blob: 3a73ea022e1c67e73322bb6f52525554e64a1bf5 [file] [log] [blame]
//===--- SILValue.h - Value base class for SIL ------------------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines the SILValue class.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_SIL_SILVALUE_H
#define SWIFT_SIL_SILVALUE_H
#include "swift/Basic/Range.h"
#include "swift/Basic/ArrayRefView.h"
#include "swift/Basic/STLExtras.h"
#include "swift/SIL/SILNode.h"
#include "swift/SIL/SILType.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/Support/raw_ostream.h"
namespace swift {
class DominanceInfo;
class PostOrderFunctionInfo;
class ReversePostOrderInfo;
class Operand;
class SILDebugLocation; // SWIFT_ENABLE_TENSORFLOW: FIXME(clattner): upstream.
class SILInstruction;
class SILLocation;
class DeadEndBlocks;
class ValueBaseUseIterator;
class ValueUseIterator;
/// An enumeration which contains values for all the concrete ValueBase
/// subclasses.
enum class ValueKind : std::underlying_type<SILNodeKind>::type {
#define VALUE(ID, PARENT) \
ID = unsigned(SILNodeKind::ID),
#define VALUE_RANGE(ID, FIRST, LAST) \
First_##ID = unsigned(SILNodeKind::First_##ID), \
Last_##ID = unsigned(SILNodeKind::Last_##ID),
#include "swift/SIL/SILNodes.def"
};
/// ValueKind hashes to its underlying integer representation.
static inline llvm::hash_code hash_value(ValueKind K) {
return llvm::hash_value(size_t(K));
}
/// What constraint does the given use of an SSA value put on the lifetime of
/// the given SSA value.
///
/// There are two possible constraints: MustBeLive and
/// MustBeInvalidated. MustBeLive means that the SSA value must be able to be
/// used in a valid way at the given use point. MustBeInvalidated means that any
/// use of given SSA value after this instruction on any path through this
/// instruction.
enum class UseLifetimeConstraint {
/// This use requires the SSA value to be live after the given instruction's
/// execution.
MustBeLive,
/// This use invalidates the given SSA value.
///
/// This means that the given SSA value can not have any uses that are
/// reachable from this instruction. When a value has owned semantics this
/// means the SSA value is destroyed at this point. When a value has
/// guaranteed (i.e. shared borrow) semantics this means that the program
/// has left the scope of the borrowed SSA value and said value can not be
/// used.
MustBeInvalidated,
};
llvm::raw_ostream &operator<<(llvm::raw_ostream &os,
UseLifetimeConstraint constraint);
/// A value representing the specific ownership semantics that a SILValue may
/// have.
struct ValueOwnershipKind {
enum innerty : uint8_t {
/// A SILValue with `Unowned` ownership kind is an independent value that
/// has a lifetime that is only guaranteed to last until the next program
/// visible side-effect. To maintain the lifetime of an unowned value, it
/// must be converted to an owned representation via a copy_value.
///
/// Unowned ownership kind occurs mainly along method/function boundaries in
/// between Swift and Objective-C code.
Unowned,
/// A SILValue with `Owned` ownership kind is an independent value that has
/// an ownership independent of any other ownership imbued within it. The
/// SILValue must be paired with a consuming operation that ends the SSA
/// value's lifetime exactly once along all paths through the program.
Owned,
/// A SILValue with `Guaranteed` ownership kind is an independent value that
/// is guaranteed to be live over a specific region of the program. This
/// region can come in several forms:
///
/// 1. @guaranteed function argument. This guarantees that a value will
/// outlive a function.
///
/// 2. A shared borrow region. This is a region denoted by a
/// begin_borrow/load_borrow instruction and an end_borrow instruction. The
/// SSA value must not be destroyed or taken inside the borrowed region.
///
/// Any value with guaranteed ownership must be paired with an end_borrow
/// instruction exactly once along any path through the program.
Guaranteed,
/// A SILValue with Any ownership kind is an independent value outside of
/// the ownership system. It is used to model trivially typed values as well
/// as trivial cases of non-trivial enums. Naturally Any can be merged with
/// any ValueOwnershipKind allowing us to naturally model merge and branch
/// points in the SSA graph.
