blob: 3edb44db25404e857843d25c0d2400285f3316d5 [file] [log] [blame]
//===--- DeadFunctionElimination.cpp - Eliminate dead functions -----------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-dead-function-elimination"
#include "swift/AST/ProtocolConformance.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SIL/PatternMatch.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SILOptimizer/Utils/Local.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
using namespace swift;
STATISTIC(NumDeadFunc, "Number of dead functions eliminated");
STATISTIC(NumEliminatedExternalDefs, "Number of external function definitions eliminated");
llvm::cl::opt<bool> RemoveDeadConformances(
"remove-dead-conformances", llvm::cl::init(false),
llvm::cl::desc("Remove dead conformances"));
namespace {
/// This is a base class for passes that are based on function liveness
/// computations like e.g. dead function elimination.
/// It provides a common logic for computing live (i.e. reachable) functions.
class FunctionLivenessComputation {
protected:
/// Represents a function which is implementing a vtable or witness table
/// method.
struct FuncImpl {
FuncImpl(SILFunction *F, ClassDecl *Cl) : F(F) { Impl.Cl = Cl; }
FuncImpl(SILFunction *F, ProtocolConformance *C) : F(F) { Impl.Conf = C; }
/// The implementing function.
SILFunction *F;
union {
/// In case of a vtable method.
ClassDecl *Cl;
/// In case of a witness method.
ProtocolConformance *Conf;
} Impl;
};
/// Stores which functions implement a vtable or witness table method.
struct MethodInfo {
MethodInfo(bool isWitnessMethod) :
methodIsCalled(false), isWitnessMethod(isWitnessMethod) {}
/// All functions which implement the method. Together with the class for
/// which the function implements the method. In case of a witness method,
/// the class pointer is null.
SmallVector<FuncImpl, 8> implementingFunctions;
/// True, if the method is called, meaning that any of it's implementations
/// may be called.
bool methodIsCalled;
/// True if this is a witness method, false if it's a vtable method.
bool isWitnessMethod;
/// Adds an implementation of the method in a specific class.
void addClassMethodImpl(SILFunction *F, ClassDecl *C) {
assert(!isWitnessMethod);
implementingFunctions.push_back(FuncImpl(F, C));
}
/// Adds an implementation of the method in a specific conformance.
void addWitnessFunction(SILFunction *F, ProtocolConformance *Conf) {
assert(isWitnessMethod);
implementingFunctions.push_back(FuncImpl(F, Conf));
}
};
SILModule *Module;
llvm::DenseMap<AbstractFunctionDecl *, MethodInfo *> MethodInfos;
llvm::SpecificBumpPtrAllocator<MethodInfo> MethodInfoAllocator;
llvm::SmallSetVector<SILFunction *, 16> Worklist;
llvm::SmallPtrSet<void *, 32> AliveFunctionsAndTables;
ConformanceCollector FoundConformances;
/// Checks is a function is alive, e.g. because it is visible externally.
bool isAnchorFunction(SILFunction *F) {
// Remove internal functions that are not referenced by anything.
if (isPossiblyUsedExternally(F->getLinkage(), Module->isWholeModule()))
return true;
// ObjC functions are called through the runtime and are therefore alive
// even if not referenced inside SIL.
if (F->getRepresentation() == SILFunctionTypeRepresentation::ObjCMethod)
return true;
// If function is marked as "keep-as-public", don't remove it.
// Change its linkage to public, so that other applications can refer to it.
// It is important that this transformation is done at the end of
// a pipeline, as it may break some optimizations.
if (F->isKeepAsPublic()) {
F->setLinkage(SILLinkage::Public);
DEBUG(llvm::dbgs() << "DFE: Preserve the specialization "
<< F->getName() << '\n');
return true;
}
return false;
}
/// Gets or creates the MethodInfo for a vtable or witness table method.
/// \p decl The method declaration. In case of a vtable method this is always
/// the most overridden method.
