blob: 7914b65acb4c5fc05f09d333bb0aa7237873cb64 [file] [log] [blame]
//===--- swift-syntax-test.cpp - Reflection Syntax testing application ----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This is a host-side tool to perform round-trip testing of "full-fidelity"
// lexing and parsing. That is, when this application ingests a .swift file,
// it should be able to create a list of full tokens, or a full-fidelity AST,
// print them, and get the same file back out. This ensures that we aren't
// losing any source information in these structures.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/DiagnosticsFrontend.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/LLVMInitialize.h"
#include "swift/Basic/LangOptions.h"
#include "swift/Basic/SourceManager.h"
#include "swift/Frontend/Frontend.h"
#include "swift/Frontend/PrintingDiagnosticConsumer.h"
#include "swift/Parse/Lexer.h"
#include "swift/Parse/Parser.h"
#include "swift/Subsystems.h"
#include "swift/Syntax/Serialization/SyntaxDeserialization.h"
#include "swift/Syntax/Serialization/SyntaxSerialization.h"
#include "swift/Syntax/SyntaxData.h"
#include "swift/Syntax/SyntaxNodes.h"
#include "llvm/Support/BinaryByteStream.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FileOutputBuffer.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Regex.h"
#include "llvm/Support/raw_ostream.h"
using namespace swift;
using namespace swift::syntax;
using llvm::StringRef;
enum class ActionType {
DumpRawTokenSyntax,
FullLexRoundTrip,
FullParseRoundTrip,
SerializeRawTree,
DeserializeRawTree,
ParseOnly,
ParserGen,
EOFPos,
None
};
namespace options {
static llvm::cl::OptionCategory Category("swift-syntax-test Options");
static llvm::cl::opt<ActionType>
Action(llvm::cl::desc("Action (required):"),
llvm::cl::init(ActionType::None),
llvm::cl::values(
clEnumValN(ActionType::DumpRawTokenSyntax,
"dump-full-tokens",
"Lex the source file and dump the tokens "
"and their absolute line/column locations"),
clEnumValN(ActionType::FullLexRoundTrip,
"round-trip-lex",
"Lex the source file and print it back out for "
"comparing against the original"),
clEnumValN(ActionType::FullParseRoundTrip,
"round-trip-parse",
"Parse the source file and print it back out for "
"comparing against the input"),
clEnumValN(ActionType::ParseOnly,
"parse-only",
"Parse the source file with syntax nodes and exit"),
clEnumValN(ActionType::ParserGen,
"parse-gen",
"Parse the source file and print it back out for "
"comparing against the input"),
clEnumValN(ActionType::SerializeRawTree,
"serialize-raw-tree",
"Parse the source file and serialize the raw tree "
"to JSON"),
clEnumValN(ActionType::DeserializeRawTree,
"deserialize-raw-tree",
"Parse the JSON file from the serialized raw tree "
"to the original"),
clEnumValN(ActionType::EOFPos,
"eof",
"Parse the source file, calculate the absolute position"
"of the EOF token, and dump the buffer from the start of the"
"file to the EOF token")));
static llvm::cl::opt<std::string>
InputSourceFilename("input-source-filename",
llvm::cl::desc("Path to the input .swift file"));
static llvm::cl::opt<std::string>
InputSourceDirectory("input-source-directory",
llvm::cl::desc("Directory to be scanned recursively and "
"run the selected action on every .swift "
"file"));
static llvm::cl::opt<std::string>
OldSyntaxTreeFilename("old-syntax-tree-filename",
llvm::cl::desc("Path to the serialized syntax tree of "
"the pre-edit file"));
static llvm::cl::opt<std::string>
OldSourceFilename("old-source-filename",
llvm::cl::desc("Path to the pre-edit source file to "
"translate line:column edits into the "
"file's byte offsets"));
static llvm::cl::list<std::string>
IncrementalEdits("incremental-edit",
llvm::cl::desc("An edit that was applied to reach the input "
"file from the source file that generated the "
"old syntax tree in the format <start-line>:"
"<start-column>-<end-line>:<end-column>="