Any,
LastValueOwnershipKind = Any,
} Value;
using UnderlyingType = std::underlying_type<innerty>::type;
static constexpr unsigned NumBits = SILNode::NumVOKindBits;
static constexpr UnderlyingType MaxValue = (UnderlyingType(1) << NumBits);
static constexpr uint64_t Mask = MaxValue - 1;
static_assert(unsigned(ValueOwnershipKind::LastValueOwnershipKind) < MaxValue,
"LastValueOwnershipKind is larger than max representable "
"ownership value?!");
ValueOwnershipKind(innerty NewValue) : Value(NewValue) {}
explicit ValueOwnershipKind(unsigned NewValue) : Value(innerty(NewValue)) {}
ValueOwnershipKind(const SILFunction &F, SILType Type,
SILArgumentConvention Convention);
/// Parse Value into a ValueOwnershipKind.
///
/// *NOTE* Emits an unreachable if an invalid value is passed in.
explicit ValueOwnershipKind(StringRef Value);
operator innerty() const { return Value; }
bool operator==(const swift::ValueOwnershipKind::innerty& b) {
return Value == b;
}
Optional<ValueOwnershipKind> merge(ValueOwnershipKind RHS) const;
/// Given that there is an aggregate value (like a struct or enum) with this
/// ownership kind, and a subobject of type Proj is being projected from the
/// aggregate, return Trivial if Proj has trivial type and the aggregate's
/// ownership kind otherwise.
ValueOwnershipKind getProjectedOwnershipKind(const SILFunction &F,
SILType Proj) const;
/// Return the lifetime constraint semantics for this
/// ValueOwnershipKind when forwarding ownership.
///
/// This is MustBeInvalidated for Owned and MustBeLive for all other ownership
/// kinds.
UseLifetimeConstraint getForwardingLifetimeConstraint() const {
switch (Value) {
case ValueOwnershipKind::Any:
case ValueOwnershipKind::Guaranteed:
case ValueOwnershipKind::Unowned:
return UseLifetimeConstraint::MustBeLive;
case ValueOwnershipKind::Owned:
return UseLifetimeConstraint::MustBeInvalidated;
}
llvm_unreachable("covered switch");
}
/// Returns true if \p Other can be merged successfully with this, implying
/// that the two ownership kinds are "compatibile".
///
/// The reason why we do not compare directy is to allow for
/// ValueOwnershipKind::Any to merge into other forms of ValueOwnershipKind.
bool isCompatibleWith(ValueOwnershipKind other) const {
return merge(other).hasValue();
}
template <typename RangeTy>
static Optional<ValueOwnershipKind> merge(RangeTy &&r) {
auto initial = Optional<ValueOwnershipKind>(ValueOwnershipKind::Any);
return accumulate(
std::forward<RangeTy>(r), initial,
[](Optional<ValueOwnershipKind> acc, ValueOwnershipKind x) {
if (!acc)
return acc;
return acc.getValue().merge(x);
});
}
StringRef asString() const;
};
llvm::raw_ostream &operator<<(llvm::raw_ostream &os, ValueOwnershipKind Kind);
/// This is the base class of the SIL value hierarchy, which represents a
/// runtime computed value. Some examples of ValueBase are SILArgument and
/// SingleValueInstruction.
class ValueBase : public SILNode, public SILAllocated<ValueBase> {
friend class Operand;
SILType Type;
Operand *FirstUse = nullptr;
ValueBase(const ValueBase &) = delete;
ValueBase &operator=(const ValueBase &) = delete;
protected:
ValueBase(ValueKind kind, SILType type, IsRepresentative isRepresentative)
: SILNode(SILNodeKind(kind), SILNodeStorageLocation::Value,
isRepresentative),
Type(type) {}
public:
~ValueBase() {
assert(use_empty() && "Cannot destroy a value that still has uses!");
}
LLVM_ATTRIBUTE_ALWAYS_INLINE
ValueKind getKind() const { return ValueKind(SILNode::getKind()); }
SILType getType() const {
return Type;
}
/// Replace every use of a result of this instruction with the corresponding
/// result from RHS.
///
/// The method assumes that both instructions have the same number of
/// results. To replace just one result use SILValue::replaceAllUsesWith.
void replaceAllUsesWith(ValueBase *RHS);
/// Replace all uses of this instruction with an undef value of the
/// same type as the result of this instruction.
void replaceAllUsesWithUndef();
/// Is this value a direct result of the given instruction?
bool isResultOf(SILInstruction *I) const;
/// Returns true if this value has no uses.
