blob: 9e365cf02ad38f96cef654d2bf1c2054ec070b56 [file] [log] [blame]
//===--- MetadataReader.h - Abstract access to remote metadata --*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines operations for reading metadata from a remote process.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_REMOTE_METADATAREADER_H
#define SWIFT_REMOTE_METADATAREADER_H
#include "swift/Runtime/Metadata.h"
#include "swift/Remote/MemoryReader.h"
#include "swift/Demangling/Demangler.h"
#include "swift/Demangling/TypeDecoder.h"
#include "swift/Basic/Range.h"
#include "swift/Basic/LLVM.h"
#include "swift/Runtime/Unreachable.h"
#include <vector>
#include <unordered_map>
namespace swift {
namespace remote {
template <typename BuiltType>
using FunctionParam = swift::Demangle::FunctionParam<BuiltType>;
template <typename BuilderType>
using TypeDecoder = swift::Demangle::TypeDecoder<BuilderType>;
/// A pointer to the local buffer of an object that also remembers the
/// address at which it was stored remotely.
template <typename Runtime, typename T>
class RemoteRef {
public:
using StoredPointer = typename Runtime::StoredPointer;
private:
StoredPointer Address;
const T *LocalBuffer;
public:
/*implicit*/
RemoteRef(std::nullptr_t _)
: Address(0), LocalBuffer(nullptr) {}
explicit RemoteRef(StoredPointer address, const T *localBuffer)
: Address(address), LocalBuffer(localBuffer) {}
StoredPointer getAddress() const {
return Address;
}
const T *getLocalBuffer() const {
return LocalBuffer;
}
explicit operator bool() const {
return LocalBuffer != nullptr;
}
const T *operator->() const {
assert(LocalBuffer);
return LocalBuffer;
}
};
/// A structure, designed for use with std::unique_ptr, which destroys
/// a pointer by calling free on it (and not trying to call a destructor).
struct delete_with_free {
void operator()(const void *memory) {
free(const_cast<void*>(memory));
}
};
/// A generic reader of metadata.
///
/// BuilderType must implement a particular interface which is currently
/// too fluid to allow useful documentation; consult the actual
/// implementations. The chief thing is that it provides several member
/// types which should obey the following constraints:
/// - T() yields a value which is false when contextually converted to bool
/// - a false value signals that an error occurred when building a value
template <typename Runtime, typename BuilderType>
class MetadataReader {
public:
using BuiltType = typename BuilderType::BuiltType;
using BuiltNominalTypeDecl = typename BuilderType::BuiltNominalTypeDecl;
using BuiltProtocolDecl = typename BuilderType::BuiltProtocolDecl;
using StoredPointer = typename Runtime::StoredPointer;
using StoredSize = typename Runtime::StoredSize;
private:
/// A cache of built types, keyed by the address of the type.
std::unordered_map<StoredPointer, BuiltType> TypeCache;
using MetadataRef =
RemoteRef<Runtime, TargetMetadata<Runtime>>;
using OwnedMetadataRef =
std::unique_ptr<const TargetMetadata<Runtime>, delete_with_free>;
/// A cache of read type metadata, keyed by the address of the metadata.
std::unordered_map<StoredPointer, OwnedMetadataRef>
MetadataCache;
using ContextDescriptorRef =
RemoteRef<Runtime, TargetContextDescriptor<Runtime>>;
using OwnedContextDescriptorRef =
std::unique_ptr<const TargetContextDescriptor<Runtime>,
delete_with_free>;
/// A cache of read nominal type descriptors, keyed by the address of the
/// nominal type descriptor.
std::unordered_map<StoredPointer, OwnedContextDescriptorRef>
ContextDescriptorCache;
using OwnedProtocolDescriptorRef =
std::unique_ptr<const TargetProtocolDescriptor<Runtime>, delete_with_free>;
enum class IsaEncodingKind {
/// We haven't checked yet.
Unknown,
/// There was an error trying to find out the isa encoding.
Error,
/// There's no special isa encoding.
None,
/// There's an unconditional mask to apply to the isa pointer.
/// - IsaMask stores the mask.
Masked,
/// Isa pointers are indexed. If applying a mask yields a magic value,
/// applying a different mask and shifting yields an index into a global
/// array of class pointers. Otherwise, the isa pointer is just a raw
/// class pointer.
/// - IsaIndexMask stores the index mask.
/// - IsaIndexShift stores the index shift.
/// - IsaMagicMask stores the magic value mask.
/// - IsaMagicValue stores the magic value.
/// - IndexedClassesPointer stores the pointer to the start of the
/// indexed classes array; this is constant throughout the program.
/// - IndexedClassesCountPointer stores a pointer to the number
/// of elements in the indexed classes array.
Indexed
};
IsaEncodingKind IsaEncoding = IsaEncodingKind::Unknown;
union {
StoredPointer IsaMask;
StoredPointer IsaIndexMask;
};
StoredPointer IsaIndexShift;
StoredPointer IsaMagicMask;
StoredPointer IsaMagicValue;
StoredPointer IndexedClassesPointer;
StoredPointer IndexedClassesCountPointer;
StoredPointer LastIndexedClassesCount = 0;
Demangle::NodeFactory Factory;
Demangle::NodeFactory &getNodeFactory() { return Factory; }
public:
BuilderType Builder;
BuilderType &getBuilder() {
return this->Builder;
}
std::shared_ptr<MemoryReader> Reader;
template <class... T>
MetadataReader(std::shared_ptr<MemoryReader> reader, T &&... args)
: Builder(std::forward<T>(args)...),
Reader(std::move(reader)) {
}
MetadataReader(const MetadataReader &other) = delete;
MetadataReader &operator=(const MetadataReader &other) = delete;
/// Clear all of the caches in this reader.
void clear() {
TypeCache.clear();
MetadataCache.clear();
ContextDescriptorCache.clear();
}
/// Given a demangle tree, attempt to turn it into a type.