"<replacement> where start and end are defined "
"in terms of the pre-edit file and "
"<replacement> is the string that shall "
"replace the selected range. "
"Can be passed multiple times."));
static llvm::cl::list<std::string>
ReparseRegions("reparse-region",
llvm::cl::desc("If specified, an error will be emitted if any "
"part of the file outside of the reparse region "
"gets parsed again. "
"Can be passed multiple times to specify "
"multiple reparse regions. "
"Reparse regions are specified in the form "
"<start-column>-<end-line>:<end-column> in terms "
"of the post-edit file"));
static llvm::cl::opt<std::string>
IncrementalReuseLog("incremental-reuse-log",
llvm::cl::desc("Path to which a log should be written that "
"describes all the nodes reused during "
"incremental parsing."));
static llvm::cl::opt<bool>
OmitNodeIds("omit-node-ids",
llvm::cl::desc("If specified, the serialized syntax tree will not "
"include the IDs of the serialized nodes."));
static llvm::cl::opt<bool>
SerializeAsByteTree("serialize-byte-tree",
llvm::cl::desc("If specified the syntax tree will be "
"serialized in the ByteTree format instead "
"of JSON."));
static llvm::cl::opt<bool>
AddByteTreeFields("add-bytetree-fields",
llvm::cl::desc("If specified, further fields will be added "
"to the syntax tree if it is serialized as a "
"ByteTree. This is to test forward "
"compatibility with future versions of "
"SwiftSyntax that might add more fields to "
"syntax nodes."));
static llvm::cl::opt<bool>
IncrementalSerialization("incremental-serialization",
llvm::cl::desc("If specified, the serialized syntax "
"tree will omit nodes that have not "
"changed since the last parse."));
static llvm::cl::opt<std::string>
OutputFilename("output-filename",
llvm::cl::desc("Path to the output file"));
static llvm::cl::opt<bool>
PrintVisualReuseInfo("print-visual-reuse-info",
llvm::cl::desc("Print a coloured output of which parts of "
"the source file have been reused from the "
"old syntax tree."),
llvm::cl::cat(Category),
llvm::cl::init(false));
static llvm::cl::opt<bool>
ForceColoredOutput("force-colored-output",
llvm::cl::desc("Print colored output even if the shell "
"does not support it."),
llvm::cl::cat(Category),
llvm::cl::init(false));
static llvm::cl::opt<bool>
PrintNodeKind("print-node-kind",
llvm::cl::desc("To print syntax node kind"),
llvm::cl::cat(Category),
llvm::cl::init(false));
static llvm::cl::opt<bool>
PrintTrivialNodeKind("print-trivial-node-kind",
llvm::cl::desc("To print trivial syntax node kind"),
llvm::cl::cat(Category),
llvm::cl::init(false));
static llvm::cl::opt<bool>
VerifySyntaxTree("verify-syntax-tree",
llvm::cl::desc("Emit warnings for unknown nodes"),
llvm::cl::cat(Category),
llvm::cl::init(true));
static llvm::cl::opt<bool>
Visual("v",
llvm::cl::desc("Print visually"),
llvm::cl::cat(Category),
llvm::cl::init(false));
static llvm::cl::opt<std::string>
GraphVisPath("output-request-graphviz",
llvm::cl::desc("Emit GraphViz output visualizing the request graph."),
llvm::cl::cat(Category));
} // end namespace options
namespace {
// A utility class to wrap a source range consisting of a byte start and end
// offset
struct ByteBasedSourceRange {
uintptr_t Start;
uintptr_t End;
ByteBasedSourceRange(uintptr_t Start, uintptr_t End)
: Start(Start), End(End) {
assert(Start <= End);
}
ByteBasedSourceRange() : ByteBasedSourceRange(0, 0) {}
ByteBasedSourceRange intersect(const ByteBasedSourceRange &Other) {
auto Start = std::max(this->Start, Other.Start);
auto End = std::min(this->End, Other.End);
if (Start > End) {
return {0, 0};
} else {
return {Start, End};
}
}
bool empty() { return Start == End; }
CharSourceRange toCharSourceRange(SourceManager &SourceMgr, unsigned BufferID) {
auto StartLoc = SourceMgr.getLocForOffset(BufferID, Start);
auto EndLoc = SourceMgr.getLocForOffset(BufferID, End);
return CharSourceRange(SourceMgr, StartLoc, EndLoc);
}
};
