blob: 7407c7a2f56010b60eebcbb2b95d2b090bfbb09c [file] [log] [blame]
//===--- SILGenExpr.cpp - Implements Lowering of ASTs -> SIL for Exprs ----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "SILGen.h"
#include "Condition.h"
#include "Scope.h"
#include "swift/AST/AST.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DiagnosticsCommon.h"
#include "swift/AST/Expr.h"
#include "swift/AST/ForeignErrorConvention.h"
#include "swift/AST/Types.h"
#include "swift/Basic/SourceManager.h"
#include "swift/Basic/type_traits.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILUndef.h"
#include "swift/SIL/TypeLowering.h"
#include "swift/SIL/DynamicCasts.h"
#include "ExitableFullExpr.h"
#include "Initialization.h"
#include "LValue.h"
#include "RValue.h"
#include "ArgumentSource.h"
#include "SILGenDynamicCast.h"
#include "Varargs.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ConvertUTF.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/SaveAndRestore.h"
#include "swift/AST/DiagnosticsSIL.h"
using namespace swift;
using namespace Lowering;
ManagedValue SILGenFunction::emitManagedRetain(SILLocation loc,
SILValue v) {
auto &lowering = F.getTypeLowering(v->getType());
return emitManagedRetain(loc, v, lowering);
}
ManagedValue SILGenFunction::emitManagedRetain(SILLocation loc,
SILValue v,
const TypeLowering &lowering) {
assert(lowering.getLoweredType() == v->getType());
if (lowering.isTrivial())
return ManagedValue::forUnmanaged(v);
assert(!lowering.isAddressOnly() && "cannot retain an unloadable type");
v = lowering.emitCopyValue(B, loc, v);
return emitManagedRValueWithCleanup(v, lowering);
}
ManagedValue SILGenFunction::emitManagedLoadCopy(SILLocation loc, SILValue v) {
auto &lowering = F.getTypeLowering(v->getType());
return emitManagedLoadCopy(loc, v, lowering);
}
ManagedValue SILGenFunction::emitManagedLoadCopy(SILLocation loc, SILValue v,
const TypeLowering &lowering) {
assert(lowering.getLoweredType().getAddressType() == v->getType());
v = lowering.emitLoadOfCopy(B, loc, v, IsNotTake);
if (lowering.isTrivial())
return ManagedValue::forUnmanaged(v);
assert(!lowering.isAddressOnly() && "cannot retain an unloadable type");
return emitManagedRValueWithCleanup(v, lowering);
}
ManagedValue SILGenFunction::emitManagedLoadBorrow(SILLocation loc,
SILValue v) {
auto &lowering = F.getTypeLowering(v->getType());
return emitManagedLoadBorrow(loc, v, lowering);
}
ManagedValue
SILGenFunction::emitManagedLoadBorrow(SILLocation loc, SILValue v,
const TypeLowering &lowering) {
assert(lowering.getLoweredType().getAddressType() == v->getType());
if (lowering.isTrivial()) {
v = lowering.emitLoadOfCopy(B, loc, v, IsNotTake);
return ManagedValue::forUnmanaged(v);
}
assert(!lowering.isAddressOnly() && "cannot retain an unloadable type");
auto *lbi = B.createLoadBorrow(loc, v);
return emitManagedBorrowedRValueWithCleanup(v, lbi, lowering);
}
ManagedValue SILGenFunction::emitManagedStoreBorrow(SILLocation loc, SILValue v,
SILValue addr) {
auto &lowering = F.getTypeLowering(v->getType());
return emitManagedStoreBorrow(loc, v, addr, lowering);
}
ManagedValue SILGenFunction::emitManagedStoreBorrow(
SILLocation loc, SILValue v, SILValue addr, const TypeLowering &lowering) {
assert(lowering.getLoweredType().getObjectType() == v->getType());
if (lowering.isTrivial()) {
lowering.emitStore(B, loc, v, addr, StoreOwnershipQualifier::Trivial);
return ManagedValue::forUnmanaged(v);
}
assert(!lowering.isAddressOnly() && "cannot retain an unloadable type");
auto *sbi = B.createStoreBorrow(loc, v, addr);
return emitManagedBorrowedRValueWithCleanup(sbi->getSrc(), sbi, lowering);
}
ManagedValue SILGenFunction::emitManagedBeginBorrow(SILLocation loc,
SILValue v) {
if (v.getOwnershipKind() == ValueOwnershipKind::Guaranteed)
return ManagedValue::forUnmanaged(v);
auto &lowering = F.getTypeLowering(v->getType());
return emitManagedBeginBorrow(loc, v, lowering);
}
ManagedValue
SILGenFunction::emitManagedBeginBorrow(SILLocation loc, SILValue v,
const TypeLowering &lowering) {
assert(lowering.getLoweredType().getObjectType() ==
v->getType().getObjectType());
if (lowering.isTrivial())
return ManagedValue::forUnmanaged(v);
if (v.getOwnershipKind() == ValueOwnershipKind::Guaranteed)
return ManagedValue::forUnmanaged(v);
auto *bbi = B.createBeginBorrow(loc, v);
return emitManagedBorrowedRValueWithCleanup(v, bbi, lowering);
}
namespace {
struct EndBorrowCleanup : Cleanup {
SILValue originalValue;
SILValue borrowedValue;
EndBorrowCleanup(SILValue originalValue, SILValue borrowedValue)
: originalValue(originalValue), borrowedValue(borrowedValue) {}
void emit(SILGenFunction &gen, CleanupLocation l) override {
gen.B.createEndBorrow(l, borrowedValue, originalValue);
}
void dump(SILGenFunction &gen) const override {
#ifndef NDEBUG
llvm::errs() << "EndBorrowCleanup "
<< "State:" << getState() << "\n"
<< "original:" << originalValue << "borrowed:" << borrowedValue
<< "\n";
#endif
}
};
struct FormalEvaluationEndBorrowCleanup : Cleanup {
FormalEvaluationContext::stable_iterator Depth;
FormalEvaluationEndBorrowCleanup() : Depth() {}
void emit(SILGenFunction &gen, CleanupLocation l) override {
getEvaluation(gen).finish(gen);
}
void dump(SILGenFunction &gen) const override {
