blob: 63615c2c5cc6cbc356b88f5d3dd47976bae9f69f [file] [log] [blame]
//===--- RedundantOverflowCheckRemoval.cpp --------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
// Remove overflow checks that are guarded by control flow or other
// overflow checks.
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "remove-redundant-overflow-checks"
#include "swift/SIL/Dominance.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SILOptimizer/Analysis/Analysis.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/Analysis/PostOrderAnalysis.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
using namespace swift;
STATISTIC(NumCondFailRemoved, "Number of cond_fail instructions removed");
namespace {
class RedundantOverflowCheckRemovalPass : public SILFunctionTransform {
public:
RedundantOverflowCheckRemovalPass() {}
/// This enum represents a relationship between two operands.
/// The relationship represented by arithmetic operators represents the
/// information that the operation did not trap.
///
/// The following code translate (with the correct signedness prefix):
///
/// if (x > 2) { x } -> LT(2, x)
/// if (x > 2) {} else { x } -> LE(x, 2)
/// x - 2 -> Sub(x, 2)
/// 2 - x -> Sub(2, x)
/// 2 * x -> Mul(2, x)
/// x + y -> Add(x, y)
enum class ValueRelation {EQ, ULT, ULE, UAdd, USub, UMul,
SLT, SLE, SAdd, SSub, SMul};
/// This struct represents a constraint on the range of some values in some
/// basic blocks in the program.
/// For example, it can represent the constraint "X < 2" for some blocks in
/// the function.
struct Constraint {
Constraint(SILBasicBlock *BB, SILValue L, SILValue R, ValueRelation Rel) :
DominatingBlock(BB), Left(L), Right(R), Relationship(Rel) {
LLVM_DEBUG(dump());
}
/// The constraint is valid in blocks dominated by this block.
SILBasicBlock *DominatingBlock;
/// The first operand.
SILValue Left;
/// The second operand.
SILValue Right;
/// Describes the relationship between the operands.
ValueRelation Relationship;
/// Print the content of the constraint.
void dump() {
llvm::dbgs()<<"Constraint [" << DominatingBlock <<"]\n";
llvm::dbgs()<<" Relationship:";
switch (Relationship) {
case ValueRelation::EQ: llvm::dbgs()<<"Equal\n"; break;
case ValueRelation::SLT: llvm::dbgs()<<"SLT\n"; break;
case ValueRelation::ULT: llvm::dbgs()<<"ULT\n"; break;
case ValueRelation::SLE: llvm::dbgs()<<"SLE\n"; break;
case ValueRelation::ULE: llvm::dbgs()<<"ULE\n"; break;
case ValueRelation::SMul: llvm::dbgs()<<"SMul\n"; break;
case ValueRelation::SSub: llvm::dbgs()<<"SSub\n"; break;
case ValueRelation::SAdd: llvm::dbgs()<<"SAdd\n"; break;
case ValueRelation::UMul: llvm::dbgs()<<"UMul\n"; break;
case ValueRelation::USub: llvm::dbgs()<<"USub\n"; break;
case ValueRelation::UAdd: llvm::dbgs()<<"UAdd\n"; break;
}
llvm::dbgs()<<" Left:"; Left->dump();
llvm::dbgs()<<" Right:"; Right->dump();
}
};
typedef SmallVector<Constraint, 16> ConstraintList;
typedef SmallVector<CondFailInst*, 16> CondFailList;
/// A list of constraints that represent the value relationships.
ConstraintList Constraints;
/// A list of cond_fail instructions to remove.
CondFailList ToRemove;
// Dominators info.
DominanceInfo *DT;
/// Remove the instructions that were marked as redundant
/// and return True if and instructions were removed.
bool removeCollectedRedundantInstructions() {
if (ToRemove.size()) {
LLVM_DEBUG(llvm::dbgs() << "Removing " << ToRemove.size()
<< " condfails in "
<< getFunction()->getName() << "\n");
for (auto *CF : ToRemove) {
CF->eraseFromParent();
NumCondFailRemoved++;
}
ToRemove.clear();
return true;
}
return false;
}
void run() override {
DT = PM->getAnalysis<DominanceAnalysis>()->get(getFunction());
auto *PO = getAnalysis<PostOrderAnalysis>()->get(getFunction());
Constraints.clear();
ToRemove.clear();
auto ReversePostOrder = PO->getReversePostOrder();
// Perform a forward scan and use control flow and previously detected
// overflow checks to remove the overflow checks.