BuiltType decodeMangledType(const Demangle::NodePointer &Node) {
return swift::Demangle::decodeMangledType(Builder, Node);
}
/// Get the remote process's swift_isaMask.
llvm::Optional<StoredPointer> readIsaMask() {
auto encoding = getIsaEncoding();
if (encoding != IsaEncodingKind::Masked) {
// Still return success if there's no isa encoding at all.
if (encoding == IsaEncodingKind::None)
return 0;
else
return llvm::None;
}
return IsaMask;
}
/// Given a remote pointer to metadata, attempt to discover its MetadataKind.
llvm::Optional<MetadataKind>
readKindFromMetadata(StoredPointer MetadataAddress) {
auto meta = readMetadata(MetadataAddress);
if (!meta) return llvm::None;
return meta->getKind();
}
/// Given a remote pointer to class metadata, attempt to read its superclass.
StoredPointer
readSuperClassFromClassMetadata(StoredPointer MetadataAddress) {
auto meta = readMetadata(MetadataAddress);
if (!meta || meta->getKind() != MetadataKind::Class)
return StoredPointer();
auto classMeta = cast<TargetClassMetadata<Runtime>>(meta);
return classMeta->SuperClass;
}
/// Given a remote pointer to class metadata, attempt to discover its class
/// instance size and whether fields should use the resilient layout strategy.
llvm::Optional<unsigned>
readInstanceStartAndAlignmentFromClassMetadata(StoredPointer MetadataAddress) {
auto meta = readMetadata(MetadataAddress);
if (!meta || meta->getKind() != MetadataKind::Class)
return llvm::None;
// The following algorithm only works on the non-fragile Apple runtime.
// Grab the RO-data pointer. This part is not ABI.
StoredPointer roDataPtr = readObjCRODataPtr(MetadataAddress);
if (!roDataPtr)
return llvm::None;
// Get the address of the InstanceStart field.
auto address = roDataPtr + sizeof(uint32_t) * 1;
unsigned start;
if (!Reader->readInteger(RemoteAddress(address), &start))
return llvm::None;
return start;
}
/// Given a remote pointer to metadata, attempt to turn it into a type.
BuiltType readTypeFromMetadata(StoredPointer MetadataAddress,
bool skipArtificialSubclasses = false) {
auto Cached = TypeCache.find(MetadataAddress);
if (Cached != TypeCache.end())
return Cached->second;
// If we see garbage data in the process of building a BuiltType, and get
// the same metadata address again, we will hit an infinite loop.
// Insert a negative result into the cache now so that, if we recur with
// the same address, we will return the negative result with the check
// just above.
TypeCache.insert({MetadataAddress, BuiltType()});
auto Meta = readMetadata(MetadataAddress);
if (!Meta) return BuiltType();
switch (Meta->getKind()) {
case MetadataKind::Class:
if (!cast<TargetClassMetadata<Runtime>>(Meta)->isTypeMetadata())
return BuiltType();
return readNominalTypeFromMetadata(Meta, skipArtificialSubclasses);
case MetadataKind::Struct:
return readNominalTypeFromMetadata(Meta);
case MetadataKind::Enum:
case MetadataKind::Optional:
return readNominalTypeFromMetadata(Meta);
case MetadataKind::Tuple: {
auto tupleMeta = cast<TargetTupleTypeMetadata<Runtime>>(Meta);
std::vector<BuiltType> elementTypes;
elementTypes.reserve(tupleMeta->NumElements);
for (unsigned i = 0, n = tupleMeta->NumElements; i != n; ++i) {
auto &element = tupleMeta->getElement(i);
if (auto elementType = readTypeFromMetadata(element.Type))
elementTypes.push_back(elementType);
else
return BuiltType();
}
// Read the labels string.
std::string labels;
if (tupleMeta->Labels &&
!Reader->readString(RemoteAddress(tupleMeta->Labels), labels))
return BuiltType();
auto BuiltTuple = Builder.createTupleType(elementTypes, std::move(labels),
/*variadic*/ false);
TypeCache[MetadataAddress] = BuiltTuple;
return BuiltTuple;
}
case MetadataKind::Function: {
auto Function = cast<TargetFunctionTypeMetadata<Runtime>>(Meta);
std::vector<FunctionParam<BuiltType>> Parameters;
for (unsigned i = 0, n = Function->getNumParameters(); i != n; ++i) {
auto ParamTypeRef = readTypeFromMetadata(Function->getParameter(i));
if (!ParamTypeRef)
return BuiltType();
FunctionParam<BuiltType> Param;
Param.setType(ParamTypeRef);
Param.setFlags(Function->getParameterFlags(i));
Parameters.push_back(std::move(Param));
}
auto Result = readTypeFromMetadata(Function->ResultType);
if (!Result)
return BuiltType();
auto flags = FunctionTypeFlags()
.withConvention(Function->getConvention())
.withThrows(Function->throws())
.withParameterFlags(Function->hasParameterFlags())
.withEscaping(Function->isEscaping());
auto BuiltFunction =
Builder.createFunctionType(Parameters, Result, flags);
TypeCache[MetadataAddress] = BuiltFunction;
return BuiltFunction;
}
case MetadataKind::Existential: {
auto Exist = cast<TargetExistentialTypeMetadata<Runtime>>(Meta);
bool HasExplicitAnyObject = false;
if (Exist->isClassBounded())
HasExplicitAnyObject = true;
BuiltType SuperclassType = BuiltType();
if (Exist->Flags.hasSuperclassConstraint()) {
// The superclass is stored after the list of protocols.