#ifndef NDEBUG
llvm::errs() << "FormalEvaluationEndBorrowCleanup "
<< "State:" << getState() << "\n"
<< "original:" << getOriginalValue(gen) << "\n"
<< "borrowed:" << getBorrowedValue(gen) << "\n";
#endif
}
SharedBorrowFormalAccess &getEvaluation(SILGenFunction &gen) const {
auto &evaluation = *gen.FormalEvalContext.find(Depth);
assert(evaluation.getKind() == FormalAccess::Shared);
return static_cast<SharedBorrowFormalAccess &>(evaluation);
}
SILValue getOriginalValue(SILGenFunction &gen) const {
return getEvaluation(gen).getOriginalValue();
}
SILValue getBorrowedValue(SILGenFunction &gen) const {
return getEvaluation(gen).getBorrowedValue();
}
};
} // end anonymous namespace
ManagedValue
SILGenFunction::emitFormalEvaluationManagedBeginBorrow(SILLocation loc,
SILValue v) {
if (v.getOwnershipKind() == ValueOwnershipKind::Guaranteed)
return ManagedValue::forUnmanaged(v);
auto &lowering = F.getTypeLowering(v->getType());
return emitFormalEvaluationManagedBeginBorrow(loc, v, lowering);
}
ManagedValue SILGenFunction::emitFormalEvaluationManagedBeginBorrow(
SILLocation loc, SILValue v, const TypeLowering &lowering) {
assert(lowering.getLoweredType().getObjectType() ==
v->getType().getObjectType());
if (lowering.isTrivial())
return ManagedValue::forUnmanaged(v);
if (v.getOwnershipKind() == ValueOwnershipKind::Guaranteed)
return ManagedValue::forUnmanaged(v);
auto *bbi = B.createBeginBorrow(loc, v);
return emitFormalEvaluationManagedBorrowedRValueWithCleanup(loc, v, bbi,
lowering);
}
ManagedValue
SILGenFunction::emitFormalEvaluationManagedBorrowedRValueWithCleanup(
SILLocation loc, SILValue original, SILValue borrowed) {
auto &lowering = F.getTypeLowering(original->getType());
return emitFormalEvaluationManagedBorrowedRValueWithCleanup(
loc, original, borrowed, lowering);
}
ManagedValue
SILGenFunction::emitFormalEvaluationManagedBorrowedRValueWithCleanup(
SILLocation loc, SILValue original, SILValue borrowed,
const TypeLowering &lowering) {
assert(lowering.getLoweredType().getObjectType() ==
original->getType().getObjectType());
if (lowering.isTrivial())
return ManagedValue::forUnmanaged(borrowed);
if (!borrowed->getType().isObject()) {
return ManagedValue(borrowed, CleanupHandle::invalid());
}
assert(InWritebackScope && "Must be in formal evaluation scope");
auto &cleanup = Cleanups.pushCleanup<FormalEvaluationEndBorrowCleanup>();
CleanupHandle handle = Cleanups.getTopCleanup();
FormalEvalContext.push<SharedBorrowFormalAccess>(loc, handle, original,
borrowed);
cleanup.Depth = FormalEvalContext.stable_begin();
return ManagedValue(borrowed, CleanupHandle::invalid());
}
ManagedValue
SILGenFunction::emitManagedBorrowedRValueWithCleanup(SILValue original,
SILValue borrowed) {
assert(original->getType().getObjectType() ==
borrowed->getType().getObjectType());
auto &lowering = F.getTypeLowering(original->getType());
return emitManagedBorrowedRValueWithCleanup(original, borrowed, lowering);
}
ManagedValue SILGenFunction::emitManagedBorrowedRValueWithCleanup(
SILValue original, SILValue borrowed, const TypeLowering &lowering) {
assert(lowering.getLoweredType().getObjectType() ==
original->getType().getObjectType());
if (lowering.isTrivial())
return ManagedValue::forUnmanaged(borrowed);
if (borrowed->getType().isObject()) {
Cleanups.pushCleanup<EndBorrowCleanup>(original, borrowed);
}
return ManagedValue(borrowed, CleanupHandle::invalid());
}
ManagedValue SILGenFunction::emitManagedRValueWithCleanup(SILValue v) {
auto &lowering = F.getTypeLowering(v->getType());
return emitManagedRValueWithCleanup(v, lowering);
}
ManagedValue SILGenFunction::emitManagedRValueWithCleanup(SILValue v,
const TypeLowering &lowering) {
assert(lowering.getLoweredType() == v->getType());
if (lowering.isTrivial())
return ManagedValue::forUnmanaged(v);
return ManagedValue(v, enterDestroyCleanup(v));
}
ManagedValue SILGenFunction::emitManagedBufferWithCleanup(SILValue v) {
auto &lowering = F.getTypeLowering(v->getType());
return emitManagedBufferWithCleanup(v, lowering);
}
ManagedValue SILGenFunction::emitManagedBufferWithCleanup(SILValue v,
const TypeLowering &lowering) {
assert(lowering.getLoweredType().getAddressType() == v->getType() ||
!silConv.useLoweredAddresses());
if (lowering.isTrivial())
return ManagedValue::forUnmanaged(v);
return ManagedValue(v, enterDestroyCleanup(v));
}
void SILGenFunction::emitExprInto(Expr *E, Initialization *I) {
// Handle the special case of copying an lvalue.
if (auto load = dyn_cast<LoadExpr>(E)) {
FormalEvaluationScope writeback(*this);
auto lv = emitLValue(load->getSubExpr(), AccessKind::Read);
emitCopyLValueInto(E, std::move(lv), I);
return;
}
RValue result = emitRValue(E, SGFContext(I));
if (result)
std::move(result).forwardInto(*this, E, I);
}
namespace {
class RValueEmitter
: public Lowering::ExprVisitor<RValueEmitter, RValue, SGFContext>
{
typedef Lowering::ExprVisitor<RValueEmitter,RValue,SGFContext> super;
public:
SILGenFunction &SGF;
RValueEmitter(SILGenFunction &SGF) : SGF(SGF) {}
using super::visit;
RValue visit(Expr *E) {
assert(!E->getType()->is<LValueType>() &&
!E->getType()->is<InOutType>() &&
"RValueEmitter shouldn't be called on lvalues");
return visit(E, SGFContext());
}
// These always produce lvalues.