/// To ignore debug-info instructions use swift::onlyHaveDebugUses instead
/// (see comment in DebugUtils.h).
bool use_empty() const { return FirstUse == nullptr; }
using use_iterator = ValueBaseUseIterator;
using use_range = iterator_range<use_iterator>;
inline use_iterator use_begin() const;
inline use_iterator use_end() const;
/// Returns a range of all uses, which is useful for iterating over all uses.
/// To ignore debug-info instructions use swift::getNonDebugUses instead
/// (see comment in DebugUtils.h).
inline use_range getUses() const;
/// Returns true if this value has exactly one use.
/// To ignore debug-info instructions use swift::hasOneNonDebugUse instead
/// (see comment in DebugUtils.h).
inline bool hasOneUse() const;
/// Returns .some(single user) if this value has a single user. Returns .none
/// otherwise.
inline Operand *getSingleUse() const;
template <class T>
inline T *getSingleUserOfType() const;
/// Helper struct for DowncastUserFilterRange
struct UseToUser;
template <typename Subclass>
using DowncastUserFilterRange =
DowncastFilterRange<Subclass,
iterator_range<llvm::mapped_iterator<
use_iterator, UseToUser, SILInstruction *>>>;
/// Iterate over the use list of this ValueBase visiting all users that are of
/// class T.
///
/// Example:
///
/// ValueBase *v = ...;
/// for (CopyValueInst *cvi : v->getUsersOfType<CopyValueInst>()) { ... }
///
/// NOTE: Uses llvm::dyn_cast internally.
template <typename T>
inline DowncastUserFilterRange<T> getUsersOfType() const;
/// Return the instruction that defines this value, or null if it is
/// not defined by an instruction.
const SILInstruction *getDefiningInstruction() const {
return const_cast<ValueBase*>(this)->getDefiningInstruction();
}
SILInstruction *getDefiningInstruction();
struct DefiningInstructionResult {
SILInstruction *Instruction;
size_t ResultIndex;
};
/// Return the instruction that defines this value and the appropriate
/// result index, or None if it is not defined by an instruction.
Optional<DefiningInstructionResult> getDefiningInstructionResult();
static bool classof(const SILNode *N) {
return N->getKind() >= SILNodeKind::First_ValueBase &&
N->getKind() <= SILNodeKind::Last_ValueBase;
}
static bool classof(const ValueBase *V) { return true; }
/// This is supportable but usually suggests a logic mistake.
static bool classof(const SILInstruction *) = delete;
};
} // end namespace swift
namespace llvm {
/// ValueBase * is always at least eight-byte aligned; make the three tag bits
/// available through PointerLikeTypeTraits.
template<>
struct PointerLikeTypeTraits<swift::ValueBase *> {
public:
static inline void *getAsVoidPointer(swift::ValueBase *I) {
return (void*)I;
}
static inline swift::ValueBase *getFromVoidPointer(void *P) {
return (swift::ValueBase *)P;
}
enum { NumLowBitsAvailable = 3 };
};
} // end namespace llvm
namespace swift {
/// SILValue - A SILValue is a wrapper around a ValueBase pointer.
class SILValue {
ValueBase *Value;
public:
SILValue(const ValueBase *V = nullptr)
: Value(const_cast<ValueBase *>(V)) { }
ValueBase *operator->() const { return Value; }
ValueBase &operator*() const { return *Value; }
operator ValueBase *() const { return Value; }
// Comparison.
bool operator==(SILValue RHS) const { return Value == RHS.Value; }
bool operator==(ValueBase *RHS) const { return Value == RHS; }
bool operator!=(SILValue RHS) const { return !(*this == RHS); }
bool operator!=(ValueBase *RHS) const { return Value != RHS; }
/// Return true if underlying ValueBase of this SILValue is non-null. Return
/// false otherwise.
explicit operator bool() const { return Value != nullptr; }
/// Get a location for this value.
SILLocation getLoc() const;
// SWIFT_ENABLE_TENSORFLOW: FIXME(clattner): merge upstream.
/// Get a debug location for this value.
