blob: cab821170a91fe5fc66dc1e36336fd9e6342235d [file] [log] [blame]
//===--- ParseExpr.cpp - Swift Language Parser for Expressions ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Expression Parsing and AST Building
//
//===----------------------------------------------------------------------===//
#include "swift/Parse/Parser.h"
#include "swift/AST/DiagnosticsParse.h"
#include "swift/Basic/EditorPlaceholder.h"
#include "swift/Parse/CodeCompletionCallbacks.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
#include "swift/Basic/Fallthrough.h"
#include "swift/Basic/StringExtras.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/raw_ostream.h"
using namespace swift;
/// \brief Create an argument with a trailing closure, with (optionally)
/// the elements, names, and parentheses locations from an existing argument.
static Expr *createArgWithTrailingClosure(ASTContext &context,
SourceLoc leftParen,
ArrayRef<Expr *> elementsIn,
ArrayRef<Identifier> namesIn,
ArrayRef<SourceLoc> nameLocsIn,
SourceLoc rightParen,
Expr *closure) {
// If there are no elements, just build a parenthesized expression around
// the closure.
if (elementsIn.empty()) {
auto PE = new (context) ParenExpr(leftParen, closure, rightParen,
/*hasTrailingClosure=*/true);
PE->setImplicit();
return PE;
}
// Create the list of elements, and add the trailing closure to the end.
SmallVector<Expr *, 4> elements(elementsIn.begin(), elementsIn.end());
elements.push_back(closure);
SmallVector<Identifier, 4> names;
SmallVector<SourceLoc, 4> nameLocs;
if (!namesIn.empty()) {
names.append(namesIn.begin(), namesIn.end());
names.push_back(Identifier());
nameLocs.append(nameLocsIn.begin(), nameLocsIn.end());
nameLocs.push_back(SourceLoc());
}
// Form a full tuple expression.
return TupleExpr::create(context, leftParen, elements, names, nameLocs,
rightParen, /*hasTrailingClosure=*/true,
/*Implicit=*/false);
}
/// \brief Add the given trailing closure argument to the call argument.
static Expr *addTrailingClosureToArgument(ASTContext &context,
Expr *arg, Expr *closure) {
// Deconstruct the call argument to find its elements, element names,
// and the locations of the left and right parentheses.
if (auto tuple = dyn_cast<TupleExpr>(arg)) {
// Deconstruct a tuple expression.
return createArgWithTrailingClosure(context,
tuple->getLParenLoc(),
tuple->getElements(),
tuple->getElementNames(),
tuple->getElementNameLocs(),
tuple->getRParenLoc(),
closure);
}
// Deconstruct a parenthesized expression.
auto paren = dyn_cast<ParenExpr>(arg);
return createArgWithTrailingClosure(context,
paren->getLParenLoc(),
paren->getSubExpr(),
{ },
{ },
paren->getRParenLoc(), closure);
}
/// parseExpr
///
/// expr:
/// expr-sequence(basic | trailing-closure)
///
/// \param isExprBasic Whether we're only parsing an expr-basic.
ParserResult<Expr> Parser::parseExprImpl(Diag<> Message, bool isExprBasic) {
// If we are parsing a refutable pattern, check to see if this is the start
// of a let/var/is pattern. If so, parse it to an UnresolvedPatternExpr and
// name binding will perform final validation.
//
// Only do this if we're parsing a pattern, to improve QoI on malformed
// expressions followed by (e.g.) let/var decls.
//
if (InVarOrLetPattern && isOnlyStartOfMatchingPattern()) {
ParserResult<Pattern> pattern = parseMatchingPattern(/*isExprBasic*/false);
if (pattern.hasCodeCompletion())
return makeParserCodeCompletionResult<Expr>();
if (pattern.isNull())
return nullptr;
return makeParserResult(new (Context) UnresolvedPatternExpr(pattern.get()));
}
ParserResult<Expr> expr = parseExprSequence(Message, isExprBasic);
if (expr.hasCodeCompletion())
return expr;
if (expr.isNull())
return nullptr;
return makeParserResult(expr.get());
}
/// parseExprIs
/// expr-is:
/// 'is' type
ParserResult<Expr> Parser::parseExprIs() {
SourceLoc isLoc = consumeToken(tok::kw_is);
ParserResult<TypeRepr> type = parseType(diag::expected_type_after_is);
if (type.hasCodeCompletion())
return makeParserCodeCompletionResult<Expr>();
if (type.isNull())
return nullptr;
return makeParserResult(new (Context) IsExpr(isLoc, type.get()));
}
/// parseExprAs
/// expr-as:
/// 'as' type
/// 'as?' type
/// 'as!' type
ParserResult<Expr> Parser::parseExprAs() {
// Parse the 'as'.
SourceLoc asLoc = consumeToken(tok::kw_as);
// Parse the postfix '?'.
SourceLoc questionLoc;
SourceLoc exclaimLoc;
if (Tok.is(tok::question_postfix)) {
questionLoc = consumeToken(tok::question_postfix);
} else if (Tok.is(tok::exclaim_postfix)) {
exclaimLoc = consumeToken(tok::exclaim_postfix);
}
ParserResult<TypeRepr> type = parseType(diag::expected_type_after_as);
if (type.hasCodeCompletion())
return makeParserCodeCompletionResult<Expr>();
if (type.isNull())
return nullptr;
Expr *parsed;
if (questionLoc.isValid()) {
parsed = new (Context) ConditionalCheckedCastExpr(asLoc, questionLoc,
type.get());
} else if (exclaimLoc.isValid()) {
parsed = new (Context) ForcedCheckedCastExpr(asLoc, exclaimLoc, type.get());
} else {
parsed = new (Context) CoerceExpr(asLoc, type.get());
}
return makeParserResult(parsed);
}
/// parseExprSequence
///
/// expr-sequence(Mode):
/// expr-sequence-element(Mode) expr-binary(Mode)*
/// expr-binary(Mode):
/// operator-binary expr-sequence-element(Mode)
/// '?' expr-sequence(Mode) ':' expr-sequence-element(Mode)
/// '=' expr-unary
/// expr-is
/// expr-as
///
/// The sequencing for binary exprs is not structural, i.e., binary operators
/// are not inherently right-associative. If present, '?' and ':' tokens must
/// match.
///
/// Similarly, the parsing of 'try' as part of expr-sequence-element
/// is not structural. 'try' is not permitted at arbitrary points in
/// a sequence; in the places it's permitted, it's hoisted out to
/// apply to everything to its right.
ParserResult<Expr> Parser::parseExprSequence(Diag<> Message,
bool isExprBasic,
bool isConfigCondition) {
SmallVector<Expr*, 8> SequencedExprs;
SourceLoc startLoc = Tok.getLoc();
bool HasCodeCompletion = false;
while (true) {
if (isConfigCondition && Tok.isAtStartOfLine())
break;
// Parse a unary expression.
ParserResult<Expr> Primary =
parseExprSequenceElement(Message, isExprBasic);
HasCodeCompletion |= Primary.hasCodeCompletion();
if (Primary.isNull()) {
if (Primary.hasCodeCompletion()) {
if (CodeCompletion) {
CodeCompletion->setLeadingSequenceExprs(SequencedExprs);
}
return Primary;
} else {
return nullptr;
}
}
SequencedExprs.push_back(Primary.get());
parse_operator:
switch (Tok.getKind()) {
case tok::oper_binary_spaced:
case tok::oper_binary_unspaced: {
// If '>' is not an operator and this token starts with a '>', we're done.
if (!GreaterThanIsOperator && startsWithGreater(Tok))
goto done;
// Parse the operator.
Expr *Operator = parseExprOperator();
SequencedExprs.push_back(Operator);
// The message is only valid for the first subexpr.
Message = diag::expected_expr_after_operator;
break;
}
case tok::question_infix: {
// Save the '?'.
SourceLoc questionLoc = consumeToken();
// Parse the middle expression of the ternary.
ParserResult<Expr> middle =
parseExprSequence(diag::expected_expr_after_if_question, isExprBasic);
if (middle.hasCodeCompletion())
return makeParserCodeCompletionResult<Expr>();
if (middle.isNull())
return nullptr;
// Make sure there's a matching ':' after the middle expr.
if (!Tok.is(tok::colon)) {
diagnose(questionLoc, diag::expected_colon_after_if_question);
return makeParserErrorResult(new (Context) ErrorExpr(
{startLoc, middle.get()->getSourceRange().End}));
}
SourceLoc colonLoc = consumeToken();
auto *unresolvedIf
= new (Context) IfExpr(questionLoc,
middle.get(),
colonLoc);
SequencedExprs.push_back(unresolvedIf);
Message = diag::expected_expr_after_if_colon;
break;
}
case tok::equal: {
// If we're parsing an expression as the body of a refutable var/let
// pattern, then an assignment doesn't make sense. In a "if let"
// statement the equals is the start of the condition, so don't parse it
// as a binary operator.
if (InVarOrLetPattern)
goto done;
SourceLoc equalsLoc = consumeToken();
auto *assign = new (Context) AssignExpr(equalsLoc);
SequencedExprs.push_back(assign);
Message = diag::expected_expr_assignment;
if (Tok.is(tok::code_complete)) {
if (CodeCompletion) {
auto RHS = new (Context) ErrorExpr(
SourceRange(Tok.getRange().getStart(), Tok.getRange().getEnd()));
assign->setSrc(RHS);
SequencedExprs.pop_back();
assign->setDest(SequencedExprs.back());
SequencedExprs.pop_back();
SequencedExprs.push_back(assign);
CodeCompletion->completeAssignmentRHS(assign);
}
consumeToken();
if (SequencedExprs.size() > 0 && (SequencedExprs.size() & 1) == 0) {
// Make sure we have odd number of sequence exprs.
SequencedExprs.pop_back();
}
auto Result = SequencedExprs.size() == 1 ?
makeParserResult(SequencedExprs[0]):
makeParserResult(SequenceExpr::create(Context, SequencedExprs));
Result.setHasCodeCompletion();
return Result;
}
break;
}
case tok::kw_is: {
// Parse a type after the 'is' token instead of an expression.
ParserResult<Expr> is = parseExprIs();
if (is.isNull() || is.hasCodeCompletion())
return nullptr;
// Store the expr itself as a placeholder RHS. The real RHS is the
// type parameter stored in the node itself.
