastConstraint] = index;
Constraints.pop_back();
}
ConstraintGraphNode::Adjacency &
ConstraintGraphNode::getAdjacency(TypeVariableType *typeVar) {
assert(typeVar != TypeVar && "Cannot be adjacent to oneself");
// Look for existing adjacency information.
auto pos = AdjacencyInfo.find(typeVar);
if (pos != AdjacencyInfo.end())
return pos->second;
// If we weren't already adjacent to this type variable, add it to the
// list of adjacencies.
pos = AdjacencyInfo.insert(
{ typeVar, { static_cast<unsigned>(Adjacencies.size()), 0 } })
.first;
Adjacencies.push_back(typeVar);
return pos->second;
}
void ConstraintGraphNode::modifyAdjacency(
TypeVariableType *typeVar,
llvm::function_ref<void(Adjacency& adj)> modify) {
// Find the adjacency information.
auto pos = AdjacencyInfo.find(typeVar);
assert(pos != AdjacencyInfo.end() && "Type variables not adjacent");
assert(Adjacencies[pos->second.Index] == typeVar && "Mismatched adjacency");
// Perform the modification .
modify(pos->second);
// If the adjacency is not empty, leave the information in there.
if (!pos->second.empty())
return;
// Remove this adjacency from the mapping.
unsigned index = pos->second.Index;
AdjacencyInfo.erase(pos);
// If this adjacency is last in the vector, just pop it off.
unsigned lastIndex = Adjacencies.size()-1;
if (index == lastIndex) {
Adjacencies.pop_back();
return;
}
// This adjacency is somewhere in the middle; swap it with the last
// adjacency so we can remove the adjacency from the vector in O(1) time
// rather than O(n) time.
auto lastTypeVar = Adjacencies[lastIndex];
Adjacencies[index] = lastTypeVar;
AdjacencyInfo[lastTypeVar].Index = index;
Adjacencies.pop_back();
}
void ConstraintGraphNode::addAdjacency(TypeVariableType *typeVar) {
auto &adjacency = getAdjacency(typeVar);
// Bump the degree of the adjacency.
++adjacency.NumConstraints;
}
void ConstraintGraphNode::removeAdjacency(TypeVariableType *typeVar) {
modifyAdjacency(typeVar, [](Adjacency &adj) {
assert(adj.NumConstraints > 0 && "No adjacency to remove?");
--adj.NumConstraints;
});
}
void ConstraintGraphNode::addToEquivalenceClass(
ArrayRef<TypeVariableType *> typeVars) {
assert(TypeVar == TypeVar->getImpl().getRepresentative(nullptr) &&
"Can't extend equivalence class of non-representative type var");
if (EquivalenceClass.empty())
EquivalenceClass.push_back(TypeVar);
EquivalenceClass.append(typeVars.begin(), typeVars.end());
}
void ConstraintGraphNode::addFixedBinding(TypeVariableType *typeVar) {
FixedBindings.push_back(typeVar);
}
void ConstraintGraphNode::removeFixedBinding(TypeVariableType *typeVar) {
FixedBindings.pop_back();
}
#pragma mark Graph scope management
ConstraintGraphScope::ConstraintGraphScope(ConstraintGraph &CG)
: CG(CG), ParentScope(CG.ActiveScope), NumChanges(CG.Changes.size())
{
CG.ActiveScope = this;
}
ConstraintGraphScope::~ConstraintGraphScope() {
// Pop changes off the stack until we hit the change could we had prior to
// introducing this scope.
assert(CG.Changes.size() >= NumChanges && "Scope stack corrupted");
while (CG.Changes.size() > NumChanges) {
CG.Changes.back().undo(CG);
CG.Changes.pop_back();
}
// The active scope is now the parent scope.
CG.ActiveScope = ParentScope;
}
ConstraintGraph::Change
ConstraintGraph::Change::addedTypeVariable(TypeVariableType *typeVar) {
Change result;
result.Kind = ChangeKind::AddedTypeVariable;
result.TypeVar = typeVar;
return result;
}
ConstraintGraph::Change
ConstraintGraph::Change::addedConstraint(Constraint *constraint) {
Change result;
result.Kind = ChangeKind::AddedConstraint;
result.TheConstraint = constraint;
return result;
}
ConstraintGraph::Change
ConstraintGraph::Change::removedConstraint(Constraint *constraint) {
Change result;
result.Kind = ChangeKind::RemovedConstraint;
result.TheConstraint = constraint;
return result;
}
ConstraintGraph::Change
ConstraintGraph::Change::extendedEquivalenceClass(TypeVariableType *typeVar,
unsigned prevSize) {
Change result;
result.Kind = ChangeKind::ExtendedEquivalenceClass;
result.EquivClass.TypeVar = typeVar;
result.EquivClass.PrevSize = prevSize;
return result;
}
ConstraintGraph::Change
ConstraintGraph::Change::boundTypeVariable(TypeVariableType *typeVar,
Type fixed) {
Change result;
result.Kind = ChangeKind::BoundTypeVariable;
result.Binding.TypeVar = typeVar;
result.Binding.FixedType = fixed.getPointer();
return result;
}
void ConstraintGraph::Change::undo(ConstraintGraph &cg) {
/// Temporarily change the active scope to null, so we don't record
/// any changes made while performing the undo operation.
llvm::SaveAndRestore<ConstraintGraphScope *> prevActiveScope(cg.ActiveScope,
nullptr);
switch (Kind) {
case ChangeKind::AddedTypeVariable:
cg.removeNode(TypeVar);
break;
case ChangeKind::AddedConstraint:
cg.removeConstraint(TheConstraint);
break;
case ChangeKind::RemovedConstraint:
cg.addConstraint(TheConstraint);
break;
case ChangeKind::ExtendedEquivalenceClass: {
auto &node = cg[EquivClass.TypeVar];
node.EquivalenceClass.erase(
node.EquivalenceClass.begin() + EquivClass.PrevSize,
node.EquivalenceClass.end());
break;
}
case ChangeKind::BoundTypeVariable:
cg.unbindTypeVariable(Binding.TypeVar, Binding.FixedType);
break;
}
}
#pragma mark Graph mutation
void ConstraintGraph::removeNode(TypeVariableType *typeVar) {
// Remove this node.
auto &impl = typeVar->getImpl();
unsigned index = impl.getGraphIndex();
delete impl.getGraphNode();
impl.setGraphNode(nullptr);
// Remove this type variable from the list.
