blob: 14b8764b1ccbd3a52bd20127c78492d898e941e7 [file] [log] [blame]
//===--- MetadataRequest.cpp - IR generation for metadata requests --------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements IR generation for accessing metadata.
//
//===----------------------------------------------------------------------===//
#include "MetadataRequest.h"
#include "ConstantBuilder.h"
#include "Explosion.h"
#include "FixedTypeInfo.h"
#include "GenericRequirement.h"
#include "GenArchetype.h"
#include "GenClass.h"
#include "GenMeta.h"
#include "GenProto.h"
#include "GenType.h"
#include "IRGenDebugInfo.h"
#include "IRGenFunction.h"
#include "IRGenMangler.h"
#include "IRGenModule.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/IRGenOptions.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/IRGen/Linking.h"
#include "swift/SIL/FormalLinkage.h"
#include "swift/SIL/TypeLowering.h"
using namespace swift;
using namespace irgen;
llvm::Value *DynamicMetadataRequest::get(IRGenFunction &IGF) const {
if (isStatic()) {
return IGF.IGM.getSize(Size(StaticRequest.getOpaqueValue()));
} else {
return DynamicRequest;
}
}
llvm::Value *DynamicMetadataRequest::getRequiredState(IRGenFunction &IGF) const{
if (isStatic()) {
return IGF.IGM.getSize(Size(size_t(StaticRequest.getState())));
}
auto request = DynamicRequest;
static_assert(MetadataRequest::State_bit == 0,
"code below is not doing any shifts");
uint32_t mask =
((uint32_t(1) << MetadataRequest::State_width) - 1);
auto requiredState =
IGF.Builder.CreateAnd(request,
llvm::ConstantInt::get(IGF.IGM.SizeTy, mask));
return requiredState;
}
MetadataResponse MetadataResponse::getUndef(IRGenFunction &IGF) {
return forComplete(llvm::UndefValue::get(IGF.IGM.TypeMetadataPtrTy));
}
MetadataResponse
MetadataResponse::handle(IRGenFunction &IGF, DynamicMetadataRequest request,
llvm::Value *pair) {
assert(pair->getType() == IGF.IGM.TypeMetadataResponseTy);
// If the request is statically known to produce a complete result,
// we never even need to extract the status value.
if (request.isStaticallyBlockingComplete()) {
auto value = IGF.Builder.CreateExtractValue(pair, 0);
return MetadataResponse::forComplete(value);
}
// Otherwise, split the response.
auto split = IGF.Builder.CreateSplit<2>(pair);
// If the request has a collector installed, check the dependency now.
if (auto collector = request.getDependencyCollector()) {
collector->checkDependency(IGF, request, split[0], split[1]);
}
// Compute the static lower bound on the metadata's dynamic state.
// This will include any refinements from having branched for the
// dependency collector.
auto staticBound = request.getStaticLowerBoundOnResponseState();
auto response = MetadataResponse(split[0], split[1], staticBound);
return response;
}
llvm::Value *MetadataResponse::combine(IRGenFunction &IGF) const {
assert(isValid());
assert(hasDynamicState() && "cannot combine response without dynamic state");
return IGF.Builder.CreateCombine(IGF.IGM.TypeMetadataResponseTy,
{Metadata, getDynamicState()});
}
void MetadataResponse::ensureDynamicState(IRGenFunction &IGF) & {
assert(isValid());
// If we already have a dynamic state, bail out.
if (hasDynamicState()) return;
// If we're statically known complete, we can just fill in
// MetadataState::Complete.
if (isStaticallyKnownComplete()) {
DynamicState = getCompletedState(IGF.IGM);
return;
}
// Otherwise, we need to check the state dynamically. Do a non-blocking
// request for complete metadata.
auto request = MetadataRequest(MetadataState::Complete,
/*non-blocking*/ true);
*this = emitGetTypeMetadataDynamicState(IGF, request, Metadata);
}
llvm::Constant *MetadataResponse::getCompletedState(IRGenModule &IGM) {
return IGM.getSize(Size(size_t(MetadataState::Complete)));
}
llvm::Value *MetadataDependency::combine(IRGenFunction &IGF) const {
if (isTrivial()) {
return getTrivialCombinedDependency(IGF.IGM);
}
return IGF.Builder.CreateCombine(IGF.IGM.TypeMetadataDependencyTy,
{RequiredMetadata, RequiredState});
}
llvm::Constant *
MetadataDependency::getTrivialCombinedDependency(IRGenModule &IGM) {
return llvm::ConstantAggregateZero::get(IGM.TypeMetadataDependencyTy);
}
void MetadataDependencyCollector::checkDependency(IRGenFunction &IGF,
DynamicMetadataRequest request,
llvm::Value *metadata,
llvm::Value *metadataState) {
// Having either both or neither of the PHIs is normal.
// Having just RequiredState means that we already finalized this collector
// and shouldn't be using it anymore.
assert((!RequiredMetadata || RequiredState) &&
"checking dependencies on a finished collector");
// If the request is statically always satisfied, the operation cannot
// have failed.
if (request.isStaticallyAlwaysSatisfied())
return;
// Otherwise, we need to pull out the response state and compare it against
// the request state.
llvm::Value *requiredState = request.getRequiredState(IGF);
// More advanced metadata states are lower numbers.
static_assert(MetadataStateIsReverseOrdered,
"relying on the ordering of MetadataState here");
auto satisfied = IGF.Builder.CreateICmpULE(metadataState, requiredState);
emitCheckBranch(IGF, satisfied, metadata, requiredState);
}
void MetadataDependencyCollector::collect(IRGenFunction &IGF,
llvm::Value *dependency) {
// Having either both or neither of the PHIs is normal.
// Having just RequiredState means that we already finalized this collector
// and shouldn't be using it anymore.
assert((!RequiredMetadata || RequiredState) &&
"checking dependencies on a finished collector");
assert(dependency->getType() == IGF.IGM.TypeMetadataDependencyTy);
// Split the dependency.
auto metadata = IGF.Builder.CreateExtractValue(dependency, 0);
auto requiredState = IGF.Builder.CreateExtractValue(dependency, 1);
// We have a dependency if the metadata is non-null; otherwise we're
// satisfied and can continue.
auto satisfied = IGF.Builder.CreateIsNull(metadata);
emitCheckBranch(IGF, satisfied, metadata, requiredState);
}
void MetadataDependencyCollector::emitCheckBranch(IRGenFunction &IGF,
llvm::Value *satisfied,
llvm::Value *metadata,
llvm::Value *requiredState) {
// Lazily create the final continuation block and phis.
if (!RequiredMetadata) {
auto contBB = IGF.createBasicBlock("metadata-dependencies.cont");
RequiredMetadata =
llvm::PHINode::Create(IGF.IGM.TypeMetadataPtrTy, 4, "", contBB);
RequiredState = llvm::PHINode::Create(IGF.IGM.SizeTy, 4, "", contBB);
}
// Conditionally branch to the final continuation block.
auto satisfiedBB = IGF.createBasicBlock("dependency-satisfied");
auto curBB = IGF.Builder.GetInsertBlock();
RequiredMetadata->addIncoming(metadata, curBB);
RequiredState->addIncoming(requiredState, curBB);
IGF.Builder.CreateCondBr(satisfied, satisfiedBB,
RequiredMetadata->getParent());
// Otherwise resume emitting code on the main path.
IGF.Builder.emitBlock(satisfiedBB);
}
MetadataDependency MetadataDependencyCollector::finish(IRGenFunction &IGF) {
assert((!RequiredMetadata || RequiredState) &&
"finishing an already-finished collector");
// If we never branched with a dependency, the result is trivial.
if (RequiredMetadata == nullptr)
return MetadataDependency();
llvm::BasicBlock *curBB = IGF.Builder.GetInsertBlock();
assert(curBB);
auto contBB = RequiredMetadata->getParent();
IGF.Builder.CreateBr(contBB);
RequiredMetadata->addIncoming(
llvm::ConstantPointerNull::get(IGF.IGM.TypeMetadataPtrTy),
curBB);
RequiredState->addIncoming(llvm::ConstantInt::get(IGF.IGM.SizeTy, 0), curBB);
IGF.Builder.emitBlock(contBB);
auto result = MetadataDependency(RequiredMetadata, RequiredState);
// Clear RequiredMetadata to tell the destructor that we finished.
// We leave RequiredState in place so that we can detect attempts to
// add
RequiredMetadata = nullptr;
return result;
}
llvm::Constant *IRGenModule::getAddrOfStringForMetadataRef(
StringRef symbolName,
unsigned alignment,
bool shouldSetLowBit,
llvm::function_ref<ConstantInitFuture (ConstantInitBuilder &)> body) {
// Call this to form the return value.
auto returnValue = [&](llvm::Constant *addr) {
if (!shouldSetLowBit)
return addr;
auto bitConstant = llvm::ConstantInt::get(IntPtrTy, 1);
return llvm::ConstantExpr::getGetElementPtr(nullptr, addr, bitConstant);
};
// Check whether we already have an entry with this name.
auto &entry = StringsForTypeRef[symbolName];
if (entry.second) {
return returnValue(entry.second);
}
// Construct the initializer.
ConstantInitBuilder builder(*this);
auto finished = body(builder);
auto var = new llvm::GlobalVariable(Module, finished.getType(),
/*constant*/ true,
llvm::GlobalValue::LinkOnceODRLinkage,
nullptr,
symbolName);
ApplyIRLinkage(IRLinkage::InternalLinkOnceODR).to(var);
if (alignment)
var->setAlignment(alignment);
setTrueConstGlobal(var);
var->setSection(getReflectionTypeRefSectionName());
finished.installInGlobal(var);
// Drill down to the i8* at the beginning of the constant.
auto addr = llvm::ConstantExpr::getBitCast(var, Int8PtrTy);
StringsForTypeRef[symbolName] = { var, addr };
return returnValue(addr);
}
llvm::Constant *IRGenModule::getAddrOfStringForTypeRef(StringRef str,
MangledTypeRefRole role){
return getAddrOfStringForTypeRef(SymbolicMangling{str, {}}, role);
}
llvm::Constant *IRGenModule::getAddrOfStringForTypeRef(
const SymbolicMangling &mangling,
MangledTypeRefRole role) {
// Create a symbol name for the symbolic mangling. This is used as the
// uniquing key both for ODR coalescing and within this TU.
IRGenMangler mangler;
std::string symbolName =
mangler.mangleSymbolNameForSymbolicMangling(mangling, role);
// See if we emitted the constant already.
auto &entry = StringsForTypeRef[symbolName];
if (entry.second) {
return entry.second;
}
ConstantInitBuilder B(*this);
auto S = B.beginStruct();
S.setPacked(true);
switch (role) {
case MangledTypeRefRole::DefaultAssociatedTypeWitness:
// The 0xFF prefix identifies a default associated type witness.
S.addInt(Int8Ty,
ProtocolRequirementFlags::AssociatedTypeInProtocolContextByte);
break;
case MangledTypeRefRole::Metadata:
case MangledTypeRefRole::Reflection:
break;
}
unsigned pos = 0;
for (auto &symbolic : mangling.SymbolicReferences) {
assert(symbolic.second >= pos
&& "references should be ordered");
if (symbolic.second != pos) {
// Emit the preceding literal chunk.
auto literalChunk = StringRef(mangling.String.data() + pos,
symbolic.second - pos);
auto literal = llvm::ConstantDataArray::getString(getLLVMContext(),
literalChunk,
/*null*/ false);
S.add(literal);
}
ConstantReference ref;
unsigned char baseKind;
if (auto ctype = symbolic.first.dyn_cast<const NominalTypeDecl*>()) {
auto type = const_cast<NominalTypeDecl*>(ctype);
if (auto proto = dyn_cast<ProtocolDecl>(type)) {
// The symbolic reference is to the protocol descriptor of the
// referenced protocol.
ref = getAddrOfLLVMVariableOrGOTEquivalent(
LinkEntity::forProtocolDescriptor(proto));
} else {
// The symbolic reference is to the type context descriptor of the
// referenced type.
IRGen.noteUseOfTypeContextDescriptor(type, DontRequireMetadata);
ref = getAddrOfLLVMVariableOrGOTEquivalent(
LinkEntity::forNominalTypeDescriptor(type));
}
// \1 - direct reference, \2 - indirect reference
baseKind = 1;
} else if (auto copaque = symbolic.first.dyn_cast<const OpaqueTypeDecl*>()){
auto opaque = const_cast<OpaqueTypeDecl*>(copaque);
IRGen.noteUseOfOpaqueTypeDescriptor(opaque);
ref = getAddrOfLLVMVariableOrGOTEquivalent(
LinkEntity::forOpaqueTypeDescriptor(opaque));
baseKind = 1;
} else {
llvm_unreachable("unhandled symbolic referent");
}
// add kind byte. indirect kinds are the direct kind + 1
unsigned char kind = ref.isIndirect() ? baseKind + 1 : baseKind;
S.add(llvm::ConstantInt::get(Int8Ty, kind));
// add relative reference
S.addRelativeAddress(ref.getValue());
pos = symbolic.second + 5;
}
// Add the last literal bit, if any.
if (pos != mangling.String.size()) {
auto literalChunk = StringRef(mangling.String.data() + pos,
mangling.String.size() - pos);
auto literal = llvm::ConstantDataArray::getString(getLLVMContext(),
literalChunk,
/*null*/ false);
S.add(literal);
}
// And a null terminator!