// For each block in a Reverse Post Order scan:
for (auto &BB : ReversePostOrder) {
// For each instruction:
for (auto Inst = BB->begin(), End = BB->end(); Inst != End; Inst++) {
// Use branch information for eliminating condfails.
if (auto *CBI = dyn_cast<CondBranchInst>(Inst))
registerBranchFormula(CBI);
// Handle cond_fail instructions.
if (auto *CFI = dyn_cast<CondFailInst>(Inst)) {
if (tryToRemoveCondFail(CFI)) {
ToRemove.push_back(CFI);
continue;
}
// We were not able to remove the condfail. Try to use this
// information to remove other cond_fails.
registerCondFailFormula(CFI);
}
}
}
// If we've collected redundant cond_fails then remove them now.
bool Changed = removeCollectedRedundantInstructions();
// Perform another check, this time in reverse and use future overflow
// checks that must be executed to eliminate earlier overflow checks.
// Notice that this scan is only block local because at this point we
// don't use post-dominators.
for (auto &BB : ReversePostOrder) {
// Clear the list of constraint on every block.
Constraints.clear();
// Notice: we scan the basic block in reverse.
for (auto Inst = --BB->end(), End = BB->begin(); Inst != End; --Inst) {
if (auto *CFI = dyn_cast<CondFailInst>(Inst)) {
// Try to remove the cond_fail based on previous overflow checks.
if (tryToRemoveCondFail(CFI)) {
ToRemove.push_back(CFI);
continue;
}
// Record the overflow check and try to optimize other checks.
registerCondFailFormula(CFI);
continue;
}
// We do not optimize overflow checks across instructions with side
// effects because we don't want to delay the trap past user-visible
// changes.
if (Inst->mayHaveSideEffects()) {
Constraints.clear();
continue;
}
}
}
// If we've collected more redundant cond_fails then remove them now.
Changed |= removeCollectedRedundantInstructions();
if (Changed)
PM->invalidateAnalysis(getFunction(),
SILAnalysis::InvalidationKind::Instructions);
}
/// Return True if the relationship \p Rel describes a known relation
/// between A and B.
static bool knownRelation(SILValue A, SILValue B, ValueRelation Rel) {
// Identical values are known to be equal, or less than or equal.
if ((A == B) && (Rel == ValueRelation::EQ ||
Rel == ValueRelation::SLE ||
Rel == ValueRelation::ULE))
return true;
// Evaluate literal integers.
auto *AI = dyn_cast<IntegerLiteralInst>(A);
auto *BI = dyn_cast<IntegerLiteralInst>(B);
if (AI && BI) {
APInt Ap = AI->getValue();
APInt Bp = BI->getValue();
if (Ap.getBitWidth() != Bp.getBitWidth())
return false;
switch (Rel) {
case ValueRelation::EQ: return Ap.eq(Bp);
case ValueRelation::SLE: return Ap.sle(Bp);
case ValueRelation::ULE: return Ap.ule(Bp);
case ValueRelation::SLT: return Ap.slt(Bp);
case ValueRelation::ULT: return Ap.ult(Bp);
default: llvm_unreachable("Invalid value relation");
}
}
return false;
}
/// Return True if we can deduct that \p N is always positive (N > 0).
static bool isKnownPositive(SILValue N) {
if (auto *NI = dyn_cast<IntegerLiteralInst>(N))
return NI->getValue().isStrictlyPositive();
return false;
}
/// Return true if the absolute value of \p A is smaller than the
/// absolute value of \p B. In other words, check if \p A known to be closer
/// to zero.
static bool isKnownAbsLess(SILValue A, SILValue B) {
auto *AI = dyn_cast<IntegerLiteralInst>(A);
auto *BI = dyn_cast<IntegerLiteralInst>(B);
if (AI && BI)
return AI->getValue().abs().ult(BI->getValue().abs());
return false;
}
/// Return true if the constraint \p F can prove that the overflow check
/// for \p BI is not needed.
static bool isOverflowCheckRemovedByConstraint(Constraint &F,
BuiltinInst *BI) {
// L and R are the righthand and lefthand sides of the constraint.