unsigned lastIndex = TypeVariables.size()-1;
if (index < lastIndex)
TypeVariables[index] = TypeVariables[lastIndex];
TypeVariables.pop_back();
}
/// Enumerate the adjacency edges for the given constraint.
static void enumerateAdjacencies(
Constraint *constraint,
llvm::function_ref<void(TypeVariableType *, TypeVariableType *)> visitor) {
// Don't record adjacencies for one-way constraints.
if (constraint->isOneWayConstraint())
return;
// O(N^2) update for all of the adjacent type variables.
auto referencedTypeVars = constraint->getTypeVariables();
for (auto typeVar : referencedTypeVars) {
for (auto otherTypeVar : referencedTypeVars) {
if (typeVar == otherTypeVar)
continue;
visitor(typeVar, otherTypeVar);
}
}
}
void ConstraintGraph::addConstraint(Constraint *constraint) {
// Record the change, if there are active scopes.
if (ActiveScope) {
Changes.push_back(Change::addedConstraint(constraint));
}
if (constraint->getTypeVariables().empty()) {
// A constraint that doesn't reference any type variables is orphaned;
// track it as such.
OrphanedConstraints.push_back(constraint);
return;
}
// Record this constraint in each type variable.
for (auto typeVar : constraint->getTypeVariables()) {
(*this)[typeVar].addConstraint(constraint);
}
// Record adjacencies.
enumerateAdjacencies(constraint,
[&](TypeVariableType *lhs, TypeVariableType *rhs) {
assert(lhs != rhs);
(*this)[lhs].addAdjacency(rhs);
});
}
void ConstraintGraph::removeConstraint(Constraint *constraint) {
// Record the change, if there are active scopes.
if (ActiveScope)
Changes.push_back(Change::removedConstraint(constraint));
if (constraint->getTypeVariables().empty()) {
// A constraint that doesn't reference any type variables is orphaned;
// remove it from the list of orphaned constraints.
auto known = std::find(OrphanedConstraints.begin(),
OrphanedConstraints.end(),
constraint);
assert(known != OrphanedConstraints.end() && "missing orphaned constraint");
*known = OrphanedConstraints.back();
OrphanedConstraints.pop_back();
return;
}
// Remove the constraint from each type variable.
for (auto typeVar : constraint->getTypeVariables()) {
(*this)[typeVar].removeConstraint(constraint);
}
// Remove all adjacencies for all type variables.
enumerateAdjacencies(constraint,
[&](TypeVariableType *lhs, TypeVariableType *rhs) {
assert(lhs != rhs);
(*this)[lhs].removeAdjacency(rhs);
});
}
void ConstraintGraph::mergeNodes(TypeVariableType *typeVar1,
TypeVariableType *typeVar2) {
assert(CS.getRepresentative(typeVar1) == CS.getRepresentative(typeVar2) &&
"type representatives don't match");
// Retrieve the node for the representative that we're merging into.
auto typeVarRep = CS.getRepresentative(typeVar1);
auto &repNode = (*this)[typeVarRep];
// Retrieve the node for the non-representative.
assert((typeVar1 == typeVarRep || typeVar2 == typeVarRep) &&
"neither type variable is the new representative?");
auto typeVarNonRep = typeVar1 == typeVarRep? typeVar2 : typeVar1;
// Record the change, if there are active scopes.
if (ActiveScope)
Changes.push_back(Change::extendedEquivalenceClass(
typeVarRep,
repNode.getEquivalenceClass().size()));
// Merge equivalence class from the non-representative type variable.
auto &nonRepNode = (*this)[typeVarNonRep];
repNode.addToEquivalenceClass(nonRepNode.getEquivalenceClassUnsafe());
}
void ConstraintGraph::bindTypeVariable(TypeVariableType *typeVar, Type fixed) {
// If there are no type variables in the fixed type, there's nothing to do.
if (!fixed->hasTypeVariable())
return;
SmallVector<TypeVariableType *, 4> typeVars;
llvm::SmallPtrSet<TypeVariableType *, 4> knownTypeVars;
fixed->getTypeVariables(typeVars);
auto &node = (*this)[typeVar];
for (auto otherTypeVar : typeVars) {
if (knownTypeVars.insert(otherTypeVar).second) {
if (typeVar == otherTypeVar) continue;
(*this)[otherTypeVar].addFixedBinding(typeVar);
node.addFixedBinding(otherTypeVar);
}
}
// Record the change, if there are active scopes.
// Note: If we ever use this to undo the actual variable binding,
// we'll need to store the change along the early-exit path as well.
if (ActiveScope)
Changes.push_back(Change::boundTypeVariable(typeVar, fixed));
}
void ConstraintGraph::unbindTypeVariable(TypeVariableType *typeVar, Type fixed){
// If there are no type variables in the fixed type, there's nothing to do.
if (!fixed->hasTypeVariable())
return;
SmallVector<TypeVariableType *, 4> typeVars;
llvm::SmallPtrSet<TypeVariableType *, 4> knownTypeVars;
fixed->getTypeVariables(typeVars);
auto &node = (*this)[typeVar];
for (auto otherTypeVar : typeVars) {
if (knownTypeVars.insert(otherTypeVar).second) {
(*this)[otherTypeVar].removeFixedBinding(typeVar);
node.removeFixedBinding(otherTypeVar);
}
}
}
llvm::TinyPtrVector<Constraint *> ConstraintGraph::gatherConstraints(
TypeVariableType *typeVar, GatheringKind kind,
llvm::function_ref<bool(Constraint *)> acceptConstraintFn) {
llvm::TinyPtrVector<Constraint *> constraints;
// Whether we should consider this constraint at all.
auto rep = CS.getRepresentative(typeVar);
auto shouldConsiderConstraint = [&](Constraint *constraint) {
// For a one-way constraint, only consider it when the type variable
// is on the right-hand side of the the binding, and the left-hand side of
// the binding is one of the type variables currently under consideration.
if (constraint->isOneWayConstraint()) {
auto lhsTypeVar =
constraint->getFirstType()->castTo<TypeVariableType>();
if (!CS.isActiveTypeVariable(lhsTypeVar))
return false;
SmallVector<TypeVariableType *, 2> rhsTypeVars;
constraint->getSecondType()->getTypeVariables(rhsTypeVars);
for (auto rhsTypeVar : rhsTypeVars) {
if (CS.getRepresentative(rhsTypeVar) == rep)
return true;
}
return false;
}
return true;
};
auto acceptConstraint = [&](Constraint *constraint) {
return shouldConsiderConstraint(constraint) &&
acceptConstraintFn(constraint);
};
// Add constraints for the given adjacent type variable.