MethodInfo *getMethodInfo(AbstractFunctionDecl *decl, bool isWitnessMethod) {
MethodInfo *&entry = MethodInfos[decl];
if (entry == nullptr) {
entry = new (MethodInfoAllocator.Allocate()) MethodInfo(isWitnessMethod);
}
assert(entry->isWitnessMethod == isWitnessMethod);
return entry;
}
/// Returns true if a function is marked as alive.
bool isAlive(SILFunction *F) {
return AliveFunctionsAndTables.count(F) != 0;
}
/// Returns true if a witness table is marked as alive.
bool isAlive(SILWitnessTable *WT) {
return AliveFunctionsAndTables.count(WT) != 0;
}
/// Marks a function as alive.
void makeAlive(SILFunction *F) {
AliveFunctionsAndTables.insert(F);
assert(F && "function does not exist");
Worklist.insert(F);
}
/// Marks all contained functions and witness tables of a witness table as
/// alive.
void makeAlive(SILWitnessTable *WT) {
DEBUG(llvm::dbgs() << " scan witness table " << WT->getName() << '\n');
AliveFunctionsAndTables.insert(WT);
for (const SILWitnessTable::Entry &entry : WT->getEntries()) {
switch (entry.getKind()) {
case SILWitnessTable::Method: {
auto methodWitness = entry.getMethodWitness();
auto *fd = cast<AbstractFunctionDecl>(methodWitness.Requirement.
getDecl());
assert(fd == getBase(fd) && "key in witness table is overridden");
SILFunction *F = methodWitness.Witness;
if (F) {
MethodInfo *MI = getMethodInfo(fd, /*isWitnessMethod*/ true);
if (MI->methodIsCalled || !F->isDefinition())
ensureAlive(F);
}
} break;
case SILWitnessTable::AssociatedTypeProtocol: {
ProtocolConformanceRef CRef =
entry.getAssociatedTypeProtocolWitness().Witness;
if (CRef.isConcrete())
ensureAliveConformance(CRef.getConcrete());
break;
}
case SILWitnessTable::BaseProtocol:
ensureAliveConformance(entry.getBaseProtocolWitness().Witness);
break;
case SILWitnessTable::Invalid:
case SILWitnessTable::MissingOptional:
case SILWitnessTable::AssociatedType:
break;
}
}
}
/// Marks a function as alive if it is not alive yet.
void ensureAlive(SILFunction *F) {
if (!isAlive(F))
makeAlive(F);
}
/// Marks a witness table as alive if it is not alive yet.
void ensureAliveConformance(const ProtocolConformance *C) {
SILWitnessTable *WT = Module->lookUpWitnessTable(C,
/*deserializeLazily*/ false);
if (!WT || isAlive(WT))
return;
makeAlive(WT);
}
/// Returns true if \a Derived is the same as \p Base or derived from it.
static bool isDerivedOrEqual(ClassDecl *Derived, ClassDecl *Base) {
for (;;) {
if (Derived == Base)
return true;
if (!Derived->hasSuperclass())
break;
Derived = Derived->getSuperclass()->getClassOrBoundGenericClass();
}
return false;
}
/// Returns true if the implementation of method \p FD in class \p ImplCl
/// may be called when the type of the class_method's operand is \p MethodCl.
/// Both, \p MethodCl and \p ImplCl, may by null if not known or if it's a
/// protocol method.
static bool canHaveSameImplementation(FuncDecl *FD, ClassDecl *MethodCl,
ClassDecl *ImplCl) {
if (!FD || !MethodCl || !ImplCl)
return true;
// All implementations of derived classes may be called.
if (isDerivedOrEqual(ImplCl, MethodCl))
return true;
// Check if the method implementation is the same in a super class, i.e.
// it is not overridden in the derived class.
auto *Impl1 = MethodCl->findImplementingMethod(FD);
assert(Impl1);
auto *Impl2 = ImplCl->findImplementingMethod(FD);
assert(Impl2);
return Impl1 == Impl2;
}
/// Marks the implementing functions of the method \p FD as alive. If it is a
/// class method, \p MethodCl is the type of the class_method instruction's
/// operand.
void ensureAliveClassMethod(MethodInfo *mi, FuncDecl *FD, ClassDecl *MethodCl) {
if (mi->methodIsCalled)
return;
bool allImplsAreCalled = true;
for (FuncImpl &FImpl : mi->implementingFunctions) {
if (!isAlive(FImpl.F) &&
canHaveSameImplementation(FD, MethodCl, FImpl.Impl.Cl)) {
makeAlive(FImpl.F);
} else {
allImplsAreCalled = false;
}
}
if (allImplsAreCalled)
mi->methodIsCalled = true;
}
/// Marks the implementing functions of the protocol method \p mi as alive.
void ensureAliveProtocolMethod(MethodInfo *mi) {
assert(mi->isWitnessMethod);
if (mi->methodIsCalled)
return;
mi->methodIsCalled = true;
for (FuncImpl &FImpl : mi->implementingFunctions) {
if (FImpl.Impl.Conf) {
SILWitnessTable *WT = Module->lookUpWitnessTable(FImpl.Impl.Conf,
/*deserializeLazily*/ false);
if (!WT || isAlive(WT))
makeAlive(FImpl.F);
} else {
makeAlive(FImpl.F);
}
}
}
/// Gets the base implementation of a method.