// The union of multiple offset-based source ranges
struct ByteBasedSourceRangeSet {
std::vector<ByteBasedSourceRange> Ranges;
ByteBasedSourceRangeSet() {}
ByteBasedSourceRangeSet(std::vector<SyntaxReuseRegion> Ranges) {
for (auto Range : Ranges) {
addRange({Range.Start.getOffset(), Range.End.getOffset()});
}
}
void addRange(ByteBasedSourceRange Range) { Ranges.push_back(Range); }
ByteBasedSourceRangeSet invert(unsigned FileLength) {
ByteBasedSourceRangeSet Result;
unsigned CurrentOffset = 0;
for (auto Range : Ranges) {
assert(CurrentOffset <= Range.Start &&
"Ranges must be sorted in ascending order and not be overlapping");
if (CurrentOffset < Range.Start) {
Result.addRange({CurrentOffset, Range.Start});
}
CurrentOffset = Range.End;
}
if (CurrentOffset < FileLength) {
Result.addRange({CurrentOffset, FileLength});
}
return Result;
}
ByteBasedSourceRangeSet intersect(ByteBasedSourceRangeSet Other) {
ByteBasedSourceRangeSet Intersection;
for (auto A : Ranges) {
for (auto B : Other.Ranges) {
auto PartialIntersection = A.intersect(B);
if (!PartialIntersection.empty()) {
Intersection.addRange(PartialIntersection);
}
}
}
return Intersection;
}
};
int getTokensFromFile(unsigned BufferID,
LangOptions &LangOpts,
SourceManager &SourceMgr,
swift::DiagnosticEngine &Diags,
std::vector<std::pair<RC<syntax::RawSyntax>,
syntax::AbsolutePosition>> &Tokens) {
Tokens = tokenizeWithTrivia(LangOpts, SourceMgr, BufferID,
/*Offset=*/0, /*EndOffset=*/0,
&Diags);
return EXIT_SUCCESS;
}
int
getTokensFromFile(const StringRef InputFilename,
LangOptions &LangOpts,
SourceManager &SourceMgr,
DiagnosticEngine &Diags,
std::vector<std::pair<RC<syntax::RawSyntax>,
syntax::AbsolutePosition>> &Tokens) {
auto Buffer = llvm::MemoryBuffer::getFile(InputFilename);
if (!Buffer) {
Diags.diagnose(SourceLoc(), diag::cannot_open_file,
InputFilename, Buffer.getError().message());
return EXIT_FAILURE;
}
auto BufferID = SourceMgr.addNewSourceBuffer(std::move(Buffer.get()));
return getTokensFromFile(BufferID, LangOpts, SourceMgr, Diags, Tokens);
}
void anchorForGetMainExecutable() {}
/// Populates the \c ParsedRegions parameter with the regions that are expected
/// to get reparsed
bool parseReparseRegionArguments(ByteBasedSourceRangeSet &ParsedRegions,
SourceManager &SourceMgr, unsigned BufferID) {
llvm::Regex MatchRegex("([0-9]+):([0-9]+)-([0-9]+):([0-9]+)");
// Parse the source edits
for (auto ReparsePattern : options::ReparseRegions) {
SmallVector<StringRef, 4> Matches;
if (!MatchRegex.match(ReparsePattern, &Matches)) {
llvm::errs() << "Invalid reparse region pattern: " << ReparsePattern
<< '\n';
return false;
}
int ReparseStartLine, ReparseStartColumn, ReparseEndLine, ReparseEndColumn;
if (Matches[1].getAsInteger(10, ReparseStartLine)) {
llvm::errs() << "Could not parse reparse region start line as integer: "
<< ReparseStartLine << '\n';
return false;
}
if (Matches[2].getAsInteger(10, ReparseStartColumn)) {
llvm::errs() << "Could not parse reparse region start column as integer: "
<< ReparseStartColumn << '\n';
return false;
}
if (Matches[3].getAsInteger(10, ReparseEndLine)) {
llvm::errs() << "Could not parse reparse region end line as integer: "
<< ReparseEndLine << '\n';
return false;
}
if (Matches[4].getAsInteger(10, ReparseEndColumn)) {
llvm::errs() << "Could not parse reparse region end column as integer: "
<< ReparseEndColumn << '\n';
return false;
}
auto ReparseStartLoc = SourceMgr.getLocForLineCol(
BufferID, ReparseStartLine, ReparseStartColumn);
auto ReparseEndLoc =
SourceMgr.getLocForLineCol(BufferID, ReparseEndLine, ReparseEndColumn);
auto ReparseStartOffset =
SourceMgr.getLocOffsetInBuffer(ReparseStartLoc, BufferID);
auto ReparseEndOffset =
SourceMgr.getLocOffsetInBuffer(ReparseEndLoc, BufferID);
ParsedRegions.addRange({ReparseStartOffset, ReparseEndOffset});
}
return true;
}
bool parseIncrementalEditArguments(SyntaxParsingCache *Cache,
StringRef OldFileName) {