RValue visitInOutExpr(InOutExpr *E, SGFContext C) {
LValue lv = SGF.emitLValue(E->getSubExpr(), AccessKind::ReadWrite);
return RValue(SGF, E, SGF.emitAddressOfLValue(E->getSubExpr(),
std::move(lv),
AccessKind::ReadWrite));
}
RValue visitApplyExpr(ApplyExpr *E, SGFContext C);
RValue visitDiscardAssignmentExpr(DiscardAssignmentExpr *E, SGFContext C) {
llvm_unreachable("cannot appear in rvalue");
}
RValue visitDeclRefExpr(DeclRefExpr *E, SGFContext C);
RValue visitTypeExpr(TypeExpr *E, SGFContext C);
RValue visitSuperRefExpr(SuperRefExpr *E, SGFContext C);
RValue visitOtherConstructorDeclRefExpr(OtherConstructorDeclRefExpr *E,
SGFContext C);
RValue visitForceTryExpr(ForceTryExpr *E, SGFContext C);
RValue visitOptionalTryExpr(OptionalTryExpr *E, SGFContext C);
RValue visitNilLiteralExpr(NilLiteralExpr *E, SGFContext C);
RValue visitIntegerLiteralExpr(IntegerLiteralExpr *E, SGFContext C);
RValue visitFloatLiteralExpr(FloatLiteralExpr *E, SGFContext C);
RValue visitBooleanLiteralExpr(BooleanLiteralExpr *E, SGFContext C);
RValue emitStringLiteral(Expr *E, StringRef Str, SGFContext C,
StringLiteralExpr::Encoding encoding);
RValue visitStringLiteralExpr(StringLiteralExpr *E, SGFContext C);
RValue visitLoadExpr(LoadExpr *E, SGFContext C);
RValue visitDerivedToBaseExpr(DerivedToBaseExpr *E, SGFContext C);
RValue visitMetatypeConversionExpr(MetatypeConversionExpr *E,
SGFContext C);
RValue visitCollectionUpcastConversionExpr(
CollectionUpcastConversionExpr *E,
SGFContext C);
RValue visitArchetypeToSuperExpr(ArchetypeToSuperExpr *E, SGFContext C);
RValue visitUnresolvedTypeConversionExpr(UnresolvedTypeConversionExpr *E,
SGFContext C);
RValue visitFunctionConversionExpr(FunctionConversionExpr *E,
SGFContext C);
RValue visitCovariantFunctionConversionExpr(
CovariantFunctionConversionExpr *E,
SGFContext C);
RValue visitCovariantReturnConversionExpr(
CovariantReturnConversionExpr *E,
SGFContext C);
RValue visitErasureExpr(ErasureExpr *E, SGFContext C);
RValue visitAnyHashableErasureExpr(AnyHashableErasureExpr *E, SGFContext C);
RValue visitForcedCheckedCastExpr(ForcedCheckedCastExpr *E,
SGFContext C);
RValue visitConditionalCheckedCastExpr(ConditionalCheckedCastExpr *E,
SGFContext C);
RValue visitIsExpr(IsExpr *E, SGFContext C);
RValue visitCoerceExpr(CoerceExpr *E, SGFContext C);
RValue visitTupleExpr(TupleExpr *E, SGFContext C);
RValue visitMemberRefExpr(MemberRefExpr *E, SGFContext C);
RValue visitDynamicMemberRefExpr(DynamicMemberRefExpr *E, SGFContext C);
RValue visitDotSyntaxBaseIgnoredExpr(DotSyntaxBaseIgnoredExpr *E,
SGFContext C);
RValue visitTupleElementExpr(TupleElementExpr *E, SGFContext C);
RValue visitSubscriptExpr(SubscriptExpr *E, SGFContext C);
RValue visitDynamicSubscriptExpr(DynamicSubscriptExpr *E,
SGFContext C);
RValue visitTupleShuffleExpr(TupleShuffleExpr *E, SGFContext C);
RValue visitDynamicTypeExpr(DynamicTypeExpr *E, SGFContext C);
RValue visitCaptureListExpr(CaptureListExpr *E, SGFContext C);
RValue visitAbstractClosureExpr(AbstractClosureExpr *E, SGFContext C);
RValue visitInterpolatedStringLiteralExpr(InterpolatedStringLiteralExpr *E,
SGFContext C);
RValue visitObjectLiteralExpr(ObjectLiteralExpr *E, SGFContext C);
RValue visitEditorPlaceholderExpr(EditorPlaceholderExpr *E, SGFContext C);
RValue visitObjCSelectorExpr(ObjCSelectorExpr *E, SGFContext C);
RValue visitObjCKeyPathExpr(ObjCKeyPathExpr *E, SGFContext C);
RValue visitMagicIdentifierLiteralExpr(MagicIdentifierLiteralExpr *E,
SGFContext C);
RValue visitCollectionExpr(CollectionExpr *E, SGFContext C);
RValue visitRebindSelfInConstructorExpr(RebindSelfInConstructorExpr *E,
SGFContext C);
RValue visitInjectIntoOptionalExpr(InjectIntoOptionalExpr *E, SGFContext C);
RValue visitLValueToPointerExpr(LValueToPointerExpr *E, SGFContext C);
RValue visitClassMetatypeToObjectExpr(ClassMetatypeToObjectExpr *E,
SGFContext C);
RValue visitExistentialMetatypeToObjectExpr(ExistentialMetatypeToObjectExpr *E,
SGFContext C);
RValue visitProtocolMetatypeToObjectExpr(ProtocolMetatypeToObjectExpr *E,
SGFContext C);
RValue visitIfExpr(IfExpr *E, SGFContext C);
RValue visitAssignExpr(AssignExpr *E, SGFContext C);
RValue visitEnumIsCaseExpr(EnumIsCaseExpr *E, SGFContext C);
RValue visitBindOptionalExpr(BindOptionalExpr *E, SGFContext C);
RValue visitOptionalEvaluationExpr(OptionalEvaluationExpr *E,
SGFContext C);
RValue visitForceValueExpr(ForceValueExpr *E, SGFContext C);
RValue emitForceValue(SILLocation loc, Expr *E,
unsigned numOptionalEvaluations,
SGFContext C);
RValue visitOpenExistentialExpr(OpenExistentialExpr *E, SGFContext C);
RValue visitMakeTemporarilyEscapableExpr(
MakeTemporarilyEscapableExpr *E, SGFContext C);
RValue visitOpaqueValueExpr(OpaqueValueExpr *E, SGFContext C);
RValue visitInOutToPointerExpr(InOutToPointerExpr *E, SGFContext C);
RValue visitArrayToPointerExpr(ArrayToPointerExpr *E, SGFContext C);
RValue visitStringToPointerExpr(StringToPointerExpr *E, SGFContext C);
RValue visitPointerToPointerExpr(PointerToPointerExpr *E, SGFContext C);
RValue visitForeignObjectConversionExpr(ForeignObjectConversionExpr *E,
SGFContext C);
RValue visitUnevaluatedInstanceExpr(UnevaluatedInstanceExpr *E,
SGFContext C);
};
} // end anonymous namespace
RValue RValueEmitter::visitApplyExpr(ApplyExpr *E, SGFContext C) {
return SGF.emitApplyExpr(E, C);
}
SILValue SILGenFunction::emitEmptyTuple(SILLocation loc) {
return B.createTuple(loc,
getLoweredType(TupleType::getEmpty(SGM.M.getASTContext())), {});
}
/// Emit the specified declaration as an address if possible,
/// otherwise return null.