/// We always use the most overridden function to describe a method.
AbstractFunctionDecl *getBase(AbstractFunctionDecl *FD) {
while (FD->getOverriddenDecl()) {
FD = FD->getOverriddenDecl();
}
return FD;
}
/// Scans all references inside a function.
void scanFunction(SILFunction *F) {
DEBUG(llvm::dbgs() << " scan function " << F->getName() << '\n');
size_t ExistingNumConfs = FoundConformances.getUsedConformances().size();
size_t ExistingMetaTypes = FoundConformances.getEscapingMetaTypes().size();
// First scan all instructions of the function.
for (SILBasicBlock &BB : *F) {
for (SILInstruction &I : BB) {
if (auto *WMI = dyn_cast<WitnessMethodInst>(&I)) {
auto *funcDecl = cast<AbstractFunctionDecl>(WMI->getMember().getDecl());
assert(funcDecl == getBase(funcDecl));
MethodInfo *mi = getMethodInfo(funcDecl, /*isWitnessTable*/ true);
ensureAliveProtocolMethod(mi);
} else if (auto *MI = dyn_cast<MethodInst>(&I)) {
auto *funcDecl = getBase(
cast<AbstractFunctionDecl>(MI->getMember().getDecl()));
assert(MI->getNumOperands() - MI->getNumTypeDependentOperands() == 1
&& "method insts except witness_method must have 1 operand");
ClassDecl *MethodCl = MI->getOperand(0)->getType().
getClassOrBoundGenericClass();
MethodInfo *mi = getMethodInfo(funcDecl, /*isWitnessTable*/ false);
ensureAliveClassMethod(mi, dyn_cast<FuncDecl>(funcDecl), MethodCl);
} else if (auto *FRI = dyn_cast<FunctionRefInst>(&I)) {
ensureAlive(FRI->getReferencedFunction());
}
if (RemoveDeadConformances)
FoundConformances.collect(&I);
}
}
// Now we scan all _new_ conformances we found in the function.
auto UsedConfs = FoundConformances.getUsedConformances();
for (size_t Idx = ExistingNumConfs; Idx < UsedConfs.size(); ++Idx) {
ensureAliveConformance(UsedConfs[Idx]);
}
// All conformances of a type for which the meta-type escapes, must stay
// alive.
auto UsedMTs = FoundConformances.getEscapingMetaTypes();
for (size_t Idx = ExistingMetaTypes; Idx < UsedMTs.size(); ++Idx) {
const NominalTypeDecl *NT = UsedMTs[Idx];
auto Confs = NT->getAllConformances();
for (ProtocolConformance *C : Confs) {
ensureAliveConformance(C);
}
}
}
/// Retrieve the visibility information from the AST.
bool isVisibleExternally(const ValueDecl *decl) {
Accessibility accessibility = decl->getEffectiveAccess();
SILLinkage linkage;
switch (accessibility) {
case Accessibility::Private:
case Accessibility::FilePrivate:
linkage = SILLinkage::Private;
break;
case Accessibility::Internal:
linkage = SILLinkage::Hidden;
break;
case Accessibility::Public:
case Accessibility::Open:
linkage = SILLinkage::Public;
break;
}
if (isPossiblyUsedExternally(linkage, Module->isWholeModule()))
return true;
// If a vtable or witness table (method) is only visible in another module
// it can be accessed inside that module and we don't see this access.
// We hit this case e.g. if a table is imported from the stdlib.
if (decl->getDeclContext()->getParentModule() != Module->getSwiftModule())
return true;
return false;
}
/// Find anchors in vtables and witness tables, if required.
virtual void findAnchorsInTables() = 0;
/// Find all functions which are alive from the beginning.
