blob: 777db6d6b73676e24102ac905f9ae45b226b12ed [file] [log] [blame]
//===--- CSDiagnostics.h - Constraint Diagnostics -------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file provides necessary abstractions for constraint system diagnostics.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_SEMA_CSDIAGNOSTICS_H
#define SWIFT_SEMA_CSDIAGNOSTICS_H
#include "Constraint.h"
#include "ConstraintSystem.h"
#include "OverloadChoice.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Types.h"
#include "swift/Basic/SourceLoc.h"
#include "llvm/ADT/ArrayRef.h"
#include <tuple>
namespace swift {
namespace constraints {
/// Base class for all of the possible diagnostics,
/// provides most basic information such as location of
/// the problem, parent expression and some utility methods.
class FailureDiagnostic {
Expr *E;
ConstraintSystem &CS;
ConstraintLocator *Locator;
/// The original anchor before any simplification.
Expr *RawAnchor;
/// Simplified anchor associated with the given locator.
Expr *Anchor;
/// Indicates whether locator could be simplified
/// down to anchor expression.
bool HasComplexLocator;
public:
FailureDiagnostic(Expr *expr, ConstraintSystem &cs,
ConstraintLocator *locator)
: E(expr), CS(cs), Locator(locator), RawAnchor(locator->getAnchor()) {
std::tie(Anchor, HasComplexLocator) = computeAnchor();
}
virtual ~FailureDiagnostic();
/// Try to diagnose a problem given affected expression,
/// failure location, types and declarations deduced by
/// constraint system, and other auxiliary information.
///
/// \param asNote In ambiguity cases it's beneficial to
/// produce diagnostic as a note instead of an error if possible.
///
/// \returns true If the problem has been successfully diagnosed
/// and diagnostic message emitted, false otherwise.
bool diagnose(bool asNote = false);
/// Try to produce an error diagnostic for the problem at hand.
virtual bool diagnoseAsError() = 0;
/// Instead of producing an error diagnostic, attempt to
/// produce a "note" to complement some other diagnostic
/// e.g. ambiguity error.
virtual bool diagnoseAsNote();
ConstraintSystem &getConstraintSystem() const {
return CS;
}
Expr *getParentExpr() const { return E; }
Expr *getRawAnchor() const { return RawAnchor; }
Expr *getAnchor() const { return Anchor; }
ConstraintLocator *getLocator() const { return Locator; }
Type getType(Expr *expr) const;
/// Resolve type variables present in the raw type, if any.
Type resolveType(Type rawType) const {
return CS.simplifyType(rawType);
}
template <typename... ArgTypes>
InFlightDiagnostic emitDiagnostic(ArgTypes &&... Args) const;
protected:
TypeChecker &getTypeChecker() const { return CS.TC; }
DeclContext *getDC() const { return CS.DC; }
ASTContext &getASTContext() const { return CS.getASTContext(); }
Optional<std::pair<Type, ConversionRestrictionKind>>
getRestrictionForType(Type type) const {
for (auto &restriction : CS.ConstraintRestrictions) {
if (std::get<0>(restriction)->isEqual(type))
return std::pair<Type, ConversionRestrictionKind>(
std::get<1>(restriction), std::get<2>(restriction));
}
return None;
}
ValueDecl *getResolvedMemberRef(UnresolvedDotExpr *member) {
auto locator = CS.getConstraintLocator(member, ConstraintLocator::Member);
return CS.findResolvedMemberRef(locator);
}
Optional<SelectedOverload>
getOverloadChoiceIfAvailable(ConstraintLocator *locator) const {
if (auto *overload = getResolvedOverload(locator))
return Optional<SelectedOverload>(
{overload->Choice, overload->OpenedFullType, overload->ImpliedType});
return None;
}
/// Retrieve overload choice resolved for given locator
/// by the constraint solver.