SILDebugLocation getDebugLocation() const;
/// Convert this SILValue into an opaque pointer like type. For use with
/// PointerLikeTypeTraits.
void *getOpaqueValue() const {
return (void *)Value;
}
/// Convert the given opaque pointer into a SILValue. For use with
/// PointerLikeTypeTraits.
static SILValue getFromOpaqueValue(void *p) {
return SILValue((ValueBase *)p);
}
enum {
NumLowBitsAvailable =
llvm::PointerLikeTypeTraits<ValueBase *>::
NumLowBitsAvailable
};
/// If this SILValue is a result of an instruction, return its
/// defining instruction. Returns nullptr otherwise.
SILInstruction *getDefiningInstruction() {
return Value->getDefiningInstruction();
}
/// If this SILValue is a result of an instruction, return its
/// defining instruction. Returns nullptr otherwise.
const SILInstruction *getDefiningInstruction() const {
return Value->getDefiningInstruction();
}
/// Returns the ValueOwnershipKind that describes this SILValue's ownership
/// semantics if the SILValue has ownership semantics. Returns is a value
/// without any Ownership Semantics.
///
/// An example of a SILValue without ownership semantics is a
/// struct_element_addr.
///
/// NOTE: This is implemented in ValueOwnership.cpp not SILValue.cpp.
ValueOwnershipKind getOwnershipKind() const;
/// Verify that this SILValue and its uses respects ownership invariants.
void verifyOwnership(DeadEndBlocks *DEBlocks = nullptr) const;
};
/// A map from a ValueOwnershipKind that an operand can accept to a
/// UseLifetimeConstraint that describes the effect that the operand's use has
/// on the underlying value. If a ValueOwnershipKind is not in this map then
/// matching an operand with the value results in an ill formed program.
///
/// So for instance, a map could specify that if a value is used as an owned
/// parameter, then the use implies that the original value is destroyed at that
/// point. In contrast, if the value is used as a guaranteed parameter, then the
/// liveness constraint just requires that the value remains alive at the use
/// point.
struct OperandOwnershipKindMap {
// One bit for if a value exists and if the value exists, what the
// ownership constraint is. These are stored as pairs.
//
// NOTE: We are burning 1 bit per unset value. But this is without
// matter since we are always going to need less bits than 64, so we
// should always have a small case SmallBitVector, so there is no
// difference in size.
static constexpr unsigned NUM_DATA_BITS =
2 * (unsigned(ValueOwnershipKind::LastValueOwnershipKind) + 1);
/// A bit vector representing our "map". Given a ValueOwnershipKind k, if the
/// operand can accept k, the unsigned(k)*2 bit will be set to true. Assuming
/// that bit is set, the unsigned(k)*2+1 bit is set to the use lifetime
/// constraint provided by the value.
SmallBitVector data;
OperandOwnershipKindMap() : data(NUM_DATA_BITS) {}
OperandOwnershipKindMap(ValueOwnershipKind kind,
UseLifetimeConstraint constraint)
: data(NUM_DATA_BITS) {
add(kind, constraint);
}
/// Return the OperandOwnershipKindMap that tests for compatibility with
/// ValueOwnershipKind kind. This means that it will accept a element whose
/// ownership is ValueOwnershipKind::Any.
static OperandOwnershipKindMap
compatibilityMap(ValueOwnershipKind kind, UseLifetimeConstraint constraint) {
OperandOwnershipKindMap set;
set.addCompatibilityConstraint(kind, constraint);
return set;
}
/// Return a map that is compatible with any and all ValueOwnershipKinds
/// except for \p kind.
static OperandOwnershipKindMap
compatibleWithAllExcept(ValueOwnershipKind kind) {
OperandOwnershipKindMap map;
unsigned index = 0;
unsigned end = unsigned(ValueOwnershipKind::LastValueOwnershipKind) + 1;
for (; index != end; ++index) {
if (ValueOwnershipKind(index) == kind) {
continue;
}
map.add(ValueOwnershipKind(index), UseLifetimeConstraint::MustBeLive);
}
return map;
}
/// Create a map that has compatibility constraints for each of the
/// ValueOwnershipKind, UseLifetimeConstraints in \p args.