ManagedValue SILGenFunction::emitLValueForDecl(SILLocation loc, VarDecl *var,
CanType formalRValueType,
AccessKind accessKind,
AccessSemantics semantics) {
// For local decls, use the address we allocated or the value if we have it.
auto It = VarLocs.find(var);
if (It != VarLocs.end()) {
// If this has an address, return it. By-value let's have no address.
SILValue ptr = It->second.value;
if (ptr->getType().isAddress())
return ManagedValue::forLValue(ptr);
// Otherwise, it is an RValue let.
return ManagedValue();
}
switch (var->getAccessStrategy(semantics, accessKind)) {
case AccessStrategy::Storage:
// The only kind of stored variable that should make it to here is
// a global variable. Just invoke its accessor function to get its
// address.
return emitGlobalVariableRef(loc, var);
case AccessStrategy::Addressor: {
LValue lvalue =
emitLValueForAddressedNonMemberVarDecl(loc, var, formalRValueType,
accessKind, semantics);
return emitAddressOfLValue(loc, std::move(lvalue), accessKind);
}
case AccessStrategy::DirectToAccessor:
case AccessStrategy::DispatchToAccessor:
return ManagedValue();
case AccessStrategy::BehaviorStorage:
// TODO: Behaviors aren't supported on non-instance properties yet.
llvm_unreachable("not implemented");
}
llvm_unreachable("bad access strategy");
}
namespace {
/// Thie is a simple cleanup class that is only meant to help with delegating
/// initializers. Specifically, if the delegating initializer fails to consume
/// the loaded self, we want to write back self into the slot to ensure that
/// ownership is preserved.
struct DelegateInitSelfWritebackCleanup : Cleanup {
/// We store our own loc so that we can ensure that DI ignores our writeback.
SILLocation loc;
SILValue lvalueAddress;
SILValue value;
DelegateInitSelfWritebackCleanup(SILLocation loc, SILValue lvalueAddress,
SILValue value)
: loc(loc), lvalueAddress(lvalueAddress), value(value) {}
void emit(SILGenFunction &gen, CleanupLocation) override {
gen.emitSemanticStore(loc, value, lvalueAddress,
gen.F.getTypeLowering(lvalueAddress->getType()),
IsInitialization);
}
void dump(SILGenFunction &gen) const override {
#ifndef NDEBUG
llvm::errs() << "SimpleWritebackCleanup "
<< "State:" << getState() << "\n"
<< "lvalueAddress:" << lvalueAddress << "value:" << value
<< "\n";
#endif
}
};
} // end anonymous namespace
CleanupHandle SILGenFunction::enterDelegateInitSelfWritebackCleanup(
SILLocation loc, SILValue address, SILValue newValue) {
Cleanups.pushCleanup<DelegateInitSelfWritebackCleanup>(loc, address,
newValue);
return Cleanups.getTopCleanup();
}
RValue SILGenFunction::emitRValueForSelfInDelegationInit(SILLocation loc,
CanType refType,
SILValue addr,
SGFContext C) {
assert(SelfInitDelegationState != SILGenFunction::NormalSelf &&
"This should never be called unless we are in a delegation sequence");
assert(F.getTypeLowering(addr->getType()).isLoadable() &&
"Make sure that we are not dealing with semantic rvalues");
// If we are currently in the WillSharedBorrowSelf state, then we know that
// old self is not the self to our delegating initializer. Self in this case
// to the delegating initializer is a metatype. Thus, we perform a
// load_borrow. And move from WillSharedBorrowSelf -> DidSharedBorrowSelf.
if (SelfInitDelegationState == SILGenFunction::WillSharedBorrowSelf) {
SelfInitDelegationState = SILGenFunction::DidSharedBorrowSelf;
ManagedValue result =
B.createFormalAccessLoadBorrow(loc, ManagedValue::forUnmanaged(addr));
return RValue(*this, loc, refType, result);
}
// If we are already in the did shared borrow self state, just return the
// shared borrow value.
if (SelfInitDelegationState == SILGenFunction::DidSharedBorrowSelf) {
ManagedValue result =
B.createFormalAccessLoadBorrow(loc, ManagedValue::forUnmanaged(addr));
return RValue(*this, loc, refType, result);
}
// If we are in WillExclusiveBorrowSelf, then we need to perform an exclusive
// borrow (i.e. a load take) and then move to DidExclusiveBorrowSelf.
if (SelfInitDelegationState == SILGenFunction::WillExclusiveBorrowSelf) {
const auto &typeLowering = F.getTypeLowering(addr->getType());
SelfInitDelegationState = SILGenFunction::DidExclusiveBorrowSelf;
SILValue self =
emitLoad(loc, addr, typeLowering, C, IsTake, false).forward(*this);
// Forward our initial value for init delegation self and create a new
// cleanup that performs a writeback at the end of lexical scope if our
// value is not consumed.
InitDelegationSelf = ManagedValue(
self, enterDelegateInitSelfWritebackCleanup(*InitDelegationLoc, addr, self));
InitDelegationSelfBox = addr;
return RValue(*this, loc, refType, InitDelegationSelf);
}
// If we hit this point, we must have DidExclusiveBorrowSelf. Thus borrow
// self.
assert(SelfInitDelegationState == SILGenFunction::DidExclusiveBorrowSelf);
// If we do not have a super init delegation self, just perform a formal
// access borrow and return. This occurs with delegating initializers.
if (!SuperInitDelegationSelf) {
return RValue(*this, loc, refType,
InitDelegationSelf.formalAccessBorrow(*this, loc));
}
// Otherwise, we had an upcast of some sort due to a chaining
// initializer. This means that we need to perform a borrow from
// SuperInitDelegationSelf and then downcast that borrow.
ManagedValue borrowedUpcast =
SuperInitDelegationSelf.formalAccessBorrow(*this, loc);
SILValue castedBorrowedType = B.createUncheckedRefCast(
loc, borrowedUpcast.getValue(), InitDelegationSelf.getType());
return RValue(*this, loc, refType,
ManagedValue::forUnmanaged(castedBorrowedType));
}
RValue SILGenFunction::
emitRValueForDecl(SILLocation loc, ConcreteDeclRef declRef, Type ncRefType,
AccessSemantics semantics, SGFContext C) {
assert(!ncRefType->is<LValueType>() &&
"RValueEmitter shouldn't be called on lvalues");
// Any writebacks for this access are tightly scoped.