ResolvedOverloadSetListItem *
getResolvedOverload(ConstraintLocator *locator) const {
auto resolvedOverload = CS.getResolvedOverloadSets();
while (resolvedOverload) {
if (resolvedOverload->Locator == locator)
return resolvedOverload;
resolvedOverload = resolvedOverload->Previous;
}
return nullptr;
}
/// \returns true is locator hasn't been simplified down to expression.
bool hasComplexLocator() const { return HasComplexLocator; }
private:
/// Compute anchor expression associated with current diagnostic.
std::pair<Expr *, bool> computeAnchor() const;
};
/// Base class for all of the diagnostics related to generic requirement
/// failures, provides common information like failed requirement,
/// declaration where such requirement comes from, etc.
class RequirementFailure : public FailureDiagnostic {
protected:
using PathEltKind = ConstraintLocator::PathElementKind;
using DiagOnDecl = Diag<DescriptiveDeclKind, DeclName, Type, Type>;
using DiagInReference = Diag<DescriptiveDeclKind, DeclName, Type, Type, Type>;
using DiagAsNote = Diag<Type, Type, Type, Type, StringRef>;
const ValueDecl *AffectedDecl;
/// If possible, find application expression associated
/// with current generic requirement failure, that helps
/// to diagnose failures related to arguments.
const ApplyExpr *Apply = nullptr;
public:
RequirementFailure(ConstraintSystem &cs, Expr *expr, RequirementKind kind,
ConstraintLocator *locator)
: FailureDiagnostic(expr, cs, locator), AffectedDecl(getDeclRef()) {
assert(locator);
assert(AffectedDecl);
auto path = locator->getPath();
assert(!path.empty());
auto &last = path.back();
assert(last.getKind() == ConstraintLocator::TypeParameterRequirement);
assert(static_cast<RequirementKind>(last.getValue2()) == kind);
// It's possible sometimes not to have no base expression.
if (!expr)
return;
auto *anchor = getAnchor();
expr->forEachChildExpr([&](Expr *subExpr) -> Expr * {
auto *AE = dyn_cast<ApplyExpr>(subExpr);
if (!AE || AE->getFn() != anchor)
return subExpr;
Apply = AE;
return nullptr;
});
}
unsigned getRequirementIndex() const {
auto path = getLocator()->getPath();
assert(!path.empty());
auto &requirementLoc = path.back();
assert(requirementLoc.getKind() == PathEltKind::TypeParameterRequirement);
return requirementLoc.getValue();
}
/// The generic base type where failing requirement comes from.
Type getOwnerType() const;
/// Generic context associated with the failure.
const GenericContext *getGenericContext() const;
/// Generic requirement associated with the failure.
const Requirement &getRequirement() const;
virtual Type getLHS() const = 0;
virtual Type getRHS() const = 0;
bool diagnoseAsError() override;
bool diagnoseAsNote() override;
protected:
/// Retrieve declaration contextual where current
/// requirement has been introduced.
const DeclContext *getRequirementDC() const;
virtual DiagOnDecl getDiagnosticOnDecl() const = 0;
virtual DiagInReference getDiagnosticInRereference() const = 0;
virtual DiagAsNote getDiagnosticAsNote() const = 0;
/// Determine whether it would be possible to diagnose
/// current requirement failure.
bool canDiagnoseFailure() const {
// For static/initializer calls there is going to be
// a separate fix, attached to the argument, which is
// much easier to diagnose.
// For operator calls we can't currently produce a good
// diagnostic, so instead let's refer to expression diagnostics.
return !(Apply && (isOperator(Apply) || isa<TypeExpr>(getAnchor())));
}
static bool isOperator(const ApplyExpr *apply) {
return isa<PrefixUnaryExpr>(apply) || isa<PostfixUnaryExpr>(apply) ||
isa<BinaryExpr>(apply);
}
private:
/// Retrieve declaration associated with failing generic requirement.
ValueDecl *getDeclRef() const;
void emitRequirementNote(const Decl *anchor) const;
};
/// Diagnostics for failed conformance checks originating from
/// generic requirements e.g.