SequencedExprs.push_back(is.get());
SequencedExprs.push_back(is.get());
// We already parsed the right operand as part of the 'is' production.
// Jump directly to parsing another operator.
goto parse_operator;
}
case tok::kw_as: {
ParserResult<Expr> as = parseExprAs();
if (as.isNull() || as.hasCodeCompletion())
return nullptr;
// Store the expr itself as a placeholder RHS. The real RHS is the
// type parameter stored in the node itself.
SequencedExprs.push_back(as.get());
SequencedExprs.push_back(as.get());
// We already parsed the right operand as part of the 'is' production.
// Jump directly to parsing another operator.
goto parse_operator;
}
default:
// If the next token is not a binary operator, we're done.
goto done;
}
}
done:
if (SequencedExprs.empty()) {
if (isConfigCondition) {
diagnose(startLoc, diag::expected_close_to_config_stmt);
return makeParserError();
} else {
// If we had semantic errors, just fail here.
assert(!SequencedExprs.empty());
}
}
// If we saw no operators, don't build a sequence.
if (SequencedExprs.size() == 1) {
auto Result = makeParserResult(SequencedExprs[0]);
if (HasCodeCompletion)
Result.setHasCodeCompletion();
return Result;
}
auto Result = makeParserResult(SequenceExpr::create(Context, SequencedExprs));
if (HasCodeCompletion)
Result.setHasCodeCompletion();
return Result;
}
/// parseExprSequenceElement
///
/// expr-sequence-element(Mode):
/// 'try' expr-unary(Mode)
/// 'try' '?' expr-unary(Mode)
/// 'try' '!' expr-unary(Mode)
/// expr-unary(Mode)
///
/// 'try' is not actually allowed at an arbitrary position of a
/// sequence, but this isn't enforced until sequence-folding.
ParserResult<Expr> Parser::parseExprSequenceElement(Diag<> message,
bool isExprBasic) {
SourceLoc tryLoc;
bool hadTry = consumeIf(tok::kw_try, tryLoc);
Optional<Token> trySuffix;
if (hadTry && Tok.isAny(tok::exclaim_postfix, tok::question_postfix)) {
trySuffix = Tok;
consumeToken();
}
ParserResult<Expr> sub = parseExprUnary(message, isExprBasic);
if (hadTry && !sub.hasCodeCompletion() && !sub.isNull()) {
switch (trySuffix ? trySuffix->getKind() : tok::NUM_TOKENS) {
case tok::exclaim_postfix:
sub = makeParserResult(
new (Context) ForceTryExpr(tryLoc, sub.get(), trySuffix->getLoc()));
break;
case tok::question_postfix:
sub = makeParserResult(
new (Context) OptionalTryExpr(tryLoc, sub.get(),
trySuffix->getLoc()));
break;
default:
sub = makeParserResult(new (Context) TryExpr(tryLoc, sub.get()));
break;
}
}
return sub;
}
/// parseExprUnary
///
/// expr-unary(Mode):
/// expr-postfix(Mode)
/// operator-prefix expr-unary(Mode)
/// '&' expr-unary(Mode)
///
ParserResult<Expr> Parser::parseExprUnary(Diag<> Message, bool isExprBasic) {
UnresolvedDeclRefExpr *Operator;
switch (Tok.getKind()) {
default:
// If the next token is not an operator, just parse this as expr-postfix.
return parseExprPostfix(Message, isExprBasic);
case tok::amp_prefix: {
SourceLoc Loc = consumeToken(tok::amp_prefix);
ParserResult<Expr> SubExpr = parseExprUnary(Message, isExprBasic);
if (SubExpr.hasCodeCompletion())
return makeParserCodeCompletionResult<Expr>();
if (SubExpr.isNull())
return nullptr;
return makeParserResult(
new (Context) InOutExpr(Loc, SubExpr.get(), Type()));
}
case tok::oper_postfix:
// Postfix operators cannot start a subexpression, but can happen
// syntactically because the operator may just follow whatever precedes this
// expression (and that may not always be an expression).
diagnose(Tok, diag::invalid_postfix_operator);
Tok.setKind(tok::oper_prefix);
SWIFT_FALLTHROUGH;
case tok::oper_prefix:
Operator = parseExprOperator();
break;
case tok::oper_binary_spaced:
case tok::oper_binary_unspaced: {
// For recovery purposes, accept an oper_binary here.
SourceLoc OperEndLoc = Tok.getLoc().getAdvancedLoc(Tok.getLength());
Tok.setKind(tok::oper_prefix);
Operator = parseExprOperator();
if (OperEndLoc == Tok.getLoc())
diagnose(PreviousLoc, diag::expected_expr_after_unary_operator);
else
diagnose(PreviousLoc, diag::expected_prefix_operator)
.fixItRemoveChars(OperEndLoc, Tok.getLoc());
break;
}
}
ParserResult<Expr> SubExpr = parseExprUnary(Message, isExprBasic);
if (SubExpr.hasCodeCompletion())
return makeParserCodeCompletionResult<Expr>();
if (SubExpr.isNull())
return nullptr;
// Check if we have a unary '-' with number literal sub-expression, for
// example, "-42" or "-1.25".
if (auto *LE = dyn_cast<NumberLiteralExpr>(SubExpr.get())) {
if (Operator->hasName() && Operator->getName().getBaseName().str() == "-") {
LE->setNegative(Operator->getLoc());
return makeParserResult(LE);
}
}
return makeParserResult(
new (Context) PrefixUnaryExpr(Operator, SubExpr.get()));
}
static DeclRefKind getDeclRefKindForOperator(tok kind) {
switch (kind) {
case tok::oper_binary_spaced:
case tok::oper_binary_unspaced: return DeclRefKind::BinaryOperator;
case tok::oper_postfix: return DeclRefKind::PostfixOperator;
case tok::oper_prefix: return DeclRefKind::PrefixOperator;
default: llvm_unreachable("bad operator token kind");
}
}
/// parseExprOperator - Parse an operator reference expression. These
/// are not "proper" expressions; they can only appear in binary/unary
/// operators.
UnresolvedDeclRefExpr *Parser::parseExprOperator() {
assert(Tok.isAnyOperator());
DeclRefKind refKind = getDeclRefKindForOperator(Tok.getKind());
SourceLoc loc = Tok.getLoc();
Identifier name = Context.getIdentifier(Tok.getText());
consumeToken();
// Bypass local lookup.
return new (Context) UnresolvedDeclRefExpr(name, refKind, loc);
}
static VarDecl *getImplicitSelfDeclForSuperContext(Parser &P,
DeclContext *DC,
SourceLoc Loc) {
auto *methodContext = DC->getInnermostMethodContext();
if (!methodContext) {
P.diagnose(Loc, diag::super_not_in_class_method);
return nullptr;
}
// Do an actual lookup for 'self' in case it shows up in a capture list.
auto *methodSelf = methodContext->getImplicitSelfDecl();
auto *lookupSelf = P.lookupInScope(P.Context.Id_self);
if (lookupSelf && lookupSelf != methodSelf) {
// FIXME: This is the wrong diagnostic for if someone manually declares a
// variable named 'self' using backticks.
P.diagnose(Loc, diag::super_in_closure_with_capture);
P.diagnose(lookupSelf->getLoc(), diag::super_in_closure_with_capture_here);
return nullptr;
}
return methodSelf;
}
/// parseExprSuper
///
/// expr-super:
/// expr-super-member
/// expr-super-init
/// expr-super-subscript
/// expr-super-member:
/// 'super' '.' identifier
/// expr-super-init:
/// 'super' '.' 'init'
/// expr-super-subscript:
/// 'super' '[' expr ']'
ParserResult<Expr> Parser::parseExprSuper() {
// Parse the 'super' reference.
SourceLoc superLoc = consumeToken(tok::kw_super);
VarDecl *selfDecl = getImplicitSelfDeclForSuperContext(*this,
CurDeclContext,
superLoc);
bool ErrorOccurred = selfDecl == nullptr;
Expr *superRef = !ErrorOccurred
? cast<Expr>(new (Context) SuperRefExpr(selfDecl, superLoc,
/*Implicit=*/false))
: cast<Expr>(new (Context) ErrorExpr(superLoc));
if (Tok.is(tok::period)) {
// 'super.' must be followed by a member or initializer ref.
SourceLoc dotLoc = consumeToken(tok::period);
if (Tok.is(tok::code_complete)) {
if (CodeCompletion) {
if (auto *SRE = dyn_cast<SuperRefExpr>(superRef))
CodeCompletion->completeExprSuperDot(SRE);
}
// Eat the code completion token because we handled it.
consumeToken(tok::code_complete);
return makeParserCodeCompletionResult(superRef);
}
SourceLoc nameLoc;
DeclName name = parseUnqualifiedIdentifier(
/*allowInit=*/true,
nameLoc,
diag::expected_identifier_after_super_dot_expr);
if (!name)
return nullptr;
return makeParserResult(
new (Context) UnresolvedDotExpr(superRef, dotLoc, name, nameLoc,
/*Implicit=*/false));
}
if (Tok.isFollowingLSquare()) {
// super[expr]
ParserResult<Expr> idx = parseExprList(tok::l_square, tok::r_square);
if (idx.hasCodeCompletion())
return makeParserCodeCompletionResult<Expr>();
if (idx.isNull())
return nullptr;
return makeParserResult(new (Context) SubscriptExpr(superRef, idx.get()));
}
if (Tok.is(tok::code_complete)) {
if (CodeCompletion) {
if (auto *SRE = dyn_cast<SuperRefExpr>(superRef))
CodeCompletion->completeExprSuper(SRE);
}
// Eat the code completion token because we handled it.
consumeToken(tok::code_complete);
return makeParserCodeCompletionResult(superRef);
}
if (consumeIf(tok::unknown))
return nullptr;
diagnose(Tok, diag::expected_dot_or_subscript_after_super);
return nullptr;
}
/// Copy a numeric literal value into AST-owned memory, stripping underscores
/// so the semantic part of the value can be parsed by APInt/APFloat parsers.
static StringRef copyAndStripUnderscores(ASTContext &C, StringRef orig) {
char *start = static_cast<char*>(C.Allocate(orig.size(), 1));
char *p = start;
for (char c : orig)
if (c != '_')
*p++ = c;
return StringRef(start, p - start);
}
/// Disambiguate the parse after '{' token that is in a place that might be
/// the start of a trailing closure, or start the variable accessor block.