SuperclassType = readTypeFromMetadata(
Exist->Protocols[Exist->Protocols.NumProtocols]);
if (!SuperclassType) return BuiltType();
HasExplicitAnyObject = true;
}
std::vector<BuiltProtocolDecl> Protocols;
for (size_t i = 0; i < Exist->Protocols.NumProtocols; ++i) {
auto ProtocolAddress = Exist->Protocols[i];
auto ProtocolDescriptor = readProtocolDescriptor(ProtocolAddress);
if (!ProtocolDescriptor)
return BuiltType();
std::string MangledNameStr;
if (!Reader->readString(RemoteAddress(ProtocolDescriptor->Name),
MangledNameStr))
return BuiltType();
StringRef MangledName =
Demangle::dropSwiftManglingPrefix(MangledNameStr);
Demangle::Context DCtx;
auto Demangled = DCtx.demangleTypeAsNode(MangledName);
if (!Demangled)
return BuiltType();
auto Protocol = Builder.createProtocolDecl(Demangled);
if (!Protocol)
return BuiltType();
Protocols.push_back(Protocol);
}
auto BuiltExist = Builder.createProtocolCompositionType(
Protocols, SuperclassType, HasExplicitAnyObject);
TypeCache[MetadataAddress] = BuiltExist;
return BuiltExist;
}
case MetadataKind::Metatype: {
auto Metatype = cast<TargetMetatypeMetadata<Runtime>>(Meta);
auto Instance = readTypeFromMetadata(Metatype->InstanceType);
if (!Instance) return BuiltType();
auto BuiltMetatype = Builder.createMetatypeType(Instance);
TypeCache[MetadataAddress] = BuiltMetatype;
return BuiltMetatype;
}
case MetadataKind::ObjCClassWrapper: {
auto objcWrapper = cast<TargetObjCClassWrapperMetadata<Runtime>>(Meta);
auto classAddress = objcWrapper->Class;
std::string className;
if (!readObjCClassName(classAddress, className))
return BuiltType();
auto BuiltObjCClass = Builder.createObjCClassType(std::move(className));
TypeCache[MetadataAddress] = BuiltObjCClass;
return BuiltObjCClass;
}
case MetadataKind::ExistentialMetatype: {
auto Exist = cast<TargetExistentialMetatypeMetadata<Runtime>>(Meta);
auto Instance = readTypeFromMetadata(Exist->InstanceType);
if (!Instance) return BuiltType();
auto BuiltExist = Builder.createExistentialMetatypeType(Instance);
TypeCache[MetadataAddress] = BuiltExist;
return BuiltExist;
}
case MetadataKind::ForeignClass: {
auto Foreign = cast<TargetForeignClassMetadata<Runtime>>(Meta);
StoredPointer namePtr =
resolveRelativeField(Meta,
asFullMetadata(Foreign)->Name);
if (namePtr == 0)
return BuiltType();
std::string name;
if (!Reader->readString(RemoteAddress(namePtr), name))
return BuiltType();
auto BuiltForeign = Builder.createForeignClassType(std::move(name));
TypeCache[MetadataAddress] = BuiltForeign;
return BuiltForeign;
}
case MetadataKind::HeapLocalVariable:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject:
// Treat these all as Builtin.NativeObject for type lowering purposes.
return Builder.createBuiltinType("Bo");
case MetadataKind::Opaque: {
auto BuiltOpaque = Builder.getOpaqueType();
TypeCache[MetadataAddress] = BuiltOpaque;
return BuiltOpaque;
}
}
swift_runtime_unreachable("Unhandled MetadataKind in switch");
}
BuiltType readTypeFromMangledName(const char *MangledTypeName,
size_t Length) {
Demangle::Demangler Dem;
Demangle::NodePointer Demangled =
Dem.demangleSymbol(StringRef(MangledTypeName, Length));
return decodeMangledType(Demangled);
}
/// Read a context descriptor from the given address and build a mangling
/// tree representing it.
Demangle::NodePointer
readDemanglingForContextDescriptor(StoredPointer contextAddress,
Demangler &Dem) {
auto context = readContextDescriptor(contextAddress);
if (!context)
return nullptr;
return buildNominalTypeMangling(context, Dem);
}
/// Read the isa pointer of a class or closure context instance and apply
/// the isa mask.
llvm::Optional<StoredPointer>
readMetadataFromInstance(StoredPointer objectAddress) {
StoredPointer isa;
if (!Reader->readInteger(RemoteAddress(objectAddress), &isa))
return llvm::None;
switch (getIsaEncoding()) {
case IsaEncodingKind::Unknown:
case IsaEncodingKind::Error:
return llvm::None;
case IsaEncodingKind::None:
return isa;
case IsaEncodingKind::Masked:
return isa & IsaMask;
case IsaEncodingKind::Indexed: {
// If applying the magic mask doesn't give us the magic value,
// it's not an indexed isa.
if ((isa & IsaMagicMask) != IsaMagicValue)
return isa;
// Extract the index.
auto classIndex = (isa & IsaIndexMask) >> IsaIndexShift;
// 0 is never a valid index.
if (classIndex == 0) {
return llvm::None;
// If the index is out of range, it's an error; but check for an
// update first. (This will also trigger the first time because
// we initialize LastIndexedClassesCount to 0).
} else if (classIndex >= LastIndexedClassesCount) {
StoredPointer count;
if (!Reader->readInteger(RemoteAddress(IndexedClassesCountPointer),
&count)) {
return llvm::None;
}
LastIndexedClassesCount = count;
if (classIndex >= count) {
return llvm::None;
}
}
// Find the address of the appropriate array element.
RemoteAddress eltPointer =
RemoteAddress(IndexedClassesPointer
+ classIndex * sizeof(StoredPointer));
StoredPointer metadataPointer;
if (!Reader->readInteger(eltPointer, &metadataPointer)) {
return llvm::None;
}
return metadataPointer;
}
}
swift_runtime_unreachable("Unhandled IsaEncodingKind in switch.");
}
/// Read the offset of the generic parameters of a class from the nominal
/// type descriptor. If the class has a resilient superclass, we also
/// have to read the superclass size and add that to the offset.