SILValue L = F.Left;
SILValue R = F.Right;
assert(L->getType() == R->getType() && "Invalid constraint type");
// Make sure that the types of the constraints match the types of the
// arithmetic operation.
switch (BI->getBuiltinInfo().ID) {
default: return false;
case BuiltinValueKind::SAddOver:
case BuiltinValueKind::UAddOver:
case BuiltinValueKind::SMulOver:
case BuiltinValueKind::UMulOver:
case BuiltinValueKind::USubOver:
case BuiltinValueKind::SSubOver:
if (L->getType() != BI->getOperand(0)->getType())
return false;
}
switch (BI->getBuiltinInfo().ID) {
default: return false;
case BuiltinValueKind::SAddOver:
// A + B traps unless:
if (F.Relationship == ValueRelation::SAdd) {
// L + R already known to not trap at this point in the program.
// And the following applies:
// L >= A and R >= B or (commutatively) R >= A and L >= B.
SILValue A = BI->getOperand(0);
SILValue B = BI->getOperand(1);
if (knownRelation(A, L, ValueRelation::SLE) &&
knownRelation(B, R, ValueRelation::SLE))
return true;
if (knownRelation(B, L, ValueRelation::SLE) &&
knownRelation(A, R, ValueRelation::SLE))
return true;
}
// A + 1 does not trap if A is smaller than anything.
if (F.Relationship == ValueRelation::SLT) {
SILValue A = BI->getOperand(0);
SILValue B = BI->getOperand(1);
auto *AI = dyn_cast<IntegerLiteralInst>(A);
auto *BI = dyn_cast<IntegerLiteralInst>(B);
if (L == A && BI && BI->getValue().getSExtValue() == 1)
return true;
if (L == B && AI && AI->getValue().getSExtValue() == 1)
return true;
}
return false;
case BuiltinValueKind::UAddOver:
// A + B traps unless:
if (F.Relationship == ValueRelation::UAdd) {
// L + R already known to not trap at this point in the program.
// And the following applies:
// L >= A and R >= B or (commutatively) R >= A and L >= B.
SILValue A = BI->getOperand(0);
SILValue B = BI->getOperand(1);
if (knownRelation(A, L, ValueRelation::ULE) &&
knownRelation(B, R, ValueRelation::ULE))
return true;
if (knownRelation(B, L, ValueRelation::ULE) &&
knownRelation(A, R, ValueRelation::ULE))
return true;
}
// A + 1 does not trap if A is smaller than anything.
if (F.Relationship == ValueRelation::ULT) {
SILValue A = BI->getOperand(0);
SILValue B = BI->getOperand(1);
auto *AI = dyn_cast<IntegerLiteralInst>(A);
auto *BI = dyn_cast<IntegerLiteralInst>(B);
if (L == A && BI && BI->getValue().getZExtValue() == 1)
return true;
if (L == B && AI && AI->getValue().getZExtValue() == 1)
return true;
}
return false;
case BuiltinValueKind::SMulOver:
// A * B traps unless:
if (F.Relationship == ValueRelation::SMul) {
// L * R already known to not trap at this point in the program and
// the following rules apply:
//
// A is closer zero than L and B == R,
// or A == L, and B is closer to zero than R.
//
// We do not allow removing the overflow checks when one of the
// multipliers just switches the sign (abs(L) == abs(A)) because
// there are more negative numbers and (-MIN_INT * -1 overflows).
// In other words X * -1 does not does not guard X * 1.