/// For example, functions which may be referenced externally.
void findAnchors() {
findAnchorsInTables();
for (SILFunction &F : *Module) {
if (isAnchorFunction(&F)) {
DEBUG(llvm::dbgs() << " anchor function: " << F.getName() << "\n");
ensureAlive(&F);
}
if (!F.shouldOptimize()) {
DEBUG(llvm::dbgs() << " anchor a no optimization function: " << F.getName() << "\n");
ensureAlive(&F);
}
}
for (SILGlobalVariable &G : Module->getSILGlobalList()) {
if (SILFunction *initFunc = G.getInitializer()) {
ensureAlive(initFunc);
}
}
}
public:
FunctionLivenessComputation(SILModule *module) :
Module(module), FoundConformances(*module) {}
/// The main entry point of the optimization.
bool findAliveFunctions() {
DEBUG(llvm::dbgs() << "running function elimination\n");
// Find everything which may not be eliminated, e.g. because it is accessed
// externally.
findAnchors();
// The core of the algorithm: Mark functions as alive which can be reached
// from the anchors.
while (!Worklist.empty()) {
SILFunction *F = Worklist.back();
Worklist.pop_back();
scanFunction(F);
}
FoundConformances.clear();
return false;
}
virtual ~FunctionLivenessComputation() {}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// DeadFunctionElimination
//===----------------------------------------------------------------------===//
namespace {
class DeadFunctionElimination : FunctionLivenessComputation {
void collectMethodImplementations() {
// Collect vtable method implementations.
for (SILVTable &vTable : Module->getVTableList()) {
for (const SILVTable::Entry &entry : vTable.getEntries()) {
// We don't need to collect destructors because we mark them as alive
// anyway.
if (entry.Method.kind == SILDeclRef::Kind::Deallocator ||
entry.Method.kind == SILDeclRef::Kind::IVarDestroyer) {
continue;
}
SILFunction *F = entry.Implementation;
auto *fd = getBase(cast<AbstractFunctionDecl>(entry.Method.getDecl()));
MethodInfo *mi = getMethodInfo(fd, /*isWitnessTable*/ false);
mi->addClassMethodImpl(F, vTable.getClass());
}
}
// Collect witness method implementations.
for (SILWitnessTable &WT : Module->getWitnessTableList()) {
ProtocolConformance *Conf = WT.getConformance();
for (const SILWitnessTable::Entry &entry : WT.getEntries()) {
if (entry.getKind() != SILWitnessTable::Method)
continue;
auto methodWitness = entry.getMethodWitness();
auto *fd = cast<AbstractFunctionDecl>(methodWitness.Requirement.
getDecl());
assert(fd == getBase(fd) && "key in witness table is overridden");
SILFunction *F = methodWitness.Witness;
if (!F)
continue;
MethodInfo *mi = getMethodInfo(fd, /*isWitnessTable*/ true);
mi->addWitnessFunction(F, Conf);
}
}
// Collect default witness method implementations.
for (SILDefaultWitnessTable &WT : Module->getDefaultWitnessTableList()) {
for (const SILDefaultWitnessTable::Entry &entry : WT.getEntries()) {
if (!entry.isValid())
continue;
SILFunction *F = entry.getWitness();
auto *fd = cast<AbstractFunctionDecl>(entry.getRequirement().getDecl());
MethodInfo *mi = getMethodInfo(fd, /*isWitnessTable*/ true);
mi->addWitnessFunction(F, nullptr);
}
}
}
/// DeadFunctionElimination pass takes functions
/// reachable via vtables and witness_tables into account
/// when computing a function liveness information.
void findAnchorsInTables() override {
collectMethodImplementations();
// Check vtable methods.
for (SILVTable &vTable : Module->getVTableList()) {
for (const SILVTable::Entry &entry : vTable.getEntries()) {
if (entry.Method.kind == SILDeclRef::Kind::Deallocator ||
entry.Method.kind == SILDeclRef::Kind::IVarDestroyer) {
// Destructors are alive because they are called from swift_release
ensureAlive(entry.Implementation);
continue;
}
SILFunction *F = entry.Implementation;
auto *fd = getBase(cast<AbstractFunctionDecl>(entry.Method.getDecl()));
if (// A conservative approach: if any of the overridden functions is
// visible externally, we mark the whole method as alive.
isPossiblyUsedExternally(entry.Linkage, Module->isWholeModule())
// We also have to check the method declaration's accessibility.