llvm::SmallPtrSet<TypeVariableType *, 4> typeVars;
// Local function to add constraints
llvm::SmallPtrSet<Constraint *, 4> visitedConstraints;
auto addConstraintsOfAdjacency = [&](TypeVariableType *adjTypeVar) {
ArrayRef<TypeVariableType *> adjTypeVarsToVisit;
switch (kind) {
case GatheringKind::EquivalenceClass:
adjTypeVarsToVisit = adjTypeVar;
break;
case GatheringKind::AllMentions:
adjTypeVarsToVisit
= (*this)[CS.getRepresentative(adjTypeVar)].getEquivalenceClass();
break;
}
for (auto adjTypeVarEquiv : adjTypeVarsToVisit) {
if (!typeVars.insert(adjTypeVarEquiv).second)
continue;
for (auto constraint : (*this)[adjTypeVarEquiv].getConstraints()) {
if (visitedConstraints.insert(constraint).second &&
acceptConstraint(constraint))
constraints.push_back(constraint);
}
}
};
auto &reprNode = (*this)[CS.getRepresentative(typeVar)];
auto equivClass = reprNode.getEquivalenceClass();
for (auto typeVar : equivClass) {
if (!typeVars.insert(typeVar).second)
continue;
for (auto constraint : (*this)[typeVar].getConstraints()) {
if (visitedConstraints.insert(constraint).second &&
acceptConstraint(constraint))
constraints.push_back(constraint);
}
auto &node = (*this)[typeVar];
for (auto adjTypeVar : node.getFixedBindings()) {
addConstraintsOfAdjacency(adjTypeVar);
}
switch (kind) {
case GatheringKind::EquivalenceClass:
break;
case GatheringKind::AllMentions:
// Retrieve the constraints from adjacent bindings.
for (auto adjTypeVar : node.getAdjacencies()) {
addConstraintsOfAdjacency(adjTypeVar);
}
break;
}
}
return constraints;
}
#pragma mark Algorithms
/// Perform a depth-first search.
///
/// \param cg The constraint graph.
/// \param typeVar The type variable we're searching from.
/// \param preVisitNode Called before traversing a node. Must return \c
/// false when the node has already been visited.
/// \param visitConstraint Called before considering a constraint. If it
/// returns \c false, that constraint will be skipped.
/// \param visitedConstraints Set of already-visited constraints, used
/// internally to avoid duplicated work.
static void depthFirstSearch(
ConstraintGraph &cg,
TypeVariableType *typeVar,
llvm::function_ref<bool(TypeVariableType *)> preVisitNode,
llvm::function_ref<bool(Constraint *)> visitConstraint,
llvm::SmallPtrSet<Constraint *, 8> &visitedConstraints) {
// Visit this node. If we've already seen it, bail out.
if (!preVisitNode(typeVar))
return;
// Local function to visit adjacent type variables.
auto visitAdjacencies = [&](ArrayRef<TypeVariableType *> adjTypeVars) {
for (auto adj : adjTypeVars) {
if (adj == typeVar)
continue;
// Recurse into this node.
depthFirstSearch(cg, adj, preVisitNode, visitConstraint,
visitedConstraints);
}
};
// Walk all of the constraints associated with this node to find related
// nodes.
auto &node = cg[typeVar];
for (auto constraint : node.getConstraints()) {
// If we've already seen this constraint, skip it.
if (!visitedConstraints.insert(constraint).second)
continue;
if (visitConstraint(constraint))
visitAdjacencies(constraint->getTypeVariables());
}
// Visit all of the other nodes in the equivalence class.
auto repTypeVar = cg.getConstraintSystem().getRepresentative(typeVar);
if (typeVar == repTypeVar) {
// We are the representative, so visit all of the other type variables
// in this equivalence class.
visitAdjacencies(node.getEquivalenceClass());
} else {
// We are not the representative; visit the representative.
visitAdjacencies(repTypeVar);
}
// Walk any type variables related via fixed bindings.
visitAdjacencies(node.getFixedBindings());
}
namespace {
/// A union-find connected components algorithm used to find the connected
/// components within a constraint graph.
class ConnectedComponents {
ConstraintGraph &cg;
ArrayRef<TypeVariableType *> typeVars;
/// A mapping from each type variable to its representative in a union-find
/// data structure, excluding entries where the type variable is its own
/// representative.
mutable llvm::SmallDenseMap<TypeVariableType *, TypeVariableType *>
representatives;
/// The complete set of constraints that were visited while computing
/// connected components.
llvm::SmallPtrSet<Constraint *, 8> visitedConstraints;
/// Describes the one-way incoming and outcoming adjacencies of
/// a component within the directed graph of one-way constraints.
struct OneWayComponent {
/// The (uniqued) set of type variable representatives to which this
/// component has an outgoing edge.
TinyPtrVector<TypeVariableType *> outAdjacencies;
/// The (uniqued) set of type variable representatives from which this
/// component has an incoming edge.
TinyPtrVector<TypeVariableType *> inAdjacencies;
};
// Adjacency list representation of the directed graph of edges for
// one-way constraints, using type variable representatives as the
// nodes.
llvm::SmallDenseMap<TypeVariableType *, OneWayComponent> oneWayDigraph;
public:
using Component = ConstraintGraph::Component;
/// Compute connected components for the given set of type variables
/// in the constraint graph.
ConnectedComponents(ConstraintGraph &cg,
ArrayRef<TypeVariableType *> typeVars)
: cg(cg), typeVars(typeVars)
{
auto oneWayConstraints = connectedComponents();
// If there were no one-way constraints, we're done.
if (oneWayConstraints.empty())
return;
// Build the directed one-way constraint graph.
buildOneWayConstraintGraph(oneWayConstraints);
}
/// Retrieve the set of components.
