blob: af5d246475c6fd6847a49172038df468d8f69d24 [file] [log] [blame]
//===--- SyntaxSerialization.h - Swift Syntax Serialization -----*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file provides the serialization of RawSyntax nodes and their
// constituent parts to JSON.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_SYNTAX_SERIALIZATION_SYNTAXSERIALIZATION_H
#define SWIFT_SYNTAX_SERIALIZATION_SYNTAXSERIALIZATION_H
#include "swift/Basic/ByteTreeSerialization.h"
#include "swift/Basic/JSONSerialization.h"
#include "swift/Basic/StringExtras.h"
#include "swift/Syntax/RawSyntax.h"
#include "llvm/ADT/StringSwitch.h"
#include <forward_list>
#include <unordered_set>
namespace swift {
namespace json {
/// The associated value will be interpreted as \c bool. If \c true the node IDs
/// will not be included in the serialized JSON.
static void *DontSerializeNodeIdsUserInfoKey = &DontSerializeNodeIdsUserInfoKey;
/// The user info key pointing to a std::unordered_set of IDs of nodes that
/// shall be omitted when the tree gets serialized
static void *OmitNodesUserInfoKey = &OmitNodesUserInfoKey;
/// Serialization traits for SourcePresence.
template <>
struct ScalarReferenceTraits<syntax::SourcePresence> {
static StringRef stringRef(const syntax::SourcePresence &value) {
switch (value) {
case syntax::SourcePresence::Present:
return "\"Present\"";
case syntax::SourcePresence::Missing:
return "\"Missing\"";
}
llvm_unreachable("unhandled presence");
}
static bool mustQuote(StringRef) {
// The string is already quoted. This is more efficient since it does not
// check for characters that need to be escaped
return false;
}
};
/// Serialization traits for swift::tok.
template <>
struct ScalarReferenceTraits<tok> {
static StringRef stringRef(const tok &value) {
switch (value) {
#define TOKEN(name) \
case tok::name: return "\"" #name "\"";
#include "swift/Syntax/TokenKinds.def"
default: llvm_unreachable("Unknown token kind");
}
}
static bool mustQuote(StringRef) {
// The string is already quoted. This is more efficient since it does not
// check for characters that need to be escaped
return false;
}
};
/// Serialization traits for Trivia.
/// Trivia will serialize as an array of the underlying TriviaPieces.
template<>
struct ArrayTraits<ArrayRef<syntax::TriviaPiece>> {
static size_t size(Output &out, ArrayRef<syntax::TriviaPiece> &seq) {
return seq.size();
}
static syntax::TriviaPiece &
element(Output &out, ArrayRef<syntax::TriviaPiece> &seq, size_t index) {
return const_cast<syntax::TriviaPiece &>(seq[index]);
}
};
/// Serialization traits for RawSyntax list.
template<>
struct ArrayTraits<ArrayRef<RC<syntax::RawSyntax>>> {
static size_t size(Output &out, ArrayRef<RC<syntax::RawSyntax>> &seq) {
return seq.size();
}
static RC<syntax::RawSyntax> &
element(Output &out, ArrayRef<RC<syntax::RawSyntax>> &seq, size_t index) {
return const_cast<RC<syntax::RawSyntax> &>(seq[index]);
}
};
/// An adapter struct that provides a nested structure for token content.
struct TokenDescription {
tok Kind;
StringRef Text;
};
/// Serialization traits for TokenDescription.
/// TokenDescriptions always serialized with a token kind, which is
/// the stringified version of their name in the tok:: enum.
/// ```
/// {
/// "kind": <token name, e.g. "kw_struct">,
/// }
/// ```
///
/// For tokens that have some kind of text attached, like literals or
/// identifiers, the serialized form will also have a "text" key containing
/// that text as the value.
template<>
struct ObjectTraits<TokenDescription> {
static void mapping(Output &out, TokenDescription &value) {
out.mapRequired("kind", value.Kind);
if (!isTokenTextDetermined(value.Kind)) {
out.mapRequired("text", value.Text);
}
}
};
/// Serialization traits for RC<RawSyntax>.
/// This will be different depending if the raw syntax node is a Token or not.