static OperandOwnershipKindMap
compatibilityMap(std::initializer_list<
std::pair<ValueOwnershipKind, UseLifetimeConstraint>>
args) {
OperandOwnershipKindMap map;
for (auto &p : args) {
map.addCompatibilityConstraint(p.first, p.second);
}
return map;
}
/// Return a map that states that an operand can take any ownership with each
/// ownership having a must be live constraint.
static OperandOwnershipKindMap allLive() {
OperandOwnershipKindMap map;
unsigned index = 0;
unsigned end = unsigned(ValueOwnershipKind::LastValueOwnershipKind) + 1;
while (index != end) {
map.add(ValueOwnershipKind(index), UseLifetimeConstraint::MustBeLive);
++index;
}
return map;
}
/// Specify that the operand associated with this set can accept a value with
/// ValueOwnershipKind \p kind. The value provided by the operand will have a
/// new ownership enforced constraint defined by \p constraint.
void add(ValueOwnershipKind kind, UseLifetimeConstraint constraint) {
unsigned index = unsigned(kind);
unsigned kindOffset = index * 2;
unsigned constraintOffset = index * 2 + 1;
// If we have already put this kind into the map, we require the constraint
// offset to be the same, i.e. we only allow for a kind to be added twice if
// the constraint is idempotent. We assert otherwise.
assert((!data[kindOffset] || UseLifetimeConstraint(bool(
data[constraintOffset])) == constraint) &&
"Adding kind twice to the map with different constraints?!");
data[kindOffset] = true;
data[constraintOffset] = bool(constraint);
}
void addCompatibilityConstraint(ValueOwnershipKind kind,
UseLifetimeConstraint constraint) {
add(ValueOwnershipKind::Any, UseLifetimeConstraint::MustBeLive);
add(kind, constraint);
}
bool canAcceptKind(ValueOwnershipKind kind) const {
unsigned index = unsigned(kind);
unsigned kindOffset = index * 2;
return data[kindOffset];
}
UseLifetimeConstraint getLifetimeConstraint(ValueOwnershipKind kind) const;
void print(llvm::raw_ostream &os) const;
LLVM_ATTRIBUTE_DEPRECATED(void dump() const, "only for use in a debugger");
};
inline llvm::raw_ostream &operator<<(llvm::raw_ostream &os,
OperandOwnershipKindMap map) {
map.print(os);
return os;
}
// Out of line to work around lack of forward declaration for operator <<.
inline UseLifetimeConstraint
OperandOwnershipKindMap::getLifetimeConstraint(ValueOwnershipKind kind) const {
#ifndef NDEBUG
if (!canAcceptKind(kind)) {
llvm::errs() << "Can not lookup lifetime constraint: " << kind
<< ". Not in map!\n"
<< *this;
llvm_unreachable("standard error assertion");
}
#endif
unsigned constraintOffset = unsigned(kind) * 2 + 1;
return UseLifetimeConstraint(data[constraintOffset]);
}
/// A formal SIL reference to a value, suitable for use as a stored
/// operand.
class Operand {
/// The value used as this operand.
SILValue TheValue;
/// The next operand in the use-chain. Note that the chain holds
/// every use of the current ValueBase, not just those of the
/// designated result.
Operand *NextUse = nullptr;
/// A back-pointer in the use-chain, required for fast patching
/// of use-chains.
Operand **Back = nullptr;
/// The owner of this operand.
/// FIXME: this could be space-compressed.
SILInstruction *Owner;
public:
Operand(SILInstruction *owner) : Owner(owner) {}
Operand(SILInstruction *owner, SILValue theValue)
: TheValue(theValue), Owner(owner) {
insertIntoCurrent();
}
/// Operands are not copyable.
Operand(const Operand &use) = delete;
Operand &operator=(const Operand &use) = delete;
/// Return the current value being used by this operand.
SILValue get() const { return TheValue; }
/// Set the current value being used by this operand.
void set(SILValue newValue) {
// It's probably not worth optimizing for the case of switching
// operands on a single value.
removeFromCurrent();
TheValue = newValue;
insertIntoCurrent();
}
/// Swap the given operand with the current one.
void swap(Operand &Op) {
SILValue OtherV = Op.get();
Op.set(get());
set(OtherV);
}
/// Remove this use of the operand.
void drop() {
removeFromCurrent();
TheValue = SILValue();
NextUse = nullptr;
Back = nullptr;
Owner = nullptr;
}
~Operand() {
removeFromCurrent();
}
/// Return the user that owns this use.