SmallVector<Component, 1> getComponents() const {
// Figure out which components have unbound type variables and/or
// constraints. These are the only components we want to report.
llvm::SmallDenseSet<TypeVariableType *> validComponents;
auto &cs = cg.getConstraintSystem();
for (auto typeVar : typeVars) {
// If this type variable has a fixed type, skip it.
if (cs.getFixedType(typeVar))
continue;
auto rep = findRepresentative(typeVar);
validComponents.insert(rep);
}
for (auto &constraint : cs.getConstraints()) {
for (auto typeVar : constraint.getTypeVariables()) {
auto rep = findRepresentative(typeVar);
validComponents.insert(rep);
}
}
// Capture the type variables of each component.
llvm::SmallDenseMap<TypeVariableType *, Component> components;
SmallVector<TypeVariableType *, 4> representativeTypeVars;
for (auto typeVar : typeVars) {
// Find the representative. If we aren't creating a type variable
// for this component, skip it.
auto rep = findRepresentative(typeVar);
if (validComponents.count(rep) == 0)
continue;
// If this type variable is the representative, add it to the list of
// representatives.
if (rep == typeVar) {
representativeTypeVars.push_back(rep);
}
// Record this type variable in the set of type variables for its
// component.
auto &component = components.insert(
{rep, Component(components.size())}).first->second;
component.typeVars.push_back(typeVar);
}
// Retrieve the component for the given representative type variable.
auto getComponent = [&](TypeVariableType *rep) -> Component& {
auto component = components.find(rep);
assert(component != components.end());
return component->second;
};
// Assign each constraint to its appropriate component.
// Note: we use the inactive constraints so that we maintain the
// order of constraints when we re-introduce them.
for (auto &constraint : cs.getConstraints()) {
auto constraintTypeVars = constraint.getTypeVariables();
if (constraintTypeVars.empty())
continue;
TypeVariableType *typeVar;
if (constraint.isOneWayConstraint()) {
// For one-way constraints, associate the constraint with the
// left-hand type variable.
typeVar = constraint.getFirstType()->castTo<TypeVariableType>();
} else {
typeVar = constraintTypeVars.front();
}
auto rep = findRepresentative(typeVar);
getComponent(rep).addConstraint(&constraint);
}
// If we have any one-way constraint information, compute the ordering
// of representative type variables needed to respect one-way
// constraints while solving.
if (!oneWayDigraph.empty()) {
// Sort the representative type variables based on the disjunction
// count, so
std::sort(representativeTypeVars.begin(), representativeTypeVars.end(),
[&](TypeVariableType *lhs, TypeVariableType *rhs) {
return getComponent(lhs).getNumDisjunctions() >
getComponent(rhs).getNumDisjunctions();
});
representativeTypeVars =
computeOneWayComponentOrdering(representativeTypeVars,
validComponents);
// Fill in one-way dependency information for all of the components.
for (auto typeVar : representativeTypeVars) {
auto knownOneWayComponent = oneWayDigraph.find(typeVar);
if (knownOneWayComponent == oneWayDigraph.end())
continue;
auto &oneWayComponent = knownOneWayComponent->second;
auto &component = getComponent(typeVar);
for (auto inAdj : oneWayComponent.inAdjacencies) {
if (validComponents.count(inAdj) == 0)
continue;
component.dependsOn.push_back(getComponent(inAdj).solutionIndex);
}
}
}
// Flatten the set of components.
SmallVector<Component, 1> flatComponents;
flatComponents.reserve(
representativeTypeVars.size() + cg.getOrphanedConstraints().size());
for (auto rep: representativeTypeVars) {
assert(components.count(rep) == 1);
flatComponents.push_back(std::move(getComponent(rep)));
}
// Gather orphaned constraints; each gets its own component.
for (auto orphaned : cg.getOrphanedConstraints()) {
flatComponents.push_back(Component(flatComponents.size()));
flatComponents.back().addConstraint(orphaned);
}
// Create component ordering based on the information associated
// with constraints in each step - e.g. number of disjunctions,
// since components are going to be executed in LIFO order, we'd
// want to have smaller/faster components at the back of the list.
// When there are one-way constraints, we can't reorder them, so only
// sort the orphaned constraints at the back. In the absense of
// one-way constraints, sort everything.
if (components.size() > 1) {
auto sortStart = oneWayDigraph.empty()
? flatComponents.begin()
: flatComponents.end() - cg.getOrphanedConstraints().size();
std::sort(sortStart, flatComponents.end(),
[&](const Component &lhs, const Component &rhs) {
return lhs.getNumDisjunctions() > rhs.getNumDisjunctions();
});
}
return flatComponents;
}
/// Find the representative for the given type variable within the set
/// of representatives in a union-find data structure.
TypeVariableType *findRepresentative(TypeVariableType *typeVar) const {
// If we don't have a record of this type variable, it is it's own
// representative.
auto known = representatives.find(typeVar);
if (known == representatives.end() || known->second == typeVar)
return typeVar;
// Find the representative of the parent.
auto parent = known->second;
auto rep = findRepresentative(parent);
representatives[typeVar] = rep;
return rep;
}
private:
/// Perform the union of two type variables in a union-find data structure
/// used for connected components.
///
/// \returns true if the two components were separate and have now been
/// joined, \c false if they were already in the same set.
bool unionSets(TypeVariableType *typeVar1, TypeVariableType *typeVar2) {
auto rep1 = findRepresentative(typeVar1);
auto rep2 = findRepresentative(typeVar2);
if (rep1 == rep2)
return false;
// Reparent the type variable with the higher ID. The actual choice doesn't
// matter, but this makes debugging easier.
if (rep1->getID() < rep2->getID())
representatives[rep2] = rep1;
else
representatives[rep1] = rep2;
return true;
}
/// Perform the connected components algorithm, skipping one-way
/// constraints.
///
/// \returns the set of one-way constraints that were skipped.
TinyPtrVector<Constraint *> connectedComponents() {
TinyPtrVector<Constraint *> oneWayConstraints;
// Perform a depth-first search from each type variable to identify
// what component it is in.
for (auto typeVar : typeVars) {
// If we've already assigned a representative to this type variable,
// we're done.
if (representatives.count(typeVar) > 0)
continue;
// Perform a depth-first search to mark those type variables that are
// in the same component as this type variable.
depthFirstSearch(
cg, typeVar,
[&](TypeVariableType *found) {
// If we have already seen this node, we're done.
auto inserted = representatives.insert({found, typeVar});
assert((inserted.second || inserted.first->second == typeVar) &&
"Wrong component?");
return inserted.second;
},
[&](Constraint *constraint) {
// Record and skip one-way constraints.
if (constraint->isOneWayConstraint()) {
oneWayConstraints.push_back(constraint);
return false;
}
return true;
},
visitedConstraints);
}
return oneWayConstraints;
}
/// Insert the given type variable into the given vector if it isn't
/// already present.
static void insertIfUnique(TinyPtrVector<TypeVariableType *> &vector,
TypeVariableType *typeVar) {
if (std::find(vector.begin(), vector.end(), typeVar) == vector.end())
vector.push_back(typeVar);
}
/// Retrieve the (uniqued) set of type variable representations that occur
/// within the given type.