FormalEvaluationScope scope(*this);
// If this is a decl that we have an lvalue for, produce and return it.
ValueDecl *decl = declRef.getDecl();
if (!ncRefType) {
ncRefType = decl->getInnermostDeclContext()->mapTypeIntoContext(
decl->getInterfaceType());
}
CanType refType = ncRefType->getCanonicalType();
auto getUnmanagedRValue = [&](SILValue value) -> RValue {
return RValue(*this, loc, refType, ManagedValue::forUnmanaged(value));
};
// If this is a reference to a module, produce an undef value. The
// module value should never actually be used.
if (isa<ModuleDecl>(decl)) {
return getUnmanagedRValue(
SILUndef::get(getLoweredLoadableType(ncRefType), SGM.M));
}
// If this is a reference to a type, produce a metatype.
if (isa<TypeDecl>(decl)) {
assert(refType->is<MetatypeType>() &&
"type declref does not have metatype type?!");
return getUnmanagedRValue(B.createMetatype(loc, getLoweredType(refType)));
}
// If this is a reference to a var, produce an address or value.
if (auto *var = dyn_cast<VarDecl>(decl)) {
assert(!declRef.isSpecialized() &&
"Cannot handle specialized variable references");
// If this VarDecl is represented as an address, emit it as an lvalue, then
// perform a load to get the rvalue.
if (ManagedValue result =
emitLValueForDecl(loc, var, refType, AccessKind::Read, semantics)) {
bool guaranteedValid = false;
IsTake_t shouldTake = IsNotTake;
// We should only end up in this path for local and global variables,
// i.e. ones whose lifetime is assured for the duration of the evaluation.
// Therefore, if the variable is a constant, the value is guaranteed
// valid as well.
if (var->isLet())
guaranteedValid = true;
// If we have self, see if we are in an 'init' delegation sequence. If so,
// call out to the special delegation init routine. Otherwise, use the
// normal RValue emission logic.
if (var->getName() == getASTContext().Id_self &&
SelfInitDelegationState != NormalSelf) {
return emitRValueForSelfInDelegationInit(loc, refType,
result.getLValueAddress(), C);
}
return RValue(*this, loc, refType,
emitLoad(loc, result.getLValueAddress(),
getTypeLowering(refType), C, shouldTake,
guaranteedValid));
}
// For local decls, use the address we allocated or the value if we have it.
auto It = VarLocs.find(decl);
if (It != VarLocs.end()) {
// Mutable lvalue and address-only 'let's are LValues.
assert(!It->second.value->getType().isAddress() &&
"LValue cases should be handled above");
SILValue Scalar = It->second.value;
// For weak and unowned types, convert the reference to the right
// pointer.
if (Scalar->getType().is<ReferenceStorageType>()) {
Scalar = emitConversionToSemanticRValue(loc, Scalar,
getTypeLowering(refType));
// emitConversionToSemanticRValue always produces a +1 strong result.
return RValue(*this, loc,
refType, emitManagedRValueWithCleanup(Scalar));
}
// This is a let, so we can make guarantees, so begin the borrow scope.
ManagedValue Result = emitManagedBeginBorrow(loc, Scalar);
// If the client can't handle a +0 result, retain it to get a +1.
// This is a 'let', so we can make guarantees.
return RValue(*this, loc, refType,
C.isGuaranteedPlusZeroOk()
? Result : Result.copyUnmanaged(*this, loc));
}
assert(var->hasAccessorFunctions() && "Unknown rvalue case");
bool isDirectAccessorUse = (semantics == AccessSemantics::DirectToAccessor);
SILDeclRef getter = getGetterDeclRef(var, isDirectAccessorUse);
ArgumentSource selfSource;
// Global properties have no base or subscript. Static properties
// use the metatype as their base.
// FIXME: This has to be dynamically looked up for classes, and
// dynamically instantiated for generics.
if (var->isStatic()) {
auto baseTy = cast<NominalTypeDecl>(var->getDeclContext())
->getDeclaredInterfaceType();
assert(!baseTy->is<BoundGenericType>() &&
"generic static stored properties not implemented");
assert((baseTy->getStructOrBoundGenericStruct() ||
baseTy->getEnumOrBoundGenericEnum()) &&
"static stored properties for classes/protocols not implemented");
auto baseMeta = MetatypeType::get(baseTy)->getCanonicalType();
auto metatype = B.createMetatype(loc,
getLoweredLoadableType(baseMeta));
auto metatypeMV = ManagedValue::forUnmanaged(metatype);
auto metatypeRV = RValue(*this, loc, baseMeta, metatypeMV);
selfSource = ArgumentSource(loc, std::move(metatypeRV));
}
return emitGetAccessor(loc, getter,
SGM.getNonMemberVarDeclSubstitutions(var),
std::move(selfSource),
/*isSuper=*/false, isDirectAccessorUse,
RValue(), C);
}
// If the referenced decl isn't a VarDecl, it should be a constant of some
// sort.
// If the referenced decl is a local func with context, then the SILDeclRef
// uncurry level is one deeper (for the context vars).
bool hasLocalCaptures = false;
unsigned uncurryLevel = 0;
if (auto *fd = dyn_cast<FuncDecl>(decl)) {
hasLocalCaptures = SGM.M.Types.hasLoweredLocalCaptures(fd);
if (hasLocalCaptures)
++uncurryLevel;
}
auto silDeclRef = SILDeclRef(decl, ResilienceExpansion::Minimal, uncurryLevel);
ManagedValue result = emitClosureValue(loc, silDeclRef, refType,
declRef.getSubstitutions());
return RValue(*this, loc, refType, result);
}
static AbstractionPattern
getOrigFormalRValueType(SILGenFunction &gen, VarDecl *field) {
auto origType = gen.SGM.Types.getAbstractionPattern(field);
return origType.getReferenceStorageReferentType();
}
static SILDeclRef getRValueAccessorDeclRef(SILGenFunction &SGF,
AbstractStorageDecl *storage,
AccessStrategy strategy) {
switch (strategy) {
case AccessStrategy::BehaviorStorage:
llvm_unreachable("shouldn't load an rvalue via behavior storage!");
case AccessStrategy::Storage:
llvm_unreachable("should already have been filtered out!");
case AccessStrategy::DirectToAccessor:
return SGF.getGetterDeclRef(storage, true);
case AccessStrategy::DispatchToAccessor:
return SGF.getGetterDeclRef(storage, false);
case AccessStrategy::Addressor:
return SGF.getAddressorDeclRef(storage, AccessKind::Read,
/*always direct for now*/ true);
}
llvm_unreachable("should already have been filtered out!");
}
static RValue
emitRValueWithAccessor(SILGenFunction &SGF, SILLocation loc,
AbstractStorageDecl *storage,
SubstitutionList substitutions,
ArgumentSource &&baseRV, RValue &&subscriptRV,
bool isSuper, AccessStrategy strategy,
SILDeclRef accessor,
AbstractionPattern origFormalType,
CanType substFormalType,
SGFContext C) {
bool isDirectUse = (strategy == AccessStrategy::DirectToAccessor);
switch (strategy) {
case AccessStrategy::BehaviorStorage:
llvm_unreachable("shouldn't load an rvalue via behavior storage!");
case AccessStrategy::Storage:
llvm_unreachable("should already have been filtered out!");
// The easy path here is if we don't need to use an addressor.
