blob: 39cb1beb302ae03d539346971cac8e0539f7d4df [file] [log] [blame]
//===--- Existential.h - Existential related Analyses. -------*- C++ //-*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_SILOPTIMIZER_UTILS_EXISTENTIAL_H
#define SWIFT_SILOPTIMIZER_UTILS_EXISTENTIAL_H
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/ApplySite.h"
#include "swift/SILOptimizer/Analysis/ClassHierarchyAnalysis.h"
#include "swift/SILOptimizer/Analysis/ProtocolConformanceAnalysis.h"
namespace swift {
/// Record information about an opened archetype.
///
/// This is used to determine whether a generic call argument originates from
/// an opened existential. For example:
/// %o = open_existential_ref %e : $P & Q to $@opened("PQ") P & Q
/// %r = apply %f<@opened("PQ") P & Q>(%o)
/// : $@convention(method) <τ_0_0 where τ_0_0 : P, τ_0_0 : Q>
/// (@guaranteed τ_0_0) -> @owned τ_0_0
///
/// When successfull, ConcreteExistentialInfo can be used to determine the
/// concrete type of the opened existential.
struct OpenedArchetypeInfo {
ArchetypeType *OpenedArchetype = nullptr;
// The opened value.
SingleValueInstruction *OpenedArchetypeValue;
// The existential value.
SILValue ExistentialValue;
// True if the openedValue is copied from another stack location
bool isOpenedValueCopied = false;
// Construct a valid instance if the given use originates from a recognizable
// OpenedArchetype instruction.
OpenedArchetypeInfo(Operand &use);
bool isValid() const {
assert(!OpenedArchetype || (OpenedArchetypeValue && ExistentialValue));
return OpenedArchetype;
}
};
/// Record conformance and concrete type info derived from an init_existential
/// value that is reopened before it's use. This is useful for finding the
/// concrete type of an apply's self argument. For example, an important pattern
/// for a class existential is:
///
/// %e = init_existential_ref %c : $C : $C, $P & Q
/// %o = open_existential_ref %e : $P & Q to $@opened("PQ") P & Q
/// %r = apply %f<@opened("PQ") P & Q>(%o)
/// : $@convention(method) <τ_0_0 where τ_0_0 : P, τ_0_0 : Q>
/// (@guaranteed τ_0_0) -> @owned τ_0_0
struct ConcreteExistentialInfo {
// The existential type of the self argument before it is opened,
// produced by an init_existential.
CanType ExistentialType;
// The concrete type of self from the init_existential. `$C` above.
CanType ConcreteType;
// The concrete value used to initialize the opened existential.
// `%c` in the above comment.
SILValue ConcreteValue;
// True if the ConcreteValue is copied from another stack location
bool isConcreteValueCopied = false;
// When ConcreteType is itself an opened existential, record the type
// definition. May be nullptr for a valid AppliedConcreteType.
SingleValueInstruction *ConcreteTypeDef = nullptr;
// The Substitution map derived from the init_existential.
// This maps a single generic parameter to the replacement ConcreteType
// and includes the full list of existential conformances.
// signature: <P & Q>, replacement: $C : conformances: [$P, $Q]
SubstitutionMap ExistentialSubs;
// Search for a recognized pattern in which the given existential value is
// initialized to a concrete type. Constructs a valid ConcreteExistentialInfo
// object if successfull.
ConcreteExistentialInfo(SILValue existential, SILInstruction *user);
// This constructor initializes a ConcreteExistentialInfo based on already
// known ConcreteType and ProtocolDecl pair.
ConcreteExistentialInfo(SILValue existential, SILInstruction *user,
CanType ConcreteType, ProtocolDecl *Protocol);
/// For scenerios where ConcreteExistentialInfo is created using a known
/// ConcreteType and ProtocolDecl, the ConcreteValue can be null.
bool isValid() const { return ConcreteType && !ExistentialSubs.empty(); }
// Do a conformance lookup on ConcreteType with the given requirement, P. If P
// is satisfiable based on the existential's conformance, return the new
// conformance on P. Otherwise return None.
Optional<ProtocolConformanceRef>
lookupExistentialConformance(ProtocolDecl *P) const {
CanType selfTy = P->getSelfInterfaceType()->getCanonicalType();
return ExistentialSubs.lookupConformance(selfTy, P);
}
private:
void initializeSubstitutionMap(
ArrayRef<ProtocolConformanceRef> ExistentialConformances, SILModule *M);
void initializeConcreteTypeDef(SILInstruction *typeConversionInst);
};
// Convenience for tracking both the OpenedArchetypeInfo and
// ConcreteExistentialInfo from the same SILValue.
struct ConcreteOpenedExistentialInfo {
OpenedArchetypeInfo OAI;
// If CEI has a value, it must be valid.
Optional<ConcreteExistentialInfo> CEI;
ConcreteOpenedExistentialInfo(Operand &use);
// Provide a whole module type-inferred ConcreteType to fall back on if the
// concrete type cannot be determined from data flow.
ConcreteOpenedExistentialInfo(Operand &use, CanType concreteType,
ProtocolDecl *protocol);
bool isValid() const {
if (!CEI)
return false;
assert(CEI->isValid());
return true;
}
};
} // end namespace swift
#endif