// Get a source manager for the old file
InputFile OldFile = InputFile(OldFileName, true);
auto OldFileBufferOrErrror = llvm::MemoryBuffer::getFileOrSTDIN(OldFileName);
if (!OldFileBufferOrErrror) {
llvm::errs() << "Unable to open old source file";
return false;
}
SourceManager SourceMgr;
unsigned BufferID = SourceMgr.addNewSourceBuffer(std::move(OldFileBufferOrErrror.get()));
llvm::Regex MatchRegex("([0-9]+):([0-9]+)-([0-9]+):([0-9]+)=(.*)");
// Parse the source edits
for (auto EditPattern : options::IncrementalEdits) {
SmallVector<StringRef, 4> Matches;
if (!MatchRegex.match(EditPattern, &Matches)) {
llvm::errs() << "Invalid edit pattern: " << EditPattern << '\n';
return false;
}
int EditStartLine, EditStartColumn, EditEndLine, EditEndColumn;
if (Matches[1].getAsInteger(10, EditStartLine)) {
llvm::errs() << "Could not parse edit start line as integer: "
<< EditStartLine << '\n';
return false;
}
if (Matches[2].getAsInteger(10, EditStartColumn)) {
llvm::errs() << "Could not parse edit start column as integer: "
<< EditStartColumn << '\n';
return false;
}
if (Matches[3].getAsInteger(10, EditEndLine)) {
llvm::errs() << "Could not parse edit end line as integer: "
<< EditEndLine << '\n';
return false;
}
if (Matches[4].getAsInteger(10, EditEndColumn)) {
llvm::errs() << "Could not parse edit end column as integer: "
<< EditEndColumn << '\n';
return false;
}
auto EditStartLoc =
SourceMgr.getLocForLineCol(BufferID, EditStartLine, EditStartColumn);
auto EditEndLoc =
SourceMgr.getLocForLineCol(BufferID, EditEndLine, EditEndColumn);
auto EditStartOffset =
SourceMgr.getLocOffsetInBuffer(EditStartLoc, BufferID);
auto EditEndOffset = SourceMgr.getLocOffsetInBuffer(EditEndLoc, BufferID);
Cache->addEdit(EditStartOffset, EditEndOffset,
/*ReplacmentLength=*/Matches[5].size());
}
return true;
}
bool useColoredOutput() {
return llvm::outs().has_colors() || options::ForceColoredOutput;
}
void printVisualNodeReuseInformation(SourceManager &SourceMgr,
unsigned BufferID,
SyntaxParsingCache *Cache,
const SourceFileSyntax &NewSyntaxTree) {
unsigned CurrentOffset = 0;
auto SourceText = SourceMgr.getEntireTextForBuffer(BufferID);
if (useColoredOutput()) {
llvm::outs().changeColor(llvm::buffer_ostream::Colors::GREEN);
}
auto PrintReparsedRegion = [](StringRef SourceText, unsigned ReparseStart,
unsigned ReparseEnd) {
if (ReparseEnd != ReparseStart) {
if (useColoredOutput()) {
llvm::outs().changeColor(llvm::buffer_ostream::Colors::RED);
} else {
llvm::outs() << "<reparse>";
}
llvm::outs() << SourceText.substr(ReparseStart,
ReparseEnd - ReparseStart);
if (useColoredOutput()) {
llvm::outs().changeColor(llvm::buffer_ostream::Colors::GREEN);
} else {
llvm::outs() << "</reparse>";
}
}
};
for (auto ReuseRange : Cache->getReusedRegions(NewSyntaxTree)) {
auto StartOffset = ReuseRange.Start.getOffset();
auto EndOffset = ReuseRange.End.getOffset();
// Print region that was not reused
PrintReparsedRegion(SourceText, CurrentOffset, StartOffset);
llvm::outs() << SourceText.substr(StartOffset, EndOffset - StartOffset);
CurrentOffset = EndOffset;
}
PrintReparsedRegion(SourceText, CurrentOffset, SourceText.size());
if (useColoredOutput())
llvm::outs().resetColor();
llvm::outs() << '\n';
}
void saveReuseLog(SyntaxParsingCache *Cache,
const SourceFileSyntax &NewSyntaxTree) {
std::error_code ErrorCode;
llvm::raw_fd_ostream ReuseLog(options::IncrementalReuseLog, ErrorCode,
llvm::sys::fs::FA_Read |
llvm::sys::fs::FA_Write);
assert(!ErrorCode && "Unable to open incremental usage log");
for (auto ReuseRange : Cache->getReusedRegions(NewSyntaxTree)) {
ReuseLog << "Reused " << ReuseRange.Start << " to " << ReuseRange.End
<< '\n';
ReuseLog << '\n';
}
}
bool verifyReusedRegions(ByteBasedSourceRangeSet ExpectedReparseRegions,
SyntaxParsingCache *SyntaxCache,
SourceManager &SourceMgr, unsigned BufferID,
SourceFile *SF) {
// We always expect the EOF token to be reparsed. Don't complain about it.