case AccessStrategy::DirectToAccessor:
case AccessStrategy::DispatchToAccessor: {
return SGF.emitGetAccessor(loc, accessor, substitutions,
std::move(baseRV), isSuper, isDirectUse,
std::move(subscriptRV), C);
}
case AccessStrategy::Addressor:
break;
}
auto &storageTL = SGF.getTypeLowering(origFormalType, substFormalType);
SILType storageType = storageTL.getLoweredType().getAddressType();
auto addressorResult =
SGF.emitAddressorAccessor(loc, accessor, substitutions,
std::move(baseRV), isSuper, isDirectUse,
std::move(subscriptRV), storageType);
SILValue address = addressorResult.first.getLValueAddress();
SILType loweredSubstType =
SGF.getLoweredType(substFormalType).getAddressType();
bool hasAbstraction = (loweredSubstType != storageType);
RValue result(SGF, loc, substFormalType,
SGF.emitLoad(loc, address, storageTL,
(hasAbstraction ? SGFContext() : C), IsNotTake));
if (hasAbstraction) {
result = SGF.emitOrigToSubstValue(loc, std::move(result), origFormalType,
substFormalType, C);
}
switch (cast<FuncDecl>(accessor.getDecl())->getAddressorKind()) {
case AddressorKind::NotAddressor: llvm_unreachable("inconsistent");
case AddressorKind::Unsafe:
// Nothing to do.
break;
case AddressorKind::Owning:
case AddressorKind::NativeOwning:
// Emit the release immediately.
SGF.B.emitDestroyValueOperation(loc, addressorResult.second.forward(SGF));
break;
case AddressorKind::NativePinning:
// Emit the unpin immediately.
SGF.B.createStrongUnpin(loc, addressorResult.second.forward(SGF),
SGF.B.getDefaultAtomicity());
break;
}
return result;
}
/// Produce a singular RValue for a load from the specified property. This
/// is designed to work with RValue ManagedValue bases that are either +0 or +1.
RValue SILGenFunction::emitRValueForPropertyLoad(
SILLocation loc, ManagedValue base, CanType baseFormalType,
bool isSuper, VarDecl *field, SubstitutionList substitutions,
AccessSemantics semantics, Type propTy, SGFContext C,
bool isGuaranteedValid) {
AccessStrategy strategy =
field->getAccessStrategy(semantics, AccessKind::Read);
// If we should call an accessor of some kind, do so.
if (strategy != AccessStrategy::Storage) {
auto accessor = getRValueAccessorDeclRef(*this, field, strategy);
ArgumentSource baseRV = prepareAccessorBaseArg(loc, base,
baseFormalType,
accessor);
AbstractionPattern origFormalType =
getOrigFormalRValueType(*this, field);
auto substFormalType = propTy->getCanonicalType();
return emitRValueWithAccessor(*this, loc, field, substitutions,
std::move(baseRV), RValue(),
isSuper, strategy, accessor,
origFormalType, substFormalType, C);
}
assert(field->hasStorage() &&
"Cannot directly access value without storage");
// For static variables, emit a reference to the global variable backing
// them.
// FIXME: This has to be dynamically looked up for classes, and
// dynamically instantiated for generics.
if (field->isStatic()) {
auto baseMeta = base.getType().castTo<MetatypeType>().getInstanceType();
(void)baseMeta;
assert(!baseMeta->is<BoundGenericType>() &&
"generic static stored properties not implemented");
if (field->getDeclContext()->getAsClassOrClassExtensionContext() &&
field->hasStorage())
// FIXME: don't need to check hasStorage, already done above
assert(field->isFinal() && "non-final class stored properties not implemented");
return emitRValueForDecl(loc, field, propTy, semantics, C);
}
// rvalue MemberRefExprs are produced in two cases: when accessing a 'let'
// decl member, and when the base is a (non-lvalue) struct.
assert(baseFormalType->getAnyNominal() &&
base.getType().getSwiftRValueType()->getAnyNominal() &&
"The base of an rvalue MemberRefExpr should be an rvalue value");
// If the accessed field is stored, emit a StructExtract on the base.
auto substFormalType = propTy->getCanonicalType();
auto &lowering = getTypeLowering(substFormalType);
// Check for an abstraction difference.
AbstractionPattern origFormalType = getOrigFormalRValueType(*this, field);
bool hasAbstractionChange = false;
auto &abstractedTL = getTypeLowering(origFormalType, substFormalType);
if (!origFormalType.isExactType(substFormalType)) {
hasAbstractionChange =
(abstractedTL.getLoweredType() != lowering.getLoweredType());
}
// If the base is a reference type, just handle this as loading the lvalue.
if (baseFormalType->hasReferenceSemantics()) {
LValue LV = emitPropertyLValue(loc, base, baseFormalType, field,
AccessKind::Read,
AccessSemantics::DirectToStorage);
return emitLoadOfLValue(loc, std::move(LV), C, isGuaranteedValid);
}
ManagedValue result;
if (!base.getType().isAddress()) {
// For non-address-only structs, we emit a struct_extract sequence.
result = B.createStructExtract(loc, base, field);
if (result.getType().is<ReferenceStorageType>()) {
// For weak and unowned types, convert the reference to the right
// pointer, producing a +1.
result = emitConversionToSemanticRValue(loc, result, lowering);
} else if (hasAbstractionChange ||
(!C.isImmediatePlusZeroOk() &&
!(C.isGuaranteedPlusZeroOk() && isGuaranteedValid))) {
// If we have an abstraction change or if we have to produce a result at
// +1, then emit a RetainValue. If we know that our base will stay alive,
// we can emit at +0 for a guaranteed consumer. Otherwise, since we do not
// have enough information, we can only emit at +0 for immediate clients.
result = result.copyUnmanaged(*this, loc);
}
} else {
// For address-only sequences, the base is in memory. Emit a
// struct_element_addr to get to the field, and then load the element as an
// rvalue.