///
/// The offset is in units of words, from the start of the class's
/// metadata.
llvm::Optional<uint32_t>
readGenericArgsOffset(MetadataRef metadata,
ContextDescriptorRef descriptor) {
switch (descriptor->getKind()) {
case ContextDescriptorKind::Class: {
auto type = cast<TargetClassDescriptor<Runtime>>(descriptor);
auto *classMetadata = dyn_cast<TargetClassMetadata<Runtime>>(metadata);
if (!classMetadata)
return llvm::None;
if (!classMetadata->SuperClass)
return type->getGenericArgumentOffset(nullptr, nullptr);
auto superMetadata = readMetadata(classMetadata->SuperClass);
if (!superMetadata)
return llvm::None;
auto superClassMetadata =
dyn_cast<TargetClassMetadata<Runtime>>(superMetadata);
if (!superClassMetadata)
return llvm::None;
auto result =
type->getGenericArgumentOffset(classMetadata, superClassMetadata);
return result;
}
case ContextDescriptorKind::Enum: {
auto type = cast<TargetEnumDescriptor<Runtime>>(descriptor);
return type->getGenericArgumentOffset();
}
case ContextDescriptorKind::Struct: {
auto type = cast<TargetStructDescriptor<Runtime>>(descriptor);
return type->getGenericArgumentOffset();
}
default:
return llvm::None;
}
}
/// Read a single generic type argument from a bound generic type
/// metadata.
llvm::Optional<StoredPointer>
readGenericArgFromMetadata(StoredPointer metadata, unsigned index) {
auto Meta = readMetadata(metadata);
if (!Meta)
return llvm::None;
auto descriptorAddress = readAddressOfNominalTypeDescriptor(Meta);
if (!descriptorAddress)
return llvm::None;
// Read the nominal type descriptor.
auto descriptor = readContextDescriptor(descriptorAddress);
if (!descriptor)
return llvm::None;
auto generics = descriptor->getGenericContext();
if (!generics)
return llvm::None;
auto offsetToGenericArgs = readGenericArgsOffset(Meta, descriptor);
if (!offsetToGenericArgs)
return llvm::None;
auto addressOfGenericArgAddress =
(Meta.getAddress() +
*offsetToGenericArgs * sizeof(StoredPointer) +
index * sizeof(StoredPointer));
if (index >= generics->getGenericContextHeader().getNumArguments())
return llvm::None;
StoredPointer genericArgAddress;
if (!Reader->readInteger(RemoteAddress(addressOfGenericArgAddress),
&genericArgAddress))
return llvm::None;
return genericArgAddress;
}
/// Given the address of a nominal type descriptor, attempt to resolve
/// its nominal type declaration.
BuiltNominalTypeDecl readNominalTypeFromDescriptor(StoredPointer address) {
auto descriptor = readContextDescriptor(address);
if (!descriptor)
return BuiltNominalTypeDecl();
return buildNominalTypeDecl(descriptor);
}
/// Try to read the offset of a tuple element from a tuple metadata.
bool readTupleElementOffset(StoredPointer metadataAddress, unsigned eltIndex,
StoredSize *offset) {
// Read the metadata.
auto metadata = readMetadata(metadataAddress);
if (!metadata)
return false;
// Ensure that the metadata actually is tuple metadata.
auto tupleMetadata = dyn_cast<TargetTupleTypeMetadata<Runtime>>(metadata);
if (!tupleMetadata)
return false;
// Ensure that the element is in-bounds.
if (eltIndex >= tupleMetadata->NumElements)
return false;
// Read the offset.
const auto &element = tupleMetadata->getElement(eltIndex);
*offset = element.Offset;
return true;
}
/// Given a remote pointer to class metadata, attempt to read its superclass.
llvm::Optional<StoredPointer>
readOffsetToFirstCaptureFromMetadata(StoredPointer MetadataAddress) {
auto meta = readMetadata(MetadataAddress);
if (!meta || meta->getKind() != MetadataKind::HeapLocalVariable)
return llvm::None;
auto heapMeta = cast<TargetHeapLocalVariableMetadata<Runtime>>(meta);
return heapMeta->OffsetToFirstCapture;
}
/// Given a remote pointer to class metadata, attempt to read its superclass.
llvm::Optional<StoredPointer>
readCaptureDescriptorFromMetadata(StoredPointer MetadataAddress) {
auto meta = readMetadata(MetadataAddress);
if (!meta || meta->getKind() != MetadataKind::HeapLocalVariable)
return llvm::None;
auto heapMeta = cast<TargetHeapLocalVariableMetadata<Runtime>>(meta);
return heapMeta->CaptureDescription;
}
protected:
template<typename Offset>
StoredPointer resolveRelativeOffset(StoredPointer targetAddress) {
Offset relative;
if (!Reader->readInteger(RemoteAddress(targetAddress), &relative))
return 0;
using SignedOffset = typename std::make_signed<Offset>::type;
using SignedPointer = typename std::make_signed<StoredPointer>::type;
auto signext = (SignedPointer)(SignedOffset)relative;
return targetAddress + signext;
}
template<typename Offset>
llvm::Optional<StoredPointer>
resolveNullableRelativeOffset(StoredPointer targetAddress) {
Offset relative;
if (!Reader->readInteger(RemoteAddress(targetAddress), &relative))
return llvm::None;
if (relative == 0)
return 0;
using SignedOffset = typename std::make_signed<Offset>::type;
using SignedPointer = typename std::make_signed<StoredPointer>::type;
auto signext = (SignedPointer)(SignedOffset)relative;
return targetAddress + signext;
}
template<typename Offset>
llvm::Optional<StoredPointer>
resolveNullableRelativeIndirectableOffset(StoredPointer targetAddress) {
Offset relative;
if (!Reader->readInteger(RemoteAddress(targetAddress), &relative))
return llvm::None;
if (relative == 0)
return 0;
bool indirect = relative & 1;
relative &= ~1u;
using SignedOffset = typename std::make_signed<Offset>::type;
using SignedPointer = typename std::make_signed<StoredPointer>::type;
auto signext = (SignedPointer)(SignedOffset)relative;
StoredPointer resultAddress = targetAddress + signext;
// Low bit set in the offset indicates that the offset leads to the absolute
// address in memory.