///
/// Check to see if the '{' is followed by a 'didSet' or a 'willSet' label,
/// possibly preceded by attributes. If so, we disambiguate the parse as the
/// start of a get-set block in a variable definition (not as a trailing
/// closure).
static bool isStartOfGetSetAccessor(Parser &P) {
assert(P.Tok.is(tok::l_brace) && "not checking a brace?");
// The only case this can happen is if the accessor label is immediately after
// a brace (possibly preceded by attributes). "get" is implicit, so it can't
// be checked for. Conveniently however, get/set properties are not allowed
// to have initializers, so we don't have an ambiguity, we just have to check
// for observing accessors.
//
// If we have a 'didSet' or a 'willSet' label, disambiguate immediately as
// an accessor block.
Token NextToken = P.peekToken();
if (NextToken.isContextualKeyword("didSet") ||
NextToken.isContextualKeyword("willSet"))
return true;
// If we don't have attributes, then it cannot be an accessor block.
if (NextToken.isNot(tok::at_sign))
return false;
Parser::BacktrackingScope Backtrack(P);
// Eat the "{".
P.consumeToken(tok::l_brace);
// Eat attributes, if present.
if (!P.canParseAttributes())
return false;
// Check if we have 'didSet'/'willSet' after attributes.
return P.Tok.isContextualKeyword("didSet") ||
P.Tok.isContextualKeyword("willSet");
}
/// Map magic literal tokens such as __FILE__ to their
/// MagicIdentifierLiteralExpr kind.
MagicIdentifierLiteralExpr::Kind getMagicIdentifierLiteralKind(tok Kind) {
switch (Kind) {
case tok::kw___COLUMN__:
return MagicIdentifierLiteralExpr::Kind::Column;
case tok::kw___FILE__:
return MagicIdentifierLiteralExpr::Kind::File;
case tok::kw___FUNCTION__:
return MagicIdentifierLiteralExpr::Kind::Function;
case tok::kw___LINE__:
return MagicIdentifierLiteralExpr::Kind::Line;
case tok::kw___DSO_HANDLE__:
return MagicIdentifierLiteralExpr::Kind::DSOHandle;
default:
llvm_unreachable("not a magic literal");
}
}
/// parseExprPostfix
///
/// expr-literal:
/// integer_literal
/// floating_literal
/// string_literal
/// nil
/// true
/// false
/// '__FILE__'
/// '__LINE__'
/// '__COLUMN__'
/// '__FUNCTION__'
/// '__DSO_HANDLE__'
///
/// expr-primary:
/// expr-literal
/// expr-identifier expr-call-suffix?
/// expr-closure
/// expr-anon-closure-argument
/// expr-delayed-identifier
/// expr-paren
/// expr-super
/// expr-discard
///
/// expr-delayed-identifier:
/// '.' identifier
///
/// expr-discard:
/// '_'
///
/// expr-dot:
/// expr-postfix '.' 'type'
/// expr-postfix '.' identifier generic-args? expr-call-suffix?
/// expr-postfix '.' integer_literal
///
/// expr-subscript:
/// expr-postfix '[' expr ']'
///
/// expr-call:
/// expr-postfix expr-paren
///
/// expr-force-value:
/// expr-postfix '!'
///
/// expr-trailing-closure:
/// expr-postfix(trailing-closure) expr-closure
///
/// expr-postfix(Mode):
/// expr-postfix(Mode) operator-postfix
///
/// expr-postfix(basic):
/// expr-primary
/// expr-dot
/// expr-metatype
/// expr-init
/// expr-subscript
/// expr-call
/// expr-force-value
///
/// expr-postfix(trailing-closure):
/// expr-postfix(basic)
/// expr-trailing-closure
///
ParserResult<Expr> Parser::parseExprPostfix(Diag<> ID, bool isExprBasic) {
ParserResult<Expr> Result;
switch (Tok.getKind()) {
case tok::integer_literal: {
StringRef Text = copyAndStripUnderscores(Context, Tok.getText());
SourceLoc Loc = consumeToken(tok::integer_literal);
Result = makeParserResult(new (Context) IntegerLiteralExpr(Text, Loc,
/*Implicit=*/false));
break;
}
case tok::floating_literal: {
StringRef Text = copyAndStripUnderscores(Context, Tok.getText());
SourceLoc Loc = consumeToken(tok::floating_literal);
Result = makeParserResult(new (Context) FloatLiteralExpr(Text, Loc,
/*Implicit=*/false));
break;
}
case tok::at_sign:
// Objective-C programmers habitually type @"foo", so recover gracefully
// with a fixit. If this isn't @"foo", just handle it like an unknown
// input.
if (peekToken().isNot(tok::string_literal))
goto UnknownCharacter;
diagnose(Tok.getLoc(), diag::string_literal_no_atsign)
.fixItRemove(Tok.getLoc());
consumeToken(tok::at_sign);
SWIFT_FALLTHROUGH;
case tok::string_literal: // "foo"
Result = makeParserResult(parseExprStringLiteral());
break;
case tok::kw_nil:
Result = makeParserResult(
new (Context) NilLiteralExpr(consumeToken(tok::kw_nil)));
break;
case tok::kw_true:
case tok::kw_false: {
bool isTrue = Tok.is(tok::kw_true);
Result = makeParserResult(
new (Context) BooleanLiteralExpr(isTrue, consumeToken()));
break;
}
case tok::kw___FILE__:
case tok::kw___LINE__:
case tok::kw___COLUMN__:
case tok::kw___FUNCTION__:
case tok::kw___DSO_HANDLE__: {
auto Kind = getMagicIdentifierLiteralKind(Tok.getKind());
SourceLoc Loc = consumeToken();
Result = makeParserResult(
new (Context) MagicIdentifierLiteralExpr(Kind, Loc, /*Implicit=*/false));
break;
}
case tok::identifier: // foo
// If we are parsing a refutable pattern and are inside a let/var pattern,
// the identifiers change to be value bindings instead of decl references.
// Parse and return this as an UnresolvedPatternExpr around a binding. This
// will be resolved (or rejected) by sema when the overall refutable pattern
// it transformed from an expression into a pattern.
if ((InVarOrLetPattern == IVOLP_ImplicitlyImmutable ||
InVarOrLetPattern == IVOLP_InVar ||
InVarOrLetPattern == IVOLP_InLet) &&
// If we have "case let x." or "case let x(", we parse x as a normal
// name, not a binding, because it is the start of an enum pattern or
// call pattern.
peekToken().isNot(tok::period, tok::period_prefix, tok::l_paren)) {
Identifier name;
SourceLoc loc = consumeIdentifier(&name);
auto pattern = createBindingFromPattern(loc, name,
InVarOrLetPattern != IVOLP_InVar);
Result = makeParserResult(new (Context) UnresolvedPatternExpr(pattern));
break;
}
SWIFT_FALLTHROUGH;
case tok::kw_self: // self
case tok::kw_Self: // Self
Result = makeParserResult(parseExprIdentifier());
// If there is an expr-call-suffix, parse it and form a call.
if (Tok.isFollowingLParen()) {
Result = parseExprCallSuffix(Result);
break;
}
break;
case tok::dollarident: // $1
Result = makeParserResult(parseExprAnonClosureArg());
break;
// If the next token is '_', parse a discard expression.
case tok::kw__:
Result = makeParserResult(
new (Context) DiscardAssignmentExpr(consumeToken(), /*Implicit=*/false));
break;
case tok::l_brace: // expr-closure
Result = parseExprClosure();
break;
case tok::period: //=.foo
case tok::period_prefix: { // .foo
SourceLoc DotLoc = consumeToken();
// Special case ".<integer_literal>" like ".4". This isn't valid, but the
// developer almost certainly meant to use "0.4". Diagnose this, and
// recover as if they wrote that.
if (Tok.is(tok::integer_literal) && !Tok.isAtStartOfLine()) {
diagnose(DotLoc, diag::invalid_float_literal_missing_leading_zero,
Tok.getText())
.fixItInsert(DotLoc, "0")
.highlight({DotLoc, Tok.getLoc()});
char *Ptr = (char*)Context.Allocate(Tok.getLength()+2, 1);
memcpy(Ptr, "0.", 2);
memcpy(Ptr+2, Tok.getText().data(), Tok.getLength());
auto FltText = StringRef(Ptr, Tok.getLength()+2);
FltText = copyAndStripUnderscores(Context, FltText);
consumeToken(tok::integer_literal);
Result = makeParserResult(new (Context)
FloatLiteralExpr(FltText, DotLoc,
/*Implicit=*/false));
break;
}
DeclName Name;
SourceLoc NameLoc;
if (Tok.is(tok::code_complete)) {
auto Expr = new (Context) UnresolvedMemberExpr(DotLoc,
DotLoc.getAdvancedLoc(1), Context.getIdentifier("_"), nullptr);
Result = makeParserResult(Expr);
if (CodeCompletion) {
std::vector<StringRef> Identifiers;
// Move lexer to the start of the current line.
L->backtrackToState(L->getStateForBeginningOfTokenLoc(
L->getLocForStartOfLine(SourceMgr, Tok.getLoc())));
bool HasReturn = false;
// Until we see the code completion token, collect identifiers.
for (L->lex(Tok); !Tok.is(tok::code_complete); consumeToken()) {
if (!HasReturn)
HasReturn = Tok.is(tok::kw_return);
if (Tok.is(tok::identifier)) {
Identifiers.push_back(Tok.getText());
}
}
CodeCompletion->completeUnresolvedMember(Expr, Identifiers, HasReturn);
} else {
Result.setHasCodeCompletion();
}
consumeToken();
return Result;
}
Name = parseUnqualifiedIdentifier(/*allowInit=*/true, NameLoc,
diag::expected_identifier_after_dot_expr);
if (!Name) return nullptr;
ParserResult<Expr> Arg;
// Check for a () suffix, which indicates a call when constructing
// this member. Note that this cannot be the start of a new line.
if (Tok.isFollowingLParen()) {
Arg = parseExprList(tok::l_paren, tok::r_paren);
if (Arg.hasCodeCompletion())
return makeParserCodeCompletionResult<Expr>();
if (Arg.isNull())
return nullptr;
}
// Handle .foo by just making an AST node.