SILValue ElementPtr =
B.createStructElementAddr(loc, base.getValue(), field);
result = emitLoad(loc, ElementPtr, abstractedTL,
hasAbstractionChange ? SGFContext() : C, IsNotTake);
}
// If we're accessing this member with an abstraction change, perform that
// now.
if (hasAbstractionChange)
result =
emitOrigToSubstValue(loc, result, origFormalType, substFormalType, C);
return RValue(*this, loc, substFormalType, result);
}
RValue RValueEmitter::visitDeclRefExpr(DeclRefExpr *E, SGFContext C) {
return SGF.emitRValueForDecl(E, E->getDeclRef(), E->getType(),
E->getAccessSemantics(), C);
}
RValue RValueEmitter::visitTypeExpr(TypeExpr *E, SGFContext C) {
assert(E->getType()->is<AnyMetatypeType>() &&
"TypeExpr must have metatype type");
auto Val = SGF.B.createMetatype(E, SGF.getLoweredType(E->getType()));
return RValue(SGF, E, ManagedValue::forUnmanaged(Val));
}
RValue RValueEmitter::visitSuperRefExpr(SuperRefExpr *E, SGFContext C) {
assert(!E->getType()->is<LValueType>() &&
"RValueEmitter shouldn't be called on lvalues");
// If we have a normal self call, then use the emitRValueForDecl call. This
// will emit self at +0 since it is guaranteed.
ManagedValue Self =
SGF.emitRValueForDecl(E, E->getSelf(), E->getSelf()->getType(),
AccessSemantics::Ordinary)
.getScalarValue();
// Perform an upcast to convert self to the indicated super type.
auto Result = SGF.B.createUpcast(E, Self.getValue(),
SGF.getLoweredType(E->getType()));
return RValue(SGF, E, ManagedValue(Result, Self.getCleanup()));
}
RValue RValueEmitter::
visitUnresolvedTypeConversionExpr(UnresolvedTypeConversionExpr *E,
SGFContext C) {
llvm_unreachable("invalid code made its way into SILGen");
}
RValue RValueEmitter::visitOtherConstructorDeclRefExpr(
OtherConstructorDeclRefExpr *E, SGFContext C) {
// This should always be a child of an ApplyExpr and so will be emitted by
// SILGenApply.
llvm_unreachable("unapplied reference to constructor?!");
}
RValue RValueEmitter::visitNilLiteralExpr(NilLiteralExpr *E, SGFContext C) {
llvm_unreachable("NilLiteralExpr not lowered?");
}
RValue RValueEmitter::visitIntegerLiteralExpr(IntegerLiteralExpr *E,
SGFContext C) {
return RValue(SGF, E,
ManagedValue::forUnmanaged(SGF.B.createIntegerLiteral(E)));
}
RValue RValueEmitter::visitFloatLiteralExpr(FloatLiteralExpr *E,
SGFContext C) {
return RValue(SGF, E,
ManagedValue::forUnmanaged(SGF.B.createFloatLiteral(E)));
}
RValue RValueEmitter::visitBooleanLiteralExpr(BooleanLiteralExpr *E,
SGFContext C) {
auto i1Ty = SILType::getBuiltinIntegerType(1, SGF.getASTContext());
SILValue boolValue = SGF.B.createIntegerLiteral(E, i1Ty, E->getValue());
return RValue(SGF, E, ManagedValue::forUnmanaged(boolValue));
}
RValue RValueEmitter::visitStringLiteralExpr(StringLiteralExpr *E,
SGFContext C) {
return SGF.emitLiteral(E, C);
}
RValue RValueEmitter::visitLoadExpr(LoadExpr *E, SGFContext C) {
// Any writebacks here are tightly scoped.
FormalEvaluationScope writeback(SGF);
LValue lv = SGF.emitLValue(E->getSubExpr(), AccessKind::Read);
return SGF.emitLoadOfLValue(E, std::move(lv), C);
}
SILValue SILGenFunction::emitTemporaryAllocation(SILLocation loc,
SILType ty) {
ty = ty.getObjectType();
auto alloc = B.createAllocStack(loc, ty);
enterDeallocStackCleanup(alloc);
return alloc;
}
SILValue SILGenFunction::
getBufferForExprResult(SILLocation loc, SILType ty, SGFContext C) {
// If you change this, change manageBufferForExprResult below as well.
// If we have a single-buffer "emit into" initialization, use that for the
// result.
if (SILValue address = C.getAddressForInPlaceInitialization())
return address;
// If we couldn't emit into the Initialization, emit into a temporary
// allocation.
return emitTemporaryAllocation(loc, ty.getObjectType());
}
ManagedValue SILGenFunction::
manageBufferForExprResult(SILValue buffer, const TypeLowering &bufferTL,
SGFContext C) {
// If we have a single-buffer "emit into" initialization, use that for the
// result.
if (C.getAddressForInPlaceInitialization()) {
C.getEmitInto()->finishInitialization(*this);
return ManagedValue::forInContext();
}
// Add a cleanup for the temporary we allocated.
if (bufferTL.isTrivial())
return ManagedValue::forUnmanaged(buffer);
return ManagedValue(buffer, enterDestroyCleanup(buffer));
}
RValue RValueEmitter::visitForceTryExpr(ForceTryExpr *E, SGFContext C) {
// Set up a "catch" block for when an error occurs.
SILBasicBlock *catchBB = SGF.createBasicBlock(FunctionSection::Postmatter);
llvm::SaveAndRestore<JumpDest> throwDest{
SGF.ThrowDest,
JumpDest(catchBB, SGF.Cleanups.getCleanupsDepth(),
CleanupLocation::get(E))};
// Visit the sub-expression.
RValue result = visit(E->getSubExpr(), C);
// If there are no uses of the catch block, just drop it.
if (catchBB->pred_empty()) {
SGF.eraseBasicBlock(catchBB);
} else {
// Otherwise, we need to emit it.