S.addInt(Int8Ty, 0);
auto finished = S.finishAndCreateFuture();
auto var = new llvm::GlobalVariable(Module, finished.getType(),
/*constant*/ true,
llvm::GlobalValue::LinkOnceODRLinkage,
nullptr,
symbolName);
ApplyIRLinkage(IRLinkage::InternalLinkOnceODR).to(var);
var->setAlignment(2);
setTrueConstGlobal(var);
var->setSection(getReflectionTypeRefSectionName());
finished.installInGlobal(var);
// Drill down to the i8* at the beginning of the constant.
auto addr = llvm::ConstantExpr::getBitCast(var, Int8PtrTy);
entry = {var, addr};
return addr;
}
llvm::Value *irgen::emitObjCMetadataRefForMetadata(IRGenFunction &IGF,
llvm::Value *classPtr) {
assert(IGF.IGM.Context.LangOpts.EnableObjCInterop);
classPtr = IGF.Builder.CreateBitCast(classPtr, IGF.IGM.ObjCClassPtrTy);
// Fetch the metadata for that class.
auto call = IGF.Builder.CreateCall(IGF.IGM.getGetObjCClassMetadataFn(),
classPtr);
call->setDoesNotThrow();
call->setDoesNotAccessMemory();
return call;
}
/// Emit a reference to the Swift metadata for an Objective-C class.
static llvm::Value *emitObjCMetadataRef(IRGenFunction &IGF,
ClassDecl *theClass) {
// Derive a pointer to the Objective-C class.
auto classPtr = emitObjCHeapMetadataRef(IGF, theClass);
return emitObjCMetadataRefForMetadata(IGF, classPtr);
}
namespace {
/// A structure for collecting generic arguments for emitting a
/// nominal metadata reference. The structure produced here is
/// consumed by swift_getGenericMetadata() and must correspond to
/// the fill operations that the compiler emits for the bound decl.
struct GenericArguments {
/// The values to use to initialize the arguments structure.
SmallVector<llvm::Value *, 8> Values;
SmallVector<llvm::Type *, 8> Types;
static unsigned getNumGenericArguments(IRGenModule &IGM,
NominalTypeDecl *nominal) {
GenericTypeRequirements requirements(IGM, nominal);
return requirements.getNumTypeRequirements();
}
void collectTypes(IRGenModule &IGM, NominalTypeDecl *nominal) {
GenericTypeRequirements requirements(IGM, nominal);
collectTypes(IGM, requirements);
}
void collectTypes(IRGenModule &IGM,
const GenericTypeRequirements &requirements) {
for (auto &requirement : requirements.getRequirements()) {
if (requirement.Protocol) {
Types.push_back(IGM.WitnessTablePtrTy);
} else {
Types.push_back(IGM.TypeMetadataPtrTy);
}
}
}
void collect(IRGenFunction &IGF, CanType type) {
auto *decl = type.getNominalOrBoundGenericNominal();
GenericTypeRequirements requirements(IGF.IGM, decl);
auto subs =
type->getContextSubstitutionMap(IGF.IGM.getSwiftModule(), decl);
requirements.enumerateFulfillments(IGF.IGM, subs,
[&](unsigned reqtIndex, CanType type,
Optional<ProtocolConformanceRef> conf) {
if (conf) {
Values.push_back(emitWitnessTableRef(IGF, type, *conf));
} else {
Values.push_back(IGF.emitAbstractTypeMetadataRef(type));
}
});
collectTypes(IGF.IGM, decl);
assert(Types.size() == Values.size());
}
};
} // end anonymous namespace
static bool isTypeErasedGenericClass(NominalTypeDecl *ntd) {
// ObjC classes are type erased.
// TODO: Unless they have magic methods...
if (auto clas = dyn_cast<ClassDecl>(ntd))
return clas->hasClangNode() && clas->isGenericContext();
return false;
}
static bool isTypeErasedGenericClassType(CanType type) {
if (auto nom = type->getAnyNominal())
return isTypeErasedGenericClass(nom);
return false;
}
// Get the type that exists at runtime to represent a compile-time type.
CanType IRGenModule::getRuntimeReifiedType(CanType type) {
// Leave type-erased ObjC generics with their generic arguments unbound, since
// the arguments do not exist at runtime.
return CanType(type.transform([&](Type t) -> Type {
if (isTypeErasedGenericClassType(CanType(t))) {
return t->getAnyNominal()->getDeclaredType()->getCanonicalType();
}
return t;
}));
}
CanType IRGenModule::substOpaqueTypesWithUnderlyingTypes(CanType type) {
// Substitute away opaque types whose underlying types we're allowed to
// assume are constant.
if (type->hasOpaqueArchetype()) {
ReplaceOpaqueTypesWithUnderlyingTypes replacer(getSwiftModule(),
ResilienceExpansion::Maximal);
type = type.subst(replacer, replacer,
SubstFlags::SubstituteOpaqueArchetypes)
->getCanonicalType();
}
return type;
}
SILType IRGenModule::substOpaqueTypesWithUnderlyingTypes(
SILType type, CanGenericSignature genericSig) {
// Substitute away opaque types whose underlying types we're allowed to
// assume are constant.
if (type.getASTType()->hasOpaqueArchetype()) {
ReplaceOpaqueTypesWithUnderlyingTypes replacer(getSwiftModule(),
ResilienceExpansion::Maximal);
type = type.subst(getSILModule(), replacer, replacer, genericSig,
/*substitute opaque*/ true);
}
return type;
}
std::pair<CanType, ProtocolConformanceRef>
IRGenModule::substOpaqueTypesWithUnderlyingTypes(CanType type,
ProtocolConformanceRef conformance) {
// Substitute away opaque types whose underlying types we're allowed to
// assume are constant.
if (type->hasOpaqueArchetype()) {
ReplaceOpaqueTypesWithUnderlyingTypes replacer(getSwiftModule(),
ResilienceExpansion::Maximal);
conformance = conformance.subst(type, replacer, replacer,
SubstFlags::SubstituteOpaqueArchetypes);
type = type.subst(replacer, replacer,
SubstFlags::SubstituteOpaqueArchetypes)
->getCanonicalType();
}
return std::make_pair(type, conformance);
}
/// Attempts to return a constant heap metadata reference for a
/// class type. This is generally only valid for specific kinds of
/// ObjC reference, like superclasses or category references.
llvm::Constant *
irgen::tryEmitConstantHeapMetadataRef(IRGenModule &IGM,
CanType type,
bool allowDynamicUninitialized) {
auto theDecl = type->getClassOrBoundGenericClass();
assert(theDecl && "emitting constant heap metadata ref for non-class type?");
switch (IGM.getClassMetadataStrategy(theDecl)) {
case ClassMetadataStrategy::Resilient:
case ClassMetadataStrategy::Singleton:
if (!allowDynamicUninitialized)
return nullptr;
break;
case ClassMetadataStrategy::Update:
case ClassMetadataStrategy::FixedOrUpdate:
case ClassMetadataStrategy::Fixed:
break;
}
// For imported classes, use the ObjC class symbol.
if (!hasKnownSwiftMetadata(IGM, theDecl))
return IGM.getAddrOfObjCClass(theDecl, NotForDefinition);
return IGM.getAddrOfTypeMetadata(type);
}
/// Attempts to return a constant type metadata reference for a
/// nominal type.
ConstantReference
irgen::tryEmitConstantTypeMetadataRef(IRGenModule &IGM, CanType type,
SymbolReferenceKind refKind) {
if (IGM.isStandardLibrary())
return ConstantReference();
if (!isTypeMetadataAccessTrivial(IGM, type))
return ConstantReference();
return IGM.getAddrOfTypeMetadata(type, refKind);
}
/// Emit a reference to an ObjC class. In general, the only things
/// you're allowed to do with the address of an ObjC class symbol are
/// (1) send ObjC messages to it (in which case the message will be
/// forwarded to the real class, if one exists) or (2) put it in
/// various data sections where the ObjC runtime will properly arrange
/// things. Therefore, we must typically force the initialization of
/// a class when emitting a reference to it.
llvm::Value *irgen::emitObjCHeapMetadataRef(IRGenFunction &IGF,
ClassDecl *theClass,
bool allowUninitialized) {
// If the class is visible only through the Objective-C runtime, form the
// appropriate runtime call.
if (theClass->getForeignClassKind() == ClassDecl::ForeignKind::RuntimeOnly) {
SmallString<64> scratch;
auto className =
IGF.IGM.getAddrOfGlobalString(theClass->getObjCRuntimeName(scratch));
return IGF.Builder.CreateCall(IGF.IGM.getLookUpClassFn(), className);
}
assert(!theClass->isForeign());
Address classRef = IGF.IGM.getAddrOfObjCClassRef(theClass);
auto classObject = IGF.Builder.CreateLoad(classRef);
if (allowUninitialized) return classObject;
// TODO: memoize this the same way that we memoize Swift type metadata?
return IGF.Builder.CreateCall(IGF.IGM.getGetInitializedObjCClassFn(),
classObject);
}
/// Returns a metadata reference for a nominal type.
///
/// This is only valid in a couple of special cases:
/// 1) The nominal type is generic, in which case we emit a call to the
/// generic metadata accessor function, which must be defined separately.
/// 2) The nominal type is a value type with a fixed size from this
/// resilience domain, in which case we can reference the constant
/// metadata directly.
///
/// In any other case, a metadata accessor should be called instead.
static MetadataResponse emitNominalMetadataRef(IRGenFunction &IGF,
NominalTypeDecl *theDecl,
CanType theType,
DynamicMetadataRequest request) {
assert(!isa<ProtocolDecl>(theDecl));
if (!theDecl->isGenericContext()) {
assert(!IGF.IGM.isResilient(theDecl, ResilienceExpansion::Maximal));
// TODO: If Obj-C interop is off, we can relax this to allow referencing
// class metadata too.
assert(isa<StructDecl>(theDecl) || isa<EnumDecl>(theDecl));
auto metadata = IGF.IGM.getAddrOfTypeMetadata(theType);
return MetadataResponse::forComplete(metadata);
}
// We are applying generic parameters to a generic type.
assert(theType->isSpecialized() &&
theType->getAnyNominal() == theDecl);
// Check to see if we've maybe got a local reference already.
if (auto cache = IGF.tryGetLocalTypeMetadata(theType, request))
return cache;
// Grab the substitutions.
GenericArguments genericArgs;
genericArgs.collect(IGF, theType);
assert((!genericArgs.Values.empty() ||
theDecl->getGenericSignature()->areAllParamsConcrete()) &&
"no generic args?!");
// Call the generic metadata accessor function.
llvm::Function *accessor =
IGF.IGM.getAddrOfGenericTypeMetadataAccessFunction(theDecl,
genericArgs.Types,
NotForDefinition);
auto response =
IGF.emitGenericTypeMetadataAccessFunctionCall(accessor, genericArgs.Values,
request);
IGF.setScopedLocalTypeMetadata(theType, response);
return response;
}
/// Is it basically trivial to access the given metadata? If so, we don't
/// need a cache variable in its accessor.
bool irgen::isTypeMetadataAccessTrivial(IRGenModule &IGM, CanType type) {
assert(!type->hasArchetype());
// Value type metadata only requires dynamic initialization on first
// access if it contains a resilient type.
if (isa<StructType>(type) || isa<EnumType>(type)) {
auto nominalType = cast<NominalType>(type);
auto *nominalDecl = nominalType->getDecl();
// Imported type metadata always requires an accessor.
if (isa<ClangModuleUnit>(nominalDecl->getModuleScopeContext()))
return false;
// Generic type metadata always requires an accessor.
if (nominalDecl->isGenericContext())
return false;
auto expansion = ResilienceExpansion::Maximal;
// Resiliently-sized metadata access always requires an accessor.
return (IGM.getTypeInfoForUnlowered(type).isFixedSize(expansion));
}
// The empty tuple type has a singleton metadata.
if (auto tuple = dyn_cast<TupleType>(type))
return tuple->getNumElements() == 0;
// Any and AnyObject have singleton metadata.
if (type->isAny() || type->isAnyObject())
return true;
// The builtin types generally don't require metadata, but some of them
// have nodes in the runtime anyway.
if (isa<BuiltinType>(type))
return true;
// SIL box types are artificial, but for the purposes of dynamic layout,
// we use the NativeObject metadata.
if (isa<SILBoxType>(type))
return true;
// DynamicSelfType is actually local.
if (type->hasDynamicSelfType())
return true;
return false;
}
/// Return the standard access strategy for getting a non-dependent
/// type metadata object.
MetadataAccessStrategy irgen::getTypeMetadataAccessStrategy(CanType type) {
// We should not be emitting accessors for partially-substituted
// generic types.
assert(!type->hasArchetype());
// Non-generic structs, enums, and classes are special cases.
//
// Note that while protocol types don't have a metadata pattern,
// we still require an accessor since we actually want to get
// the metadata for the existential type.
//
// This needs to kept in sync with hasRequiredTypeMetadataAccessPattern.
auto nominal = type->getAnyNominal();
if (nominal && !isa<ProtocolDecl>(nominal)) {
// Metadata accessors for fully-substituted generic types are
// emitted with shared linkage.
if (nominal->isGenericContext() && !nominal->isObjC()) {
if (type->isSpecialized())
return MetadataAccessStrategy::NonUniqueAccessor;
assert(type->hasUnboundGenericType());
}
if (requiresForeignTypeMetadata(nominal))
return MetadataAccessStrategy::ForeignAccessor;
// If the type doesn't guarantee that it has an access function,
// we might have to use a non-unique accessor.
// Everything else requires accessors.
switch (getDeclLinkage(nominal)) {
case FormalLinkage::PublicUnique:
return MetadataAccessStrategy::PublicUniqueAccessor;
case FormalLinkage::HiddenUnique:
return MetadataAccessStrategy::HiddenUniqueAccessor;
case FormalLinkage::Private:
return MetadataAccessStrategy::PrivateAccessor;
case FormalLinkage::PublicNonUnique:
return MetadataAccessStrategy::NonUniqueAccessor;
}
llvm_unreachable("bad formal linkage");
}
// Everything else requires a shared accessor function.
return MetadataAccessStrategy::NonUniqueAccessor;
}
/// Emit a string encoding the labels in the given tuple type.
static llvm::Constant *getTupleLabelsString(IRGenModule &IGM,
CanTupleType type,
bool useLabels) {
// If we were asked to ignore the labels, do so.
if (!useLabels) {
return llvm::ConstantPointerNull::get(IGM.Int8PtrTy);
}
bool hasLabels = false;
llvm::SmallString<128> buffer;
for (auto &elt : type->getElements()) {
if (elt.hasName()) {
hasLabels = true;
buffer.append(elt.getName().str());
}
// Each label is space-terminated.
buffer += ' ';
}
// If there are no labels, use a null pointer.
if (!hasLabels) {
return llvm::ConstantPointerNull::get(IGM.Int8PtrTy);
}
// Otherwise, create a new string literal.