auto Eof = SF->getSyntaxRoot().getChild(SourceFileSyntax::Cursor::EOFToken);
auto EofNodeStart = Eof->getAbsolutePositionBeforeLeadingTrivia().getOffset();
if (ExpectedReparseRegions.Ranges.back().End >= EofNodeStart) {
// If the last expected reparse region already covers part of the eof
// leading trivia, extended it
auto LastRange = ExpectedReparseRegions.Ranges.back();
ExpectedReparseRegions.Ranges.pop_back();
ByteBasedSourceRange ExtendedRange(LastRange.Start,
EofNodeStart + Eof->getTextLength());
ExpectedReparseRegions.addRange(ExtendedRange);
} else {
ByteBasedSourceRange EofRange(EofNodeStart,
EofNodeStart + Eof->getTextLength());
ExpectedReparseRegions.addRange(EofRange);
}
auto FileLength = SourceMgr.getRangeForBuffer(BufferID).getByteLength();
// Compute the repared regions by inverting the reused regions
auto ReusedRanges = ByteBasedSourceRangeSet(
SyntaxCache->getReusedRegions(SF->getSyntaxRoot()));
auto ReparsedRegions = ReusedRanges.invert(FileLength);
// Same for expected reuse regions
auto ExpectedReuseRegions = ExpectedReparseRegions.invert(FileLength);
// Intersect the reparsed regions with the expected reuse regions to get
// regions that should not have been reparsed
auto UnexpectedReparseRegions =
ReparsedRegions.intersect(ExpectedReuseRegions);
bool NoUnexpectedParse = true;
for (auto ReparseRegion : UnexpectedReparseRegions.Ranges) {
auto ReparseRange = ReparseRegion.toCharSourceRange(SourceMgr, BufferID);
// To improve the ergonomics when writing tests we do not want to complain
// about reparsed whitespaces.
auto RangeStr = ReparseRange.str();
llvm::Regex WhitespaceOnlyRegex("^[ \t\r\n]*$");
if (WhitespaceOnlyRegex.match(RangeStr)) {
continue;
}
NoUnexpectedParse = false;
llvm::errs() << "\nERROR: Unexpectedly reparsed following region:\n";
ReparseRange.print(llvm::errs(), SourceMgr);
}
return NoUnexpectedParse;
}
/// Parse the given input file (incrementally if an old syntax tree was
/// provided) and call the action specific callback with the new syntax tree
int parseFile(
const char *MainExecutablePath, const StringRef InputFileName,
llvm::function_ref<int(SourceFile *, SyntaxParsingCache *SyntaxCache)>
ActionSpecificCallback) {
// The cache needs to be a heap allocated pointer since we construct it inside
// an if block but need to keep it alive until the end of the function.