if (indirect) {
if (!Reader->readBytes(RemoteAddress(resultAddress),
(uint8_t *)&resultAddress,
sizeof(StoredPointer)))
return llvm::None;
}
return resultAddress;
}
template<typename Base, typename Field>
StoredPointer resolveRelativeField(
RemoteRef<Runtime, Base> base, const Field &field) {
// Map the offset from within our local buffer to the remote address.
auto distance = (intptr_t)&field - (intptr_t)base.getLocalBuffer();
return resolveRelativeOffset<int32_t>(base.getAddress() + distance);
}
template<typename Base, typename Field>
llvm::Optional<StoredPointer> resolveNullableRelativeField(
RemoteRef<Runtime, Base> base, const Field &field) {
// Map the offset from within our local buffer to the remote address.
auto distance = (intptr_t)&field - (intptr_t)base.getLocalBuffer();
return resolveNullableRelativeOffset<int32_t>(base.getAddress() + distance);
}
template<typename Base, typename Field>
llvm::Optional<StoredPointer> resolveNullableRelativeIndirectableField(
RemoteRef<Runtime, Base> base, const Field &field) {
// Map the offset from within our local buffer to the remote address.
auto distance = (intptr_t)&field - (intptr_t)base.getLocalBuffer();
return resolveNullableRelativeIndirectableOffset<int32_t>(
base.getAddress() + distance);
}
/// Given a pointer to an Objective-C class, try to read its class name.
bool readObjCClassName(StoredPointer classAddress, std::string &className) {
// The following algorithm only works on the non-fragile Apple runtime.
// Grab the RO-data pointer. This part is not ABI.
StoredPointer roDataPtr = readObjCRODataPtr(classAddress);
if (!roDataPtr) return false;
// This is ABI.
static constexpr auto OffsetToName =
roundUpToAlignment(size_t(12), sizeof(StoredPointer))
+ sizeof(StoredPointer);
// Read the name pointer.
StoredPointer namePtr;
if (!Reader->readInteger(RemoteAddress(roDataPtr + OffsetToName), &namePtr))
return false;
// If the name pointer is null, treat that as an error.
if (!namePtr)
return false;
return Reader->readString(RemoteAddress(namePtr), className);
}
MetadataRef readMetadata(StoredPointer address) {
auto cached = MetadataCache.find(address);
if (cached != MetadataCache.end())
return MetadataRef(address, cached->second.get());
StoredPointer KindValue = 0;
if (!Reader->readInteger(RemoteAddress(address), &KindValue))
return nullptr;
switch (getEnumeratedMetadataKind(KindValue)) {
case MetadataKind::Class:
return _readMetadata<TargetClassMetadata>(address);
case MetadataKind::Enum:
return _readMetadata<TargetEnumMetadata>(address);
case MetadataKind::ErrorObject:
return _readMetadata<TargetEnumMetadata>(address);
case MetadataKind::Existential: {
StoredPointer flagsAddress = address +
sizeof(StoredPointer);
StoredPointer flags;
if (!Reader->readInteger(RemoteAddress(flagsAddress),
&flags))
return nullptr;
StoredPointer numProtocolsAddress = address +
TargetExistentialTypeMetadata<Runtime>::OffsetToNumProtocols;
StoredPointer numProtocols;
if (!Reader->readInteger(RemoteAddress(numProtocolsAddress),
&numProtocols))
return nullptr;
// Make sure the number of protocols is reasonable
if (numProtocols >= 256)
return nullptr;
auto totalSize = sizeof(TargetExistentialTypeMetadata<Runtime>)
+ numProtocols *
sizeof(ConstTargetMetadataPointer<Runtime, TargetProtocolDescriptor>);
if (ExistentialTypeFlags(flags).hasSuperclassConstraint())
totalSize += sizeof(StoredPointer);
return _readMetadata(address, totalSize);
}
case MetadataKind::ExistentialMetatype:
return _readMetadata<TargetExistentialMetatypeMetadata>(address);
case MetadataKind::ForeignClass:
return _readMetadata<TargetForeignClassMetadata>(address);
case MetadataKind::Function: {
StoredSize flagsValue;
auto flagsAddr =
address + TargetFunctionTypeMetadata<Runtime>::OffsetToFlags;
if (!Reader->readInteger(RemoteAddress(flagsAddr), &flagsValue))
return nullptr;
auto flags =
TargetFunctionTypeFlags<StoredSize>::fromIntValue(flagsValue);
auto totalSize =
sizeof(TargetFunctionTypeMetadata<Runtime>) +
flags.getNumParameters() * sizeof(FunctionTypeMetadata::Parameter);
if (flags.hasParameterFlags())
totalSize += flags.getNumParameters() * sizeof(uint32_t);
return _readMetadata(address,
roundUpToAlignment(totalSize, sizeof(void *)));
}
case MetadataKind::HeapGenericLocalVariable:
return _readMetadata<TargetGenericBoxHeapMetadata>(address);
case MetadataKind::HeapLocalVariable:
return _readMetadata<TargetHeapLocalVariableMetadata>(address);
case MetadataKind::Metatype:
return _readMetadata<TargetMetatypeMetadata>(address);
case MetadataKind::ObjCClassWrapper:
return _readMetadata<TargetObjCClassWrapperMetadata>(address);
case MetadataKind::Opaque:
return _readMetadata<TargetOpaqueMetadata>(address);
case MetadataKind::Optional:
return _readMetadata<TargetEnumMetadata>(address);
case MetadataKind::Struct:
return _readMetadata<TargetStructMetadata>(address);
case MetadataKind::Tuple: {
auto numElementsAddress = address +
TargetTupleTypeMetadata<Runtime>::OffsetToNumElements;
StoredSize numElements;
if (!Reader->readInteger(RemoteAddress(numElementsAddress),
&numElements))
return nullptr;
auto totalSize = sizeof(TargetTupleTypeMetadata<Runtime>) +
numElements * sizeof(TupleTypeMetadata::Element);
// Make sure the number of elements is reasonable
if (numElements >= 256)
return nullptr;
return _readMetadata(address, totalSize);
}
}
// We can fall out here if the value wasn't actually a valid
// MetadataKind.