// This method implicitly adds a null terminator.
return IGM.getAddrOfGlobalString(buffer);
}
static llvm::Constant *emitEmptyTupleTypeMetadataRef(IRGenModule &IGM) {
llvm::Constant *fullMetadata = IGM.getEmptyTupleMetadata();
llvm::Constant *indices[] = {
llvm::ConstantInt::get(IGM.Int32Ty, 0),
llvm::ConstantInt::get(IGM.Int32Ty, 1)
};
return llvm::ConstantExpr::getInBoundsGetElementPtr(
/*Ty=*/nullptr, fullMetadata, indices);
}
using GetElementMetadataFn =
llvm::function_ref<MetadataResponse(CanType eltType,
DynamicMetadataRequest eltRequest)>;
static MetadataResponse emitTupleTypeMetadataRef(IRGenFunction &IGF,
CanTupleType type,
DynamicMetadataRequest request,
bool useLabels,
GetElementMetadataFn getMetadataRecursive) {
auto getElementMetadata = [&](CanType type) {
// Just request the elements to be abstract so that we can always build
// the metadata.
// TODO: if we have a collector, or if this is a blocking request, maybe
// we should build a stronger request?
return getMetadataRecursive(type, MetadataState::Abstract).getMetadata();
};
switch (type->getNumElements()) {
case 0:
return MetadataResponse::forComplete(
emitEmptyTupleTypeMetadataRef(IGF.IGM));
case 1:
// For metadata purposes, we consider a singleton tuple to be
// isomorphic to its element type. ???
return getMetadataRecursive(type.getElementType(0), request);
case 2: {
auto elt0Metadata = getElementMetadata(type.getElementType(0));
auto elt1Metadata = getElementMetadata(type.getElementType(1));
llvm::Value *args[] = {
request.get(IGF),
elt0Metadata, elt1Metadata,
getTupleLabelsString(IGF.IGM, type, useLabels),
llvm::ConstantPointerNull::get(IGF.IGM.WitnessTablePtrTy) // proposed
};
auto call = IGF.Builder.CreateCall(IGF.IGM.getGetTupleMetadata2Fn(),
args);
call->setCallingConv(IGF.IGM.SwiftCC);
call->setDoesNotThrow();
return MetadataResponse::handle(IGF, request, call);
}
case 3: {
auto elt0Metadata = getElementMetadata(type.getElementType(0));
auto elt1Metadata = getElementMetadata(type.getElementType(1));
auto elt2Metadata = getElementMetadata(type.getElementType(2));
llvm::Value *args[] = {
request.get(IGF),
elt0Metadata, elt1Metadata, elt2Metadata,
getTupleLabelsString(IGF.IGM, type, useLabels),
llvm::ConstantPointerNull::get(IGF.IGM.WitnessTablePtrTy) // proposed
};
auto call = IGF.Builder.CreateCall(IGF.IGM.getGetTupleMetadata3Fn(),
args);
call->setCallingConv(IGF.IGM.SwiftCC);
call->setDoesNotThrow();
return MetadataResponse::handle(IGF, request, call);
}
default:
// TODO: use a caching entrypoint (with all information
// out-of-line) for non-dependent tuples.
llvm::Value *pointerToFirst = nullptr; // appease -Wuninitialized
auto elements = type.getElementTypes();
auto arrayTy = llvm::ArrayType::get(IGF.IGM.TypeMetadataPtrTy,
elements.size());
Address buffer = IGF.createAlloca(arrayTy,IGF.IGM.getPointerAlignment(),
"tuple-elements");
IGF.Builder.CreateLifetimeStart(buffer,
IGF.IGM.getPointerSize() * elements.size());
for (auto i : indices(elements)) {
// Find the metadata pointer for this element.
llvm::Value *eltMetadata = getElementMetadata(elements[i]);
// GEP to the appropriate element and store.
Address eltPtr = IGF.Builder.CreateStructGEP(buffer, i,
IGF.IGM.getPointerSize());
IGF.Builder.CreateStore(eltMetadata, eltPtr);
// Remember the GEP to the first element.
if (i == 0) pointerToFirst = eltPtr.getAddress();
}
TupleTypeFlags flags =
TupleTypeFlags().withNumElements(elements.size());
llvm::Value *args[] = {
request.get(IGF),
llvm::ConstantInt::get(IGF.IGM.SizeTy, flags.getIntValue()),
pointerToFirst,
getTupleLabelsString(IGF.IGM, type, useLabels),
llvm::ConstantPointerNull::get(IGF.IGM.WitnessTablePtrTy) // proposed
};
auto call = IGF.Builder.CreateCall(IGF.IGM.getGetTupleMetadataFn(),
args);
call->setCallingConv(IGF.IGM.SwiftCC);
call->setDoesNotThrow();
IGF.Builder.CreateLifetimeEnd(buffer,
IGF.IGM.getPointerSize() * elements.size());
return MetadataResponse::handle(IGF, request, call);
}
}
namespace {
/// A visitor class for emitting a reference to a metatype object.
/// This implements a "raw" access, useful for implementing cache
/// functions or for implementing dependent accesses.
///
/// If the access requires runtime initialization, that initialization
/// must be dependency-ordered-before any load that carries a dependency
/// from the resulting metadata pointer.
class EmitTypeMetadataRef
: public CanTypeVisitor<EmitTypeMetadataRef, MetadataResponse,
DynamicMetadataRequest> {
private:
IRGenFunction &IGF;
public:
EmitTypeMetadataRef(IRGenFunction &IGF) : IGF(IGF) {}
MetadataResponse emitDirectMetadataRef(CanType type) {
return MetadataResponse::forComplete(IGF.IGM.getAddrOfTypeMetadata(type));
}
/// The given type should use opaque type info. We assume that
/// the runtime always provides an entry for such a type.
MetadataResponse visitBuiltinIntegerType(CanBuiltinIntegerType type,
DynamicMetadataRequest request) {
// If the size isn't a power up two, round up to the next power of two
// and use the corresponding integer type.
auto &opaqueTI = cast<FixedTypeInfo>(IGF.IGM.getTypeInfoForLowered(type));
unsigned numBits = opaqueTI.getFixedSize().getValueInBits();
if (!llvm::isPowerOf2_32(numBits)) {
numBits = llvm::NextPowerOf2(numBits);
type = CanBuiltinIntegerType(
BuiltinIntegerType::get(numBits, IGF.IGM.Context));
}
return emitDirectMetadataRef(type);
}
MetadataResponse
visitBuiltinIntegerLiteralType(CanBuiltinIntegerLiteralType type,
DynamicMetadataRequest request) {
return emitDirectMetadataRef(type);
}
MetadataResponse
visitBuiltinNativeObjectType(CanBuiltinNativeObjectType type,
DynamicMetadataRequest request) {
return emitDirectMetadataRef(type);
}
MetadataResponse
visitBuiltinBridgeObjectType(CanBuiltinBridgeObjectType type,
DynamicMetadataRequest request) {
return emitDirectMetadataRef(type);
}
MetadataResponse
visitBuiltinUnsafeValueBufferType(CanBuiltinUnsafeValueBufferType type,
DynamicMetadataRequest request) {
return emitDirectMetadataRef(type);
}
MetadataResponse
visitBuiltinRawPointerType(CanBuiltinRawPointerType type,
DynamicMetadataRequest request) {
return emitDirectMetadataRef(type);
}
MetadataResponse
visitBuiltinFloatType(CanBuiltinFloatType type,
DynamicMetadataRequest request) {
return emitDirectMetadataRef(type);
}
MetadataResponse
visitBuiltinVectorType(CanBuiltinVectorType type,
DynamicMetadataRequest request) {
return emitDirectMetadataRef(type);
}
MetadataResponse visitNominalType(CanNominalType type,
DynamicMetadataRequest request) {
assert(!type->isExistentialType());
return emitNominalMetadataRef(IGF, type->getDecl(), type, request);
}
MetadataResponse visitBoundGenericType(CanBoundGenericType type,
DynamicMetadataRequest request) {
assert(!type->isExistentialType());
return emitNominalMetadataRef(IGF, type->getDecl(), type, request);
}
MetadataResponse visitTupleType(CanTupleType type,
DynamicMetadataRequest request) {
if (auto cached = tryGetLocal(type, request))
return cached;
auto response = emitTupleTypeMetadataRef(IGF, type, request,
/*labels*/ true,
[&](CanType eltType, DynamicMetadataRequest eltRequest) {
return IGF.emitTypeMetadataRef(eltType, eltRequest);
});
return setLocal(type, response);
}
MetadataResponse visitGenericFunctionType(CanGenericFunctionType type,
DynamicMetadataRequest request) {
IGF.unimplemented(SourceLoc(),
"metadata ref for generic function type");
return MetadataResponse::getUndef(IGF);
}
llvm::Value *getFunctionParameterRef(AnyFunctionType::CanParam &param) {
auto type = param.getPlainType()->getCanonicalType();
return IGF.emitAbstractTypeMetadataRef(type);
}
MetadataResponse visitFunctionType(CanFunctionType type,
DynamicMetadataRequest request) {
if (auto metatype = tryGetLocal(type, request))
return metatype;
auto result =
IGF.emitAbstractTypeMetadataRef(type->getResult()->getCanonicalType());
auto params = type.getParams();
auto numParams = params.size();
// Retrieve the ABI parameter flags from the type-level parameter
// flags.
auto getABIParameterFlags = [](ParameterTypeFlags flags) {
return ParameterFlags()
.withValueOwnership(flags.getValueOwnership())
.withVariadic(flags.isVariadic())
.withAutoClosure(flags.isAutoClosure());
};
bool hasFlags = false;
for (auto param : params) {
if (!getABIParameterFlags(param.getParameterFlags()).isNone()) {
hasFlags = true;
break;
}
}
// Map the convention to a runtime metadata value.
FunctionMetadataConvention metadataConvention;
bool isEscaping = false;
switch (type->getRepresentation()) {
case FunctionTypeRepresentation::Swift:
metadataConvention = FunctionMetadataConvention::Swift;
isEscaping = !type->isNoEscape();
break;
case FunctionTypeRepresentation::Thin:
metadataConvention = FunctionMetadataConvention::Thin;
break;
case FunctionTypeRepresentation::Block:
metadataConvention = FunctionMetadataConvention::Block;
break;
case FunctionTypeRepresentation::CFunctionPointer:
metadataConvention = FunctionMetadataConvention::CFunctionPointer;
break;
}
// SWIFT_ENABLE_TENSORFLOW
FunctionMetadataDifferentiabilityKind metadataDifferentiabilityKind;
switch (type->getDifferentiabilityKind()) {
case DifferentiabilityKind::NonDifferentiable:
metadataDifferentiabilityKind =
FunctionMetadataDifferentiabilityKind::NonDifferentiable;
break;
case DifferentiabilityKind::Normal:
metadataDifferentiabilityKind =
FunctionMetadataDifferentiabilityKind::Normal;
break;
case DifferentiabilityKind::Linear:
metadataDifferentiabilityKind =
FunctionMetadataDifferentiabilityKind::Linear;
break;
}
auto flagsVal = FunctionTypeFlags()
.withNumParameters(numParams)
.withConvention(metadataConvention)
.withThrows(type->throws())
.withParameterFlags(hasFlags)
// SWIFT_ENABLE_TENSORFLOW
.withEscaping(isEscaping)
.withDifferentiabilityKind(
metadataDifferentiabilityKind);
auto flags = llvm::ConstantInt::get(IGF.IGM.SizeTy,
flagsVal.getIntValue());
auto collectParameters =
[&](llvm::function_ref<void(unsigned, llvm::Value *,
ParameterFlags flags)>
processor) {
for (auto index : indices(params)) {
auto param = params[index];
auto flags = param.getParameterFlags();
auto parameterFlags = getABIParameterFlags(flags);
processor(index, getFunctionParameterRef(param), parameterFlags);
}
};
auto constructSimpleCall =
[&](llvm::SmallVectorImpl<llvm::Value *> &arguments)
-> llvm::Constant * {
arguments.push_back(flags);
collectParameters([&](unsigned i, llvm::Value *typeRef,
ParameterFlags flags) {
arguments.push_back(typeRef);
if (hasFlags)
arguments.push_back(
llvm::ConstantInt::get(IGF.IGM.Int32Ty, flags.getIntValue()));
});
arguments.push_back(result);
switch (params.size()) {
case 0:
return IGF.IGM.getGetFunctionMetadata0Fn();
case 1:
return IGF.IGM.getGetFunctionMetadata1Fn();
case 2:
return IGF.IGM.getGetFunctionMetadata2Fn();
case 3:
return IGF.IGM.getGetFunctionMetadata3Fn();
default:
llvm_unreachable("supports only 1/2/3 parameter functions");
}
};
switch (numParams) {
case 0:
case 1:
case 2:
case 3: {
if (!hasFlags) {
llvm::SmallVector<llvm::Value *, 8> arguments;
auto *metadataFn = constructSimpleCall(arguments);
auto *call = IGF.Builder.CreateCall(metadataFn, arguments);
call->setDoesNotThrow();
return setLocal(CanType(type), MetadataResponse::forComplete(call));
}
// If function type has parameter flags, let's emit
// the most general function to retrieve them.