SILValue A = BI->getOperand(0);
SILValue B = BI->getOperand(1);
if (isKnownAbsLess(A, L) &&
knownRelation(B, R, ValueRelation::EQ))
return true;
if (knownRelation(A, L, ValueRelation::EQ) &&
isKnownAbsLess(B, R))
return true;
// And commutatively, swapping A and B.
if (isKnownAbsLess(B, L) &&
knownRelation(A, R, ValueRelation::EQ))
return true;
if (knownRelation(B, L, ValueRelation::EQ) &&
isKnownAbsLess(A, R))
return true;
}
return false;
case BuiltinValueKind::UMulOver:
// A * B traps unless:
if (F.Relationship == ValueRelation::UMul) {
// L * R already known to not trap at this point in the program.
// And the following applies:
// L >= A and R >= B or (commutatively) R >= A and L >= B.
SILValue A = BI->getOperand(0);
SILValue B = BI->getOperand(1);
if (knownRelation(A, L, ValueRelation::ULE) &&
knownRelation(B, R, ValueRelation::ULE))
return true;
if (knownRelation(B, L, ValueRelation::ULE) &&
knownRelation(A, R, ValueRelation::ULE))
return true;
}
return false;
case BuiltinValueKind::USubOver:
// A - B traps unless:
if (F.Relationship == ValueRelation::ULE ||
F.Relationship == ValueRelation::ULT) {
// A >= B.
// Given the constraint L < R check if:
// 1. R == A
// 2. B <= L (subtracting less than L is okay)
//
// Example: Given 2<X we know that X-2 can't trap.
SILValue A = BI->getOperand(0);
SILValue B = BI->getOperand(1);
if (knownRelation(R, A, ValueRelation::EQ) &&
knownRelation(B, L, ValueRelation::ULE)) {
return true;
}
}
if (F.Relationship == ValueRelation::EQ) {
SILValue A = BI->getOperand(0);
SILValue B = BI->getOperand(1);
// A - B, L == R and known that L >= A and R == B.
if (knownRelation(R, B, ValueRelation::EQ) &&
knownRelation(A, L, ValueRelation::ULE)) {
return true;
}
// Swap L and R because equality is commutative.
if (knownRelation(L, B, ValueRelation::EQ) &&
knownRelation(A, R, ValueRelation::ULE)) {
return true;
}
}
if (F.Relationship == ValueRelation::USub) {
// L - R already known to not trap at this point in the program.
// And the following applies:
// L <= A and B <= R.
SILValue A = BI->getOperand(0);
SILValue B = BI->getOperand(1);
if (knownRelation(L, A, ValueRelation::ULE) &&
knownRelation(B, R, ValueRelation::ULE))
return true;
}
// A - 1 does not trap if A is greater than some other number.
if (F.Relationship == ValueRelation::ULT) {
SILValue A = BI->getOperand(0);
SILValue B = BI->getOperand(1);
auto *BI = dyn_cast<IntegerLiteralInst>(B);
if (R == A && BI && BI->getValue().getZExtValue() == 1)
return true;
}
return false;
case BuiltinValueKind::SSubOver:
// A - B traps unless:
if (F.Relationship == ValueRelation::SLE ||
F.Relationship == ValueRelation::SLT) {
// A >= B and B is positive.
// Notice that we need to handle underflow and overflow.
// Given the constraint L < R check if:
// 1. L is positive (because double negative can overflow)
// 2. R == A
// 3. B <= L (subtracting less than L is okay)
//
// Example: Given 2<X we know that X-2 can't trap.
SILValue A = BI->getOperand(0);
SILValue B = BI->getOperand(1);
if (isKnownPositive(L) &&
knownRelation(R, A, ValueRelation::EQ) &&
knownRelation(B, L, ValueRelation::SLE)) {
return true;
}
}
if (F.Relationship == ValueRelation::SSub) {
// L - R already known to not trap at this point in the program.
// And the following applies:
// L <= A and B <= R.