Result = makeParserResult(
new (Context) UnresolvedMemberExpr(DotLoc, NameLoc, Name,
Arg.getPtrOrNull()));
break;
}
case tok::kw_super: { // super.foo or super[foo]
Result = parseExprSuper();
break;
}
case tok::l_paren:
Result = parseExprList(tok::l_paren, tok::r_paren);
break;
case tok::l_square:
Result = parseExprCollection();
break;
case tok::l_square_lit: // [#Color(...)#], [#Image(...)#]
Result = parseExprObjectLiteral();
break;
case tok::pound_available: {
// For better error recovery, parse but reject #available in an expr
// context.
diagnose(Tok.getLoc(), diag::availability_query_outside_if_stmt_guard);
auto res = parseStmtConditionPoundAvailable();
if (res.hasCodeCompletion())
return makeParserCodeCompletionStatus();
if (res.isParseError() || res.isNull())
return nullptr;
Result = makeParserResult(
new (Context) ErrorExpr(res.get()->getSourceRange()));
break;
}
case tok::code_complete:
Result = makeParserResult(new (Context) CodeCompletionExpr(Tok.getRange()));
Result.setHasCodeCompletion();
if (CodeCompletion)
CodeCompletion->completePostfixExprBeginning(dyn_cast<CodeCompletionExpr>(
Result.get()));
consumeToken(tok::code_complete);
break;
// Eat an invalid token in an expression context. Error tokens are diagnosed
// by the lexer, so there is no reason to emit another diagnostic.
case tok::unknown:
consumeToken(tok::unknown);
return nullptr;
default:
UnknownCharacter:
checkForInputIncomplete();
// FIXME: offer a fixit: 'Self' -> 'self'
diagnose(Tok, ID);
return nullptr;
}
// If we had a parse error, don't attempt to parse suffixes.
if (Result.isParseError())
return Result;
bool hasBindOptional = false;
// Handle suffix expressions.
while (1) {
// FIXME: Better recovery.
if (Result.isNull())
return Result;
// Check for a .foo suffix.
SourceLoc TokLoc = Tok.getLoc();
if (consumeIf(tok::period) || consumeIf(tok::period_prefix)) {
// Non-identifier cases.
if (Tok.isNot(tok::identifier) && Tok.isNot(tok::integer_literal) &&
Tok.isNot(tok::kw_init)) {
// A metatype expr.
if (Tok.is(tok::kw_dynamicType)) {
Result = makeParserResult(
new (Context) DynamicTypeExpr(Result.get(), consumeToken(),
Type()));
continue;
}
// A '.self' expr.
if (Tok.is(tok::kw_self)) {
Result = makeParserResult(
new (Context) DotSelfExpr(Result.get(), TokLoc, consumeToken()));
continue;
}
// If we have '.<keyword><code_complete>', try to recover by creating
// an identifier with the same spelling as the keyword.
if (Tok.isKeyword() && peekToken().is(tok::code_complete)) {
Identifier Name = Context.getIdentifier(Tok.getText());
Result = makeParserResult(
new (Context) UnresolvedDotExpr(Result.get(), TokLoc,
Name, Tok.getLoc(),
/*Implicit=*/false));
consumeToken();
}
if (Tok.is(tok::code_complete)) {
if (CodeCompletion && Result.isNonNull())
CodeCompletion->completeDotExpr(Result.get(), /*DotLoc=*/TokLoc);
// Eat the code completion token because we handled it.
consumeToken(tok::code_complete);
Result.setHasCodeCompletion();
return Result;
}
checkForInputIncomplete();
diagnose(Tok, diag::expected_member_name);
return nullptr;
}
// Don't allow '.<integer literal>' following a numeric literal
// expression.
if (Tok.is(tok::integer_literal) && Result.isNonNull() &&
(isa<FloatLiteralExpr>(Result.get()) ||
isa<IntegerLiteralExpr>(Result.get()))) {
diagnose(Tok, diag::numeric_literal_numeric_member)
.highlight(Result.get()->getSourceRange());
consumeToken();
continue;
}
if (Result.isParseError())
continue;
if (Tok.isAny(tok::identifier, tok::kw_init)) {
SourceLoc NameLoc;
DeclName Name = parseUnqualifiedIdentifier(/*allowInit=*/true,
NameLoc,
diag::expected_member_name);
if (!Name) return nullptr;
Result = makeParserResult(
new (Context) UnresolvedDotExpr(Result.get(), TokLoc, Name,
NameLoc,
/*Implicit=*/false));
if (canParseAsGenericArgumentList()) {
SmallVector<TypeRepr*, 8> args;
SourceLoc LAngleLoc, RAngleLoc;
if (parseGenericArguments(args, LAngleLoc, RAngleLoc)) {
diagnose(LAngleLoc, diag::while_parsing_as_left_angle_bracket);
}
SmallVector<TypeLoc, 8> locArgs;
for (auto ty : args)
locArgs.push_back(ty);
Result = makeParserResult(new (Context) UnresolvedSpecializeExpr(
Result.get(), LAngleLoc, Context.AllocateCopy(locArgs),
RAngleLoc));
}
} else {
DeclName name = Context.getIdentifier(Tok.getText());
SourceLoc nameLoc = consumeToken(tok::integer_literal);
Result = makeParserResult(
new (Context) UnresolvedDotExpr(Result.get(), TokLoc, name, nameLoc,
/*Implicit=*/false));
}
// If there is an expr-call-suffix, parse it and form a call.
if (Tok.isFollowingLParen())
Result = parseExprCallSuffix(Result);
continue;
}
// Check for a () suffix, which indicates a call.
// Note that this cannot be the start of a new line.
if (Tok.isFollowingLParen()) {
if (peekToken().is(tok::code_complete)) {
consumeToken(tok::l_paren);
auto SubResult = makeParserResult(new (Context) CodeCompletionExpr(Tok.
getRange()));
SubResult.setHasCodeCompletion();
if (CodeCompletion && Result.isNonNull())
CodeCompletion->completePostfixExprParen(Result.get(), SubResult.get());
// Eat the code completion token because we handled it.
consumeToken(tok::code_complete);
return SubResult;
}
ParserResult<Expr> Arg = parseExprList(tok::l_paren, tok::r_paren);
Result = makeParserResult(new (Context) CallExpr(Result.get(), Arg.get(),
/*Implicit=*/false));
if (Arg.hasCodeCompletion())
Result.setHasCodeCompletion();
if (Arg.isParseError())
Result.setIsParseError();
continue;
}
// Check for a [expr] suffix.
// Note that this cannot be the start of a new line.
if (Tok.isFollowingLSquare()) {
ParserResult<Expr> Idx = parseExprList(tok::l_square, tok::r_square);
if (Idx.hasCodeCompletion())
return makeParserCodeCompletionResult<Expr>();
if (Idx.isNull() || Result.isNull())
return nullptr;
Result = makeParserResult(
new (Context) SubscriptExpr(Result.get(), Idx.get()));
continue;
}
// Check for a trailing closure, if allowed.
if (!isExprBasic && Tok.is(tok::l_brace) &&
!isStartOfGetSetAccessor(*this)) {
SourceLoc braceLoc = Tok.getLoc();
// Parse the closure.
ParserResult<Expr> closure = parseExprClosure();
if (closure.isNull())
return nullptr;
// Track the original end location of the expression we're trailing so
// we can warn about excess newlines.
auto origEndLoc = Result.get()->getEndLoc();
auto origLineCol = SourceMgr.getLineAndColumn(origEndLoc);
auto braceLineCol = SourceMgr.getLineAndColumn(braceLoc);
if (((int)braceLineCol.first - (int)origLineCol.first) > 1) {
diagnose(braceLoc, diag::trailing_closure_excess_newlines);
diagnose(Result.get()->getLoc(), diag::trailing_closure_call_here);
}
// Introduce the trailing closure into the call, or form a call, as
// necessary.
if (auto call = dyn_cast<CallExpr>(Result.get())) {
// When a closure follows a call, it becomes the last argument of
// that call.
Expr *arg = addTrailingClosureToArgument(Context, call->getArg(),
closure.get());
call->setArg(arg);
if (closure.hasCodeCompletion())
Result.setHasCodeCompletion();
} else {
// Otherwise, the closure implicitly forms a call.
Expr *arg = createArgWithTrailingClosure(Context, SourceLoc(), { },
{ }, { }, SourceLoc(),
closure.get());
// The call node should still be marked as explicit
Result = makeParserResult(
ParserStatus(closure),
new (Context) CallExpr(Result.get(), arg, /*Implicit=*/false));
}
if (Result.hasCodeCompletion())
return Result;
// We only allow a single trailing closure on a call. This could be
// generalized in the future, but needs further design.
if (Tok.is(tok::l_brace)) break;
continue;
}
// Check for a ? suffix.
if (consumeIf(tok::question_postfix)) {
Result = makeParserResult(
new (Context) BindOptionalExpr(Result.get(), TokLoc, /*depth*/ 0));
hasBindOptional = true;
continue;
}
// Check for a ! suffix.
if (consumeIf(tok::exclaim_postfix)) {
Result = makeParserResult(new (Context) ForceValueExpr(Result.get(),
TokLoc));
continue;
}
// Check for a postfix-operator suffix.
if (Tok.is(tok::oper_postfix)) {
// If '>' is not an operator and this token starts with a '>', we're done.
if (!GreaterThanIsOperator && startsWithGreater(Tok))
return Result;
Expr *oper = parseExprOperator();
Result = makeParserResult(
new (Context) PostfixUnaryExpr(oper, Result.get()));
continue;
}
if (Tok.is(tok::code_complete)) {
if (Tok.isAtStartOfLine()) {
// Postfix expression is located on a different line than the code
// completion token, and thus they are not related.
return Result;
}
if (CodeCompletion && Result.isNonNull()) {
bool hasSpace = Tok.getLoc() != getEndOfPreviousLoc();
CodeCompletion->completePostfixExpr(Result.get(), hasSpace);
}
// Eat the code completion token because we handled it.
consumeToken(tok::code_complete);
return makeParserCodeCompletionResult<Expr>();
}
break;
}
// If we had a ? suffix expression, bind the entire postfix chain
// within an OptionalEvaluationExpr.