LLVM_FALLTHROUGH;
}
default:
assert(!params.empty() && "0 parameter case is specialized!");
auto *const Int32Ptr = IGF.IGM.Int32Ty->getPointerTo();
llvm::SmallVector<llvm::Value *, 8> arguments;
arguments.push_back(flags);
ConstantInitBuilder paramFlags(IGF.IGM);
auto flagsArr = paramFlags.beginArray();
auto arrayTy =
llvm::ArrayType::get(IGF.IGM.TypeMetadataPtrTy, numParams);
Address parameters = IGF.createAlloca(
arrayTy, IGF.IGM.getTypeMetadataAlignment(), "function-parameters");
IGF.Builder.CreateLifetimeStart(parameters,
IGF.IGM.getPointerSize() * numParams);
collectParameters([&](unsigned i, llvm::Value *typeRef,
ParameterFlags flags) {
auto argPtr = IGF.Builder.CreateStructGEP(parameters, i,
IGF.IGM.getPointerSize());
IGF.Builder.CreateStore(typeRef, argPtr);
if (i == 0)
arguments.push_back(argPtr.getAddress());
if (hasFlags)
flagsArr.addInt32(flags.getIntValue());
});
if (hasFlags) {
auto *flagsVar = flagsArr.finishAndCreateGlobal(
"parameter-flags", IGF.IGM.getPointerAlignment(),
/* constant */ true);
arguments.push_back(IGF.Builder.CreateBitCast(flagsVar, Int32Ptr));
} else {
flagsArr.abandon();
arguments.push_back(llvm::ConstantPointerNull::get(Int32Ptr));
}
arguments.push_back(result);
auto call = IGF.Builder.CreateCall(IGF.IGM.getGetFunctionMetadataFn(),
arguments);
call->setDoesNotThrow();
if (parameters.isValid())
IGF.Builder.CreateLifetimeEnd(parameters,
IGF.IGM.getPointerSize() * numParams);
return setLocal(type, MetadataResponse::forComplete(call));
}
}
MetadataResponse visitAnyMetatypeType(CanAnyMetatypeType type,
DynamicMetadataRequest request) {
// FIXME: We shouldn't accept a lowered metatype here, but we need to
// represent Optional<@objc_metatype T.Type> as an AST type for ABI
// reasons.
// assert(!type->hasRepresentation()
// && "should not be asking for a representation-specific metatype "
// "metadata");
if (auto metatype = tryGetLocal(type, request))
return metatype;
auto instMetadata =
IGF.emitAbstractTypeMetadataRef(type.getInstanceType());
auto fn = isa<MetatypeType>(type)
? IGF.IGM.getGetMetatypeMetadataFn()
: IGF.IGM.getGetExistentialMetatypeMetadataFn();
auto call = IGF.Builder.CreateCall(fn, instMetadata);
call->setDoesNotThrow();
return setLocal(type, MetadataResponse::forComplete(call));
}
MetadataResponse visitModuleType(CanModuleType type,
DynamicMetadataRequest request) {
IGF.unimplemented(SourceLoc(), "metadata ref for module type");
return MetadataResponse::getUndef(IGF);
}
MetadataResponse visitDynamicSelfType(CanDynamicSelfType type,
DynamicMetadataRequest request) {
return MetadataResponse::forComplete(IGF.getLocalSelfMetadata());
}
MetadataResponse emitExistentialTypeMetadata(CanType type,
DynamicMetadataRequest request) {
if (auto metatype = tryGetLocal(type, request))
return metatype;
// Any and AnyObject have singleton metadata in the runtime.
llvm::Constant *singletonMetadata = nullptr;
if (type->isAny())
singletonMetadata = IGF.IGM.getAnyExistentialMetadata();
if (type->isAnyObject())
singletonMetadata = IGF.IGM.getAnyObjectExistentialMetadata();
if (singletonMetadata) {
llvm::Constant *indices[] = {
llvm::ConstantInt::get(IGF.IGM.Int32Ty, 0),
llvm::ConstantInt::get(IGF.IGM.Int32Ty, 1)
};
return MetadataResponse::forComplete(
llvm::ConstantExpr::getInBoundsGetElementPtr(
/*Ty=*/nullptr, singletonMetadata, indices));
}
auto layout = type.getExistentialLayout();
auto protocols = layout.getProtocols();
// Collect references to the protocol descriptors.
auto descriptorArrayTy
= llvm::ArrayType::get(IGF.IGM.ProtocolDescriptorRefTy,
protocols.size());
Address descriptorArray = IGF.createAlloca(descriptorArrayTy,
IGF.IGM.getPointerAlignment(),
"protocols");
IGF.Builder.CreateLifetimeStart(descriptorArray,
IGF.IGM.getPointerSize() * protocols.size());
descriptorArray = IGF.Builder.CreateBitCast(descriptorArray,
IGF.IGM.ProtocolDescriptorRefTy->getPointerTo());
unsigned index = 0;
for (auto *protoTy : protocols) {
auto *protoDecl = protoTy->getDecl();
llvm::Value *ref = emitProtocolDescriptorRef(IGF, protoDecl);
Address slot = IGF.Builder.CreateConstArrayGEP(descriptorArray,
index, IGF.IGM.getPointerSize());
IGF.Builder.CreateStore(ref, slot);
++index;
}
// Note: ProtocolClassConstraint::Class is 0, ::Any is 1.
auto classConstraint =
llvm::ConstantInt::get(IGF.IGM.Int1Ty,
!layout.requiresClass());
llvm::Value *superclassConstraint =
llvm::ConstantPointerNull::get(IGF.IGM.TypeMetadataPtrTy);
if (auto superclass = layout.explicitSuperclass) {
superclassConstraint = IGF.emitAbstractTypeMetadataRef(
CanType(superclass));
}
auto call = IGF.Builder.CreateCall(IGF.IGM.getGetExistentialMetadataFn(),
{classConstraint,
superclassConstraint,
IGF.IGM.getSize(Size(protocols.size())),
descriptorArray.getAddress()});
call->setDoesNotThrow();
IGF.Builder.CreateLifetimeEnd(descriptorArray,
IGF.IGM.getPointerSize() * protocols.size());
return setLocal(type, MetadataResponse::forComplete(call));
}
MetadataResponse visitProtocolType(CanProtocolType type,
DynamicMetadataRequest request) {
return emitExistentialTypeMetadata(type, request);
}
MetadataResponse
visitProtocolCompositionType(CanProtocolCompositionType type,
DynamicMetadataRequest request) {
return emitExistentialTypeMetadata(type, request);
}
MetadataResponse visitReferenceStorageType(CanReferenceStorageType type,
DynamicMetadataRequest request) {
llvm_unreachable("reference storage type should have been converted by "
"SILGen");
}
MetadataResponse visitSILFunctionType(CanSILFunctionType type,
DynamicMetadataRequest request) {
llvm_unreachable("should not be asking for metadata of a lowered SIL "
"function type--SILGen should have used the AST type");
}
MetadataResponse visitSILTokenType(CanSILTokenType type,
DynamicMetadataRequest request) {
llvm_unreachable("should not be asking for metadata of a SILToken type");
}
MetadataResponse visitArchetypeType(CanArchetypeType type,
DynamicMetadataRequest request) {
return emitArchetypeTypeMetadataRef(IGF, type, request);
}
MetadataResponse visitGenericTypeParamType(CanGenericTypeParamType type,
DynamicMetadataRequest request) {
llvm_unreachable("dependent type should have been substituted by Sema or SILGen");
}
MetadataResponse visitDependentMemberType(CanDependentMemberType type,
DynamicMetadataRequest request) {
llvm_unreachable("dependent type should have been substituted by Sema or SILGen");
}
MetadataResponse visitLValueType(CanLValueType type,
DynamicMetadataRequest request) {
llvm_unreachable("lvalue type should have been lowered by SILGen");
}
MetadataResponse visitInOutType(CanInOutType type,
DynamicMetadataRequest request) {
llvm_unreachable("inout type should have been lowered by SILGen");
}
MetadataResponse visitErrorType(CanErrorType type,
DynamicMetadataRequest request) {
llvm_unreachable("error type should not appear in IRGen");
}
MetadataResponse visitSILBlockStorageType(CanSILBlockStorageType type,
DynamicMetadataRequest request) {
llvm_unreachable("cannot ask for metadata of block storage");
}
MetadataResponse visitSILBoxType(CanSILBoxType type,
DynamicMetadataRequest request) {
// The Builtin.NativeObject metadata can stand in for boxes.
return emitDirectMetadataRef(type->getASTContext().TheNativeObjectType);
}
/// Try to find the metatype in local data.
MetadataResponse tryGetLocal(CanType type, DynamicMetadataRequest request) {
return IGF.tryGetLocalTypeMetadata(type, request);
}
/// Set the metatype in local data.
MetadataResponse setLocal(CanType type, MetadataResponse response) {
IGF.setScopedLocalTypeMetadata(type, response);
return response;
}
};
} // end anonymous namespace
/// Emit a type metadata reference without using an accessor function.
static MetadataResponse emitDirectTypeMetadataRef(IRGenFunction &IGF,
CanType type,
DynamicMetadataRequest request) {
return EmitTypeMetadataRef(IGF).visit(type, request);
}
static bool isLoadFrom(llvm::Value *value, Address address) {
if (auto load = dyn_cast<llvm::LoadInst>(value)) {
return load->getOperand(0) == address.getAddress();
}
return false;
}
/// Emit the body of a cache accessor.
///
/// If cacheVariable is null, we perform the direct access every time.
/// This is used for metadata accessors that come about due to resilience,
/// where the direct access is completely trivial.
void irgen::emitCacheAccessFunction(IRGenModule &IGM,
llvm::Function *accessor,
llvm::Constant *cacheVariable,
CacheStrategy cacheStrategy,
CacheEmitter getValue,
bool isReadNone) {
assert((cacheStrategy == CacheStrategy::None) == (cacheVariable == nullptr));
accessor->setDoesNotThrow();
// Don't inline cache functions, since doing so has little impact on
// overall performance.
accessor->addAttribute(llvm::AttributeList::FunctionIndex,
llvm::Attribute::NoInline);
// Accessor functions don't need frame pointers.
IGM.setHasFramePointer(accessor, false);
// This function is logically 'readnone': the caller does not need
// to reason about any side effects or stores it might perform.
if (isReadNone)
accessor->setDoesNotAccessMemory();
IRGenFunction IGF(IGM, accessor);
if (IGM.DebugInfo)
IGM.DebugInfo->emitArtificialFunction(IGF, accessor);
auto parameters = IGF.collectParameters();
bool returnsResponse =
(accessor->getReturnType() == IGM.TypeMetadataResponseTy);
switch (cacheStrategy) {
// If there's no cache variable, just perform the direct access.
case CacheStrategy::None: {
auto response = getValue(IGF, parameters);
llvm::Value *ret;
if (returnsResponse) {
response.ensureDynamicState(IGF);
ret = response.combine(IGF);
} else {
assert(response.isStaticallyKnownComplete());
ret = response.getMetadata();
}
IGF.Builder.CreateRet(ret);
return;
}
// For in-place initialization, drill to the first element of the cache.
case CacheStrategy::SingletonInitialization:
cacheVariable =
llvm::ConstantExpr::getBitCast(cacheVariable,
IGM.TypeMetadataPtrTy->getPointerTo());
break;
case CacheStrategy::Lazy:
break;
}
llvm::Constant *null =
llvm::ConstantPointerNull::get(
cast<llvm::PointerType>(
cacheVariable->getType()->getPointerElementType()));
Address cache(cacheVariable, IGM.getPointerAlignment());
// Okay, first thing, check the cache variable.
//
// Conceptually, this needs to establish memory ordering with the
// store we do later in the function: if the metadata value is
// non-null, we must be able to see any stores performed by the
// initialization of the metadata. However, any attempt to read
// from the metadata will be address-dependent on the loaded
// metadata pointer, which is sufficient to provide adequate
// memory ordering guarantees on all the platforms we care about:
// ARM has special rules about address dependencies, and x86's
// memory ordering is strong enough to guarantee the visibility
// even without the address dependency.
//
// And we do not need to worry about the compiler because the
// address dependency naturally forces an order to the memory
// accesses.
//
// Therefore, we can perform a completely naked load here.
// FIXME: Technically should be "consume", but that introduces barriers in the
// current LLVM ARM backend.
auto load = IGF.Builder.CreateLoad(cache);
// Make this barrier explicit when building for TSan to avoid false positives.
if (IGM.IRGen.Opts.Sanitizers & SanitizerKind::Thread)
load->setOrdering(llvm::AtomicOrdering::Acquire);
// Compare the load result against null.
auto isNullBB = IGF.createBasicBlock("cacheIsNull");
auto contBB = IGF.createBasicBlock("cont");
llvm::Value *comparison = IGF.Builder.CreateICmpEQ(load, null);
IGF.Builder.CreateCondBr(comparison, isNullBB, contBB);
auto loadBB = IGF.Builder.GetInsertBlock();
// If the load yielded null, emit the type metadata.
IGF.Builder.emitBlock(isNullBB);
MetadataResponse response = getValue(IGF, parameters);
// Ensure that we have a dynamically-correct state value.
llvm::Constant *completedState = nullptr;
if (returnsResponse) {
completedState = MetadataResponse::getCompletedState(IGM);
response.ensureDynamicState(IGF);
}
auto directResult = response.getMetadata();
// Emit a branch around the caching code if we're working with responses
// and the fetched result is not complete. We can avoid doing this if
// the response is statically known to be complete, and we don't need to
// do it if this is an in-place initiazation cache because the store
// is done within the runtime.
llvm::BasicBlock *completionCheckBB = nullptr;
llvm::Value *directState = nullptr;
if (cacheStrategy == CacheStrategy::SingletonInitialization) {
directState = response.getDynamicState();
completionCheckBB = IGF.Builder.GetInsertBlock();
} else {
if (returnsResponse &&
!response.isStaticallyKnownComplete()) {
completionCheckBB = IGF.Builder.GetInsertBlock();
directState = response.getDynamicState();
auto isCompleteBB = IGF.createBasicBlock("is_complete");
auto isComplete =
IGF.Builder.CreateICmpEQ(directState, completedState);
IGF.Builder.CreateCondBr(isComplete, isCompleteBB, contBB);
IGF.Builder.emitBlock(isCompleteBB);
}
// Store it back to the cache variable. This needs to be a store-release
// because it needs to propagate memory visibility to the other threads
// that can access the cache: the initializing stores might be visible
// to this thread, but they aren't transitively guaranteed to be visible
// to other threads unless this is a store-release.