SILInstruction *getUser() { return Owner; }
const SILInstruction *getUser() const { return Owner; }
/// Return true if this operand is a type dependent operand.
///
/// Implemented in SILInstruction.h
bool isTypeDependent() const;
/// Return which operand this is in the operand list of the using instruction.
unsigned getOperandNumber() const;
/// Return the static map of ValueOwnershipKinds that this operand can
/// potentially have to the UseLifetimeConstraint associated with that
/// ownership kind
///
/// NOTE: This is implemented in OperandOwnershipKindMapClassifier.cpp.
///
/// NOTE: The default argument isSubValue is a temporary staging flag that
/// will be removed once borrow scoping is checked by the normal verifier.
OperandOwnershipKindMap
getOwnershipKindMap(bool isForwardingSubValue = false) const;
private:
void removeFromCurrent() {
if (!Back) return;
*Back = NextUse;
if (NextUse) NextUse->Back = Back;
}
void insertIntoCurrent() {
Back = &TheValue->FirstUse;
NextUse = TheValue->FirstUse;
if (NextUse) NextUse->Back = &NextUse;
TheValue->FirstUse = this;
}
friend class ValueBaseUseIterator;
friend class ValueUseIterator;
template <unsigned N> friend class FixedOperandList;
friend class TrailingOperandsList;
};
/// A class which adapts an array of Operands into an array of Values.
///
/// The intent is that this should basically act exactly like
/// ArrayRef except projecting away the Operand-ness.
inline SILValue getSILValueType(const Operand &op) {
return op.get();
}
using OperandValueArrayRef = ArrayRefView<Operand, SILValue, getSILValueType>;
/// An iterator over all uses of a ValueBase.
class ValueBaseUseIterator : public std::iterator<std::forward_iterator_tag,
Operand*, ptrdiff_t> {
Operand *Cur;
public:
ValueBaseUseIterator() = default;
explicit ValueBaseUseIterator(Operand *cur) : Cur(cur) {}
Operand *operator->() const { return Cur; }
Operand *operator*() const { return Cur; }
SILInstruction *getUser() const {
return Cur->getUser();
}
ValueBaseUseIterator &operator++() {
assert(Cur && "incrementing past end()!");
Cur = Cur->NextUse;
return *this;
}
ValueBaseUseIterator operator++(int unused) {
ValueBaseUseIterator copy = *this;
++*this;
return copy;
}
friend bool operator==(ValueBaseUseIterator lhs,
ValueBaseUseIterator rhs) {
return lhs.Cur == rhs.Cur;
}
friend bool operator!=(ValueBaseUseIterator lhs,
ValueBaseUseIterator rhs) {
return !(lhs == rhs);
}
};
inline ValueBase::use_iterator ValueBase::use_begin() const {
return ValueBase::use_iterator(FirstUse);
}
inline ValueBase::use_iterator ValueBase::use_end() const {
return ValueBase::use_iterator(nullptr);
}
inline iterator_range<ValueBase::use_iterator> ValueBase::getUses() const {
return { use_begin(), use_end() };
}
inline bool ValueBase::hasOneUse() const {
auto I = use_begin(), E = use_end();
if (I == E) return false;
return ++I == E;
}
inline Operand *ValueBase::getSingleUse() const {
auto I = use_begin(), E = use_end();
// If we have no elements, return nullptr.
if (I == E) return nullptr;
// Otherwise, grab the first element and then increment.
Operand *Op = *I;
++I;
// If the next element is not the end list, then return nullptr. We do not
// have one user.
if (I != E) return nullptr;
// Otherwise, the element that we accessed.
return Op;
}
template <class T>
inline T *ValueBase::getSingleUserOfType() const {
T *Result = nullptr;
for (auto *Op : getUses()) {
if (auto *Tmp = dyn_cast<T>(Op->getUser())) {
if (Result)
return nullptr;
Result = Tmp;
}
}
return Result;
}
struct ValueBase::UseToUser {
SILInstruction *operator()(const Operand *use) const {
return const_cast<SILInstruction *>(use->getUser());
}
SILInstruction *operator()(const Operand &use) const {
return const_cast<SILInstruction *>(use.getUser());
}
SILInstruction *operator()(Operand *use) { return use->getUser(); }
SILInstruction *operator()(Operand &use) { return use.getUser(); }
};
template <typename T>
inline ValueBase::DowncastUserFilterRange<T> ValueBase::getUsersOfType() const {
auto begin = llvm::map_iterator(use_begin(), UseToUser());
auto end = llvm::map_iterator(use_end(), UseToUser());
auto transformRange = llvm::make_range(begin, end);
return makeDowncastFilterRange<T>(transformRange);
}
/// A constant-size list of the operands of an instruction.