if (hasBindOptional) {
Result = makeParserResult(
new (Context) OptionalEvaluationExpr(Result.get()));
}
return Result;
}
static StringLiteralExpr *
createStringLiteralExprFromSegment(ASTContext &Ctx,
const Lexer *L,
Lexer::StringSegment &Segment,
SourceLoc TokenLoc) {
assert(Segment.Kind == Lexer::StringSegment::Literal);
// FIXME: Consider lazily encoding the string when needed.
llvm::SmallString<256> Buf;
StringRef EncodedStr = L->getEncodedStringSegment(Segment, Buf);
if (!Buf.empty()) {
assert(EncodedStr.begin() == Buf.begin() &&
"Returned string is not from buffer?");
EncodedStr = Ctx.AllocateCopy(EncodedStr);
}
return new (Ctx) StringLiteralExpr(EncodedStr, TokenLoc);
}
/// expr-literal:
/// string_literal
Expr *Parser::parseExprStringLiteral() {
SmallVector<Lexer::StringSegment, 1> Segments;
L->getStringLiteralSegments(Tok, Segments);
SourceLoc Loc = consumeToken();
// The simple case: just a single literal segment.
if (Segments.size() == 1 &&
Segments.front().Kind == Lexer::StringSegment::Literal) {
return createStringLiteralExprFromSegment(Context, L, Segments.front(),
Loc);
}
SmallVector<Expr*, 4> Exprs;
bool First = true;
for (auto Segment : Segments) {
switch (Segment.Kind) {
case Lexer::StringSegment::Literal: {
auto TokenLoc = First ? Loc : Segment.Loc;
Exprs.push_back(
createStringLiteralExprFromSegment(Context, L, Segment, TokenLoc));
// Since the string is already parsed, Tok already points to the first
// token after the whole string, but PreviousLoc is not exactly correct.
PreviousLoc = TokenLoc;
break;
}
case Lexer::StringSegment::Expr: {
// We are going to mess with Tok to do reparsing for interpolated literals,
// don't lose our 'next' token.
llvm::SaveAndRestore<Token> SavedTok(Tok);
// Create a temporary lexer that lexes from the body of the string.
Lexer::State BeginState =
L->getStateForBeginningOfTokenLoc(Segment.Loc);
// We need to set the EOF at r_paren, to prevent the Lexer from eagerly
// trying to lex the token beyond it. Parser::parseList() does a special
// check for a tok::EOF that is spelled with a ')'.
// FIXME: This seems like a hack, there must be a better way..
Lexer::State EndState = BeginState.advance(Segment.Length-1);
Lexer LocalLex(*L, BeginState, EndState);
// Temporarily swap out the parser's current lexer with our new one.
llvm::SaveAndRestore<Lexer *> T(L, &LocalLex);
// Prime the new lexer with a '(' as the first token.
// We might be at tok::eof now, so ensure that consumeToken() does not
// assert about lexing past eof.
Tok.setKind(tok::unknown);
consumeToken();
assert(Tok.is(tok::l_paren));
ParserResult<Expr> E = parseExprList(tok::l_paren, tok::r_paren);
if (E.isNonNull()) {
Exprs.push_back(E.get());
if (!Tok.is(tok::eof)) {
diagnose(Tok, diag::string_interpolation_extra);
}
}
break;
}
}
First = false;
}
if (Exprs.empty())
return new (Context) ErrorExpr(Loc);
return new (Context) InterpolatedStringLiteralExpr(Loc,
Context.AllocateCopy(Exprs));
}
void Parser::diagnoseEscapedArgumentLabel(const Token &tok) {
assert(tok.isEscapedIdentifier() && "Only for escaped identifiers");
if (!canBeArgumentLabel(tok.getText())) return;
SourceLoc start = tok.getLoc();
SourceLoc end = start.getAdvancedLoc(tok.getLength());
diagnose(tok, diag::escaped_parameter_name, tok.getText())
.fixItRemoveChars(start, start.getAdvancedLoc(1))
.fixItRemoveChars(end.getAdvancedLoc(-1), end);
}
DeclName Parser::parseUnqualifiedIdentifier(bool allowInit,
SourceLoc &loc,
const Diagnostic &diag) {
// Consume the base name.
Identifier baseName;
if (Tok.is(tok::kw_init) && allowInit) {
baseName = Context.Id_init;
loc = consumeToken(tok::kw_init);
} else if (Tok.is(tok::identifier) || Tok.is(tok::kw_Self) ||
Tok.is(tok::kw_self)) {
loc = consumeIdentifier(&baseName);
} else {
checkForInputIncomplete();
diagnose(Tok, diag);
return DeclName();
}
// If the next token isn't a following '(', we don't have a compound name.
if (!Tok.isFollowingLParen()) return baseName;
// If the token after that isn't an argument label or ':', we don't have a
// compound name.
if ((!peekToken().canBeArgumentLabel() && !peekToken().is(tok::colon)) ||
Identifier::isEditorPlaceholder(peekToken().getText()))
return baseName;
// Try to parse a compound name.
BacktrackingScope backtrack(*this);
SmallVector<Identifier, 2> argumentLabels;
SourceLoc lparenLoc = consumeToken(tok::l_paren);
SourceLoc rparenLoc;
while (true) {
// Terminate at ')'.
if (Tok.is(tok::r_paren)) {
rparenLoc = consumeToken(tok::r_paren);
break;
}
// If we see a ':', the user forgot the '_';
if (Tok.is(tok::colon)) {
diagnose(Tok, diag::empty_arg_label_underscore)
.fixItInsert(Tok.getLoc(), "_");
argumentLabels.push_back(Identifier());
(void)consumeToken(tok::colon);
}
// If we see a potential argument label followed by a ':', consume
// it.
if (Tok.canBeArgumentLabel() && peekToken().is(tok::colon)) {
// If this was an escaped identifier that need not have been escaped,
// say so.
if (Tok.isEscapedIdentifier())
diagnoseEscapedArgumentLabel(Tok);
if (Tok.is(tok::kw__))
argumentLabels.push_back(Identifier());
else
argumentLabels.push_back(Context.getIdentifier(Tok.getText()));
(void)consumeToken();
(void)consumeToken(tok::colon);
continue;
}
// This is not a compound name.
// FIXME: Could recover better if we "know" it's a compound name.
return baseName;
}
assert(!argumentLabels.empty() && "Logic above should prevent this");
// FIXME: Actually store
(void)lparenLoc;
// We have a compound name. Cancel backtracking and build that name.
backtrack.cancelBacktrack();
return DeclName(Context, baseName, argumentLabels);
}
/// expr-identifier:
/// unqualified-identifier generic-args?
Expr *Parser::parseExprIdentifier() {
assert(Tok.is(tok::identifier) || Tok.is(tok::kw_self) ||
Tok.is(tok::kw_Self));
Token IdentTok = Tok;
// Pase the unqualified-identifier.
SourceLoc loc;
DeclName name = parseUnqualifiedIdentifier(/*allowInit=*/false, loc,
diag::expected_expr);
SmallVector<TypeRepr*, 8> args;
SourceLoc LAngleLoc, RAngleLoc;
bool hasGenericArgumentList = false;
/// The generic-args case is ambiguous with an expression involving '<'
/// and '>' operators. The operator expression is favored unless a generic
/// argument list can be successfully parsed, and the closing bracket is
/// followed by one of these tokens:
/// lparen_following rparen lsquare_following rsquare lbrace rbrace
/// period_following comma semicolon
///
if (canParseAsGenericArgumentList()) {
if (parseGenericArguments(args, LAngleLoc, RAngleLoc)) {
diagnose(LAngleLoc, diag::while_parsing_as_left_angle_bracket);
}
// The result can be empty in error cases.
hasGenericArgumentList = !args.empty();
}
ValueDecl *D = lookupInScope(name.getBaseName());
// FIXME: We want this to work: "var x = { x() }", but for now it's better
// to disallow it than to crash.
if (D) {
for (auto activeVar : DisabledVars) {
if (activeVar == D) {
diagnose(loc, DisabledVarReason);
return new (Context) ErrorExpr(loc);
}
}
} else {
for (auto activeVar : DisabledVars) {
if (activeVar->getFullName() == name) {
diagnose(loc, DisabledVarReason);
return new (Context) ErrorExpr(loc);
}
}
}
Expr *E;
if (D == 0) {
if (name.getBaseName().isEditorPlaceholder())
return parseExprEditorPlaceholder(IdentTok, name.getBaseName());
auto refKind = DeclRefKind::Ordinary;
auto unresolved = new (Context) UnresolvedDeclRefExpr(name, refKind, loc);
unresolved->setSpecialized(hasGenericArgumentList);
E = unresolved;
} else if (auto TD = dyn_cast<TypeDecl>(D)) {
if (!hasGenericArgumentList)
E = TypeExpr::createForDecl(loc, TD);
else
E = TypeExpr::createForSpecializedDecl(loc, TD,
Context.AllocateCopy(args),
SourceRange(LAngleLoc,
RAngleLoc));
} else {
auto declRef = new (Context) DeclRefExpr(D, loc, /*Implicit=*/false);
declRef->setGenericArgs(args);
E = declRef;
}
if (hasGenericArgumentList) {
SmallVector<TypeLoc, 8> locArgs;
for (auto ty : args)
locArgs.push_back(ty);
E = new (Context) UnresolvedSpecializeExpr(E, LAngleLoc,
Context.AllocateCopy(locArgs),
RAngleLoc);
}
return E;
}
Expr *Parser::parseExprEditorPlaceholder(Token PlaceholderTok,
Identifier PlaceholderId) {
assert(PlaceholderTok.is(tok::identifier));
assert(PlaceholderId.isEditorPlaceholder());
auto parseTypeForPlaceholder = [&](TypeLoc &TyLoc, TypeRepr *&ExpansionTyR) {
Optional<EditorPlaceholderData> DataOpt =
swift::parseEditorPlaceholder(PlaceholderTok.getText());
if (!DataOpt)
return;
StringRef TypeStr = DataOpt->Type;
if (TypeStr.empty())
return;
// Ensure that we restore the parser state at exit.