//
// However, we can skip this if the value was actually loaded from the
// cache. This is a simple, if hacky, peephole that's useful for the
// code in emitOnceTypeMetadataAccessFunctionBody.
if (!isLoadFrom(directResult, cache)) {
IGF.Builder.CreateStore(directResult, cache)
->setAtomic(llvm::AtomicOrdering::Release);
}
}
IGF.Builder.CreateBr(contBB);
auto storeBB = IGF.Builder.GetInsertBlock();
// Emit the continuation block.
IGF.Builder.emitBlock(contBB);
// Add a phi for the metadata value.
auto phi = IGF.Builder.CreatePHI(null->getType(), 3);
phi->addIncoming(load, loadBB);
phi->addIncoming(directResult, storeBB);
// Add a phi for the metadata state if we're returning a response.
llvm::Value *stateToReturn = nullptr;
if (directState) {
if (storeBB != completionCheckBB)
phi->addIncoming(directResult, completionCheckBB);
auto completionStatePHI = IGF.Builder.CreatePHI(IGM.SizeTy, 3);
completionStatePHI->addIncoming(completedState, loadBB);
completionStatePHI->addIncoming(directState, completionCheckBB);
if (storeBB != completionCheckBB)
completionStatePHI->addIncoming(completedState, storeBB);
stateToReturn = completionStatePHI;
} else if (returnsResponse) {
stateToReturn = completedState;
}
// Build the return value.
llvm::Value *ret;
if (returnsResponse) {
ret = MetadataResponse(phi, stateToReturn, MetadataState::Abstract)
.combine(IGF);
} else {
ret = phi;
}
IGF.Builder.CreateRet(ret);
}
MetadataResponse
IRGenFunction::emitGenericTypeMetadataAccessFunctionCall(
llvm::Function *accessFunction,
ArrayRef<llvm::Value *> args,
DynamicMetadataRequest request) {
SmallVector<llvm::Value *, 8> callArgs;
// Add the metadata request argument.
callArgs.push_back(request.get(*this));
Address argsBuffer;
bool allocatedArgsBuffer = false;
if (args.size() > NumDirectGenericTypeMetadataAccessFunctionArgs) {
// Allocate an array to pass the arguments.
auto argsBufferTy = llvm::ArrayType::get(IGM.Int8PtrTy, args.size());
argsBuffer = createAlloca(argsBufferTy, IGM.getPointerAlignment());
// Mark the beginning of the array lifetime.
Builder.CreateLifetimeStart(argsBuffer,
IGM.getPointerSize() * args.size());
allocatedArgsBuffer = true;
// Fill in the buffer.
for (unsigned i : indices(args)) {
Address elt = Builder.CreateStructGEP(argsBuffer, i,
IGM.getPointerSize() * i);
auto *arg =
Builder.CreateBitCast(args[i], elt.getType()->getPointerElementType());
Builder.CreateStore(arg, elt);
}
// Add the buffer to the call arguments.
callArgs.push_back(
Builder.CreateBitCast(argsBuffer.getAddress(), IGM.Int8PtrPtrTy));
} else {
callArgs.append(args.begin(), args.end());
}
auto call = Builder.CreateCall(accessFunction, callArgs);
call->setDoesNotThrow();
call->setCallingConv(IGM.SwiftCC);
call->addAttribute(llvm::AttributeList::FunctionIndex,
allocatedArgsBuffer
? llvm::Attribute::InaccessibleMemOrArgMemOnly
: llvm::Attribute::ReadNone);
// If we allocated a buffer for the arguments, end its lifetime.
if (allocatedArgsBuffer)
Builder.CreateLifetimeEnd(argsBuffer, IGM.getPointerSize() * args.size());
return MetadataResponse::handle(*this, request, call);
}
static MetadataResponse
emitGenericTypeMetadataAccessFunction(IRGenFunction &IGF,
Explosion &params,
NominalTypeDecl *nominal,
GenericArguments &genericArgs) {
auto &IGM = IGF.IGM;
llvm::Constant *descriptor =
IGM.getAddrOfTypeContextDescriptor(nominal, RequireMetadata);
auto request = params.claimNext();
auto numArguments = genericArgs.Types.size();
llvm::Value *result;
if (numArguments > NumDirectGenericTypeMetadataAccessFunctionArgs) {
// swift_getGenericMetadata's calling convention is already cleverly
// laid out to minimize the assembly language size of the thunk.
// The caller passed us an appropriate buffer with the arguments.
auto argsBuffer = Address(params.claimNext(), IGM.getPointerAlignment());
llvm::Value *arguments =
IGF.Builder.CreateBitCast(argsBuffer.getAddress(), IGM.Int8PtrTy);
// Make the call.
auto call = IGF.Builder.CreateCall(IGM.getGetGenericMetadataFn(),
{request, arguments, descriptor});
call->setDoesNotThrow();
call->setCallingConv(IGM.SwiftCC);
call->addAttribute(llvm::AttributeList::FunctionIndex,
llvm::Attribute::ReadOnly);
result = call;
} else {
static_assert(NumDirectGenericTypeMetadataAccessFunctionArgs == 3,
"adjust this if you change "
"NumDirectGenericTypeMetadataAccessFunctionArgs");
// Factor out the buffer shuffling for metadata accessors that take their
// arguments directly, so that the accessor function itself only needs to
// materialize the nominal type descriptor and call this thunk.
auto thunkFn = cast<llvm::Function>(
IGM.getModule()
->getOrInsertFunction("__swift_instantiateGenericMetadata",
IGM.TypeMetadataResponseTy,
IGM.SizeTy, // request
IGM.Int8PtrTy, // arg 0
IGM.Int8PtrTy, // arg 1
IGM.Int8PtrTy, // arg 2
IGM.TypeContextDescriptorPtrTy) // type context descriptor
.getCallee());
if (thunkFn->empty()) {
ApplyIRLinkage(IRLinkage::InternalLinkOnceODR)
.to(thunkFn);
thunkFn->setDoesNotAccessMemory();
thunkFn->setDoesNotThrow();
thunkFn->setCallingConv(IGM.SwiftCC);
thunkFn->addAttribute(llvm::AttributeList::FunctionIndex,
llvm::Attribute::NoInline);
IGM.setHasFramePointer(thunkFn, false);
[&IGM, thunkFn]{
IRGenFunction subIGF(IGM, thunkFn);
auto params = subIGF.collectParameters();
auto request = params.claimNext();
auto arg0 = params.claimNext();
auto arg1 = params.claimNext();
auto arg2 = params.claimNext();
auto descriptor = params.claimNext();
// Allocate a buffer with enough storage for the arguments.
auto argsBufferTy =
llvm::ArrayType::get(IGM.Int8PtrTy,
NumDirectGenericTypeMetadataAccessFunctionArgs);
auto argsBuffer = subIGF.createAlloca(argsBufferTy,
IGM.getPointerAlignment(),
"generic.arguments");
subIGF.Builder.CreateLifetimeStart(argsBuffer,
IGM.getPointerSize() * NumDirectGenericTypeMetadataAccessFunctionArgs);
auto arg0Buf = subIGF.Builder.CreateConstInBoundsGEP2_32(argsBufferTy,
argsBuffer.getAddress(), 0, 0);
subIGF.Builder.CreateStore(arg0, arg0Buf, IGM.getPointerAlignment());
auto arg1Buf = subIGF.Builder.CreateConstInBoundsGEP2_32(argsBufferTy,
argsBuffer.getAddress(), 0, 1);
subIGF.Builder.CreateStore(arg1, arg1Buf, IGM.getPointerAlignment());
auto arg2Buf = subIGF.Builder.CreateConstInBoundsGEP2_32(argsBufferTy,
argsBuffer.getAddress(), 0, 2);
subIGF.Builder.CreateStore(arg2, arg2Buf, IGM.getPointerAlignment());
// Make the call.
auto argsAddr = subIGF.Builder.CreateBitCast(argsBuffer.getAddress(),
IGM.Int8PtrTy);
auto result = subIGF.Builder.CreateCall(IGM.getGetGenericMetadataFn(),
{request, argsAddr, descriptor});
subIGF.Builder.CreateRet(result);
}();
}
// Call out to the helper.
auto arg0 = numArguments >= 1
? IGF.Builder.CreateBitCast(params.claimNext(), IGM.Int8PtrTy)
: llvm::UndefValue::get(IGM.Int8PtrTy);
auto arg1 = numArguments >= 2
? IGF.Builder.CreateBitCast(params.claimNext(), IGM.Int8PtrTy)
: llvm::UndefValue::get(IGM.Int8PtrTy);
auto arg2 = numArguments >= 3
? IGF.Builder.CreateBitCast(params.claimNext(), IGM.Int8PtrTy)
: llvm::UndefValue::get(IGM.Int8PtrTy);
auto call = IGF.Builder.CreateCall(thunkFn,
{request, arg0, arg1, arg2, descriptor});
call->setDoesNotAccessMemory();
call->setDoesNotThrow();
call->setCallingConv(IGM.SwiftCC);
result = call;
}
return MetadataResponse::handle(IGF, DynamicMetadataRequest(request), result);
}
static llvm::Value *
emitIdempotentClassMetadataInitialization(IRGenFunction &IGF,
llvm::Value *metadata) {
if (IGF.IGM.ObjCInterop) {
metadata = IGF.Builder.CreateBitCast(metadata, IGF.IGM.ObjCClassPtrTy);
metadata = IGF.Builder.CreateCall(IGF.IGM.getGetInitializedObjCClassFn(),
metadata);
metadata = IGF.Builder.CreateBitCast(metadata, IGF.IGM.TypeMetadataPtrTy);
}
return metadata;
}
/// Emit the body of a metadata accessor function for the given type.
///
/// This function is appropriate for ordinary situations where the
/// construction of the metadata value just involves calling idempotent
/// metadata-construction functions. It is not used for the in-place
/// initialization of non-generic nominal type metadata.
static MetadataResponse
emitDirectTypeMetadataAccessFunctionBody(IRGenFunction &IGF,
DynamicMetadataRequest request,
CanType type) {
assert(!type->hasArchetype() &&
"cannot emit metadata accessor for context-dependent type");
// We only take this path for non-generic nominal types.
auto typeDecl = type->getAnyNominal();
if (!typeDecl)
return emitDirectTypeMetadataRef(IGF, type, request);
if (typeDecl->isGenericContext() &&
!(isa<ClassDecl>(typeDecl) &&
isa<ClangModuleUnit>(typeDecl->getModuleScopeContext()))) {
// This is a metadata accessor for a fully substituted generic type.
return emitDirectTypeMetadataRef(IGF, type, request);
}
// We should never be emitting a metadata accessor for resilient nominal
// types outside of their defining module. We'd only do that anyway for
// types that don't guarantee the existence of a non-unique access
// function, and that should never be true of a resilient type with
// external availability.
//
// (The type might still not have a statically-known layout. It just
// can't be resilient at the top level: we have to know its immediate
// members, or we can't even begin to approach the problem of emitting
// metadata for it.)
assert(!IGF.IGM.isResilient(typeDecl, ResilienceExpansion::Maximal));
// We should never be emitting a metadata accessor for foreign type
// metadata using this function.
assert(!requiresForeignTypeMetadata(typeDecl));
// Classes that might not have Swift metadata use a different
// access pattern.
if (auto classDecl = dyn_cast<ClassDecl>(typeDecl)) {
if (!hasKnownSwiftMetadata(IGF.IGM, classDecl)) {
return MetadataResponse::forComplete(emitObjCMetadataRef(IGF, classDecl));
}
llvm::Constant *metadata = IGF.IGM.getAddrOfTypeMetadata(type);
return MetadataResponse::forComplete(
emitIdempotentClassMetadataInitialization(IGF, metadata));
}
// We should not be doing more serious work along this path.
assert(isTypeMetadataAccessTrivial(IGF.IGM, type));
// Okay, everything else is built from a Swift metadata object.
llvm::Constant *metadata = IGF.IGM.getAddrOfTypeMetadata(type);
return MetadataResponse::forComplete(metadata);
}
static llvm::Function *getAccessFunctionPrototype(IRGenModule &IGM,
CanType type,
ForDefinition_t forDefinition) {
assert(!type->hasArchetype());
// Type should be bound unless it's type erased.
assert(isTypeErasedGenericClassType(type)
? !isa<BoundGenericType>(type)
: !isa<UnboundGenericType>(type));
return IGM.getAddrOfTypeMetadataAccessFunction(type, forDefinition);
}
llvm::Function *
irgen::getOtherwiseDefinedTypeMetadataAccessFunction(IRGenModule &IGM,
CanType type) {
return getAccessFunctionPrototype(IGM, type, NotForDefinition);
}
/// Get or create an accessor function to the given non-dependent type.
llvm::Function *
irgen::createTypeMetadataAccessFunction(IRGenModule &IGM, CanType type,
CacheStrategy cacheStrategy,
MetadataAccessGenerator generator,
bool allowExistingDefinition) {
// Get the prototype.
auto accessor = getAccessFunctionPrototype(IGM, type, ForDefinition);
// If we're not supposed to define the accessor, or if we already
// have defined it, just return the pointer.
if (!accessor->empty()) {
assert(allowExistingDefinition &&
"repeat definition of access function!");
return accessor;
}
// Okay, define the accessor.