TinyPtrVector<TypeVariableType *>
getRepresentativesInType(Type type) const {
TinyPtrVector<TypeVariableType *> results;
SmallVector<TypeVariableType *, 2> typeVars;
type->getTypeVariables(typeVars);
for (auto typeVar : typeVars) {
auto rep = findRepresentative(typeVar);
insertIfUnique(results, rep);
}
return results;
}
/// Add all of the one-way constraints to the one-way digraph
void addOneWayConstraintEdges(ArrayRef<Constraint *> oneWayConstraints) {
for (auto constraint : oneWayConstraints) {
auto lhsTypeReps =
getRepresentativesInType(constraint->getFirstType());
auto rhsTypeReps =
getRepresentativesInType(constraint->getSecondType());
// Add an edge from the type representatives on the right-hand side
// of the one-way constraint to the type representatives on the
// left-hand side, because the right-hand type variables need to
// be solved before the left-hand type variables.
for (auto lhsTypeRep : lhsTypeReps) {
for (auto rhsTypeRep : rhsTypeReps) {
if (lhsTypeRep == rhsTypeRep)
break;
insertIfUnique(oneWayDigraph[rhsTypeRep].outAdjacencies,lhsTypeRep);
insertIfUnique(oneWayDigraph[lhsTypeRep].inAdjacencies,rhsTypeRep);
}
}
}
}
using TypeVariablePair = std::pair<TypeVariableType *, TypeVariableType *>;
/// Build the directed graph of one-way constraints among components.
void buildOneWayConstraintGraph(ArrayRef<Constraint *> oneWayConstraints) {
auto &cs = cg.getConstraintSystem();
auto &ctx = cs.getASTContext();
bool contractedCycle = false;
do {
// Construct the one-way digraph from scratch.
oneWayDigraph.clear();
addOneWayConstraintEdges(oneWayConstraints);
// Minimize the in-adjacencies, detecting cycles along the way.
SmallVector<TypeVariablePair, 4> cycleEdges;
removeIndirectOneWayInAdjacencies(cycleEdges);
// For any contractions we need to perform due to cycles, perform a
// union the connected components based on the type variable pairs.
contractedCycle = false;
for (const auto &edge : cycleEdges) {
if (unionSets(edge.first, edge.second)) {
if (ctx.LangOpts.DebugConstraintSolver) {
auto &log = ctx.TypeCheckerDebug->getStream();
if (cs.solverState)
log.indent(cs.solverState->depth * 2);
log << "Collapsing one-way components for $T"
<< edge.first->getID() << " and $T" << edge.second->getID()
<< " due to cycle.\n";
}
if (ctx.Stats) {
ctx.Stats->getFrontendCounters()
.NumCyclicOneWayComponentsCollapsed++;
}
contractedCycle = true;
}
}
} while (contractedCycle);
}
/// Perform a depth-first search to produce a from the given type variable,
/// notifying the function object.
///
/// \param getAdjacencies Called to retrieve the set of type variables
/// that are adjacent to the given type variable.
///
/// \param preVisit Called before visiting the adjacencies of the given
/// type variable. When it returns \c true, the adjacencies of this type
/// variable will be visited. When \c false, the adjacencies will not be
/// visited and \c postVisit will not be called.
///
/// \param postVisit Called after visiting the adjacencies of the given
/// type variable.
static void postorderDepthFirstSearchRec(
TypeVariableType *typeVar,
llvm::function_ref<
ArrayRef<TypeVariableType *>(TypeVariableType *)> getAdjacencies,
llvm::function_ref<bool(TypeVariableType *)> preVisit,
llvm::function_ref<void(TypeVariableType *)> postVisit) {
if (!preVisit(typeVar))
return;
for (auto adj : getAdjacencies(typeVar)) {
postorderDepthFirstSearchRec(adj, getAdjacencies, preVisit, postVisit);
}
postVisit(typeVar);
}
/// Minimize the incoming adjacencies for one of the nodes in the one-way
/// directed graph by eliminating any in-adjacencies that can also be
/// found indirectly.
void removeIndirectOneWayInAdjacencies(
TypeVariableType *typeVar,
OneWayComponent &component,
SmallVectorImpl<TypeVariablePair> &cycleEdges) {
// Perform a depth-first search from each of the in adjacencies to
// this type variable, traversing each of the one-way edges backwards
// to find all of the components whose type variables must be
// bound before this component can be solved.
SmallPtrSet<TypeVariableType *, 4> visited;
SmallPtrSet<TypeVariableType *, 4> indirectlyReachable;
SmallVector<TypeVariableType *, 4> currentPath;
for (auto inAdj : component.inAdjacencies) {
postorderDepthFirstSearchRec(
inAdj,
[&](TypeVariableType *typeVar) -> ArrayRef<TypeVariableType *> {
// Traverse the outgoing adjacencies for the subcomponent
auto oneWayComponent = oneWayDigraph.find(typeVar);
if (oneWayComponent == oneWayDigraph.end()) {
return { };
}
return oneWayComponent->second.inAdjacencies;
},
[&](TypeVariableType *typeVar) {
// If we haven't seen this type variable yet, add it to the
// path.
if (visited.insert(typeVar).second) {
currentPath.push_back(typeVar);
return true;
}
// Add edges between this type variable and every other type
// variable in the path.
for (auto otherTypeVar : llvm::reverse(currentPath)) {
// When we run into our own type variable, we're done.
if (otherTypeVar == typeVar)
break;
cycleEdges.push_back({typeVar, otherTypeVar});
}
return false;
},
[&](TypeVariableType *dependsOn) {
// Remove this type variable from the path.
assert(currentPath.back() == dependsOn);
currentPath.pop_back();
// Don't record dependency on ourselves.
if (dependsOn == inAdj)
return;
indirectlyReachable.insert(dependsOn);
});
// Remove any in-adjacency of this component that is indirectly
// reachable.
component.inAdjacencies.erase(
std::remove_if(component.inAdjacencies.begin(),
component.inAdjacencies.end(),
[&](TypeVariableType *inAdj) {
return indirectlyReachable.count(inAdj) > 0;
}),
component.inAdjacencies.end());
}
}
/// Minimize the incoming adjacencies for all of the nodes in the one-way
/// directed graph by eliminating any in-adjacencies that can also be
/// found indirectly.
void removeIndirectOneWayInAdjacencies(
SmallVectorImpl<TypeVariablePair> &cycleEdges) {
for (auto &oneWayEntry : oneWayDigraph) {
auto typeVar = oneWayEntry.first;
auto &component = oneWayEntry.second;
removeIndirectOneWayInAdjacencies(typeVar, component, cycleEdges);
}
}
/// Compute the order in which the components should be visited to respect
/// one-way constraints.