/// ```swift
/// struct S {}
/// func foo<T: Hashable>(_ t: T) {}
/// foo(S())
/// ```
class MissingConformanceFailure final : public RequirementFailure {
Type NonConformingType;
ProtocolDecl *Protocol;
public:
MissingConformanceFailure(Expr *expr, ConstraintSystem &cs,
ConstraintLocator *locator,
std::pair<Type, ProtocolDecl *> conformance)
: RequirementFailure(cs, expr, RequirementKind::Conformance, locator),
NonConformingType(conformance.first), Protocol(conformance.second) {}
bool diagnoseAsError() override;
private:
/// The type which was expected, by one of the generic requirements,
/// to conform to associated protocol.
Type getLHS() const override { return NonConformingType; }
/// The protocol generic requirement expected associated type to conform to.
Type getRHS() const override { return Protocol->getDeclaredType(); }
protected:
DiagOnDecl getDiagnosticOnDecl() const override {
return diag::type_does_not_conform_decl_owner;
}
DiagInReference getDiagnosticInRereference() const override {
return diag::type_does_not_conform_in_decl_ref;
}
DiagAsNote getDiagnosticAsNote() const override {
return diag::candidate_types_conformance_requirement;
}
};
/// Diagnose failures related to same-type generic requirements, e.g.
/// ```swift
/// protocol P {
/// associatedtype T
/// }
///
/// struct S : P {
/// typealias T = String
/// }
///
/// func foo<U: P>(_ t: [U]) where U.T == Int {}
/// foo([S()])
/// ```
///
/// `S.T` is not the same type as `Int`, which is required by `foo`.
class SameTypeRequirementFailure final : public RequirementFailure {
Type LHS, RHS;
public:
SameTypeRequirementFailure(Expr *expr, ConstraintSystem &cs, Type lhs,
Type rhs, ConstraintLocator *locator)
: RequirementFailure(cs, expr, RequirementKind::SameType, locator),
LHS(lhs), RHS(rhs) {}
Type getLHS() const override { return LHS; }
Type getRHS() const override { return RHS; }
protected:
DiagOnDecl getDiagnosticOnDecl() const override {
return diag::types_not_equal_decl;
}
DiagInReference getDiagnosticInRereference() const override {
return diag::types_not_equal_in_decl_ref;
}
DiagAsNote getDiagnosticAsNote() const override {
return diag::candidate_types_equal_requirement;
}
};
/// Diagnose failures related to superclass generic requirements, e.g.
/// ```swift
/// class A {
/// }
///
/// class B {
/// }
///
/// func foo<T>(_ t: [T]) where T: A {}
/// foo([B()])
/// ```
///
/// `A` is not the superclass of `B`, which is required by `foo<T>`.
class SuperclassRequirementFailure final : public RequirementFailure {
Type LHS, RHS;
public:
SuperclassRequirementFailure(Expr *expr, ConstraintSystem &cs, Type lhs,
Type rhs, ConstraintLocator *locator)
: RequirementFailure(cs, expr, RequirementKind::Superclass, locator),
LHS(lhs), RHS(rhs) {}
Type getLHS() const override { return LHS; }
Type getRHS() const override { return RHS; }
protected:
DiagOnDecl getDiagnosticOnDecl() const override {
return diag::types_not_inherited_decl;
}
DiagInReference getDiagnosticInRereference() const override {
return diag::types_not_inherited_in_decl_ref;
}
DiagAsNote getDiagnosticAsNote() const override {
return diag::candidate_types_inheritance_requirement;
}
};
/// Diagnose errors associated with missing, extraneous
/// or incorrect labels supplied by arguments, e.g.
/// ```swift
/// func foo(q: String, _ a: Int) {}
/// foo("ultimate quesiton", a: 42)
/// ```
/// Call to `foo` is going to be diagnosed as missing `q:`
/// and having extraneous `a:` labels, with appropriate fix-its added.
class LabelingFailure final : public FailureDiagnostic {
ArrayRef<Identifier> CorrectLabels;
public:
LabelingFailure(ConstraintSystem &cs, ConstraintLocator *locator,
ArrayRef<Identifier> labels)
: FailureDiagnostic(nullptr, cs, locator), CorrectLabels(labels) {}
bool diagnoseAsError() override;
};
/// Diagnose errors related to converting function type which
/// isn't explicitly '@escaping' to some other type.