SyntaxParsingCache *SyntaxCache = nullptr;
SWIFT_DEFER { delete SyntaxCache; };
// We also need to hold on to the Deserializer and buffer since they keep
// ownership of strings that are referenced from the old syntax tree
swift::json::SyntaxDeserializer *Deserializer = nullptr;
SWIFT_DEFER { delete Deserializer; };
auto Buffer = llvm::MemoryBuffer::getFile(options::OldSyntaxTreeFilename);
// Deserialise the old syntax tree
if (!options::OldSyntaxTreeFilename.empty()) {
Deserializer = new swift::json::SyntaxDeserializer(
llvm::MemoryBufferRef(*(Buffer.get())));
auto OldSyntaxTree = Deserializer->getSourceFileSyntax();
if (!OldSyntaxTree.hasValue()) {
llvm::errs() << "Could not deserialise old syntax tree.";
return EXIT_FAILURE;
}
SyntaxCache = new SyntaxParsingCache(OldSyntaxTree.getValue());
if (options::OldSourceFilename.empty()) {
llvm::errs() << "The old syntax file must be provided to translate "
"line:column edits to byte offsets";
return EXIT_FAILURE;
}
if (!parseIncrementalEditArguments(SyntaxCache,
options::OldSourceFilename)) {
return EXIT_FAILURE;
}
}
// Set up the compiler invocation
CompilerInvocation Invocation;
Invocation.getLangOptions().BuildSyntaxTree = true;
Invocation.getLangOptions().VerifySyntaxTree = options::VerifySyntaxTree;
Invocation.getLangOptions().RequestEvaluatorGraphVizPath = options::GraphVisPath;
Invocation.getFrontendOptions().InputsAndOutputs.addInputFile(InputFileName);
Invocation.setMainExecutablePath(
llvm::sys::fs::getMainExecutable(MainExecutablePath,
reinterpret_cast<void *>(&anchorForGetMainExecutable)));
Invocation.setMainFileSyntaxParsingCache(SyntaxCache);
Invocation.setModuleName("Test");
PrintingDiagnosticConsumer DiagConsumer;
CompilerInstance Instance;
Instance.addDiagnosticConsumer(&DiagConsumer);
if (Instance.setup(Invocation)) {
llvm::errs() << "Unable to set up compiler instance";
return EXIT_FAILURE;
}
// Parse incremental edit arguments
auto BufferIDs = Instance.getInputBufferIDs();
assert(BufferIDs.size() == 1 && "Only expecting to process one source file");
unsigned BufferID = BufferIDs.front();
// Parse the actual source file
Instance.performParseOnly();
SourceFile *SF = nullptr;
for (auto Unit : Instance.getMainModule()->getFiles()) {
SF = dyn_cast<SourceFile>(Unit);
if (SF != nullptr) {
break;
}
}
assert(SF && "No source file");
// In case the action specific callback succeeds, we output this error code
int InternalExitCode = EXIT_SUCCESS;
// If we have a syntax cache, output reuse information if requested
if (SyntaxCache) {
if (options::PrintVisualReuseInfo) {
printVisualNodeReuseInformation(Instance.getSourceMgr(), BufferID,
SyntaxCache, SF->getSyntaxRoot());
}
if (!options::IncrementalReuseLog.empty()) {
saveReuseLog(SyntaxCache, SF->getSyntaxRoot());
}
ByteBasedSourceRangeSet ExpectedReparseRegions;
if (parseReparseRegionArguments(ExpectedReparseRegions,
Instance.getSourceMgr(), BufferID)) {
if (!ExpectedReparseRegions.Ranges.empty()) {
if (!verifyReusedRegions(ExpectedReparseRegions, SyntaxCache,
Instance.getSourceMgr(), BufferID, SF)) {
InternalExitCode = EXIT_FAILURE;
}
}
}
}
int ActionSpecificExitCode = ActionSpecificCallback(SF, SyntaxCache);
if (ActionSpecificExitCode != EXIT_SUCCESS) {
return ActionSpecificExitCode;
} else {
return InternalExitCode;
}
}
int doFullLexRoundTrip(const StringRef InputFilename) {
LangOptions LangOpts;
SourceManager SourceMgr;
DiagnosticEngine Diags(SourceMgr);
PrintingDiagnosticConsumer DiagPrinter;
Diags.addConsumer(DiagPrinter);
std::vector<std::pair<RC<syntax::RawSyntax>,
syntax::AbsolutePosition>> Tokens;
if (getTokensFromFile(InputFilename, LangOpts, SourceMgr,
Diags, Tokens) == EXIT_FAILURE) {
return EXIT_FAILURE;
}
for (auto TokAndPos : Tokens) {
TokAndPos.first->print(llvm::outs(), {});
}
return EXIT_SUCCESS;
}
int doDumpRawTokenSyntax(const StringRef InputFile) {
LangOptions LangOpts;
SourceManager SourceMgr;
DiagnosticEngine Diags(SourceMgr);
PrintingDiagnosticConsumer DiagPrinter;
Diags.addConsumer(DiagPrinter);
std::vector<std::pair<RC<syntax::RawSyntax>,
syntax::AbsolutePosition>> Tokens;
if (getTokensFromFile(InputFile, LangOpts, SourceMgr, Diags, Tokens) ==
EXIT_FAILURE) {
return EXIT_FAILURE;
}
for (auto TokAndPos : Tokens) {