// Needed if it's a public base method declared in another
// compilation unit (for this we have no SILFunction).
|| isVisibleExternally(fd)
// Declarations are always accessible externally, so they are alive.
|| !F->isDefinition()) {
MethodInfo *mi = getMethodInfo(fd, /*isWitnessTable*/ false);
ensureAliveClassMethod(mi, nullptr, nullptr);
}
}
}
// Check witness table methods.
for (SILWitnessTable &WT : Module->getWitnessTableList()) {
ProtocolConformance *Conf = WT.getConformance();
if (isVisibleExternally(Conf->getProtocol())) {
// The witness table is visible from "outside". Therefore all methods
// might be called and we mark all methods as alive.
for (const SILWitnessTable::Entry &entry : WT.getEntries()) {
if (entry.getKind() != SILWitnessTable::Method)
continue;
auto methodWitness = entry.getMethodWitness();
auto *fd = cast<AbstractFunctionDecl>(methodWitness.Requirement.
getDecl());
assert(fd == getBase(fd) && "key in witness table is overridden");
SILFunction *F = methodWitness.Witness;
if (!F)
continue;
MethodInfo *mi = getMethodInfo(fd, /*isWitnessTable*/ true);
ensureAliveProtocolMethod(mi);
}
}
ProtocolConformance *C = WT.getConformance();
CanType ConformingTy = C->getType()->getCanonicalType();
if (!RemoveDeadConformances || ConformingTy.isAnyClassReferenceType()) {
// We are very conservative with class conformances. Even if a private/
// internal class is never instantiated, it might be created via
// reflection by using the stdlib's _getTypeByMangledName function.
makeAlive(&WT);
} else {
NominalTypeDecl *decl = ConformingTy.getNominalOrBoundGenericNominal();
assert(decl);
if (isVisibleExternally(decl))
makeAlive(&WT);
}
}
// Check default witness methods.
for (SILDefaultWitnessTable &WT : Module->getDefaultWitnessTableList()) {
if (isVisibleExternally(WT.getProtocol())) {
// The default witness table is visible from "outside". Therefore all
// methods might be called and we mark all methods as alive.
for (const SILDefaultWitnessTable::Entry &entry : WT.getEntries()) {
if (!entry.isValid())
continue;
auto *fd =
cast<AbstractFunctionDecl>(entry.getRequirement().getDecl());
assert(fd == getBase(fd) &&
"key in default witness table is overridden");
SILFunction *F = entry.getWitness();
if (!F)
continue;
MethodInfo *mi = getMethodInfo(fd, /*isWitnessTable*/ true);
ensureAliveProtocolMethod(mi);
}
}
}
}
/// Removes all dead methods from vtables and witness tables.
void removeDeadEntriesFromTables() {
for (SILVTable &vTable : Module->getVTableList()) {
vTable.removeEntries_if([this](SILVTable::Entry &entry) -> bool {
if (!isAlive(entry.Implementation)) {
DEBUG(llvm::dbgs() << " erase dead vtable method " <<
entry.Implementation->getName() << "\n");
return true;
}
return false;
});
}
auto &WitnessTables = Module->getWitnessTableList();
for (auto WI = WitnessTables.begin(), EI = WitnessTables.end(); WI != EI;) {
SILWitnessTable *WT = &*WI;
WI++;
WT->clearMethods_if([this](const SILWitnessTable::MethodWitness &MW) -> bool {
if (!isAlive(MW.Witness)) {
DEBUG(llvm::dbgs() << " erase dead witness method " <<
MW.Witness->getName() << "\n");
return true;
}
return false;
});
}
auto DefaultWitnessTables = Module->getDefaultWitnessTables();
for (auto WI = DefaultWitnessTables.begin(),
EI = DefaultWitnessTables.end();
WI != EI;) {
SILDefaultWitnessTable *WT = &*WI;
WI++;
WT->clearMethods_if([this](SILFunction *MW) -> bool {
if (!MW)
return false;
if (!isAlive(MW)) {
DEBUG(llvm::dbgs() << " erase dead default witness method "
<< MW->getName() << "\n");
return true;
}
return false;
});
}
}
public:
DeadFunctionElimination(SILModule *module)
: FunctionLivenessComputation(module) {}
/// The main entry point of the optimization.
void eliminateFunctions(SILModuleTransform *DFEPass) {
DEBUG(llvm::dbgs() << "running dead function elimination\n");
findAliveFunctions();
removeDeadEntriesFromTables();
// First drop all references so that we don't get problems with non-zero
// reference counts of dead functions.
std::vector<SILFunction *> DeadFunctions;
for (SILFunction &F : *Module) {
if (!isAlive(&F)) {
F.dropAllReferences();
DeadFunctions.push_back(&F);
}
}
// Next step: delete dead witness tables.