///
/// \param representativeTypeVars the set of type variables that
/// represent the components, in a preferred ordering that does not
/// account for one-way constraints.
/// \returns the set of type variables that represent the components, in
/// an ordering that ensures that components containing type variables
/// that occur on the left-hand side of a one-way constraint will be
/// solved after the components for type variables on the right-hand
/// side of that constraint.
SmallVector<TypeVariableType *, 4> computeOneWayComponentOrdering(
ArrayRef<TypeVariableType *> representativeTypeVars,
llvm::SmallDenseSet<TypeVariableType *> &validComponents) const {
SmallVector<TypeVariableType *, 4> orderedReps;
orderedReps.reserve(representativeTypeVars.size());
SmallPtrSet<TypeVariableType *, 4> visited;
for (auto rep : llvm::reverse(representativeTypeVars)) {
// Perform a postorder depth-first search through the one-way digraph,
// starting at this representative, to establish the dependency
// ordering amongst components that are reachable
// to establish the dependency ordering for the representative type
// variables.
postorderDepthFirstSearchRec(
rep,
[&](TypeVariableType *typeVar) -> ArrayRef<TypeVariableType *> {
// Traverse the outgoing adjacencies for the subcomponent
assert(typeVar == findRepresentative(typeVar));
auto oneWayComponent = oneWayDigraph.find(typeVar);
if (oneWayComponent == oneWayDigraph.end()) {
return { };
}
return oneWayComponent->second.outAdjacencies;
},
[&](TypeVariableType *typeVar) {
return visited.insert(typeVar).second;
},
[&](TypeVariableType *typeVar) {
// Record this type variable, if it's one of the representative
// type variables.
if (validComponents.count(typeVar) > 0)
orderedReps.push_back(typeVar);
});
}
assert(orderedReps.size() == representativeTypeVars.size());
return orderedReps;
}
};
}
void ConstraintGraph::Component::addConstraint(Constraint *constraint) {
if (constraint->getKind() == ConstraintKind::Disjunction)
++numDisjunctions;
constraints.push_back(constraint);
}
SmallVector<ConstraintGraph::Component, 1>
ConstraintGraph::computeConnectedComponents(
ArrayRef<TypeVariableType *> typeVars) {
// Perform connected components via a union-find algorithm on all of the
// constraints adjacent to these type variables.
ConnectedComponents cc(*this, typeVars);
return cc.getComponents();
}
/// For a given constraint kind, decide if we should attempt to eliminate its
/// edge in the graph.
static bool shouldContractEdge(ConstraintKind kind) {
switch (kind) {
case ConstraintKind::Bind:
case ConstraintKind::BindParam:
case ConstraintKind::BindToPointerType:
case ConstraintKind::Equal:
return true;
default:
return false;
}
}
bool ConstraintGraph::contractEdges() {
SmallVector<Constraint *, 16> constraints;
CS.findConstraints(constraints, [&](const Constraint &constraint) {
// Track how many constraints did contraction algorithm iterated over.
incrementConstraintsPerContractionCounter();
return shouldContractEdge(constraint.getKind());
});
bool didContractEdges = false;
for (auto *constraint : constraints) {
auto kind = constraint->getKind();
// Contract binding edges between type variables.
assert(shouldContractEdge(kind));
auto t1 = constraint->getFirstType()->getDesugaredType();
auto t2 = constraint->getSecondType()->getDesugaredType();
auto tyvar1 = t1->getAs<TypeVariableType>();
auto tyvar2 = t2->getAs<TypeVariableType>();
if (!(tyvar1 && tyvar2))
continue;
auto isParamBindingConstraint = kind == ConstraintKind::BindParam;
// If the argument is allowed to bind to `inout`, in general,
// it's invalid to contract the edge between argument and parameter,
// but if we can prove that there are no possible bindings
// which result in attempt to bind `inout` type to argument
// type variable, we should go ahead and allow (temporary)
// contraction, because that greatly helps with performance.
// Such action is valid because argument type variable can
// only get its bindings from related overload, which gives
// us enough information to decided on l-valueness.
if (isParamBindingConstraint && tyvar1->getImpl().canBindToInOut()) {
bool isNotContractable = true;
if (auto bindings = CS.getPotentialBindings(tyvar1)) {
for (auto &binding : bindings.Bindings) {
auto type = binding.BindingType;
isNotContractable = type.findIf([&](Type nestedType) -> bool {
if (auto tv = nestedType->getAs<TypeVariableType>()) {
if (tv->getImpl().canBindToInOut())
return true;
}
return nestedType->is<InOutType>();
});
// If there is at least one non-contractable binding, let's
// not risk contracting this edge.
if (isNotContractable)
break;
}
}
if (isNotContractable)
continue;
}
auto rep1 = CS.getRepresentative(tyvar1);
auto rep2 = CS.getRepresentative(tyvar2);
if (((rep1->getImpl().canBindToLValue() ==
rep2->getImpl().canBindToLValue()) ||
// Allow l-value contractions when binding parameter types.
isParamBindingConstraint)) {
if (CS.TC.getLangOpts().DebugConstraintSolver) {
auto &log = CS.getASTContext().TypeCheckerDebug->getStream();
if (CS.solverState)
log.indent(CS.solverState->depth * 2);
log << "Contracting constraint ";
constraint->print(log, &CS.getASTContext().SourceMgr);
log << "\n";
}
// Merge the edges and remove the constraint.
removeEdge(constraint);
if (rep1 != rep2)
CS.mergeEquivalenceClasses(rep1, rep2, /*updateWorkList*/ false);
didContractEdges = true;
}
}
return didContractEdges;
}
void ConstraintGraph::removeEdge(Constraint *constraint) {
bool isExistingConstraint = false;
for (auto &active : CS.ActiveConstraints) {
if (&active == constraint) {
CS.ActiveConstraints.erase(constraint);
isExistingConstraint = true;
break;
}
}
for (auto &inactive : CS.InactiveConstraints) {
if (&inactive == constraint) {
CS.InactiveConstraints.erase(constraint);
isExistingConstraint = true;
break;
}
}
if (CS.solverState) {
if (isExistingConstraint)
CS.solverState->retireConstraint(constraint);
else
CS.solverState->removeGeneratedConstraint(constraint);
}
removeConstraint(constraint);
}
void ConstraintGraph::optimize() {
// Merge equivalence classes until a fixed point is reached.