ParserPositionRAII PPR(*this);
auto parseTypeString = [&](StringRef TyStr) -> TypeRepr* {
unsigned Offset = TyStr.data() - PlaceholderTok.getText().data();
SourceLoc TypeStartLoc = PlaceholderTok.getLoc().getAdvancedLoc(Offset);
SourceLoc TypeEndLoc = TypeStartLoc.getAdvancedLoc(TyStr.size());
Lexer::State StartState = L->getStateForBeginningOfTokenLoc(TypeStartLoc);
Lexer::State EndState = L->getStateForBeginningOfTokenLoc(TypeEndLoc);
// Create a lexer for the type sub-string.
Lexer LocalLex(*L, StartState, EndState);
// Temporarily swap out the parser's current lexer with our new one.
llvm::SaveAndRestore<Lexer *> T(L, &LocalLex);
Tok.setKind(tok::unknown); // we might be at tok::eof now.
consumeToken();
return parseType().getPtrOrNull();
};
TypeRepr *TyR = parseTypeString(TypeStr);
TyLoc = TyR;
if (DataOpt->TypeForExpansion == TypeStr) {
ExpansionTyR = TyR;
} else {
ExpansionTyR = parseTypeString(DataOpt->TypeForExpansion);
}
};
TypeLoc TyLoc;
TypeRepr *ExpansionTyR = nullptr;
parseTypeForPlaceholder(TyLoc, ExpansionTyR);
return new (Context) EditorPlaceholderExpr(PlaceholderId,
PlaceholderTok.getLoc(),
TyLoc, ExpansionTyR);
}
bool Parser::
parseClosureSignatureIfPresent(SmallVectorImpl<CaptureListEntry> &captureList,
ParameterList *&params, SourceLoc &throwsLoc,
SourceLoc &arrowLoc,
TypeRepr *&explicitResultType, SourceLoc &inLoc){
// Clear out result parameters.
params = nullptr;
throwsLoc = SourceLoc();
arrowLoc = SourceLoc();
explicitResultType = nullptr;
inLoc = SourceLoc();
// If we have a leading token that may be part of the closure signature, do a
// speculative parse to validate it and look for 'in'.
if (Tok.isAny(tok::l_paren, tok::l_square, tok::identifier, tok::kw__)) {
BacktrackingScope backtrack(*this);
// Skip by a closure capture list if present.
if (consumeIf(tok::l_square)) {
skipUntil(tok::r_square);
if (!consumeIf(tok::r_square))
return false;
}
// Parse pattern-tuple func-signature-result? 'in'.
if (consumeIf(tok::l_paren)) { // Consume the ')'.
// While we don't have '->' or ')', eat balanced tokens.
while (!Tok.is(tok::r_paren) && !Tok.is(tok::eof))
skipSingle();
// Consume the ')', if it's there.
if (consumeIf(tok::r_paren)) {
consumeIf(tok::kw_throws) || consumeIf(tok::kw_rethrows);
// Parse the func-signature-result, if present.
if (consumeIf(tok::arrow)) {
if (!canParseType())
return false;
}
}
// Okay, we have a closure signature.
} else if (Tok.isIdentifierOrUnderscore()) {
// Parse identifier (',' identifier)*
consumeToken();
while (consumeIf(tok::comma)) {
if (Tok.isIdentifierOrUnderscore()) {
consumeToken();
continue;
}
return false;
}
consumeIf(tok::kw_throws) || consumeIf(tok::kw_rethrows);
// Parse the func-signature-result, if present.
if (consumeIf(tok::arrow)) {
if (!canParseType())
return false;
}
}
// Parse the 'in' at the end.
if (Tok.isNot(tok::kw_in))
return false;
// Okay, we have a closure signature.
} else {
// No closure signature.
return false;
}
// At this point, we know we have a closure signature. Parse the capture list
// and parameters.
if (consumeIf(tok::l_square) &&
!consumeIf(tok::r_square)) {
do {
// Check for the strength specifier: "weak", "unowned", or
// "unowned(safe/unsafe)".
SourceLoc loc;
Ownership ownershipKind = Ownership::Strong;
if (Tok.isContextualKeyword("weak")){
loc = consumeToken(tok::identifier);
ownershipKind = Ownership::Weak;
} else if (Tok.isContextualKeyword("unowned")) {
loc = consumeToken(tok::identifier);
ownershipKind = Ownership::Unowned;
// Skip over "safe" and "unsafe" if present.
if (consumeIf(tok::l_paren)) {
if (Tok.getText() == "safe")
ownershipKind = Ownership::Unowned; // FIXME: No "safe" variant.
else if (Tok.getText() == "unsafe")
ownershipKind = Ownership::Unmanaged;
else
diagnose(Tok, diag::attr_unowned_invalid_specifier);
consumeIf(tok::identifier);
if (!consumeIf(tok::r_paren))
diagnose(Tok, diag::attr_unowned_expected_rparen);
}
} else if (Tok.is(tok::identifier) &&
peekToken().isAny(tok::equal, tok::comma, tok::r_square)) {
// "x = 42", "x," and "x]" are all strong captures of x.
loc = Tok.getLoc();
} else {
diagnose(Tok, diag::expected_capture_specifier);
skipUntil(tok::comma, tok::r_square);
continue;
}
if (Tok.isNot(tok::identifier, tok::kw_self)) {
diagnose(Tok, diag::expected_capture_specifier_name);
skipUntil(tok::comma, tok::r_square);
continue;
}
// The thing being capture specified is an identifier, or as an identifier
// followed by an expression.
Expr *initializer;
Identifier name;
SourceLoc nameLoc = Tok.getLoc();
if (peekToken().isNot(tok::equal)) {
// If this is the simple case, then the identifier is both the name and
// the expression to capture.
name = Context.getIdentifier(Tok.getText());
initializer = parseExprIdentifier();
// It is a common error to try to capture a nested field instead of just
// a local name, reject it with a specific error message.
if (Tok.isAny(tok::period, tok::exclaim_postfix,tok::question_postfix)){
diagnose(Tok, diag::cannot_capture_fields);
skipUntil(tok::comma, tok::r_square);
continue;
}
} else {
// Otherwise, the name is a new declaration.
consumeIdentifier(&name);
consumeToken(tok::equal);
auto ExprResult = parseExpr(diag::expected_init_capture_specifier);
if (ExprResult.isNull())
continue;
initializer = ExprResult.get();
}
// Create the VarDecl and the PatternBindingDecl for the captured
// expression. This uses the parent declcontext (not the closure) since
// the initializer expression is evaluated before the closure is formed.
auto *VD = new (Context) VarDecl(/*isStatic*/false,
/*isLet*/ownershipKind !=Ownership::Weak,
nameLoc, name, Type(), CurDeclContext);
// Attributes.
if (ownershipKind != Ownership::Strong)
VD->getAttrs().add(new (Context) OwnershipAttr(ownershipKind));
auto pattern = new (Context) NamedPattern(VD, /*implicit*/true);
auto *PBD = PatternBindingDecl::create(Context, /*staticloc*/SourceLoc(),
StaticSpellingKind::None,
nameLoc, pattern, initializer,
CurDeclContext);
captureList.push_back(CaptureListEntry(VD, PBD));
} while (consumeIf(tok::comma));
// The capture list needs to be closed off with a ']'.
if (!consumeIf(tok::r_square)) {
diagnose(Tok, diag::expected_capture_list_end_rsquare);
skipUntil(tok::r_square);
if (Tok.is(tok::r_square))
consumeToken(tok::r_square);
}
}
bool invalid = false;
if (Tok.isNot(tok::kw_in)) {
if (Tok.is(tok::l_paren)) {
// Parse the closure arguments.
auto pattern = parseSingleParameterClause(ParameterContextKind::Closure);
if (pattern.isNonNull())
params = pattern.get();
else
invalid = true;
} else {
// Parse identifier (',' identifier)*
SmallVector<ParamDecl*, 4> elements;
do {
if (Tok.isNot(tok::identifier, tok::kw__)) {
diagnose(Tok, diag::expected_closure_parameter_name);
invalid = true;
break;
}
Identifier name = Tok.is(tok::identifier) ?
Context.getIdentifier(Tok.getText()) : Identifier();
auto var = new (Context) ParamDecl(/*IsLet*/ true, SourceLoc(),
SourceLoc(), Identifier(),
Tok.getLoc(), name, Type(), nullptr);
elements.push_back(var);
consumeToken();
// Consume a comma to continue.
} while (consumeIf(tok::comma));
params = ParameterList::create(Context, elements);
}
if (Tok.is(tok::kw_throws)) {
throwsLoc = consumeToken();
} else if (Tok.is(tok::kw_rethrows)) {
throwsLoc = consumeToken();
diagnose(throwsLoc, diag::rethrowing_function_type);
}
// Parse the optional explicit return type.
if (Tok.is(tok::arrow)) {
// Consume the '->'.
arrowLoc = consumeToken();
// Parse the type.
explicitResultType =
parseType(diag::expected_closure_result_type).getPtrOrNull();
if (!explicitResultType) {
// If we couldn't parse the result type, clear out the arrow location.
arrowLoc = SourceLoc();
invalid = true;
}
}
}
// Parse the 'in'.
if (Tok.is(tok::kw_in)) {
inLoc = consumeToken();
} else {
// Scan forward to see if we can find the 'in'. This re-synchronizes the
// parser so we can at least parse the body correctly.
SourceLoc startLoc = Tok.getLoc();
ParserPosition pos = getParserPosition();
while (Tok.isNot(tok::eof) && !Tok.is(tok::kw_in) &&
Tok.isNot(tok::r_brace)) {
skipSingle();
}
if (Tok.is(tok::kw_in)) {
// We found the 'in'. If this is the first error, complain about the
// junk tokens in-between but re-sync at the 'in'.
if (!invalid) {
diagnose(startLoc, diag::unexpected_tokens_before_closure_in);
}
inLoc = consumeToken();
} else {
// We didn't find an 'in', backtrack to where we started. If this is the
// first error, complain about the missing 'in'.
backtrackToPosition(pos);
if (!invalid) {
diagnose(Tok, diag::expected_closure_in)
.fixItInsert(Tok.getLoc(), "in ");
}
inLoc = Tok.getLoc();
}
}
return invalid;
}
ParserResult<Expr> Parser::parseExprClosure() {
assert(Tok.is(tok::l_brace) && "Not at a left brace?");
// We may be parsing this closure expr in a matching pattern context. If so,
// reset our state to not be in a pattern for any recursive pattern parses.
llvm::SaveAndRestore<decltype(InVarOrLetPattern)>
T(InVarOrLetPattern, IVOLP_NotInVarOrLet);
// Parse the opening left brace.