SILModule::WitnessTableListType &WTables = Module->getWitnessTableList();
for (auto Iter = WTables.begin(), End = WTables.end(); Iter != End;) {
SILWitnessTable *Wt = &*Iter;
Iter++;
if (!isAlive(Wt)) {
DEBUG(llvm::dbgs() << " erase dead witness table " << Wt->getName()
<< '\n');
Module->deleteWitnessTable(Wt);
}
}
// Last step: delete all dead functions.
auto InvalidateEverything = SILAnalysis::InvalidationKind::Everything;
while (!DeadFunctions.empty()) {
SILFunction *F = DeadFunctions.back();
DeadFunctions.pop_back();
DEBUG(llvm::dbgs() << " erase dead function " << F->getName() << "\n");
NumDeadFunc++;
DFEPass->invalidateAnalysisForDeadFunction(F, InvalidateEverything);
Module->eraseFunction(F);
}
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// ExternalFunctionDefinitionsElimination
//===----------------------------------------------------------------------===//
namespace {
/// This pass performs removal of external function definitions for a sake of
/// reducing the amount of code to run through IRGen. It is supposed to run very
/// late in the pipeline, after devirtualization, inlining and specialization
/// passes.
///
/// NOTE:
/// Overall, this pass does not try to remove any information which can be
/// useful for LLVM code generation, e.g. for analysis of function's
/// side-effects. Therefore it does not remove bodies of any external functions
/// that are alive, because LLVM may analyze their bodies to determine their
/// side-effects and use it to achieve a better optimization.
///
/// Current implementation does not consider functions which are reachable only
/// via vtables or witness_tables as alive and removes their bodies, because
/// even if they would be kept around, LLVM does not know how to look at
/// function definitions through Swift's vtables and witness_tables.
///
/// TODO:
/// Once there is a proper support for IPO in Swift compiler and/or there is
/// a way to communicate function's side-effects without providing its body
/// (e.g. by means of SILFunction flags, attributes, etc), it should be
/// safe to remove bodies of all external definitions.
class ExternalFunctionDefinitionsElimination : FunctionLivenessComputation {
/// ExternalFunctionDefinitionsElimination pass does not take functions
/// reachable via vtables and witness_tables into account when computing
/// a function liveness information. The only exceptions are external
/// transparent functions, because bodies of external transparent functions
/// should never be removed.
void findAnchorsInTables() override {
// Check vtable methods.
for (SILVTable &vTable : Module->getVTableList()) {
for (auto &entry : vTable.getEntries()) {
SILFunction *F = entry.Implementation;
if (F->isTransparent() && isAvailableExternally(F->getLinkage()))
ensureAlive(F);
}
}
// Check witness methods.
for (SILWitnessTable &WT : Module->getWitnessTableList()) {
isVisibleExternally(WT.getConformance()->getProtocol());
for (const SILWitnessTable::Entry &entry : WT.getEntries()) {
if (entry.getKind() != SILWitnessTable::Method)
continue;
auto methodWitness = entry.getMethodWitness();
SILFunction *F = methodWitness.Witness;
if (!F)
continue;
if (F->isTransparent() && isAvailableExternally(F->getLinkage()))
ensureAlive(F);
}
}
// Check default witness methods.
for (SILDefaultWitnessTable &WT : Module->getDefaultWitnessTableList()) {
for (const SILDefaultWitnessTable::Entry &entry : WT.getEntries()) {
if (!entry.isValid())
continue;
SILFunction *F = entry.getWitness();
if (F->isTransparent() && isAvailableExternally(F->getLinkage()))
ensureAlive(F);
}
}
}
bool findAliveFunctions() {
/// TODO: Once there is a proper support for IPO,
/// bodies of all external functions can be removed.
/// Therefore there is no need for a liveness computation.
/// The next line can be just replaced by:
/// return false;
// Keep all transparent functions alive. This is important because we have
// to generate code for transparent functions.