llvm::outs() << TokAndPos.second << "\n";
TokAndPos.first->dump(llvm::outs());
llvm::outs() << "\n";
}
return EXIT_SUCCESS;
}
int doFullParseRoundTrip(const char *MainExecutablePath,
const StringRef InputFile) {
return parseFile(MainExecutablePath, InputFile,
[](SourceFile *SF, SyntaxParsingCache *SyntaxCache) -> int {
SF->getSyntaxRoot().print(llvm::outs(), {});
return EXIT_SUCCESS;
});
}
int doSerializeRawTree(const char *MainExecutablePath,
const StringRef InputFile) {
return parseFile(MainExecutablePath, InputFile,
[](SourceFile *SF, SyntaxParsingCache *SyntaxCache) -> int {
auto Root = SF->getSyntaxRoot().getRaw();
std::unordered_set<unsigned> ReusedNodeIds;
if (options::IncrementalSerialization && SyntaxCache) {
ReusedNodeIds = SyntaxCache->getReusedNodeIds();
}
if (options::SerializeAsByteTree) {
if (options::OutputFilename.empty()) {
llvm::errs() << "Cannot serialize syntax tree as ByteTree to stdout\n";
return EXIT_FAILURE;
}
swift::ExponentialGrowthAppendingBinaryByteStream Stream(
llvm::support::endianness::little);
Stream.reserve(32 * 1024);
std::map<void *, void *> UserInfo;
UserInfo[swift::byteTree::UserInfoKeyReusedNodeIds] = &ReusedNodeIds;
if (options::AddByteTreeFields) {
UserInfo[swift::byteTree::UserInfoKeyAddInvalidFields] = (void *)true;
}
swift::byteTree::ByteTreeWriter::write(Stream,
byteTree::SYNTAX_TREE_VERSION,
*Root, UserInfo);
auto OutputBufferOrError = llvm::FileOutputBuffer::create(
options::OutputFilename, Stream.data().size());
assert(OutputBufferOrError && "Couldn't open output file");
auto &OutputBuffer = OutputBufferOrError.get();
memcpy(OutputBuffer->getBufferStart(), Stream.data().data(),
Stream.data().size());
auto Error = OutputBuffer->commit();
(void)Error;
assert(!Error && "Unable to write output file");
} else {
// Serialize as JSON
auto SerializeTree = [&ReusedNodeIds](llvm::raw_ostream &os,
RC<RawSyntax> Root,
SyntaxParsingCache *SyntaxCache) {
swift::json::Output::UserInfoMap JsonUserInfo;
JsonUserInfo[swift::json::OmitNodesUserInfoKey] = &ReusedNodeIds;
if (options::OmitNodeIds) {
JsonUserInfo[swift::json::DontSerializeNodeIdsUserInfoKey] =
(void *)true;
}
swift::json::Output out(os, JsonUserInfo);
out << *Root;
os << "\n";
};
if (!options::OutputFilename.empty()) {
std::error_code errorCode;
llvm::raw_fd_ostream os(options::OutputFilename, errorCode,
llvm::sys::fs::F_None);
assert(!errorCode && "Couldn't open output file");
SerializeTree(os, Root, SyntaxCache);
} else {
SerializeTree(llvm::outs(), Root, SyntaxCache);
}
}
return EXIT_SUCCESS;
});
}
int doDeserializeRawTree(const char *MainExecutablePath,
const StringRef InputFile,
const StringRef OutputFileName) {
auto Buffer = llvm::MemoryBuffer::getFile(InputFile);
std::error_code errorCode;
auto os = llvm::make_unique<llvm::raw_fd_ostream>(
OutputFileName, errorCode, llvm::sys::fs::F_None);
swift::json::SyntaxDeserializer deserializer(llvm::MemoryBufferRef(*(Buffer.get())));
deserializer.getSourceFileSyntax()->print(*os);
return EXIT_SUCCESS;
}
int doParseOnly(const char *MainExecutablePath, const StringRef InputFile) {
return parseFile(MainExecutablePath, InputFile,
[](SourceFile *SF, SyntaxParsingCache *SyntaxCache) {
return SF ? EXIT_SUCCESS : EXIT_FAILURE;
});
}
int dumpParserGen(const char *MainExecutablePath, const StringRef InputFile) {
return parseFile(MainExecutablePath, InputFile,
[](SourceFile *SF, SyntaxParsingCache *SyntaxCache) {
SyntaxPrintOptions Opts;
Opts.PrintSyntaxKind = options::PrintNodeKind;
Opts.Visual = options::Visual;
Opts.PrintTrivialNodeKind = options::PrintTrivialNodeKind;
SF->getSyntaxRoot().print(llvm::outs(), Opts);
return EXIT_SUCCESS;
});
}
int dumpEOFSourceLoc(const char *MainExecutablePath,
const StringRef InputFile) {
return parseFile(MainExecutablePath, InputFile,
[](SourceFile *SF, SyntaxParsingCache *SyntaxCache) -> int {
auto BufferId = *SF->getBufferID();
auto Root = SF->getSyntaxRoot();
auto AbPos = Root.getEOFToken().getAbsolutePosition();
SourceManager &SourceMgr = SF->getASTContext().SourceMgr;
auto StartLoc = SourceMgr.getLocForBufferStart(BufferId);
auto EndLoc = SourceMgr.getLocForOffset(BufferId, AbPos.getOffset());
// To ensure the correctness of position when translated to line & column
// pair.