llvm::Constant *cacheVariable = nullptr;
// If our preferred access method is to go via an accessor, it means
// there is some non-trivial computation that needs to be cached.
if (isTypeMetadataAccessTrivial(IGM, type)) {
cacheStrategy = CacheStrategy::None;
} else {
switch (cacheStrategy) {
// Nothing to do.
case CacheStrategy::None:
break;
// For lazy initialization, the cache variable is just a pointer.
case CacheStrategy::Lazy:
cacheVariable = IGM.getAddrOfTypeMetadataLazyCacheVariable(type);
break;
// For in-place initialization, drill down to the first element.
case CacheStrategy::SingletonInitialization:
cacheVariable = IGM.getAddrOfTypeMetadataSingletonInitializationCache(
type->getAnyNominal(), ForDefinition);
break;
}
if (IGM.getOptions().optimizeForSize())
accessor->addFnAttr(llvm::Attribute::NoInline);
}
emitCacheAccessFunction(IGM, accessor, cacheVariable, cacheStrategy,
[&](IRGenFunction &IGF, Explosion &params) {
auto request = DynamicMetadataRequest(params.claimNext());
return generator(IGF, request, cacheVariable);
});
return accessor;
}
/// Emit a standard accessor function to the given non-dependent type.
llvm::Function *
irgen::createDirectTypeMetadataAccessFunction(IRGenModule &IGM, CanType type,
bool allowExistingDefinition) {
return createTypeMetadataAccessFunction(IGM, type, CacheStrategy::Lazy,
[&](IRGenFunction &IGF,
DynamicMetadataRequest request,
llvm::Constant *cacheVariable) {
// We should not be called with ForDefinition for nominal types
// that require in-place initialization.
return emitDirectTypeMetadataAccessFunctionBody(IGF, request, type);
}, allowExistingDefinition);
}
/// Get or create an accessor function to the given generic type.
llvm::Function *
irgen::getGenericTypeMetadataAccessFunction(IRGenModule &IGM,
NominalTypeDecl *nominal,
ForDefinition_t shouldDefine) {
assert(nominal->isGenericContext());
assert(!isTypeErasedGenericClass(nominal));
GenericArguments genericArgs;
genericArgs.collectTypes(IGM, nominal);
llvm::Function *accessor =
IGM.getAddrOfGenericTypeMetadataAccessFunction(
nominal, genericArgs.Types, shouldDefine);
// If we're not supposed to define the accessor, or if we already
// have defined it, just return the pointer.
if (!shouldDefine || !accessor->empty())
return accessor;
if (IGM.getOptions().optimizeForSize())
accessor->addFnAttr(llvm::Attribute::NoInline);
bool isReadNone =
(genericArgs.Types.size() <= NumDirectGenericTypeMetadataAccessFunctionArgs);
emitCacheAccessFunction(IGM, accessor, /*cache*/nullptr, CacheStrategy::None,
[&](IRGenFunction &IGF, Explosion &params) {
return emitGenericTypeMetadataAccessFunction(
IGF, params, nominal, genericArgs);
},
isReadNone);
return accessor;
}
static bool shouldAccessByMangledName(IRGenModule &IGM, CanType type) {
// A nongeneric nominal type with nontrivial metadata has an accessor
// already we can just call.
if (auto nom = dyn_cast<NominalType>(type)) {
if (!isa<ProtocolDecl>(nom->getDecl())
&& (!nom->getDecl()->isGenericContext()
|| nom->getDecl()->getGenericSignature()->areAllParamsConcrete())
&& (!nom->getClassOrBoundGenericClass()
|| !nom->getClassOrBoundGenericClass()->hasClangNode()
|| nom->getClassOrBoundGenericClass()->isForeign())) {
return false;
}
}
// The Swift 5.1 runtime fails to demangle associated types of opaque types.
auto hasNestedOpaqueArchetype = type.findIf([](CanType sub) -> bool {
if (auto archetype = dyn_cast<NestedArchetypeType>(sub)) {
if (isa<OpaqueTypeArchetypeType>(archetype->getRoot())) {
return true;
}
}
return false;
});
if (hasNestedOpaqueArchetype)
return false;
return true;
// The visitor below can be used to fine-tune a heuristic to decide whether
// demangling might be better for code size than open-coding an access. In
// my experiments on the Swift standard library and Apple SDK overlays,
// always demangling seemed to have the biggest code size benefit.
#if false
// Guess the number of calls and addresses we need to materialize a
// metadata record in code.
struct OpenCodedMetadataAccessWeightVisitor
: CanTypeVisitor<OpenCodedMetadataAccessWeightVisitor>
{
IRGenModule &IGM;
unsigned NumCalls = 0, NumAddresses = 0;
OpenCodedMetadataAccessWeightVisitor(IRGenModule &IGM)
: IGM(IGM) {}
void visitBoundGenericType(CanBoundGenericType bgt) {
// Need to materialize all the arguments, then call the metadata
// accessor.
//
// TODO: Also need to count the parent type's generic arguments.
for (auto arg : bgt->getGenericArgs()) {
visit(arg);
}
NumCalls += 1;
}
void visitNominalType(CanNominalType nom) {
// Some nominal types have trivially-referenceable metadata symbols,
// others may require accessors to trigger instantiation.
//
// TODO: Also need to count the parent type's generic arguments.
if (isTypeMetadataAccessTrivial(IGM, nom)) {
NumAddresses += 1;
} else {
NumCalls += 1;
}
}
void visitTupleType(CanTupleType tup) {
// The empty tuple has trivial metadata.
if (tup->getNumElements() == 0) {
NumAddresses += 1;
return;
}
// Need to materialize the element types, then call the getTupleMetadata
// accessor.
for (auto elt : tup.getElementTypes()) {
visit(elt);
}
NumCalls += 1;
}
void visitAnyFunctionType(CanAnyFunctionType fun) {
// Need to materialize the arguments and return, then call the
// getFunctionMetadata accessor.
for (auto arg : fun.getParams()) {
visit(arg.getPlainType());
}
visit(fun.getResult());
NumCalls += 1;
}
void visitMetatypeType(CanMetatypeType meta) {
// Need to materialize the instance type, then call the
// getMetatypeMetadata accessor.
visit(meta.getInstanceType());
NumCalls += 1;
}
void visitProtocolType(CanProtocolType proto) {
// Need to reference the protocol descriptor, then call the
// getExistentialTypeMetadata accessor.
NumAddresses += 1;
NumCalls += 1;
}
void visitBuiltinType(CanBuiltinType b) {
// Builtins always have trivial metadata.
NumAddresses += 1;
}
void visitProtocolCompositionType(CanProtocolCompositionType comp) {
unsigned numMembers = comp->getMembers().size();
// The empty compositions Any and AnyObject are trivial.
if (numMembers == 0) {
NumAddresses += 1;
return;
}
// Need to materialize the base class, if any.
if (comp->getMembers().front()->getClassOrBoundGenericClass()) {
visit(CanType(comp->getMembers().front()));
numMembers -= 1;
}
// Need to reference the protocol descriptors for each protocol.
NumAddresses += numMembers;
// Finally, call the getExistentialTypeMetadata accessor.
NumCalls += 1;
}
void visitExistentialMetatypeType(CanExistentialMetatypeType meta) {
// The number of accesses turns out the same as the instance type,
// but instead of getExistentialTypeMetadata, we call
// getExistentialMetatypeMetadata
visit(meta.getInstanceType());
}
// Shouldn't emit metadata for other kinds of types.
void visitType(CanType t) {
llvm_unreachable("unhandled type?!");
}
};
OpenCodedMetadataAccessWeightVisitor visitor(IGM);
visitor.visit(type);
// If we need more than one accessor call, or the access requires too many
// arguments, the mangled name accessor is probably more compact.
return visitor.NumCalls > 1 || visitor.NumAddresses > 1;
#endif
}
/// Emit a call to a type metadata accessor using a mangled name.
static MetadataResponse
emitMetadataAccessByMangledName(IRGenFunction &IGF, CanType type,
DynamicMetadataRequest request) {
// TODO: We can only answer blocking complete metadata requests with the
// <=5.1 runtime ABI entry points.
assert(request.isStaticallyBlockingComplete()
&& "can only form complete metadata by mangled name");
auto &IGM = IGF.IGM;
llvm::Constant *mangledString;
unsigned mangledStringSize;
std::tie(mangledString, mangledStringSize) =
IGM.getTypeRef(type, CanGenericSignature(), MangledTypeRefRole::Metadata);
assert(mangledStringSize < 0x80000000u
&& "2GB of mangled name ought to be enough for anyone");
// Get or create the cache variable if necessary.
auto cache = IGM.getAddrOfTypeMetadataDemanglingCacheVariable(type,
ConstantInit());
if (cast<llvm::GlobalVariable>(cache->stripPointerCasts())->isDeclaration()) {
ConstantInitBuilder builder(IGM);
auto structBuilder = builder.beginStruct();
// A "negative" 64-bit value in the cache indicates the uninitialized state.
// Which word has that bit in the {i32, i32} layout depends on endianness.
if (IGM.getModule()->getDataLayout().isBigEndian()) {
structBuilder.addInt32(-mangledStringSize);
structBuilder.addRelativeAddress(mangledString);
} else {
structBuilder.addRelativeAddress(mangledString);
structBuilder.addInt32(-mangledStringSize);
}
auto init = structBuilder.finishAndCreateFuture();
cache = IGM.getAddrOfTypeMetadataDemanglingCacheVariable(type, init);
}
// Get or create a shared helper function to do the instantiation.
auto instantiationFn = cast<llvm::Function>(
IGM.getModule()
->getOrInsertFunction("__swift_instantiateConcreteTypeFromMangledName",
IGF.IGM.TypeMetadataPtrTy, cache->getType())
.getCallee());
if (instantiationFn->empty()) {
ApplyIRLinkage(IRLinkage::InternalLinkOnceODR)
.to(instantiationFn);
instantiationFn->setDoesNotAccessMemory();
instantiationFn->setDoesNotThrow();
instantiationFn->addAttribute(llvm::AttributeList::FunctionIndex,
llvm::Attribute::NoInline);
IGM.setHasFramePointer(instantiationFn, false);
[&IGM, instantiationFn]{
IRGenFunction subIGF(IGM, instantiationFn);
auto params = subIGF.collectParameters();
auto cache = params.claimNext();
// Load the existing cache value.
// Conceptually, this needs to establish memory ordering with the
// store we do later in the function: if the metadata value is
// non-null, we must be able to see any stores performed by the
// initialization of the metadata. However, any attempt to read
// from the metadata will be address-dependent on the loaded
// metadata pointer, which is sufficient to provide adequate
// memory ordering guarantees on all the platforms we care about:
// ARM has special rules about address dependencies, and x86's
// memory ordering is strong enough to guarantee the visibility
// even without the address dependency.
//
// And we do not need to worry about the compiler because the
// address dependency naturally forces an order to the memory
// accesses.
//
// Therefore, we can perform a completely naked load here.
// FIXME: Technically should be "consume", but that introduces barriers
// in the current LLVM ARM backend.
auto cacheWordAddr = subIGF.Builder.CreateBitCast(cache,
IGM.Int64Ty->getPointerTo());
auto load = subIGF.Builder.CreateLoad(cacheWordAddr, Alignment(8));
// Make this barrier explicit when building for TSan to avoid false positives.
if (IGM.IRGen.Opts.Sanitizers & SanitizerKind::Thread)
load->setOrdering(llvm::AtomicOrdering::Acquire);
else
load->setOrdering(llvm::AtomicOrdering::Monotonic);
// Compare the load result to see if it's negative.
auto isUnfilledBB = subIGF.createBasicBlock("");
auto contBB = subIGF.createBasicBlock("");
llvm::Value *comparison = subIGF.Builder.CreateICmpSLT(load,
llvm::ConstantInt::get(IGM.Int64Ty, 0));
comparison = subIGF.Builder.CreateExpect(comparison,
llvm::ConstantInt::get(IGM.Int1Ty, 0));
subIGF.Builder.CreateCondBr(comparison, isUnfilledBB, contBB);
auto loadBB = subIGF.Builder.GetInsertBlock();
// If the load is negative, emit the call to instantiate the type
// metadata.
subIGF.Builder.SetInsertPoint(&subIGF.CurFn->back());
subIGF.Builder.emitBlock(isUnfilledBB);
// Break up the loaded value into size and relative address to the
// string.
auto size = subIGF.Builder.CreateAShr(load, 32);
size = subIGF.Builder.CreateTruncOrBitCast(size, IGM.SizeTy);
size = subIGF.Builder.CreateNeg(size);
auto stringAddrOffset = subIGF.Builder.CreateTrunc(load,
IGM.Int32Ty);
stringAddrOffset = subIGF.Builder.CreateSExtOrBitCast(stringAddrOffset,
IGM.SizeTy);
auto stringAddrBase = subIGF.Builder.CreatePtrToInt(cache, IGM.SizeTy);
if (IGM.getModule()->getDataLayout().isBigEndian()) {
stringAddrBase = subIGF.Builder.CreateAdd(stringAddrBase,
llvm::ConstantInt::get(IGM.SizeTy, 4));
}
auto stringAddr = subIGF.Builder.CreateAdd(stringAddrBase,
stringAddrOffset);
stringAddr = subIGF.Builder.CreateIntToPtr(stringAddr, IGM.Int8PtrTy);
auto call =
subIGF.Builder.CreateCall(IGM.getGetTypeByMangledNameInContextFn(),
{stringAddr,
size,
// TODO: Use mangled name lookup in generic
// contexts?
llvm::ConstantPointerNull::get(IGM.TypeContextDescriptorPtrTy),
llvm::ConstantPointerNull::get(IGM.Int8PtrPtrTy)});
call->setDoesNotThrow();
call->setDoesNotAccessMemory();
call->setCallingConv(IGM.SwiftCC);
// Store the result back to the cache. Metadata instantatiation should
// already have emitted the necessary barriers to publish the instantiated
// metadata to other threads, so we only need to expose the pointer.