SourceLoc leftBrace = consumeToken();
// Parse the closure-signature, if present.
ParameterList *params = nullptr;
SourceLoc throwsLoc;
SourceLoc arrowLoc;
TypeRepr *explicitResultType;
SourceLoc inLoc;
SmallVector<CaptureListEntry, 2> captureList;
parseClosureSignatureIfPresent(captureList, params, throwsLoc, arrowLoc,
explicitResultType, inLoc);
// If the closure was created in the context of an array type signature's
// size expression, there will not be a local context. A parse error will
// be reported at the signature's declaration site.
if (!CurLocalContext) {
skipUntil(tok::r_brace);
if (Tok.is(tok::r_brace))
consumeToken();
return makeParserError();
}
unsigned discriminator = CurLocalContext->claimNextClosureDiscriminator();
// Create the closure expression and enter its context.
auto *closure = new (Context) ClosureExpr(params, throwsLoc, arrowLoc, inLoc,
explicitResultType,
discriminator, CurDeclContext);
// The arguments to the func are defined in their own scope.
Scope S(this, ScopeKind::ClosureParams);
ParseFunctionBody cc(*this, closure);
// Handle parameters.
if (params) {
// Add the parameters into scope.
addParametersToScope(params);
} else {
// There are no parameters; allow anonymous closure variables.
// FIXME: We could do this all the time, and then provide Fix-Its
// to map $i -> the appropriately-named argument. This might help
// users who are refactoring code by adding names.
AnonClosureVars.push_back({ leftBrace, {}});
}
// Add capture list variables to scope.
for (auto c : captureList)
addToScope(c.Var);
// Parse the body.
SmallVector<ASTNode, 4> bodyElements;
ParserStatus Status;
Status |= parseBraceItems(bodyElements, BraceItemListKind::Brace);
// Parse the closing '}'.
SourceLoc rightBrace;
parseMatchingToken(tok::r_brace, rightBrace, diag::expected_closure_rbrace,
leftBrace);
// If we didn't have any parameters, create a parameter list from the
// anonymous closure arguments.
if (!params) {
// Create a parameter pattern containing the anonymous variables.
auto &anonVars = AnonClosureVars.back().second;
SmallVector<ParamDecl*, 4> elements;
for (auto anonVar : anonVars)
elements.push_back(anonVar);
params = ParameterList::create(Context, leftBrace, elements, leftBrace);
// Pop out of the anonymous closure variables scope.
AnonClosureVars.pop_back();
// Attach the parameters to the closure.
closure->setParameterList(params);
closure->setHasAnonymousClosureVars();
}
// If the body consists of a single expression, turn it into a return
// statement.
//
// But don't do this transformation during code completion, as the source
// may be incomplete and the type mismatch in return statement will just
// confuse the type checker.
bool hasSingleExpressionBody = false;
if (!Status.hasCodeCompletion() && bodyElements.size() == 1) {
// If the closure's only body element is a single return statement,
// use that instead of creating a new wrapping return expression.
Expr *returnExpr = nullptr;
if (bodyElements[0].is<Stmt *>()) {
if (auto returnStmt =
dyn_cast<ReturnStmt>(bodyElements[0].get<Stmt*>())) {
if (!returnStmt->hasResult()) {
returnExpr = TupleExpr::createEmpty(Context,
SourceLoc(),
SourceLoc(),
/*implicit*/true);
returnStmt->setResult(returnExpr);
}
hasSingleExpressionBody = true;
}
}
// Otherwise, create the wrapping return.
if (bodyElements[0].is<Expr *>()) {
hasSingleExpressionBody = true;
returnExpr = bodyElements[0].get<Expr*>();
bodyElements[0] = new (Context) ReturnStmt(SourceLoc(),
returnExpr);
}
}
// Set the body of the closure.
closure->setBody(BraceStmt::create(Context, leftBrace, bodyElements,
rightBrace),
hasSingleExpressionBody);
// If the closure includes a capture list, create an AST node for it as well.
Expr *result = closure;
if (!captureList.empty())
result = new (Context) CaptureListExpr(Context.AllocateCopy(captureList),
closure);
return makeParserResult(Status, result);
}
/// expr-anon-closure-argument:
/// dollarident
Expr *Parser::parseExprAnonClosureArg() {
StringRef Name = Tok.getText();
SourceLoc Loc = consumeToken(tok::dollarident);
assert(Name[0] == '$' && "Not a dollarident");
// We know from the lexer that this is all-numeric.
unsigned ArgNo = 0;
if (Name.substr(1).getAsInteger(10, ArgNo)) {
diagnose(Loc.getAdvancedLoc(1), diag::dollar_numeric_too_large);
return new (Context) ErrorExpr(Loc);
}
// If this is a closure expression that did not have any named parameters,
// generate the anonymous variables we need.
auto closure = dyn_cast_or_null<ClosureExpr>(
dyn_cast<AbstractClosureExpr>(CurDeclContext));
if (!closure || closure->getParameters()) {
// FIXME: specialize diagnostic when there were closure parameters.
// We can be fairly smart here.
diagnose(Loc, closure ? diag::anon_closure_arg_in_closure_with_args
: diag::anon_closure_arg_not_in_closure);
return new (Context) ErrorExpr(Loc);
}
auto leftBraceLoc = AnonClosureVars.back().first;
auto &decls = AnonClosureVars.back().second;
while (ArgNo >= decls.size()) {
unsigned nextIdx = decls.size();
SmallVector<char, 4> StrBuf;
StringRef varName = ("$" + Twine(nextIdx)).toStringRef(StrBuf);
Identifier ident = Context.getIdentifier(varName);
SourceLoc varLoc = leftBraceLoc;
auto *var = new (Context) ParamDecl(/*IsLet*/ true, SourceLoc(),SourceLoc(),
Identifier(), varLoc, ident, Type(),
closure);
var->setImplicit();
decls.push_back(var);
}
return new (Context) DeclRefExpr(decls[ArgNo], Loc, /*Implicit=*/false);
}
/// parseExprList - Parse a list of expressions.
///
/// expr-paren:
/// lparen-any ')'
/// lparen-any binary-op ')'
/// lparen-any expr-paren-element (',' expr-paren-element)* ')'
///
/// expr-paren-element:
/// (identifier ':')? expr
///
ParserResult<Expr> Parser::parseExprList(tok LeftTok, tok RightTok) {
StructureMarkerRAII ParsingExprList(*this, Tok);
SourceLoc LLoc = consumeToken(LeftTok);
SourceLoc RLoc;
SmallVector<Expr*, 8> SubExprs;
SmallVector<Identifier, 8> SubExprNames;
SmallVector<SourceLoc, 8> SubExprNameLocs;
ParserStatus Status = parseList(RightTok, LLoc, RLoc,
tok::comma, /*OptionalSep=*/false,
/*AllowSepAfterLast=*/false,
RightTok == tok::r_paren ?
diag::expected_rparen_expr_list :
diag::expected_rsquare_expr_list,
[&] () -> ParserStatus {
Identifier FieldName;
SourceLoc FieldNameLoc;
// Check to see if there is an argument label.
if (Tok.canBeArgumentLabel() && peekToken().is(tok::colon)) {
// If this was an escaped identifier that need not have been escaped,
// say so.
if (Tok.isEscapedIdentifier())
diagnoseEscapedArgumentLabel(Tok);
if (!Tok.is(tok::kw__))
FieldName = Context.getIdentifier(Tok.getText());
FieldNameLoc = consumeToken();
consumeToken(tok::colon);
}
// See if we have an operator decl ref '(<op>)'. The operator token in
// this case lexes as a binary operator because it neither leads nor
// follows a proper subexpression.
ParserStatus Status;
Expr *SubExpr = nullptr;
if (Tok.isBinaryOperator() && peekToken().isAny(RightTok, tok::comma)) {
SourceLoc Loc;
Identifier OperName;
if (parseAnyIdentifier(OperName, Loc, diag::expected_operator_ref)) {
return makeParserError();
}
// Bypass local lookup. Use an 'Ordinary' reference kind so that the
// reference may resolve to any unary or binary operator based on
// context.
SubExpr = new(Context) UnresolvedDeclRefExpr(OperName,
DeclRefKind::Ordinary,
Loc);
} else {
ParserResult<Expr> ParsedSubExpr
= parseExpr(diag::expected_expr_in_expr_list);
SubExpr = ParsedSubExpr.getPtrOrNull();
Status = ParsedSubExpr;
}
// If we got a subexpression, add it.
if (SubExpr) {
// Update names and locations.
if (!SubExprNames.empty()) {
SubExprNames.push_back(FieldName);
SubExprNameLocs.push_back(FieldNameLoc);
} else if (FieldName.get()) {
SubExprNames.resize(SubExprs.size());
SubExprNames.push_back(FieldName);
SubExprNameLocs.resize(SubExprs.size());
SubExprNameLocs.push_back(FieldNameLoc);
}
// Add the subexpression.
SubExprs.push_back(SubExpr);
}
return Status;
});
// A tuple with a single, unlabelled element is just parentheses.
if (SubExprs.size() == 1 &&
(SubExprNames.empty() || SubExprNames[0].empty())) {
return makeParserResult(
Status, new (Context) ParenExpr(LLoc, SubExprs[0], RLoc,
/*hasTrailingClosure=*/false));
}
return makeParserResult(
Status,
TupleExpr::create(Context, LLoc, SubExprs, SubExprNames, SubExprNameLocs,
RLoc, /*hasTrailingClosure=*/false,
/*Implicit=*/false));
}
/// \brief Parse an object literal expression.