return nullptr;
}
private:
template <template <class R> class M>
MetadataRef _readMetadata(StoredPointer address) {
return _readMetadata(address, sizeof(M<Runtime>));
}
MetadataRef _readMetadata(StoredPointer address, size_t sizeAfter) {
auto size = sizeAfter;
uint8_t *buffer = (uint8_t *) malloc(size);
if (!Reader->readBytes(RemoteAddress(address), buffer, size)) {
free(buffer);
return nullptr;
}
auto metadata = reinterpret_cast<TargetMetadata<Runtime>*>(buffer);
MetadataCache.insert(std::make_pair(address, OwnedMetadataRef(metadata)));
return MetadataRef(address, metadata);
}
StoredPointer
readAddressOfNominalTypeDescriptor(MetadataRef &metadata,
bool skipArtificialSubclasses = false) {
switch (metadata->getKind()) {
case MetadataKind::Class: {
auto classMeta = cast<TargetClassMetadata<Runtime>>(metadata);
while (true) {
auto descriptorAddress = classMeta->getDescription();
// If this class has a null descriptor, it's artificial,
// and we need to skip it upon request. Otherwise, we're done.
if (descriptorAddress || !skipArtificialSubclasses)
return static_cast<StoredPointer>(descriptorAddress);
auto superclassMetadataAddress = classMeta->SuperClass;
if (!superclassMetadataAddress)
return 0;
auto superMeta = readMetadata(superclassMetadataAddress);
if (!superMeta)
return 0;
auto superclassMeta = dyn_cast<TargetClassMetadata<Runtime>>(superMeta);
if (!superclassMeta)
return 0;
classMeta = superclassMeta;
metadata = superMeta;
}
}
case MetadataKind::Struct:
case MetadataKind::Optional:
case MetadataKind::Enum: {
auto valueMeta = cast<TargetValueMetadata<Runtime>>(metadata);
return valueMeta->getDescription();
}
default:
return 0;
}
}
/// Given the address of a nominal type descriptor, attempt to read it.
ContextDescriptorRef
readContextDescriptor(StoredPointer address) {
if (address == 0)
return nullptr;
auto cached = ContextDescriptorCache.find(address);
if (cached != ContextDescriptorCache.end())
return ContextDescriptorRef(address, cached->second.get());
// Read the flags to figure out how much space we should read.
ContextDescriptorFlags flags;
if (!Reader->readBytes(RemoteAddress(address), (uint8_t*)&flags,
sizeof(flags)))
return nullptr;
unsigned baseSize = 0;
unsigned genericHeaderSize = sizeof(GenericContextDescriptorHeader);
bool hasVTable = false;
switch (auto kind = flags.getKind()) {
case ContextDescriptorKind::Module:
baseSize = sizeof(TargetModuleContextDescriptor<Runtime>);
break;
// TODO: Should we include trailing generic arguments in this load?
case ContextDescriptorKind::Extension:
baseSize = sizeof(TargetExtensionContextDescriptor<Runtime>);
break;
case ContextDescriptorKind::Anonymous:
baseSize = sizeof(TargetAnonymousContextDescriptor<Runtime>);
break;
case ContextDescriptorKind::Class:
baseSize = sizeof(TargetClassDescriptor<Runtime>);
genericHeaderSize = sizeof(TypeGenericContextDescriptorHeader);
hasVTable = TypeContextDescriptorFlags(flags.getKindSpecificFlags())
.class_hasVTable();
break;
case ContextDescriptorKind::Enum:
baseSize = sizeof(TargetEnumDescriptor<Runtime>);
genericHeaderSize = sizeof(TypeGenericContextDescriptorHeader);
break;
case ContextDescriptorKind::Struct:
baseSize = sizeof(TargetStructDescriptor<Runtime>);
genericHeaderSize = sizeof(TypeGenericContextDescriptorHeader);
break;
default:
// We don't know about this kind of context.
return nullptr;
}
// Determine the full size of the descriptor. This is reimplementing a fair
// bit of TrailingObjects but for out-of-process; maybe there's a way to
// factor the layout stuff out...
unsigned genericsSize = 0;
if (flags.isGeneric()) {
GenericContextDescriptorHeader header;
auto headerAddr = address
+ baseSize
+ genericHeaderSize
- sizeof(header);
if (!Reader->readBytes(RemoteAddress(headerAddr),
(uint8_t*)&header, sizeof(header)))
return nullptr;
genericsSize = genericHeaderSize
+ (header.NumParams + 3u & ~3u)
+ header.NumRequirements
* sizeof(TargetGenericRequirementDescriptor<Runtime>);
}
unsigned vtableSize = 0;
if (hasVTable) {
TargetVTableDescriptorHeader<Runtime> header;
auto headerAddr = address
+ baseSize
+ genericsSize;
if (!Reader->readBytes(RemoteAddress(headerAddr),
(uint8_t*)&header, sizeof(header)))
return nullptr;
vtableSize = sizeof(header)
+ header.VTableSize * sizeof(TargetMethodDescriptor<Runtime>);
}
unsigned size = baseSize + genericsSize + vtableSize;
auto buffer = (uint8_t *)malloc(size);
if (!Reader->readBytes(RemoteAddress(address), buffer, size)) {
free(buffer);
return nullptr;
}
auto descriptor
= reinterpret_cast<TargetContextDescriptor<Runtime> *>(buffer);
ContextDescriptorCache.insert(
std::make_pair(address, OwnedContextDescriptorRef(descriptor)));
return ContextDescriptorRef(address, descriptor);
}
ContextDescriptorRef
readParentContextDescriptor(ContextDescriptorRef base) {
auto parentAddress =
resolveNullableRelativeIndirectableField(base, base->Parent);
if (parentAddress) {
return readContextDescriptor(*parentAddress);
}
return nullptr;
}
/// Given a read nominal type descriptor, attempt to build a demangling tree
/// for it.