// Worst case, another thread might race with us and reinstantiate the
// exact same metadata pointer.
auto resultWord = subIGF.Builder.CreatePtrToInt(call, IGM.SizeTy);
resultWord = subIGF.Builder.CreateZExtOrBitCast(resultWord, IGM.Int64Ty);
auto store = subIGF.Builder.CreateStore(resultWord, cacheWordAddr,
Alignment(8));
store->setOrdering(llvm::AtomicOrdering::Monotonic);
subIGF.Builder.CreateBr(contBB);
subIGF.Builder.SetInsertPoint(loadBB);
subIGF.Builder.emitBlock(contBB);
auto phi = subIGF.Builder.CreatePHI(IGM.Int64Ty, 2);
phi->addIncoming(load, loadBB);
phi->addIncoming(resultWord, isUnfilledBB);
auto resultAddr = subIGF.Builder.CreateTruncOrBitCast(phi, IGM.SizeTy);
resultAddr = subIGF.Builder.CreateIntToPtr(resultAddr,
IGM.TypeMetadataPtrTy);
subIGF.Builder.CreateRet(resultAddr);
}();
}
auto call = IGF.Builder.CreateCall(instantiationFn, cache);
call->setDoesNotThrow();
call->setDoesNotAccessMemory();
auto response = MetadataResponse::forComplete(call);
IGF.setScopedLocalTypeMetadata(type, response);
return response;
}
/// Emit a call to the type metadata accessor for the given function.
static MetadataResponse
emitCallToTypeMetadataAccessFunction(IRGenFunction &IGF, CanType type,
DynamicMetadataRequest request) {
// If we already cached the metadata, use it.
if (auto local = IGF.tryGetLocalTypeMetadata(type, request))
return local;
// If the metadata would require multiple runtime calls to build, emit a
// single access by mangled name instead, if we're asking for complete
// metadata.
//
// TODO: The getTypeByMangledNameInContext entry point in Swift <=5.1 can
// only answer requests for complete metadata. We could introduce new
// entry points that could answer all metadata requests.
if (request.isStaticallyBlockingComplete()
&& shouldAccessByMangledName(IGF.IGM, type)) {
return emitMetadataAccessByMangledName(IGF, type, request);
}
llvm::Constant *accessor =
getOrCreateTypeMetadataAccessFunction(IGF.IGM, type);
llvm::CallInst *call = IGF.Builder.CreateCall(accessor, { request.get(IGF) });
call->setCallingConv(IGF.IGM.SwiftCC);
call->setDoesNotAccessMemory();
call->setDoesNotThrow();
auto response = MetadataResponse::handle(IGF, request, call);
// Save the metadata for future lookups.
IGF.setScopedLocalTypeMetadata(type, response);
return response;
}
llvm::Value *IRGenFunction::emitAbstractTypeMetadataRef(CanType type) {
return emitTypeMetadataRef(type, MetadataState::Abstract).getMetadata();
}
/// Produce the type metadata pointer for the given type.
llvm::Value *IRGenFunction::emitTypeMetadataRef(CanType type) {
return emitTypeMetadataRef(type, MetadataState::Complete).getMetadata();
}
/// Produce the type metadata pointer for the given type.
MetadataResponse
IRGenFunction::emitTypeMetadataRef(CanType type,
DynamicMetadataRequest request) {
type = IGM.getRuntimeReifiedType(type);
// Look through any opaque types we're allowed to.
type = IGM.substOpaqueTypesWithUnderlyingTypes(type);
// If we're asking for the metadata of the type that dynamic Self is known
// to be equal to, we can just use the self metadata.
if (LocalSelfIsExact && LocalSelfType == type) {
return MetadataResponse::forComplete(getLocalSelfMetadata());
}
if (type->hasArchetype() ||
isTypeMetadataAccessTrivial(IGM, type)) {
// FIXME: propagate metadata request!
return emitDirectTypeMetadataRef(*this, type, request);
}
return emitCallToTypeMetadataAccessFunction(*this, type, request);
}
/// Return the address of a function that will return type metadata
/// for the given non-dependent type.
llvm::Function *irgen::getOrCreateTypeMetadataAccessFunction(IRGenModule &IGM,
CanType type) {
type = IGM.getRuntimeReifiedType(type);
assert(!type->hasArchetype() &&
"cannot create global function to return dependent type metadata");
switch (getTypeMetadataAccessStrategy(type)) {
case MetadataAccessStrategy::ForeignAccessor:
case MetadataAccessStrategy::PublicUniqueAccessor:
case MetadataAccessStrategy::HiddenUniqueAccessor:
case MetadataAccessStrategy::PrivateAccessor:
return getOtherwiseDefinedTypeMetadataAccessFunction(IGM, type);
case MetadataAccessStrategy::NonUniqueAccessor:
return createDirectTypeMetadataAccessFunction(IGM, type,
/*allow existing*/true);
}
llvm_unreachable("bad type metadata access strategy");
}
namespace {
/// A visitor class for emitting a reference to type metatype for a
/// SILType, i.e. a lowered representation type. In general, the type
/// metadata produced here might not correspond to the formal type that
/// would belong to the unlowered type. For correctness, it is important
/// not to cache the result as if it were the metadata for a formal type
/// unless the type actually cannot possibly be a formal type, e.g. because
/// it is one of the special lowered type kinds like SILFunctionType.
///
/// NOTE: If you modify the special cases in this, you should update
/// isTypeMetadataForLayoutAccessible in SIL.cpp.
class EmitTypeMetadataRefForLayout
: public CanTypeVisitor<EmitTypeMetadataRefForLayout, llvm::Value *,
DynamicMetadataRequest> {
private:
IRGenFunction &IGF;
public:
EmitTypeMetadataRefForLayout(IRGenFunction &IGF) : IGF(IGF) {}
llvm::Value *emitDirectMetadataRef(CanType type,
DynamicMetadataRequest request) {
return IGF.IGM.getAddrOfTypeMetadata(type);
}
/// For most types, we can just emit the usual metadata.
llvm::Value *visitType(CanType t, DynamicMetadataRequest request) {
return IGF.emitTypeMetadataRef(t, request).getMetadata();
}
llvm::Value *visitBoundGenericEnumType(CanBoundGenericEnumType type,
DynamicMetadataRequest request) {
// Optionals have a lowered payload type, so we recurse here.
if (auto objectTy = type.getOptionalObjectType()) {
if (auto metadata = tryGetLocal(type, request))
return metadata;
auto payloadMetadata = visit(objectTy, request);
llvm::Value *args[] = { payloadMetadata };
llvm::Type *types[] = { IGF.IGM.TypeMetadataPtrTy };
// Call the generic metadata accessor function.
llvm::Function *accessor =
IGF.IGM.getAddrOfGenericTypeMetadataAccessFunction(
type->getDecl(), types, NotForDefinition);
auto response =
IGF.emitGenericTypeMetadataAccessFunctionCall(accessor, args,
request);
return setLocal(type, response);
}
// Otherwise, generic arguments are not lowered.
return visitType(type, request);
}
llvm::Value *visitTupleType(CanTupleType type,
DynamicMetadataRequest request) {
if (auto metadata = tryGetLocal(type, request))
return metadata;
auto response = emitTupleTypeMetadataRef(IGF, type, request,
/*labels*/ false,
[&](CanType eltType, DynamicMetadataRequest eltRequest) {
// This use of 'forComplete' is technically questionable, but in
// this class we're always producing responses we can ignore, so
// it's okay.
return MetadataResponse::forComplete(visit(eltType, eltRequest));
});
return setLocal(type, response);
}
llvm::Value *visitAnyFunctionType(CanAnyFunctionType type,
DynamicMetadataRequest request) {
llvm_unreachable("not a SIL type");
}
llvm::Value *visitSILFunctionType(CanSILFunctionType type,
DynamicMetadataRequest request) {
// All function types have the same layout regardless of arguments or
// abstraction level. Use the metadata for () -> () for thick functions,
// or AnyObject for block functions.
auto &C = type->getASTContext();
switch (type->getRepresentation()) {
case SILFunctionType::Representation::Thin:
case SILFunctionType::Representation::Method:
case SILFunctionType::Representation::WitnessMethod:
case SILFunctionType::Representation::ObjCMethod:
case SILFunctionType::Representation::CFunctionPointer:
case SILFunctionType::Representation::Closure:
// A thin function looks like a plain pointer.
// FIXME: Except for extra inhabitants?
return emitDirectMetadataRef(C.TheRawPointerType, request);
case SILFunctionType::Representation::Thick:
// All function types look like () -> ().
// FIXME: It'd be nice not to have to call through the runtime here.
return IGF.emitTypeMetadataRef(
CanFunctionType::get({}, C.TheEmptyTupleType),
request).getMetadata();
case SILFunctionType::Representation::Block:
// All block types look like AnyObject.
return emitDirectMetadataRef(C.getAnyObjectType(), request);
}
llvm_unreachable("Not a valid SILFunctionType.");
}
llvm::Value *visitAnyMetatypeType(CanAnyMetatypeType type,
DynamicMetadataRequest request) {
assert(type->hasRepresentation()
&& "not a lowered metatype");
switch (type->getRepresentation()) {
case MetatypeRepresentation::Thin:
// Thin metatypes are empty, so they look like the empty tuple type.
return emitEmptyTupleTypeMetadataRef(IGF.IGM);
case MetatypeRepresentation::Thick:
case MetatypeRepresentation::ObjC:
// Thick and ObjC metatypes look like pointers with extra inhabitants.
// Get the metatype metadata from the runtime.
// FIXME: It'd be nice not to need a runtime call here; we should just
// have a standard aligned-pointer type metadata.
return IGF.emitTypeMetadataRef(type);
}
llvm_unreachable("Not a valid MetatypeRepresentation.");
}
/// Try to find the metatype in local data.
llvm::Value *tryGetLocal(CanType type, DynamicMetadataRequest request) {
auto response = IGF.tryGetLocalTypeMetadataForLayout(
SILType::getPrimitiveObjectType(type),
request);
assert(request.canResponseStatusBeIgnored());
return (response ? response.getMetadata() : nullptr);
}
/// Set the metatype in local data.
llvm::Value *setLocal(CanType type, MetadataResponse response) {
IGF.setScopedLocalTypeMetadataForLayout(
SILType::getPrimitiveObjectType(type),
response);
return response.getMetadata();
}
};
} // end anonymous namespace
llvm::Value *IRGenFunction::emitTypeMetadataRefForLayout(SILType type) {
return emitTypeMetadataRefForLayout(type, MetadataState::Complete);
}
llvm::Value *
IRGenFunction::emitTypeMetadataRefForLayout(SILType type,
DynamicMetadataRequest request) {
assert(request.canResponseStatusBeIgnored());
return EmitTypeMetadataRefForLayout(*this).visit(type.getASTType(),
request);
}
namespace {
/// A visitor class for emitting a reference to a type layout struct.
/// There are a few ways we can emit it:
///
/// - If the type is fixed-layout and we have visibility of its value
/// witness table (or one close enough), we can project the layout struct
/// from it.
/// - If the type is fixed layout, we can emit our own copy of the layout
/// struct.
/// - If the type is dynamic-layout, we have to instantiate its metadata
/// and project out its metadata. (FIXME: This leads to deadlocks in
/// recursive cases, though we can avoid many deadlocks because most
/// valid recursive types bottom out in fixed-sized types like classes
/// or pointers.)
class EmitTypeLayoutRef
: public CanTypeVisitor<EmitTypeLayoutRef, llvm::Value *,
DynamicMetadataRequest> {
private:
IRGenFunction &IGF;
public:
EmitTypeLayoutRef(IRGenFunction &IGF) : IGF(IGF) {}
llvm::Value *emitFromValueWitnessTablePointer(llvm::Value *vwtable) {
llvm::Value *indexConstant = llvm::ConstantInt::get(IGF.IGM.Int32Ty,
(unsigned)ValueWitness::First_TypeLayoutWitness);
return IGF.Builder.CreateInBoundsGEP(IGF.IGM.Int8PtrTy, vwtable,
indexConstant);
}
/// Emit the type layout by projecting it from a value witness table to
/// which we have linkage.
llvm::Value *emitFromValueWitnessTable(CanType t) {
auto *vwtable = IGF.IGM.getAddrOfValueWitnessTable(t);
return emitFromValueWitnessTablePointer(vwtable);
}
/// Emit the type layout by projecting it from dynamic type metadata.
llvm::Value *emitFromTypeMetadata(CanType t,
DynamicMetadataRequest request) {
auto *vwtable =
IGF.emitValueWitnessTableRef(IGF.IGM.getLoweredType(t), request);
return emitFromValueWitnessTablePointer(vwtable);
}
/// Given that the type is fixed-layout, emit the type layout by
/// emitting a global layout for it.
llvm::Value *emitFromFixedLayout(CanType t) {
auto layout = tryEmitFromFixedLayout(t);
assert(layout && "type must be fixed-size to call emitFromFixedLayout");
return layout;
}
/// If the type is fixed-layout, emit the type layout by
/// emitting a global layout for it.
llvm::Value *tryEmitFromFixedLayout(CanType t) {
auto &ti = IGF.getTypeInfo(SILType::getPrimitiveObjectType(t));
if (auto fixedTI = dyn_cast<FixedTypeInfo>(&ti))
return IGF.IGM.emitFixedTypeLayout(t, *fixedTI);
return nullptr;
}
bool hasVisibleValueWitnessTable(CanType t) const {
// Some builtin and structural types have value witnesses exported from
// the runtime.