while (contractEdges()) {}
}
void ConstraintGraph::incrementConstraintsPerContractionCounter() {
SWIFT_FUNC_STAT;
auto &context = CS.getASTContext();
if (context.Stats)
context.Stats->getFrontendCounters()
.NumConstraintsConsideredForEdgeContraction++;
}
#pragma mark Debugging output
void ConstraintGraphNode::print(llvm::raw_ostream &out, unsigned indent) {
out.indent(indent);
TypeVar->print(out);
out << ":\n";
// Print constraints.
if (!Constraints.empty()) {
out.indent(indent + 2);
out << "Constraints:\n";
SmallVector<Constraint *, 4> sortedConstraints(Constraints.begin(),
Constraints.end());
std::sort(sortedConstraints.begin(), sortedConstraints.end());
for (auto constraint : sortedConstraints) {
out.indent(indent + 4);
constraint->print(out, &TypeVar->getASTContext().SourceMgr);
out << "\n";
}
}
if (!Adjacencies.empty()) {
out.indent(indent + 2);
out << "Adjacencies:";
SmallVector<TypeVariableType *, 4> sortedAdjacencies(Adjacencies.begin(),
Adjacencies.end());
std::sort(sortedAdjacencies.begin(), sortedAdjacencies.end(),
[](TypeVariableType *lhs, TypeVariableType *rhs) {
return lhs->getID() < rhs->getID();
});
for (auto adj : sortedAdjacencies) {
out << ' ';
adj->print(out);
auto &info = AdjacencyInfo[adj];
auto degree = info.NumConstraints;
if (degree > 1) {
out << " (" << degree << ")";
}
}
out << "\n";
}
// Print fixed bindings.
if (!FixedBindings.empty()) {
out.indent(indent + 2);
out << "Fixed bindings: ";
SmallVector<TypeVariableType *, 4> sortedFixedBindings(
FixedBindings.begin(), FixedBindings.end());
std::sort(sortedFixedBindings.begin(), sortedFixedBindings.end(),
[&](TypeVariableType *typeVar1, TypeVariableType *typeVar2) {
return typeVar1->getID() < typeVar2->getID();
});
interleave(sortedFixedBindings,
[&](TypeVariableType *typeVar) {
out << "$T" << typeVar->getID();
},
[&]() {
out << ", ";
});
out << "\n";
}
// Print equivalence class.
if (TypeVar->getImpl().getRepresentative(nullptr) == TypeVar &&
EquivalenceClass.size() > 1) {
out.indent(indent + 2);
out << "Equivalence class:";
for (unsigned i = 1, n = EquivalenceClass.size(); i != n; ++i) {
out << ' ';
EquivalenceClass[i]->print(out);
}
out << "\n";
}
}
void ConstraintGraphNode::dump() {
llvm::SaveAndRestore<bool>
debug(TypeVar->getASTContext().LangOpts.DebugConstraintSolver, true);
print(llvm::dbgs(), 0);
}
void ConstraintGraph::print(ArrayRef<TypeVariableType *> typeVars,
llvm::raw_ostream &out) {
for (auto typeVar : typeVars) {
(*this)[typeVar].print(out, 2);
out << "\n";
}
}
void ConstraintGraph::dump() {
dump(llvm::dbgs());
}
void ConstraintGraph::dump(llvm::raw_ostream &out) {
llvm::SaveAndRestore<bool>
debug(CS.getASTContext().LangOpts.DebugConstraintSolver, true);
print(CS.getTypeVariables(), out);
}
void ConstraintGraph::printConnectedComponents(
ArrayRef<TypeVariableType *> typeVars,
llvm::raw_ostream &out) {
auto components = computeConnectedComponents(typeVars);
for (const auto& component : components) {
out.indent(2);
out << component.solutionIndex << ": ";
SWIFT_DEFER {
out << '\n';
};
// Print all of the type variables in this connected component.
interleave(component.typeVars,
[&](TypeVariableType *typeVar) {
typeVar->print(out);
},
[&] {
out << ' ';
});
if (component.dependsOn.empty())
continue;
// Print all of the one-way components.
out << " depends on ";
interleave(
component.dependsOn,
[&](unsigned index) { out << index; },
[&] { out << ", "; }
);
}
}
void ConstraintGraph::dumpConnectedComponents() {
llvm::SaveAndRestore<bool>
debug(CS.getASTContext().LangOpts.DebugConstraintSolver, true);
printConnectedComponents(CS.getTypeVariables(), llvm::dbgs());
}
#pragma mark Verification of graph invariants
/// Require that the given condition evaluate true.
///
/// If the condition is not true, complain about the problem and abort.
///
/// \param condition The actual Boolean condition.
///
/// \param complaint A string that describes the problem.
///
/// \param cg The constraint graph that failed verification.
///
/// \param node If non-null, the graph node that failed verification.
///
/// \param extraContext If provided, a function that will be called to
/// provide extra, contextual information about the failure.
static void _require(bool condition, const Twine &complaint,
ConstraintGraph &cg,
ConstraintGraphNode *node,
const std::function<void()> &extraContext = nullptr) {
if (condition)
return;
// Complain
llvm::dbgs() << "Constraint graph verification failed: " << complaint << '\n';
if (extraContext)
extraContext();
// Print the graph.
// FIXME: Highlight the offending node/constraint/etc.
cg.dump(llvm::dbgs());
abort();
}
/// Print a type variable value.
static void printValue(llvm::raw_ostream &os, TypeVariableType *typeVar) {
typeVar->print(os);
}
/// Print a constraint value.
static void printValue(llvm::raw_ostream &os, Constraint *constraint) {
constraint->print(os, nullptr);
}
/// Print an unsigned value.
static void printValue(llvm::raw_ostream &os, unsigned value) {
os << value;
}
void ConstraintGraphNode::verify(ConstraintGraph &cg) {
#define require(condition, complaint) _require(condition, complaint, cg, this)
#define requireWithContext(condition, complaint, context) \
_require(condition, complaint, cg, this, context)
#define requireSameValue(value1, value2, complaint) \
_require(value1 == value2, complaint, cg, this, [&] { \
llvm::dbgs() << " "; \
printValue(llvm::dbgs(), value1); \
llvm::dbgs() << " != "; \
printValue(llvm::dbgs(), value2); \
llvm::dbgs() << '\n'; \
})
// Verify that the constraint map/vector haven't gotten out of sync.