Demangle::NodePointer
buildNominalTypeMangling(ContextDescriptorRef descriptor,
Demangle::NodeFactory &nodeFactory) {
std::vector<std::pair<Demangle::Node::Kind, std::string>>
nameComponents;
ContextDescriptorRef parent = descriptor;
while (parent) {
std::string nodeName;
Demangle::Node::Kind nodeKind;
auto getTypeName = [&]() -> bool {
auto typeBuffer =
reinterpret_cast<const TargetTypeContextDescriptor<Runtime> *>
(parent.getLocalBuffer());
auto nameAddress = resolveRelativeField(parent, typeBuffer->Name);
return Reader->readString(RemoteAddress(nameAddress), nodeName);
};
bool isTypeContext = false;
switch (auto contextKind = parent->getKind()) {
case ContextDescriptorKind::Class:
if (!getTypeName())
return nullptr;
nodeKind = Demangle::Node::Kind::Class;
isTypeContext = true;
break;
case ContextDescriptorKind::Struct:
if (!getTypeName())
return nullptr;
nodeKind = Demangle::Node::Kind::Structure;
isTypeContext = true;
break;
case ContextDescriptorKind::Enum:
if (!getTypeName())
return nullptr;
nodeKind = Demangle::Node::Kind::Enum;
isTypeContext = true;
break;
case ContextDescriptorKind::Extension:
// TODO: Remangle something about the extension context here.
return nullptr;
case ContextDescriptorKind::Anonymous:
// TODO: Remangle something about the anonymous context here.
return nullptr;
case ContextDescriptorKind::Module: {
nodeKind = Demangle::Node::Kind::Module;
auto moduleBuffer =
reinterpret_cast<const TargetModuleContextDescriptor<Runtime> *>(
parent.getLocalBuffer());
auto nameAddress
= resolveRelativeField(parent, moduleBuffer->Name);
if (!Reader->readString(RemoteAddress(nameAddress), nodeName))
return nullptr;
break;
}
default:
// Not a kind of context we know about.
return nullptr;
}
// Override the node kind if this was a Clang-imported type.
if (isTypeContext) {
auto typeFlags =
TypeContextDescriptorFlags(parent->Flags.getKindSpecificFlags());
if (typeFlags.isCTag())
nodeKind = Demangle::Node::Kind::Structure;
else if (typeFlags.isCTypedef())
nodeKind = Demangle::Node::Kind::TypeAlias;
}
nameComponents.emplace_back(nodeKind, nodeName);
parent = readParentContextDescriptor(parent);
}
// We should have made our way up to a module context.
if (nameComponents.empty())
return nullptr;
if (nameComponents.back().first != Node::Kind::Module)
return nullptr;
auto moduleInfo = std::move(nameComponents.back());
nameComponents.pop_back();
auto demangling =
nodeFactory.createNode(Node::Kind::Module, moduleInfo.second);
for (auto &component : reversed(nameComponents)) {
auto name = nodeFactory.createNode(Node::Kind::Identifier,
component.second);
auto parent = nodeFactory.createNode(component.first);
parent->addChild(demangling, nodeFactory);
parent->addChild(name, nodeFactory);
demangling = parent;
}
auto top = nodeFactory.createNode(Node::Kind::Type);
top->addChild(demangling, nodeFactory);
return top;
}
/// Given a read nominal type descriptor, attempt to build a
/// nominal type decl from it.
BuiltNominalTypeDecl
buildNominalTypeDecl(ContextDescriptorRef descriptor) {
// Build the demangling tree from the context tree.
Demangle::NodeFactory nodeFactory;
auto node = buildNominalTypeMangling(descriptor, nodeFactory);
if (!node)
return BuiltNominalTypeDecl();
BuiltNominalTypeDecl decl = Builder.createNominalTypeDecl(node);
return decl;
}
OwnedProtocolDescriptorRef
readProtocolDescriptor(StoredPointer Address) {
auto Size = sizeof(TargetProtocolDescriptor<Runtime>);
auto Buffer = (uint8_t *)malloc(Size);
if (!Reader->readBytes(RemoteAddress(Address), Buffer, Size)) {
free(Buffer);
return nullptr;
}
auto Casted
= reinterpret_cast<TargetProtocolDescriptor<Runtime> *>(Buffer);
return OwnedProtocolDescriptorRef(Casted);
}
// TODO: We need to be able to produce protocol conformances for each
// substitution type as well in order to accurately rebuild bound generic
// types or types in protocol-constrained inner contexts.
std::vector<BuiltType>
getGenericSubst(MetadataRef metadata, ContextDescriptorRef descriptor) {
auto generics = descriptor->getGenericContext();
if (!generics)
return {};
auto numGenericArgs =
generics->getGenericContextHeader().getNumArguments();
auto offsetToGenericArgs = readGenericArgsOffset(metadata, descriptor);
if (!offsetToGenericArgs)
return {};
auto genericArgsAddr = metadata.getAddress()
+ sizeof(StoredPointer) * *offsetToGenericArgs;
std::vector<BuiltType> builtSubsts;
for (auto param : generics->getGenericParams()) {
switch (param.getKind()) {
case GenericParamKind::Type:
// We don't know about type parameters with extra arguments.
if (param.hasExtraArgument()) {
return {};
}
// The type should have a key argument unless it's been same-typed
// to another type.
if (param.hasKeyArgument()) {
if (numGenericArgs == 0)
return {};
--numGenericArgs;
StoredPointer arg;
if (!Reader->readBytes(RemoteAddress(genericArgsAddr),
(uint8_t*)&arg, sizeof(arg))) {
return {};
}
genericArgsAddr += sizeof(StoredPointer);
auto builtArg = readTypeFromMetadata(arg);
if (!builtArg)
return {};
builtSubsts.push_back(builtArg);
} else {
// TODO: If the key argument has been concretized by a same-type
// constraint, that should be reflected in the built nominal type
// decl's generic constraints. This isn't handled correctly yet.
return {};
}
break;
default:
// We don't know about this kind of parameter.
return {};
}
}
return builtSubsts;
}
BuiltType readNominalTypeFromMetadata(MetadataRef origMetadata,
bool skipArtificialSubclasses = false) {
auto metadata = origMetadata;
auto descriptorAddress =
readAddressOfNominalTypeDescriptor(metadata,
skipArtificialSubclasses);
if (!descriptorAddress)
return BuiltType();
// If we've skipped an artificial subclasses, check the cache at
// the superclass. (This also protects against recursion.)
if (skipArtificialSubclasses &&
metadata.getAddress() != origMetadata.getAddress()) {
auto it = TypeCache.find(metadata.getAddress());
if (it != TypeCache.end())
return it->second;
}
// Read the nominal type descriptor.