SILValue A = BI->getOperand(0);
SILValue B = BI->getOperand(1);
if (knownRelation(L, A, ValueRelation::SLE) &&
knownRelation(B, R, ValueRelation::SLE))
return true;
}
if (F.Relationship == ValueRelation::EQ) {
SILValue A = BI->getOperand(0);
SILValue B = BI->getOperand(1);
// A - B, L == R and known that L >= A and R == B.
if (knownRelation(R, B, ValueRelation::EQ) &&
knownRelation(A, L, ValueRelation::SLE)) {
return true;
}
// Swap L and R because equality is commutative.
if (knownRelation(L, B, ValueRelation::EQ) &&
knownRelation(A, R, ValueRelation::SLE)) {
return true;
}
}
// A - 1 does not trap if A is greater than some other number.
if (F.Relationship == ValueRelation::SLT) {
SILValue A = BI->getOperand(0);
SILValue B = BI->getOperand(1);
auto *BI = dyn_cast<IntegerLiteralInst>(B);
if (R == A && BI && BI->getValue().getSExtValue() == 1)
return true;
}
return false;
}
}
bool tryToRemoveCondFail(CondFailInst *CFI) {
// Extract the arithmetic operation from the condfail.
auto *TEI = dyn_cast<TupleExtractInst>(CFI->getOperand());
if (!TEI) return false;
auto *BI = dyn_cast<BuiltinInst>(TEI->getOperand());
if (!BI) return false;
for (auto &F : Constraints) {
// If we are dominated by a constraint:
if (DT->dominates(F.DominatingBlock, CFI->getParent())) {
// Try to use the constraint to remove the overflow check.
if (isOverflowCheckRemovedByConstraint(F, BI)) {
return true;
}
}
}
// Was not able to remove this branch.
return false;
}
Optional<ValueRelation> getArithOpRelation(BuiltinInst *BI) {
ValueRelation Rel;
switch (BI->getBuiltinInfo().ID) {
default:
return None;
case BuiltinValueKind::SAddOver:
Rel = ValueRelation::SAdd;
break;
case BuiltinValueKind::UAddOver:
Rel = ValueRelation::UAdd;
break;
case BuiltinValueKind::SSubOver:
Rel = ValueRelation::SSub;
break;
case BuiltinValueKind::USubOver:
Rel = ValueRelation::USub;
break;
case BuiltinValueKind::SMulOver:
Rel = ValueRelation::SMul;
break;
case BuiltinValueKind::UMulOver:
Rel = ValueRelation::UMul;
break;
}
return Rel;
}
void addComparisonRelation(BuiltinInst *CMP, SILBasicBlock *TrueBB,
SILBasicBlock *FalseBB) {
// The relationship expressed in the builtin.
ValueRelation TrueRel;
ValueRelation FalseRel;
bool Swap = false;
switch (CMP->getBuiltinInfo().ID) {
default:
return;
case BuiltinValueKind::ICMP_NE: {
SILValue Left = CMP->getOperand(0);
SILValue Right = CMP->getOperand(1);
if (FalseBB)
Constraints.push_back(
Constraint(FalseBB, Left, Right, ValueRelation::EQ));
return;
}
case BuiltinValueKind::ICMP_EQ: {
SILValue Left = CMP->getOperand(0);
SILValue Right = CMP->getOperand(1);
if (TrueBB)
Constraints.push_back(
Constraint(TrueBB, Left, Right, ValueRelation::EQ));
return;
}
case BuiltinValueKind::ICMP_SLE:
TrueRel = ValueRelation::SLE;
FalseRel = ValueRelation::SLT;
break;
case BuiltinValueKind::ICMP_SLT:
TrueRel = ValueRelation::SLT;
FalseRel = ValueRelation::SLE;
break;
case BuiltinValueKind::ICMP_SGE:
TrueRel = ValueRelation::SLT;
FalseRel = ValueRelation::SLE;
Swap = true;
break;
case BuiltinValueKind::ICMP_SGT:
TrueRel = ValueRelation::SLE;
FalseRel = ValueRelation::SLT;
Swap = true;
break;
case BuiltinValueKind::ICMP_ULE:
TrueRel = ValueRelation::ULE;
FalseRel = ValueRelation::ULT;
break;
case BuiltinValueKind::ICMP_ULT:
TrueRel = ValueRelation::ULT;
FalseRel = ValueRelation::ULE;
break;
case BuiltinValueKind::ICMP_UGT:
TrueRel = ValueRelation::ULE;
FalseRel = ValueRelation::ULT;
Swap = true;
break;
case BuiltinValueKind::ICMP_UGE:
TrueRel = ValueRelation::ULT;
FalseRel = ValueRelation::ULE;
Swap = true;
break;
}
SILValue Left = CMP->getOperand(0);
SILValue Right = CMP->getOperand(1);
if (Swap)
std::swap(Left, Right);
// Set the constraints for both side of the conditional branch, if
// that the condition is dominating the dest block (see comment above).