/// Token nodes will always have this structure:
/// ```
/// {
/// "tokenKind": { "kind": <token kind>, "text": <token text> },
/// "leadingTrivia": [ <trivia pieces...> ],
/// "trailingTrivia": [ <trivia pieces...> ],
/// "presence": <"Present" or "Missing">
/// }
/// ```
/// All other raw syntax nodes will have this structure:
/// ```
/// {
/// "kind": <syntax kind>,
/// "layout": [ <raw syntax nodes...> ],
/// "presence": <"Present" or "Missing">
/// }
/// ```
template<>
struct ObjectTraits<syntax::RawSyntax> {
static void mapping(Output &out, syntax::RawSyntax &value) {
bool dontSerializeIds =
(bool)out.getUserInfo()[DontSerializeNodeIdsUserInfoKey];
if (!dontSerializeIds) {
auto nodeId = value.getId();
out.mapRequired("id", nodeId);
}
auto omitNodes =
(std::unordered_set<unsigned> *)out.getUserInfo()[OmitNodesUserInfoKey];
if (omitNodes && omitNodes->count(value.getId()) > 0) {
bool omitted = true;
out.mapRequired("omitted", omitted);
return;
}
if (value.isToken()) {
auto tokenKind = value.getTokenKind();
auto text = value.getTokenText();
auto description = TokenDescription { tokenKind, text };
out.mapRequired("tokenKind", description);
auto leadingTrivia = value.getLeadingTrivia();
out.mapRequired("leadingTrivia", leadingTrivia);
auto trailingTrivia = value.getTrailingTrivia();
out.mapRequired("trailingTrivia", trailingTrivia);
} else {
auto kind = value.getKind();
out.mapRequired("kind", kind);
auto layout = value.getLayout();
out.mapRequired("layout", layout);
}
auto presence = value.getPresence();
out.mapRequired("presence", presence);
}
};
template<>
struct NullableTraits<RC<syntax::RawSyntax>> {
using value_type = syntax::RawSyntax;
static bool isNull(RC<syntax::RawSyntax> &value) {
return value == nullptr;
}
static syntax::RawSyntax &get(RC<syntax::RawSyntax> &value) {
return *value;
}
};
} // end namespace json
namespace byteTree {
/// Increase the major version for every change that is not just adding a new
/// field at the end of an object. Older swiftSyntax clients will no longer be
/// able to deserialize the format.
const uint16_t SYNTAX_TREE_VERSION_MAJOR = 1; // Last change: initial version
/// Increase the minor version if only new field has been added at the end of
/// an object. Older swiftSyntax clients will still be able to deserialize the
/// format.
const uint8_t SYNTAX_TREE_VERSION_MINOR = 0; // Last change: initial version
// Combine the major and minor version into one. The first three bytes
// represent the major version, the last byte the minor version.
const uint32_t SYNTAX_TREE_VERSION =
SYNTAX_TREE_VERSION_MAJOR << 8 | SYNTAX_TREE_VERSION_MINOR;
/// The key for a ByteTree serializion user info of type
/// `std::unordered_set<unsigned> *`. Specifies the IDs of syntax nodes that
/// shall be omitted when the syntax tree gets serialized.
static void *UserInfoKeyReusedNodeIds = &UserInfoKeyReusedNodeIds;
/// The key for a ByteTree serializion user info interpreted as `bool`.
/// If specified, additional fields will be added to objects in the ByteTree
/// to test forward compatibility.