class NoEscapeFuncToTypeConversionFailure final : public FailureDiagnostic {
Type ConvertTo;
public:
NoEscapeFuncToTypeConversionFailure(Expr *expr, ConstraintSystem &cs,
ConstraintLocator *locator,
Type toType = Type())
: FailureDiagnostic(expr, cs, locator), ConvertTo(toType) {}
bool diagnoseAsError() override;
};
class MissingForcedDowncastFailure final : public FailureDiagnostic {
public:
MissingForcedDowncastFailure(Expr *expr, ConstraintSystem &cs,
ConstraintLocator *locator)
: FailureDiagnostic(expr, cs, locator) {}
bool diagnoseAsError() override;
};
/// Diagnose failures related to passing value of some type
/// to `inout` parameter, without explicitly specifying `&`.
class MissingAddressOfFailure final : public FailureDiagnostic {
public:
MissingAddressOfFailure(Expr *expr, ConstraintSystem &cs,
ConstraintLocator *locator)
: FailureDiagnostic(expr, cs, locator) {}
bool diagnoseAsError() override;
};
/// Diagnose failures related attempt to implicitly convert types which
/// do not support such implicit converstion.
/// "as" or "as!" has to be specified explicitly in cases like that.
class MissingExplicitConversionFailure final : public FailureDiagnostic {
Type ConvertingTo;
public:
MissingExplicitConversionFailure(Expr *expr, ConstraintSystem &cs,
ConstraintLocator *locator, Type toType)
: FailureDiagnostic(expr, cs, locator), ConvertingTo(toType) {}
bool diagnoseAsError() override;
private:
bool exprNeedsParensBeforeAddingAs(Expr *expr) {
auto *DC = getDC();
auto &TC = getTypeChecker();
auto asPG = TC.lookupPrecedenceGroup(
DC, DC->getASTContext().Id_CastingPrecedence, SourceLoc());
if (!asPG)
return true;
return exprNeedsParensInsideFollowingOperator(TC, DC, expr, asPG);
}
bool exprNeedsParensAfterAddingAs(Expr *expr, Expr *rootExpr) {
auto *DC = getDC();
auto &TC = getTypeChecker();
auto asPG = TC.lookupPrecedenceGroup(
DC, DC->getASTContext().Id_CastingPrecedence, SourceLoc());
if (!asPG)
return true;
return exprNeedsParensOutsideFollowingOperator(TC, DC, expr, rootExpr,
asPG);
}
};
/// Diagnose failures related to attempting member access on optional base
/// type without optional chaining or force-unwrapping it first.
class MemberAccessOnOptionalBaseFailure final : public FailureDiagnostic {
DeclName Member;
bool ResultTypeIsOptional;
public:
MemberAccessOnOptionalBaseFailure(Expr *expr, ConstraintSystem &cs,
ConstraintLocator *locator,
DeclName memberName, bool resultOptional)
: FailureDiagnostic(expr, cs, locator), Member(memberName),
ResultTypeIsOptional(resultOptional) {}
bool diagnoseAsError() override;
};
/// Diagnose failures related to use of the unwrapped optional types,
/// which require some type of force-unwrap e.g. "!" or "try!".
class MissingOptionalUnwrapFailure final : public FailureDiagnostic {
public:
MissingOptionalUnwrapFailure(Expr *expr, ConstraintSystem &cs,
ConstraintLocator *locator)
: FailureDiagnostic(expr, cs, locator) {}
bool diagnoseAsError() override;
};
/// Diagnose errors associated with rvalues in positions
/// where an lvalue is required, such as inout arguments.
class RValueTreatedAsLValueFailure final : public FailureDiagnostic {
public:
RValueTreatedAsLValueFailure(ConstraintSystem &cs, ConstraintLocator *locator)
: FailureDiagnostic(nullptr, cs, locator) {}
bool diagnoseAsError() override;
};
class TrailingClosureAmbiguityFailure final : public FailureDiagnostic {
ArrayRef<OverloadChoice> Choices;
public:
TrailingClosureAmbiguityFailure(Expr *root, ConstraintSystem &cs,
Expr *anchor,
ArrayRef<OverloadChoice> choices)
: FailureDiagnostic(root, cs, cs.getConstraintLocator(anchor)),
Choices(choices) {}
bool diagnoseAsError() override { return false; }
bool diagnoseAsNote() override;
};
/// Diagnose errors related to assignment expressions e.g.