auto &C = IGF.IGM.Context;
if (t == C.TheEmptyTupleType
|| t == C.TheNativeObjectType
|| t == C.TheBridgeObjectType
|| t == C.TheRawPointerType
|| t == C.getAnyObjectType())
return true;
if (auto intTy = dyn_cast<BuiltinIntegerType>(t)) {
auto width = intTy->getWidth();
if (width.isPointerWidth())
return true;
if (width.isFixedWidth()) {
switch (width.getFixedWidth()) {
case 8:
case 16:
case 32:
case 64:
case 128:
case 256:
return true;
default:
return false;
}
}
return false;
}
// TODO: If a nominal type is in the same source file as we're currently
// emitting, we would be able to see its value witness table.
return false;
}
/// Fallback default implementation.
llvm::Value *visitType(CanType t, DynamicMetadataRequest request) {
auto silTy = IGF.IGM.getLoweredType(t);
auto &ti = IGF.getTypeInfo(silTy);
// If the type is in the same source file, or has a common value
// witness table exported from the runtime, we can project from the
// value witness table instead of emitting a new record.
if (hasVisibleValueWitnessTable(t))
return emitFromValueWitnessTable(t);
// If the type is a singleton aggregate, the field's layout is equivalent
// to the aggregate's.
if (SILType singletonFieldTy = getSingletonAggregateFieldType(IGF.IGM,
silTy, ResilienceExpansion::Maximal))
return visit(singletonFieldTy.getASTType(), request);
// If the type is fixed-layout, emit a copy of its layout.
if (auto fixed = dyn_cast<FixedTypeInfo>(&ti))
return IGF.IGM.emitFixedTypeLayout(t, *fixed);
return emitFromTypeMetadata(t, request);
}
llvm::Value *visitAnyFunctionType(CanAnyFunctionType type,
DynamicMetadataRequest request) {
llvm_unreachable("not a SIL type");
}
llvm::Value *visitSILFunctionType(CanSILFunctionType type,
DynamicMetadataRequest request) {
// All function types have the same layout regardless of arguments or
// abstraction level. Use the value witness table for
// @convention(blah) () -> () from the runtime.
auto &C = type->getASTContext();
switch (type->getRepresentation()) {
case SILFunctionType::Representation::Thin:
case SILFunctionType::Representation::Method:
case SILFunctionType::Representation::WitnessMethod:
case SILFunctionType::Representation::ObjCMethod:
case SILFunctionType::Representation::CFunctionPointer:
case SILFunctionType::Representation::Closure:
// A thin function looks like a plain pointer.
// FIXME: Except for extra inhabitants?
return emitFromValueWitnessTable(C.TheRawPointerType);
case SILFunctionType::Representation::Thick:
// All function types look like () -> ().
return emitFromValueWitnessTable(
CanFunctionType::get({}, C.TheEmptyTupleType));
case SILFunctionType::Representation::Block:
// All block types look like AnyObject.
return emitFromValueWitnessTable(C.getAnyObjectType());
}
llvm_unreachable("Not a valid SILFunctionType.");
}
llvm::Value *visitAnyMetatypeType(CanAnyMetatypeType type,
DynamicMetadataRequest request) {
assert(type->hasRepresentation()
&& "not a lowered metatype");
switch (type->getRepresentation()) {
case MetatypeRepresentation::Thin: {
// Thin metatypes are empty, so they look like the empty tuple type.
return emitFromValueWitnessTable(IGF.IGM.Context.TheEmptyTupleType);
}
case MetatypeRepresentation::Thick:
if (isa<ExistentialMetatypeType>(type)) {
return emitFromFixedLayout(type);
}
// Otherwise, this is a metatype that looks like a pointer.
LLVM_FALLTHROUGH;
case MetatypeRepresentation::ObjC:
// Thick metatypes look like pointers with spare bits.
return emitFromValueWitnessTable(
CanMetatypeType::get(IGF.IGM.Context.TheNativeObjectType));
}
llvm_unreachable("Not a valid MetatypeRepresentation.");
}
llvm::Value *visitAnyClassType(ClassDecl *classDecl,
DynamicMetadataRequest request) {
// All class types have the same layout.
auto type = classDecl->getDeclaredType()->getCanonicalType();
switch (type->getReferenceCounting()) {
case ReferenceCounting::Native:
return emitFromValueWitnessTable(IGF.IGM.Context.TheNativeObjectType);
case ReferenceCounting::ObjC:
case ReferenceCounting::Block:
case ReferenceCounting::Unknown:
return emitFromValueWitnessTable(IGF.IGM.Context.getAnyObjectType());
case ReferenceCounting::Bridge:
case ReferenceCounting::Error:
llvm_unreachable("classes shouldn't have this kind of refcounting");
}
llvm_unreachable("Not a valid ReferenceCounting.");
}
llvm::Value *visitClassType(CanClassType type,
DynamicMetadataRequest request) {
return visitAnyClassType(type->getClassOrBoundGenericClass(), request);
}
llvm::Value *visitBoundGenericClassType(CanBoundGenericClassType type,
DynamicMetadataRequest request) {
return visitAnyClassType(type->getClassOrBoundGenericClass(), request);
}
llvm::Value *visitTupleType(CanTupleType type,
DynamicMetadataRequest request) {
// Single-element tuples have exactly the same layout as their elements.
if (type->getNumElements() == 1) {
return visit(type.getElementType(0), request);
}
// If the type is fixed-layout, use a global layout.
if (auto layout = tryEmitFromFixedLayout(type))
return layout;
// TODO: check for cached VWT / metadata for the type.
// Use swift_getTupleTypeLayout to compute a layout.
// Create a buffer to hold the result. We don't have any reasonable
// way to scope the lifetime of this.
auto resultPtr = IGF.createAlloca(IGF.IGM.FullTypeLayoutTy,
IGF.IGM.getPointerAlignment())
.getAddress();
switch (type->getNumElements()) {
case 0:
case 1:
llvm_unreachable("filtered out above");
case 2: {
auto elt0 = visit(type.getElementType(0), request);
auto elt1 = visit(type.getElementType(1), request);
// Ignore the offset.
auto call = IGF.Builder.CreateCall(IGF.IGM.getGetTupleLayout2Fn(),
{resultPtr, elt0, elt1});
call->setDoesNotThrow();
break;
}
case 3: {
auto elt0 = visit(type.getElementType(0), request);
auto elt1 = visit(type.getElementType(1), request);
auto elt2 = visit(type.getElementType(2), request);
// Ignore the offsets.
auto call = IGF.Builder.CreateCall(IGF.IGM.getGetTupleLayout3Fn(),
{resultPtr, elt0, elt1, elt2});
call->setDoesNotThrow();
break;
}
default: {
// Allocate a temporary array for the element layouts.
auto eltLayoutsArraySize =
IGF.IGM.getPointerSize() * type->getNumElements();
auto eltLayoutsArray =
IGF.createAlloca(IGF.IGM.Int8PtrPtrTy,
IGF.IGM.getSize(Size(type->getNumElements())),
IGF.IGM.getPointerAlignment());
IGF.Builder.CreateLifetimeStart(eltLayoutsArray, eltLayoutsArraySize);
// Emit layouts for all the elements and store them into the array.
for (auto i : indices(type.getElementTypes())) {
auto eltLayout = visit(type.getElementType(i), request);
auto eltLayoutSlot =
i == 0 ? eltLayoutsArray
: IGF.Builder.CreateConstArrayGEP(eltLayoutsArray, i,
IGF.IGM.getPointerSize());
IGF.Builder.CreateStore(eltLayout, eltLayoutSlot);
}
// Ignore the offsets.
auto offsetsPtr =
llvm::ConstantPointerNull::get(IGF.IGM.Int32Ty->getPointerTo());
// Flags.
auto flags = TupleTypeFlags().withNumElements(type->getNumElements());
auto flagsValue = IGF.IGM.getSize(Size(flags.getIntValue()));
// Compute the layout.
auto call = IGF.Builder.CreateCall(IGF.IGM.getGetTupleLayoutFn(),
{resultPtr, offsetsPtr, flagsValue,
eltLayoutsArray.getAddress()});
call->setDoesNotThrow();
// We're done with the buffer.
IGF.Builder.CreateLifetimeEnd(eltLayoutsArray, eltLayoutsArraySize);
break;
}
}
// Cast resultPtr to i8**, our general currency type for type layouts.
resultPtr = IGF.Builder.CreateBitCast(resultPtr, IGF.IGM.Int8PtrPtrTy);
return resultPtr;
}
};
} // end anonymous namespace
llvm::Value *irgen::emitTypeLayoutRef(IRGenFunction &IGF, SILType type,
MetadataDependencyCollector *collector) {
auto request =
DynamicMetadataRequest::getNonBlocking(MetadataState::LayoutComplete,
collector);
assert(request.canResponseStatusBeIgnored());
return EmitTypeLayoutRef(IGF).visit(type.getASTType(), request);
}
/// Given a class metatype, produce the necessary heap metadata
/// reference. This is generally the metatype pointer, but may
/// instead be a reference type.
llvm::Value *irgen::emitClassHeapMetadataRefForMetatype(IRGenFunction &IGF,
llvm::Value *metatype,
CanType type) {
// If the type is known to have Swift metadata, this is trivial.
if (hasKnownSwiftMetadata(IGF.IGM, type))
return metatype;
// Otherwise, we may have to unwrap an ObjC class wrapper.
assert(IGF.IGM.Context.LangOpts.EnableObjCInterop);
metatype = IGF.Builder.CreateBitCast(metatype, IGF.IGM.TypeMetadataPtrTy);
// Fetch the metadata for that class.
auto call = IGF.Builder.CreateCall(IGF.IGM.getGetObjCClassFromMetadataFn(),
metatype);
call->setDoesNotThrow();
call->setDoesNotAccessMemory();
return call;
}
/// Produce the heap metadata pointer for the given class type. For
/// Swift-defined types, this is equivalent to the metatype for the
/// class, but for Objective-C-defined types, this is the class
/// object.
llvm::Value *irgen::emitClassHeapMetadataRef(IRGenFunction &IGF, CanType type,
MetadataValueType desiredType,
DynamicMetadataRequest request,
bool allowUninitialized) {
assert(request.canResponseStatusBeIgnored() &&
"emitClassHeapMetadataRef only supports satisfied requests");
assert(type->mayHaveSuperclass());
// Archetypes may or may not be ObjC classes and need unwrapping to get at
// the class object.
if (auto archetype = dyn_cast<ArchetypeType>(type)) {
// Look up the Swift metadata from context.
auto archetypeMeta = IGF.emitTypeMetadataRef(type, request).getMetadata();
// Get the class pointer.
auto classPtr = emitClassHeapMetadataRefForMetatype(IGF, archetypeMeta,
archetype);
if (desiredType == MetadataValueType::ObjCClass)
classPtr = IGF.Builder.CreateBitCast(classPtr, IGF.IGM.ObjCClassPtrTy);
return classPtr;
}
if (ClassDecl *theClass = type->getClassOrBoundGenericClass()) {
if (!hasKnownSwiftMetadata(IGF.IGM, theClass)) {
llvm::Value *result =
emitObjCHeapMetadataRef(IGF, theClass, allowUninitialized);
if (desiredType == MetadataValueType::TypeMetadata)
result = IGF.Builder.CreateBitCast(result, IGF.IGM.TypeMetadataPtrTy);
return result;
}
}
llvm::Value *result = IGF.emitTypeMetadataRef(type, request).getMetadata();
if (desiredType == MetadataValueType::ObjCClass)
result = IGF.Builder.CreateBitCast(result, IGF.IGM.ObjCClassPtrTy);
return result;
}
/// Emit a metatype value for a known type.
void irgen::emitMetatypeRef(IRGenFunction &IGF, CanMetatypeType type,
Explosion &explosion) {
switch (type->getRepresentation()) {
case MetatypeRepresentation::Thin:
// Thin types have a trivial representation.
break;
case MetatypeRepresentation::Thick:
explosion.add(IGF.emitTypeMetadataRef(type.getInstanceType()));
break;
case MetatypeRepresentation::ObjC:
explosion.add(emitClassHeapMetadataRef(IGF, type.getInstanceType(),
MetadataValueType::ObjCClass,
MetadataState::Complete));
break;
}
}
static bool canCheckStateWithBranch(DynamicMetadataRequest request,
MetadataResponse response) {
assert(request.getDependencyCollector() == nullptr ||
(request.isStatic() && request.getStaticRequest().isNonBlocking()));
return (response.hasDynamicState() &&
request.getDependencyCollector() != nullptr);
}
MetadataResponse
irgen::emitCheckTypeMetadataState(IRGenFunction &IGF,
DynamicMetadataRequest request,
MetadataResponse response) {
// Note that the structure of this function is mirrored in
// getCheckTypeMetadataStateCost.
// If the request is already satisfied by the response, we don't need
// to check anything.
if (request.isSatisfiedBy(response))
return response;
auto metadata = response.getMetadata();
// Try to check the already-fetched dynamic state against the required state.
if (canCheckStateWithBranch(request, response)) {
auto dynamicState = response.getDynamicState();
request.getDependencyCollector()
->checkDependency(IGF, request, metadata, dynamicState);
return MetadataResponse(metadata, dynamicState,
request.getStaticRequest().getState());
}
// Otherwise, we have to ask the runtime.
return emitGetTypeMetadataDynamicState(IGF, request, metadata);
}
OperationCost
irgen::getCheckTypeMetadataStateCost(DynamicMetadataRequest request,
MetadataResponse response) {
if (request.isSatisfiedBy(response))
return OperationCost::Free;
if (canCheckStateWithBranch(request, response))
return OperationCost::Arithmetic;
return OperationCost::Call;
}
/// Call swift_checkMetadataState.
MetadataResponse
irgen::emitGetTypeMetadataDynamicState(IRGenFunction &IGF,
DynamicMetadataRequest request,
llvm::Value *metadata) {
auto call = IGF.Builder.CreateCall(IGF.IGM.getCheckMetadataStateFn(),
{ request.get(IGF), metadata });
call->setCallingConv(IGF.IGM.SwiftCC);
return MetadataResponse::handle(IGF, request, call);
}