requireSameValue(Constraints.size(), ConstraintIndex.size(),
"constraint vector and map have different sizes");
for (auto info : ConstraintIndex) {
require(info.second < Constraints.size(), "constraint index out-of-range");
requireSameValue(info.first, Constraints[info.second],
"constraint map provides wrong index into vector");
}
// Verify that the adjacency map/vector haven't gotten out of sync.
requireSameValue(Adjacencies.size(), AdjacencyInfo.size(),
"adjacency vector and map have different sizes");
for (auto info : AdjacencyInfo) {
require(info.second.Index < Adjacencies.size(),
"adjacency index out-of-range");
requireSameValue(info.first, Adjacencies[info.second.Index],
"adjacency map provides wrong index into vector");
require(!info.second.empty(),
"adjacency information should have been removed");
require(info.second.NumConstraints <= Constraints.size(),
"adjacency information has higher degree than # of constraints");
}
// Based on the constraints we have, build up a representation of what
// we expect the adjacencies to look like.
llvm::DenseMap<TypeVariableType *, unsigned> expectedAdjacencies;
for (auto constraint : Constraints) {
if (constraint->isOneWayConstraint())
continue;
for (auto adjTypeVar : constraint->getTypeVariables()) {
if (adjTypeVar == TypeVar)
continue;
++expectedAdjacencies[adjTypeVar];
}
}
// Make sure that the adjacencies we expect are the adjacencies we have.
for (auto adj : expectedAdjacencies) {
auto knownAdj = AdjacencyInfo.find(adj.first);
requireWithContext(knownAdj != AdjacencyInfo.end(),
"missing adjacency information for type variable",
[&] {
llvm::dbgs() << " type variable=" << adj.first->getString() << 'n';
});
requireWithContext(adj.second == knownAdj->second.NumConstraints,
"wrong number of adjacencies for type variable",
[&] {
llvm::dbgs() << " type variable=" << adj.first->getString()
<< " (" << adj.second << " vs. "
<< knownAdj->second.NumConstraints
<< ")\n";
});
}
if (AdjacencyInfo.size() != expectedAdjacencies.size()) {
// The adjacency information has something extra in it. Find the
// extraneous type variable.
for (auto adj : AdjacencyInfo) {
requireWithContext(AdjacencyInfo.count(adj.first) > 0,
"extraneous adjacency info for type variable",
[&] {
llvm::dbgs() << " type variable=" << adj.first->getString() << '\n';
});
}
}
#undef requireSameValue
#undef requireWithContext
#undef require
}
void ConstraintGraph::verify() {
#define require(condition, complaint) \
_require(condition, complaint, *this, nullptr)
#define requireWithContext(condition, complaint, context) \
_require(condition, complaint, *this, nullptr, context)
#define requireSameValue(value1, value2, complaint) \
_require(value1 == value2, complaint, *this, nullptr, [&] { \
llvm::dbgs() << " "; \
printValue(llvm::dbgs(), value1); \
llvm::dbgs() << " != "; \
printValue(llvm::dbgs(), value2); \
llvm::dbgs() << '\n'; \
})
// Verify that the type variables are either representatives or represented
// within their representative's equivalence class.
// FIXME: Also check to make sure the equivalence classes aren't too large?
for (auto typeVar : TypeVariables) {
auto typeVarRep = CS.getRepresentative(typeVar);
auto &repNode = (*this)[typeVarRep];
if (typeVar != typeVarRep) {
// This type variable should be in the equivalence class of its
// representative.
require(std::find(repNode.getEquivalenceClass().begin(),
repNode.getEquivalenceClass().end(),
typeVar) != repNode.getEquivalenceClass().end(),
"type variable not present in its representative's equiv class");
} else {
// Each of the type variables in the same equivalence class as this type
// should have this type variable as their representative.
for (auto equiv : repNode.getEquivalenceClass()) {
requireSameValue(
typeVar, equiv->getImpl().getRepresentative(nullptr),
"representative and an equivalent type variable's representative");
}
}
}
// Verify that our type variable map/vector are in sync.
for (unsigned i = 0, n = TypeVariables.size(); i != n; ++i) {
auto typeVar = TypeVariables[i];
auto &impl = typeVar->getImpl();
requireSameValue(impl.getGraphIndex(), i, "wrong graph node index");
require(impl.getGraphNode(), "null graph node");
}
// Verify consistency of all of the nodes in the graph.
for (unsigned i = 0, n = TypeVariables.size(); i != n; ++i) {
auto typeVar = TypeVariables[i];
auto &impl = typeVar->getImpl();
impl.getGraphNode()->verify(*this);
}
// Collect all of the constraints known to the constraint graph.
llvm::SmallPtrSet<Constraint *, 4> knownConstraints;
for (auto typeVar : getTypeVariables()) {
for (auto constraint : (*this)[typeVar].getConstraints())
knownConstraints.insert(constraint);
}
// Verify that all of the constraints in the constraint system
// are accounted for.
for (auto &constraint : CS.getConstraints()) {
// Check whether the constraint graph knows about this constraint.
auto referencedTypeVars = constraint.getTypeVariables();
requireWithContext((knownConstraints.count(&constraint) ||
referencedTypeVars.empty()),
"constraint graph doesn't know about constraint",
[&] {
llvm::dbgs() << "constraint = ";
printValue(llvm::dbgs(), &constraint);
llvm::dbgs() << "\n";
});
// Make sure each of the type variables referenced knows about this
// constraint.
for (auto typeVar : referencedTypeVars) {
auto nodePtr = typeVar->getImpl().getGraphNode();
requireWithContext(nodePtr,
"type variable in constraint not known",
[&] {
llvm::dbgs() << "type variable = ";
printValue(llvm::dbgs(), typeVar);
llvm::dbgs() << ", constraint = ";
printValue(llvm::dbgs(), &constraint);
llvm::dbgs() << "\n";
});
auto &node = *nodePtr;
auto constraintPos = node.ConstraintIndex.find(&constraint);
requireWithContext(constraintPos != node.ConstraintIndex.end(),
"type variable doesn't know about constraint",
[&] {
llvm::dbgs() << "type variable = ";
printValue(llvm::dbgs(), typeVar);
llvm::dbgs() << ", constraint = ";
printValue(llvm::dbgs(), &constraint);
llvm::dbgs() << "\n";
});
}
}
#undef requireSameValue
#undef requireWithContext
#undef require
}