if (TrueBB) Constraints.push_back(Constraint(TrueBB, Left, Right, TrueRel));
if (FalseBB) Constraints.push_back(Constraint(FalseBB, Right, Left, FalseRel));
}
void registerCondFailFormula(CondFailInst *CFI) {
// Extract the arithmetic operation from the condfail.
if (auto *TEI = dyn_cast<TupleExtractInst>(CFI->getOperand())) {
auto *BI = dyn_cast<BuiltinInst>(TEI->getOperand());
if (!BI)
return;
// The relationship expressed in the builtin.
Optional<ValueRelation> Rel = getArithOpRelation(BI);
if (!Rel.hasValue())
return;
// Construct and register the constraint.
SILBasicBlock *Dom = CFI->getParent();
SILValue Left = BI->getOperand(0);
SILValue Right = BI->getOperand(1);
Constraint F = Constraint(Dom, Left, Right, *Rel);
Constraints.push_back(F);
}
// Handle patterns like this:
// %cmp_result = builtin "cmp_ult_Int64"
// (%x : $Builtin.Int64, %y : $Builtin.Int64) : $Builtin.Int1
// This cond_fail formula should be registered!
// cond_fail %cmp_result : $Builtin.Int1
// %check_underflow = integer_literal $Builtin.Int1, -1
// At this point we know that x >= y
// %usub_result = builtin "usub_with_overflow_Int64"
// (%x : $Builtin.Int64, %y : $Builtin.Int64, %check_underflow : $Builtin.Int1):
// $(Builtin.Int64, Builtin.Int1)
// %usub_val = tuple_extract %usub_result : $(Builtin.Int64, Builtin.Int1), 0
// We can figure out that x - y will not underflow because of x >= y
// %usub_underflow = tuple_extract %usub_result : $(Builtin.Int64, Builtin.Int1), 1
// cond_fail %usub_underflow : $Builtin.Int1
if (auto *CMP = dyn_cast<BuiltinInst>(CFI->getOperand())) {
SILBasicBlock *TrueBB = nullptr;
SILBasicBlock *FalseBB = CMP->getParent();
addComparisonRelation(CMP, TrueBB, FalseBB);
}
}
void registerBranchFormula(CondBranchInst *BI) {
// Extract the arithmetic operation from the Branch.
auto *CMP = dyn_cast<BuiltinInst>(BI->getCondition());
if (!CMP) return;
SILBasicBlock *TrueBB = BI->getTrueBB();
SILBasicBlock *FalseBB = BI->getFalseBB();
// Notice that we need to handle control-flow programs such as the one
// below. The rule here is that only blocks with a single predecessor
// and blocks that are dominated by them can rely on branch information.
// The reason is that if there is not a single predecessor then the code
// that is dominated by the block can be reachable from other blocks.
//
// [ x > 2 ]
// / |
// / |
// / |
// [ .. ] |
// \ |
// \ |
// \ |
// \ v
// [use(x)]
if (!TrueBB->getSinglePredecessorBlock())
TrueBB = nullptr;
if (!FalseBB->getSinglePredecessorBlock())
FalseBB = nullptr;
addComparisonRelation(CMP, TrueBB, FalseBB );
}
};
} // end anonymous namespace
SILTransform *swift::createRedundantOverflowCheckRemoval() {
return new RedundantOverflowCheckRemovalPass();
}