static void *UserInfoKeyAddInvalidFields = &UserInfoKeyAddInvalidFields;
template <>
struct WrapperTypeTraits<tok> {
static uint8_t numericValue(const tok &Value);
static void write(ByteTreeWriter &Writer, const tok &Value, unsigned Index) {
Writer.write(numericValue(Value), Index);
}
};
template <>
struct WrapperTypeTraits<syntax::SourcePresence> {
static uint8_t numericValue(const syntax::SourcePresence &Presence) {
switch (Presence) {
case syntax::SourcePresence::Missing: return 0;
case syntax::SourcePresence::Present: return 1;
}
llvm_unreachable("unhandled presence");
}
static void write(ByteTreeWriter &Writer,
const syntax::SourcePresence &Presence, unsigned Index) {
Writer.write(numericValue(Presence), Index);
}
};
template <>
struct ObjectTraits<ArrayRef<syntax::TriviaPiece>> {
static unsigned numFields(const ArrayRef<syntax::TriviaPiece> &Trivia,
UserInfoMap &UserInfo) {
return Trivia.size();
}
static void write(ByteTreeWriter &Writer,
const ArrayRef<syntax::TriviaPiece> &Trivia,
UserInfoMap &UserInfo) {
for (unsigned I = 0, E = Trivia.size(); I < E; ++I) {
Writer.write(Trivia[I], /*Index=*/I);
}
}
};
template <>
struct ObjectTraits<ArrayRef<RC<syntax::RawSyntax>>> {
static unsigned numFields(const ArrayRef<RC<syntax::RawSyntax>> &Layout,
UserInfoMap &UserInfo) {
return Layout.size();
}
static void write(ByteTreeWriter &Writer,
const ArrayRef<RC<syntax::RawSyntax>> &Layout,
UserInfoMap &UserInfo);
};
template <>
struct ObjectTraits<std::pair<tok, StringRef>> {
static unsigned numFields(const std::pair<tok, StringRef> &Pair,
UserInfoMap &UserInfo) {
return 2;
}
static void write(ByteTreeWriter &Writer,
const std::pair<tok, StringRef> &Pair,
UserInfoMap &UserInfo) {
Writer.write(Pair.first, /*Index=*/0);
Writer.write(Pair.second, /*Index=*/1);
}
};
template <>
struct ObjectTraits<syntax::RawSyntax> {
enum NodeKind { Token = 0, Layout = 1, Omitted = 2 };
static bool shouldOmitNode(const syntax::RawSyntax &Syntax,
UserInfoMap &UserInfo) {
if (auto ReusedNodeIds = static_cast<std::unordered_set<unsigned> *>(
UserInfo[UserInfoKeyReusedNodeIds])) {
return ReusedNodeIds->count(Syntax.getId()) > 0;
} else {
return false;
}
}
static NodeKind nodeKind(const syntax::RawSyntax &Syntax,
UserInfoMap &UserInfo) {
if (shouldOmitNode(Syntax, UserInfo)) {
return Omitted;
} else if (Syntax.isToken()) {
return Token;
} else {
return Layout;
}
}
static unsigned numFields(const syntax::RawSyntax &Syntax,
UserInfoMap &UserInfo) {
// FIXME: We know this is never set in production builds. Should we
// disable this code altogether in that case
// (e.g. if assertions are not enabled?)
if (UserInfo[UserInfoKeyAddInvalidFields]) {
switch (nodeKind(Syntax, UserInfo)) {
case Token: return 7;
case Layout: return 6;
case Omitted: return 2;
}
llvm_unreachable("unhandled kind");
} else {
switch (nodeKind(Syntax, UserInfo)) {
case Token: return 6;
case Layout: return 5;
case Omitted: return 2;
}
llvm_unreachable("unhandled kind");
}
}
static void write(ByteTreeWriter &Writer, const syntax::RawSyntax &Syntax,
UserInfoMap &UserInfo) {
auto Kind = nodeKind(Syntax, UserInfo);
Writer.write(static_cast<uint8_t>(Kind), /*Index=*/0);
Writer.write(static_cast<uint32_t>(Syntax.getId()), /*Index=*/1);
switch (Kind) {
case Token:
Writer.write(Syntax.getPresence(), /*Index=*/2);
Writer.write(std::make_pair(Syntax.getTokenKind(), Syntax.getTokenText()),
/*Index=*/3);
Writer.write(Syntax.getLeadingTrivia(), /*Index=*/4);
Writer.write(Syntax.getTrailingTrivia(), /*Index=*/5);
// FIXME: We know this is never set in production builds. Should we
// disable this code altogether in that case
// (e.g. if assertions are not enabled?)
if (UserInfo[UserInfoKeyAddInvalidFields]) {
// Test adding a new scalar field
StringRef Str = "invalid forward compatible field";
Writer.write(Str, /*Index=*/6);
}
break;
case Layout:
Writer.write(Syntax.getPresence(), /*Index=*/2);
Writer.write(Syntax.getKind(), /*Index=*/3);
Writer.write(Syntax.getLayout(), /*Index=*/4);
// FIXME: We know this is never set in production builds. Should we
// disable this code altogether in that case
// (e.g. if assertions are not enabled?)
if (UserInfo[UserInfoKeyAddInvalidFields]) {
// Test adding a new object
auto Piece = syntax::TriviaPiece::spaces(2);
ArrayRef<syntax::TriviaPiece> SomeTrivia(Piece);
Writer.write(SomeTrivia, /*Index=*/5);
}
break;
case Omitted:
// Nothing more to write
break;
}
}
};
} // end namespace byteTree
} // end namespace swift
#endif // SWIFT_SYNTAX_SERIALIZATION_SYNTAXSERIALIZATION_H