if (SourceMgr.getLineAndColumn(EndLoc) != AbPos.getLineAndColumn()) {
llvm::outs() << "locations should be identical";
return EXIT_FAILURE;
}
llvm::outs() << CharSourceRange(SourceMgr, StartLoc, EndLoc).str();
return EXIT_SUCCESS;
});
}
}// end of anonymous namespace
int invokeCommand(const char *MainExecutablePath,
const StringRef InputSourceFilename) {
int ExitCode = EXIT_SUCCESS;
switch (options::Action) {
case ActionType::DumpRawTokenSyntax:
ExitCode = doDumpRawTokenSyntax(InputSourceFilename);
break;
case ActionType::FullLexRoundTrip:
ExitCode = doFullLexRoundTrip(InputSourceFilename);
break;
case ActionType::FullParseRoundTrip:
ExitCode = doFullParseRoundTrip(MainExecutablePath, InputSourceFilename);
break;
case ActionType::SerializeRawTree:
ExitCode = doSerializeRawTree(MainExecutablePath, InputSourceFilename);
break;
case ActionType::DeserializeRawTree:
ExitCode = doDeserializeRawTree(MainExecutablePath, InputSourceFilename,
options::OutputFilename);
break;
case ActionType::ParseOnly:
ExitCode = doParseOnly(MainExecutablePath, InputSourceFilename);
break;
case ActionType::ParserGen:
ExitCode = dumpParserGen(MainExecutablePath, InputSourceFilename);
break;
case ActionType::EOFPos:
ExitCode = dumpEOFSourceLoc(MainExecutablePath, InputSourceFilename);
break;
case ActionType::None:
llvm::errs() << "an action is required\n";
llvm::cl::PrintHelpMessage();
ExitCode = EXIT_FAILURE;
break;
}
return ExitCode;
}
int main(int argc, char *argv[]) {
PROGRAM_START(argc, argv);
llvm::cl::ParseCommandLineOptions(argc, argv, "Swift Syntax Test\n");
int ExitCode = EXIT_SUCCESS;
if (options::InputSourceFilename.empty() &&
options::InputSourceDirectory.empty()) {
llvm::errs() << "input source file is required\n";
ExitCode = EXIT_FAILURE;
}
if (!options::InputSourceFilename.empty() &&
!options::InputSourceDirectory.empty()) {
llvm::errs() << "input-source-filename and input-source-directory cannot "
"be used together\n\n";
ExitCode = EXIT_FAILURE;
}
if (options::Action == ActionType::None) {
llvm::errs() << "an action is required\n";
ExitCode = EXIT_FAILURE;
}
if (ExitCode == EXIT_FAILURE) {
llvm::cl::PrintHelpMessage();
return ExitCode;
}
if (!options::InputSourceFilename.empty()) {
ExitCode = invokeCommand(argv[0], options::InputSourceFilename);
} else {
assert(!options::InputSourceDirectory.empty());
std::error_code errorCode;
llvm::sys::fs::recursive_directory_iterator DI(options::InputSourceDirectory, errorCode);
llvm::sys::fs::recursive_directory_iterator endIterator;
for (; DI != endIterator; DI.increment(errorCode)) {
auto entry = *DI;
auto path = entry.path();
if (!llvm::sys::fs::is_directory(path) &&
StringRef(path).endswith(".swift")) {
ExitCode = invokeCommand(argv[0], path);
}
}
}
return ExitCode;
}