/// trying to assign something to immutable value, or trying
/// to access mutating member on immutable base.
class AssignmentFailure final : public FailureDiagnostic {
SourceLoc Loc;
Diag<StringRef> DeclDiagnostic;
Diag<Type> TypeDiagnostic;
public:
AssignmentFailure(Expr *destExpr, ConstraintSystem &cs,
SourceLoc diagnosticLoc);
AssignmentFailure(Expr *destExpr, ConstraintSystem &cs,
SourceLoc diagnosticLoc, Diag<StringRef> declDiag,
Diag<Type> typeDiag)
: FailureDiagnostic(destExpr, cs, cs.getConstraintLocator(destExpr)),
Loc(diagnosticLoc), DeclDiagnostic(declDiag), TypeDiagnostic(typeDiag) {
}
bool diagnoseAsError() override;
private:
void fixItChangeInoutArgType(const Expr *arg, Type actualType,
Type neededType) const;
/// Given an expression that has a non-lvalue type, dig into it until
/// we find the part of the expression that prevents the entire subexpression
/// from being mutable. For example, in a sequence like "x.v.v = 42" we want
/// to complain about "x" being a let property if "v.v" are both mutable.
///
/// \returns The base subexpression that looks immutable (or that can't be
/// analyzed any further) along with a decl extracted from it if we could.
std::pair<Expr *, ValueDecl *> resolveImmutableBase(Expr *expr) const;
static Diag<StringRef> findDeclDiagonstic(ASTContext &ctx, Expr *destExpr);
static bool isLoadedLValue(Expr *expr) {
expr = expr->getSemanticsProvidingExpr();
if (isa<LoadExpr>(expr))
return true;
if (auto ifExpr = dyn_cast<IfExpr>(expr))
return isLoadedLValue(ifExpr->getThenExpr()) &&
isLoadedLValue(ifExpr->getElseExpr());
return false;
}
};
/// Intended to diagnose any possible contextual failure
/// e.g. argument/parameter, closure result, conversions etc.
class ContextualFailure final : public FailureDiagnostic {
Type FromType, ToType;
public:
ContextualFailure(Expr *root, ConstraintSystem &cs, Type lhs, Type rhs,
ConstraintLocator *locator)
: FailureDiagnostic(root, cs, locator), FromType(resolve(lhs)),
ToType(resolve(rhs)) {}
bool diagnoseAsError() override;
// If we're trying to convert something of type "() -> T" to T,
// then we probably meant to call the value.
bool diagnoseMissingFunctionCall() const;
/// Try to add a fix-it when converting between a collection and its slice
/// type, such as String <-> Substring or (eventually) Array <-> ArraySlice
static bool trySequenceSubsequenceFixIts(InFlightDiagnostic &diag,
ConstraintSystem &CS, Type fromType,
Type toType, Expr *expr);
private:
Type resolve(Type rawType) {
auto type = resolveType(rawType)->getWithoutSpecifierType();
if (auto *BGT = type->getAs<BoundGenericType>()) {
if (BGT->hasUnresolvedType())
return BGT->getDecl()->getDeclaredInterfaceType();
}
return type;
}
};
/// Diagnose situations when @autoclosure argument is passed to @autoclosure
/// parameter directly without calling it first.
class AutoClosureForwardingFailure final : public FailureDiagnostic {
public:
AutoClosureForwardingFailure(ConstraintSystem &cs, ConstraintLocator *locator)
: FailureDiagnostic(nullptr, cs, locator) {}
bool diagnoseAsError() override;
};
} // end namespace constraints
} // end namespace swift
#endif // SWIFT_SEMA_CSDIAGNOSTICS_H