// Here we handle the special case if a transparent function is referenced
// from a non-externally-available function (i.e. a function for which we
// generate code). And those function is only reachable through a
// vtable/witness-table. In such a case we would not visit the transparent
// function in findAliveFunctions() because we don't consider vtables/
// witness-tables as anchors.
for (SILFunction &F : *Module) {
if (isAvailableExternally(F.getLinkage()))
continue;
for (SILBasicBlock &BB : F) {
for (SILInstruction &I : BB) {
if (auto *FRI = dyn_cast<FunctionRefInst>(&I)) {
SILFunction *RefF = FRI->getReferencedFunction();
if (RefF->isTransparent() && RefF->isFragile())
ensureAlive(RefF);
}
}
}
}
return FunctionLivenessComputation::findAliveFunctions();
}
/// Try to convert definition into declaration.
/// Returns true if function was erased from the module.
bool tryToConvertExternalDefinitionIntoDeclaration(SILFunction *F) {
// Bail if it is a declaration already
if (!F->isDefinition())
return false;
// Bail if there is no external implementation of this function.
if (!F->isAvailableExternally())
return false;
// Bail if has a shared visibility, as there are no guarantees
// that an implementation is available elsewhere.
if (hasSharedVisibility(F->getLinkage()))
return false;
// Make this definition a declaration by removing the body of a function.
DEBUG(llvm::dbgs() << " removed external function " << F->getName()
<< "\n");
F->dropAllReferences();
auto &Blocks = F->getBlocks();
Blocks.clear();
assert(F->isExternalDeclaration() &&
"Function should be an external declaration");
NumEliminatedExternalDefs++;
return true;
}
public:
ExternalFunctionDefinitionsElimination(SILModule *module)
: FunctionLivenessComputation(module) {}
/// Eliminate bodies of external functions which are not alive.
///
/// Bodies of alive functions should not be removed, as LLVM may
/// still need them for analyzing their side-effects.
void eliminateFunctions(SILModuleTransform *DFEPass) {
findAliveFunctions();
// Get rid of definitions for all global functions that are not marked as
// alive.
for (auto FI = Module->begin(), EI = Module->end(); FI != EI;) {
SILFunction *F = &*FI;
++FI;
// Do not remove bodies of any functions that are alive.
if (!isAlive(F)) {
if (tryToConvertExternalDefinitionIntoDeclaration(F)) {
DFEPass->invalidateAnalysisForDeadFunction(F,
SILAnalysis::InvalidationKind::Everything);
if (F->getRefCount() == 0)
F->getModule().eraseFunction(F);
}
}
}
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Pass Definition and Entry Points
//===----------------------------------------------------------------------===//
namespace {
class SILDeadFuncElimination : public SILModuleTransform {
void run() override {
DEBUG(llvm::dbgs() << "Running DeadFuncElimination\n");
// The deserializer caches functions that it deserializes so that if it is
// asked to deserialize that function again, it does not do extra work. This
// causes the function's reference count to be incremented causing it to be
// alive unnecessarily. We invalidate the SILLoaderCaches here so that we
// can eliminate such functions.
getModule()->invalidateSILLoaderCaches();
DeadFunctionElimination deadFunctionElimination(getModule());
deadFunctionElimination.eliminateFunctions(this);
}
StringRef getName() override { return "Dead Function Elimination"; }
};
class SILExternalFuncDefinitionsElimination : public SILModuleTransform {
void run() override {
DEBUG(llvm::dbgs() << "Running ExternalFunctionDefinitionsElimination\n");
// The deserializer caches functions that it deserializes so that if it is
// asked to deserialize that function again, it does not do extra work. This
// causes the function's reference count to be incremented causing it to be
// alive unnecessarily. We invalidate the SILLoaderCaches here so that we
// can eliminate the definitions of such functions.
getModule()->invalidateSILLoaderCaches();
ExternalFunctionDefinitionsElimination EFDFE(getModule());
EFDFE.eliminateFunctions(this);
}
StringRef getName() override {
return "External Function Definitions Elimination";
}
};
} // end anonymous namespace
SILTransform *swift::createDeadFunctionElimination() {
return new SILDeadFuncElimination();
}
SILTransform *swift::createExternalFunctionDefinitionsElimination() {
return new SILExternalFuncDefinitionsElimination();
}
void swift::performSILDeadFunctionElimination(SILModule *M) {
SILPassManager PM(M);
llvm::SmallVector<PassKind, 1> Pass = {PassKind::DeadFunctionElimination};
PM.executePassPipelinePlan(
SILPassPipelinePlan::getPassPipelineForKinds(Pass));
}