ContextDescriptorRef descriptor = readContextDescriptor(descriptorAddress);
if (!descriptor)
return BuiltType();
// From that, attempt to resolve a nominal type.
BuiltNominalTypeDecl typeDecl = buildNominalTypeDecl(descriptor);
if (!typeDecl)
return BuiltType();
// Build the nominal type.
BuiltType nominal;
if (descriptor->isGeneric()) {
// Resolve the generic arguments.
auto builtGenerics = getGenericSubst(metadata, descriptor);
if (builtGenerics.empty())
return BuiltType();
nominal = Builder.createBoundGenericType(typeDecl, builtGenerics);
} else {
nominal = Builder.createNominalType(typeDecl);
}
if (!nominal)
return BuiltType();
TypeCache[metadata.getAddress()] = nominal;
// If we've skipped an artificial subclass, remove the
// recursion-protection entry we made for it.
if (skipArtificialSubclasses &&
metadata.getAddress() != origMetadata.getAddress()) {
TypeCache.erase(origMetadata.getAddress());
}
return nominal;
}
/// Given that the remote process is running the non-fragile Apple runtime,
/// grab the ro-data from a class pointer.
StoredPointer readObjCRODataPtr(StoredPointer classAddress) {
// WARNING: the following algorithm works on current modern Apple
// runtimes but is not actually ABI. But it is pretty reliable.
StoredPointer dataPtr;
if (!Reader->readInteger(RemoteAddress(classAddress +
TargetClassMetadata<Runtime>::offsetToData()),
&dataPtr))
return StoredPointer();
// Apply the data-pointer mask.
// These values have been stolen from the runtime source.
static constexpr uint64_t DataPtrMask =
(Runtime::PointerSize == 8 ? 0x00007ffffffffff8ULL : 0xfffffffcULL);
dataPtr &= StoredPointer(DataPtrMask);
if (!dataPtr)
return StoredPointer();
// Read the flags, which is a 32-bit header on both formats.
uint32_t flags;
if (!Reader->readInteger(RemoteAddress(dataPtr), &flags))
return StoredPointer();
// If the type is not realized, this is the RO-data.
static constexpr uint32_t RO_REALIZED = 0x80000000U;
if (!(flags & RO_REALIZED))
return dataPtr;
// Otherwise, it's the RW-data; read the RO-data pointer from a
// well-known position within the RW-data.
static constexpr uint32_t OffsetToROPtr = 8;
if (!Reader->readInteger(RemoteAddress(dataPtr + OffsetToROPtr), &dataPtr))
return StoredPointer();
return dataPtr;
}
IsaEncodingKind getIsaEncoding() {
if (IsaEncoding != IsaEncodingKind::Unknown)
return IsaEncoding;
auto finish = [&](IsaEncodingKind result) -> IsaEncodingKind {
IsaEncoding = result;
return result;
};
/// Look up the given global symbol and bind 'varname' to its
/// address if its exists.
# define tryFindSymbol(varname, symbolName) \
auto varname = Reader->getSymbolAddress(symbolName); \
if (!varname) \
return finish(IsaEncodingKind::Error)
/// Read from the given pointer into 'dest'.
# define tryReadSymbol(varname, dest) do { \
if (!Reader->readInteger(varname, &dest)) \
return finish(IsaEncodingKind::Error); \
} while (0)
/// Read from the given global symbol into 'dest'.
# define tryFindAndReadSymbol(dest, symbolName) do { \
tryFindSymbol(_address, symbolName); \
tryReadSymbol(_address, dest); \
} while (0)
// Check for the magic-mask symbol that indicates that the ObjC
// runtime is using indexed ISAs.
if (auto magicMaskAddress =
Reader->getSymbolAddress("objc_debug_indexed_isa_magic_mask")) {
tryReadSymbol(magicMaskAddress, IsaMagicMask);
if (IsaMagicMask != 0) {
tryFindAndReadSymbol(IsaMagicValue,
"objc_debug_indexed_isa_magic_value");
tryFindAndReadSymbol(IsaIndexMask,
"objc_debug_indexed_isa_index_mask");
tryFindAndReadSymbol(IsaIndexShift,
"objc_debug_indexed_isa_index_shift");
tryFindSymbol(indexedClasses, "objc_indexed_classes");
IndexedClassesPointer = indexedClasses.getAddressData();
tryFindSymbol(indexedClassesCount, "objc_indexed_classes_count");
IndexedClassesCountPointer = indexedClassesCount.getAddressData();
return finish(IsaEncodingKind::Indexed);
}
}
// Check for the ISA mask symbol. This has to come second because
// the standard library will define this even if the ObjC runtime
// doesn't use it.
if (auto maskAddress = Reader->getSymbolAddress("swift_isaMask")) {
tryReadSymbol(maskAddress, IsaMask);
if (IsaMask != 0) {
return finish(IsaEncodingKind::Masked);
}
}
return finish(IsaEncodingKind::None);
}
template <class T>
static constexpr T roundUpToAlignment(T offset, T alignment) {
return (offset + alignment - 1) & ~(alignment - 1);
}
};
} // end namespace remote
} // end namespace swift
namespace llvm {
template<typename Runtime, typename T>
struct simplify_type<swift::remote::RemoteRef<Runtime, T>> {
typedef const T *SimpleType;
static SimpleType
getSimplifiedValue(swift::remote::RemoteRef<Runtime, T> value) {
return value.getLocalBuffer();
}
};
}
#endif // SWIFT_REFLECTION_READER_H