template <unsigned N> class FixedOperandList {
Operand Buffer[N];
FixedOperandList(const FixedOperandList &) = delete;
FixedOperandList &operator=(const FixedOperandList &) = delete;
public:
template <class... T> FixedOperandList(SILInstruction *user, T&&...args)
: Buffer{ { user, std::forward<T>(args) }... } {
static_assert(sizeof...(args) == N, "wrong number of initializers");
}
/// Returns the full list of operands.
MutableArrayRef<Operand> asArray() {
return MutableArrayRef<Operand>(Buffer, N);
}
ArrayRef<Operand> asArray() const {
return ArrayRef<Operand>(Buffer, N);
}
/// Returns the full list of operand values.
OperandValueArrayRef asValueArray() const {
return OperandValueArrayRef(asArray());
}
/// Indexes into the full list of operands.
Operand &operator[](unsigned i) { return asArray()[i]; }
const Operand &operator[](unsigned i) const { return asArray()[i]; }
};
/// A helper class for initializing the list of trailing operands.
class TrailingOperandsList {
public:
static void InitOperandsList(Operand *p, SILInstruction *user,
SILValue operand, ArrayRef<SILValue> operands) {
assert(p && "Trying to initialize operands using a nullptr");
new (p++) Operand(user, operand);
for (auto op : operands) {
new (p++) Operand(user, op);
}
}
static void InitOperandsList(Operand *p, SILInstruction *user,
SILValue operand0, SILValue operand1,
ArrayRef<SILValue> operands) {
assert(p && "Trying to initialize operands using a nullptr");
new (p++) Operand(user, operand0);
new (p++) Operand(user, operand1);
for (auto op : operands) {
new (p++) Operand(user, op);
}
}
static void InitOperandsList(Operand *p, SILInstruction *user,
ArrayRef<SILValue> operands) {
assert(p && "Trying to initialize operands using a nullptr");
for (auto op : operands) {
new (p++) Operand(user, op);
}
}
};
/// SILValue hashes just like a pointer.
static inline llvm::hash_code hash_value(SILValue V) {
return llvm::hash_value((ValueBase *)V);
}
inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, SILValue V) {
V->print(OS);
return OS;
}
} // end namespace swift
namespace llvm {
/// A SILValue casts like a ValueBase *.
template<> struct simplify_type<const ::swift::SILValue> {
using SimpleType = ::swift::ValueBase *;
static SimpleType getSimplifiedValue(::swift::SILValue Val) {
return Val;
}
};
template<> struct simplify_type< ::swift::SILValue>
: public simplify_type<const ::swift::SILValue> {};
// Values hash just like pointers.
template<> struct DenseMapInfo<swift::SILValue> {
static swift::SILValue getEmptyKey() {
return swift::SILValue::getFromOpaqueValue(
llvm::DenseMapInfo<void*>::getEmptyKey());
}
static swift::SILValue getTombstoneKey() {
return swift::SILValue::getFromOpaqueValue(
llvm::DenseMapInfo<void*>::getTombstoneKey());
}
static unsigned getHashValue(swift::SILValue V) {
return DenseMapInfo<swift::ValueBase *>::getHashValue(V);
}
static bool isEqual(swift::SILValue LHS, swift::SILValue RHS) {
return LHS == RHS;
}
};
/// SILValue is a PointerLikeType.
template<> struct PointerLikeTypeTraits<::swift::SILValue> {
using SILValue = ::swift::SILValue;
public:
static void *getAsVoidPointer(SILValue v) {
return v.getOpaqueValue();
}
static SILValue getFromVoidPointer(void *p) {
return SILValue::getFromOpaqueValue(p);
}
enum { NumLowBitsAvailable = swift::SILValue::NumLowBitsAvailable };
};
} // end namespace llvm
#endif