///
/// expr-literal:
/// '[#' identifier expr-paren '#]'
ParserResult<Expr>
Parser::parseExprObjectLiteral() {
SourceLoc LLitLoc = consumeToken(tok::l_square_lit);
Identifier Name;
SourceLoc NameLoc;
if (parseIdentifier(Name, NameLoc,
diag::expected_identifier_after_l_square_lit)) {
return makeParserError();
}
// Parse a tuple of args
if (!Tok.is(tok::l_paren)) {
diagnose(Tok, diag::expected_arg_list_in_object_literal);
return makeParserError();
}
ParserResult<Expr> Arg;
Arg = parseExprList(tok::l_paren, tok::r_paren);
if (Arg.hasCodeCompletion()) {
return Arg;
}
if (Arg.isParseError()) {
return makeParserError();
}
if (!Tok.is(tok::r_square_lit)) {
diagnose(Tok, diag::expected_r_square_lit_after_object_literal);
return makeParserError();
}
SourceLoc RLitLoc = consumeToken(tok::r_square_lit);
return makeParserResult(
new (Context) ObjectLiteralExpr(LLitLoc, Name, NameLoc, Arg.get(), RLitLoc,
/*implicit=*/false));
}
/// \brief Parse an expression call suffix.
///
/// expr-call-suffix:
/// expr-paren selector-arg*
/// expr-closure selector-arg* (except in expr-basic)
///
/// selector-arg:
/// identifier expr-paren
ParserResult<Expr>
Parser::parseExprCallSuffix(ParserResult<Expr> fn,
Identifier firstSelectorPiece,
SourceLoc firstSelectorPieceLoc) {
assert(Tok.isFollowingLParen() && "Not a call suffix?");
// Parse the first argument.
// If there is a code completion token right after the '(', do a special case
// callback.
if (peekToken().is(tok::code_complete) && CodeCompletion) {
consumeToken(tok::l_paren);
auto CCE = new (Context) CodeCompletionExpr(Tok.getRange());
auto Result = makeParserResult(new (Context) CallExpr(fn.get(),
new (Context) ParenExpr(SourceLoc(), CCE, SourceLoc(),
/*hasTrailingClosure=*/false),
/*Implicit=*/false));
CodeCompletion->completePostfixExprParen(fn.get(), CCE);
// Eat the code completion token because we handled it.
consumeToken(tok::code_complete);
Result.setHasCodeCompletion();
return Result;
}
ParserResult<Expr> firstArg = parseExprList(Tok.getKind(), tok::r_paren);
// Form the call.
auto Result = makeParserResult(new (Context) CallExpr(fn.get(), firstArg.get(),
/*Implicit=*/false));
if (fn.isParseError() || firstArg.isParseError())
Result.setIsParseError();
if (fn.hasCodeCompletion() || firstArg.hasCodeCompletion()) {
if (CodeCompletion) {
CodeCompletion->completeCallArg(Result.get());
}
Result.setHasCodeCompletion();
}
return Result;
}
/// parseExprCollection - Parse a collection literal expression.
///
/// expr-collection:
/// expr-array
/// expr-dictionary
// lsquare-starting ']'
ParserResult<Expr> Parser::parseExprCollection() {
Parser::StructureMarkerRAII ParsingCollection(*this, Tok);
SourceLoc LSquareLoc = consumeToken(tok::l_square);
// [] is always an array.
if (Tok.is(tok::r_square)) {
SourceLoc RSquareLoc = consumeToken(tok::r_square);
return makeParserResult(
ArrayExpr::create(Context, LSquareLoc, {}, {}, RSquareLoc));
}
// [:] is always an empty dictionary.
if (Tok.is(tok::colon) && peekToken().is(tok::r_square)) {
consumeToken(tok::colon);
SourceLoc RSquareLoc = consumeToken(tok::r_square);
return makeParserResult(
DictionaryExpr::create(Context, LSquareLoc, {}, RSquareLoc));
}
// Parse the first expression.
ParserResult<Expr> FirstExpr
= parseExpr(diag::expected_expr_in_collection_literal);
if (FirstExpr.isNull() || FirstExpr.hasCodeCompletion()) {
skipUntil(tok::r_square);
if (Tok.is(tok::r_square))
consumeToken();
if (FirstExpr.hasCodeCompletion())
return makeParserCodeCompletionResult<Expr>();
return nullptr;
}
// If we have a ':', this is a dictionary literal.
if (Tok.is(tok::colon)) {
return parseExprDictionary(LSquareLoc, FirstExpr.get());
}
// Otherwise, we have an array literal.
return parseExprArray(LSquareLoc, FirstExpr.get());
}
/// parseExprArray - Parse an array literal expression.
///
/// The lsquare-starting and first expression have already been
/// parsed, and are passed in as parameters.
///
/// expr-array:
/// '[' expr (',' expr)* ','? ']'
/// '[' ']'
ParserResult<Expr> Parser::parseExprArray(SourceLoc LSquareLoc,
Expr *FirstExpr) {
SmallVector<Expr *, 8> SubExprs;
SmallVector<SourceLoc, 8> CommaLocs;
SubExprs.push_back(FirstExpr);
SourceLoc CommaLoc, RSquareLoc;
ParserStatus Status;
if (Tok.isNot(tok::r_square) && !consumeIf(tok::comma, CommaLoc)) {
diagnose(Tok, diag::expected_separator, ",")
.fixItInsertAfter(PreviousLoc, ",");
Status.setIsParseError();
}
CommaLocs.push_back(CommaLoc);
Status |= parseList(tok::r_square, LSquareLoc, RSquareLoc,
tok::comma, /*OptionalSep=*/false,
/*AllowSepAfterLast=*/true,
diag::expected_rsquare_array_expr,
[&] () -> ParserStatus
{
ParserResult<Expr> Element
= parseExpr(diag::expected_expr_in_collection_literal);
if (Element.isNonNull())
SubExprs.push_back(Element.get());
if (Tok.is(tok::comma))
CommaLocs.push_back(Tok.getLoc());
return Element;
});
if (Status.hasCodeCompletion())
return makeParserCodeCompletionResult<Expr>();
assert(SubExprs.size() >= 1);
return makeParserResult(Status,
ArrayExpr::create(Context, LSquareLoc, SubExprs, CommaLocs,
RSquareLoc));
}
/// parseExprDictionary - Parse a dictionary literal expression.
///
/// The lsquare-starting and first key have already been parsed, and
/// are passed in as parameters.
///
/// expr-dictionary:
/// '[' expr ':' expr (',' expr ':' expr)* ','? ']'
/// '[' ':' ']'
ParserResult<Expr> Parser::parseExprDictionary(SourceLoc LSquareLoc,
Expr *FirstKey) {
assert(Tok.is(tok::colon));
// Each subexpression is a (key, value) tuple.
// FIXME: We're not tracking the colon locations in the AST.
SmallVector<Expr *, 8> SubExprs;
SourceLoc RSquareLoc;
// Function that adds a new key/value pair.
auto addKeyValuePair = [&](Expr *Key, Expr *Value) -> void {
Expr *Exprs[] = {Key, Value};
SubExprs.push_back(TupleExpr::createImplicit(Context, Exprs, { }));
};
bool FirstPair = true;
ParserStatus Status =
parseList(tok::r_square, LSquareLoc, RSquareLoc, tok::comma,
/*OptionalSep=*/false, /*AllowSepAfterLast=*/true,
diag::expected_rsquare_array_expr, [&]() -> ParserStatus {
// Parse the next key.
ParserResult<Expr> Key;
if (FirstPair) {
Key = makeParserResult(FirstKey);
FirstPair = false;
} else {
Key = parseExpr(diag::expected_key_in_dictionary_literal);
if (Key.isNull() || Key.hasCodeCompletion())
return Key;
}
// Parse the ':'.
if (Tok.isNot(tok::colon)) {
diagnose(Tok, diag::expected_colon_in_dictionary_literal);
return makeParserError();
}
consumeToken();
// Parse the next value.
ParserResult<Expr> Value =
parseExpr(diag::expected_value_in_dictionary_literal);
if (Value.hasCodeCompletion())
return Value;
if (Value.isNull())
Value = makeParserResult(Value, new (Context) ErrorExpr(PreviousLoc));
// Add this key/value pair.
addKeyValuePair(Key.get(), Value.get());
return Value;
});
if (Status.hasCodeCompletion())
return makeParserCodeCompletionResult<Expr>();
assert(SubExprs.size() >= 1);
return makeParserResult(DictionaryExpr::create(Context, LSquareLoc, SubExprs,
RSquareLoc));
}
void Parser::addPatternVariablesToScope(ArrayRef<Pattern *> Patterns) {
for (Pattern *Pat : Patterns) {
Pat->forEachVariable([&](VarDecl *VD) {
if (VD->hasName()) {
// Add any variable declarations to the current scope.
addToScope(VD);
}
});
}
}
void Parser::addParametersToScope(ParameterList *PL) {
for (auto param : *PL)
if (param->hasName())
addToScope(param);
}
/// Parse availability query specification.
///
/// availability-spec:
/// '*'
/// version-constraint-spec
ParserResult<AvailabilitySpec> Parser::parseAvailabilitySpec() {
if (Tok.isBinaryOperator() && Tok.getText() == "*") {
SourceLoc StarLoc = Tok.getLoc();
consumeToken();
return makeParserResult(new (Context) OtherPlatformAvailabilitySpec(StarLoc));
}
return parseVersionConstraintSpec();
}
/// Parse version constraint specification.
///
/// version-constraint-spec:
/// identifier version-comparison version-tuple
ParserResult<VersionConstraintAvailabilitySpec>
Parser::parseVersionConstraintSpec() {
Identifier PlatformIdentifier;
SourceLoc PlatformLoc;
if (Tok.is(tok::code_complete)) {
consumeToken();
if (CodeCompletion) {
CodeCompletion->completePoundAvailablePlatform();
}
return makeParserCodeCompletionStatus();
}
if (parseIdentifier(PlatformIdentifier, PlatformLoc,
diag::avail_query_expected_platform_name)) {
return nullptr;
}
if (Tok.isBinaryOperator() && Tok.getText() == ">=") {
diagnose(Tok, diag::avail_query_version_comparison_not_needed)
.fixItRemove(Tok.getLoc());
consumeToken();
}
clang::VersionTuple Version;
SourceRange VersionRange;
if (parseVersionTuple(Version, VersionRange,
diag::avail_query_expected_version_number)) {
return nullptr;
}
Optional<PlatformKind> Platform =
platformFromString(PlatformIdentifier.str());
if (!Platform.hasValue() || Platform.getValue() == PlatformKind::none) {
diagnose(Tok, diag::avail_query_unrecognized_platform_name,
PlatformIdentifier);
return nullptr;
}
return makeParserResult(new (Context) VersionConstraintAvailabilitySpec(
Platform.getValue(), PlatformLoc, Version, VersionRange));
}