SavedInsertionPoint scope(SGF, catchBB, FunctionSection::Postmatter);
ASTContext &ctx = SGF.getASTContext();
auto error = catchBB->createPHIArgument(SILType::getExceptionType(ctx),
ValueOwnershipKind::Owned);
SGF.B.createBuiltin(E, ctx.getIdentifier("unexpectedError"),
SGF.SGM.Types.getEmptyTupleType(), {}, {error});
SGF.B.createUnreachable(E);
}
return result;
}
RValue RValueEmitter::visitOptionalTryExpr(OptionalTryExpr *E, SGFContext C) {
// FIXME: Much of this was copied from visitOptionalEvaluationExpr.
auto &optTL = SGF.getTypeLowering(E->getType());
Initialization *optInit = C.getEmitInto();
bool usingProvidedContext = optInit && optInit->isSingleBuffer();
// Form the optional using address operations if the type is address-only or
// if we already have an address to use.
bool isByAddress = usingProvidedContext || optTL.isAddressOnly();
std::unique_ptr<TemporaryInitialization> optTemp;
if (!usingProvidedContext && isByAddress) {
// Allocate the temporary for the Optional<T> if we didn't get one from the
// context.
optTemp = SGF.emitTemporary(E, optTL);
optInit = optTemp.get();
} else if (!usingProvidedContext) {
// If the caller produced a context for us, but we can't use it, then don't.
optInit = nullptr;
}
FullExpr localCleanups(SGF.Cleanups, E);
// Set up a "catch" block for when an error occurs.
SILBasicBlock *catchBB = SGF.createBasicBlock(FunctionSection::Postmatter);
llvm::SaveAndRestore<JumpDest> throwDest{
SGF.ThrowDest,
JumpDest(catchBB, SGF.Cleanups.getCleanupsDepth(), E)};
SILValue branchArg;
if (isByAddress) {
assert(optInit);
SILValue optAddr = optInit->getAddress();
SGF.emitInjectOptionalValueInto(E, E->getSubExpr(), optAddr, optTL);
} else {
ManagedValue subExprValue = SGF.emitRValueAsSingleValue(E->getSubExpr());
ManagedValue wrapped = SGF.getOptionalSomeValue(E, subExprValue, optTL);
branchArg = wrapped.forward(SGF);
}
localCleanups.pop();
// If it turns out there are no uses of the catch block, just drop it.
if (catchBB->pred_empty()) {
// Remove the dead failureBB.
catchBB->eraseFromParent();
// The value we provide is the one we've already got.
if (!isByAddress)
return RValue(SGF, E,
SGF.emitManagedRValueWithCleanup(branchArg, optTL));
optInit->finishInitialization(SGF);
// If we emitted into the provided context, we're done.
if (usingProvidedContext)
return RValue();
return RValue(SGF, E, optTemp->getManagedAddress());
}
SILBasicBlock *contBB = SGF.createBasicBlock();
// Branch to the continuation block.
if (isByAddress)
SGF.B.createBranch(E, contBB);
else
SGF.B.createBranch(E, contBB, branchArg);
// If control branched to the failure block, inject .None into the
// result type.
SGF.B.emitBlock(catchBB);
FullExpr catchCleanups(SGF.Cleanups, E);
auto *errorArg =
catchBB->createPHIArgument(SILType::getExceptionType(SGF.getASTContext()),
ValueOwnershipKind::Owned);
(void) SGF.emitManagedRValueWithCleanup(errorArg);
catchCleanups.pop();
if (isByAddress) {
SGF.emitInjectOptionalNothingInto(E, optInit->getAddress(), optTL);
SGF.B.createBranch(E, contBB);
} else {
auto branchArg = SGF.getOptionalNoneValue(E, optTL);
SGF.B.createBranch(E, contBB, branchArg);
}
// Emit the continuation block.
SGF.B.emitBlock(contBB);
// If this was done in SSA registers, then the value is provided as an
// argument to the block.
if (!isByAddress) {
auto arg = contBB->createPHIArgument(optTL.getLoweredType(),
ValueOwnershipKind::Owned);
return RValue(SGF, E, SGF.emitManagedRValueWithCleanup(arg, optTL));
}
optInit->finishInitialization(SGF);
// If we emitted into the provided context, we're done.
if (usingProvidedContext)
return RValue();
assert(optTemp);
return RValue(SGF, E, optTemp->getManagedAddress());
}
RValue RValueEmitter::visitDerivedToBaseExpr(DerivedToBaseExpr *E,
SGFContext C) {
ManagedValue original = SGF.emitRValueAsSingleValue(E->getSubExpr());
// Derived-to-base casts in the AST might not be reflected as such
// in the SIL type system, for example, a cast from DynamicSelf
// directly to its own Self type.
auto loweredResultTy = SGF.getLoweredType(E->getType());
if (original.getType() == loweredResultTy)
return RValue(SGF, E, original);
SILValue converted = SGF.B.createUpcast(E, original.getValue(),
loweredResultTy);
return RValue(SGF, E, ManagedValue(converted, original.getCleanup()));
}
RValue RValueEmitter::visitMetatypeConversionExpr(MetatypeConversionExpr *E,
SGFContext C) {
SILValue metaBase =
SGF.emitRValueAsSingleValue(E->getSubExpr()).getUnmanagedValue();
// Metatype conversion casts in the AST might not be reflected as
// such in the SIL type system, for example, a cast from DynamicSelf.Type
// directly to its own Self.Type.
auto loweredResultTy = SGF.getLoweredLoadableType(E->getType());
if (metaBase->getType() == loweredResultTy)
return RValue(SGF, E, ManagedValue::forUnmanaged(metaBase));
auto upcast = SGF.B.createUpcast(E, metaBase, loweredResultTy);
return RValue(SGF, E, ManagedValue::forUnmanaged(upcast));
}
RValue RValueEmitter::
visitCollectionUpcastConversionExpr(CollectionUpcastConversionExpr *E,
SGFContext C) {
SILLocation loc = RegularLocation(E);
// Get the sub expression argument as a managed value
auto mv = SGF.emitRValueAsSingleValue(E->getSubExpr());
// Compute substitutions for the intrinsic call.
auto fromCollection = cast<BoundGenericStructType>(
E->getSubExpr()->getType()->getCanonicalType());
auto toCollection = cast<BoundGenericStructType>(
E->getType()->getCanonicalType());
// Get the intrinsic function.
auto &ctx = SGF.getASTContext();
FuncDecl *fn = nullptr;
if (fromCollection->getDecl() == ctx.getArrayDecl()) {
fn = SGF.SGM.getArrayForceCast(loc);
} else if (fromCollection->getDecl() == ctx.getDictionaryDecl()) {
fn = SGF.SGM.getDictionaryUpCast(loc);
} else if (fromCollection->getDecl() == ctx.getSetDecl()) {
fn = SGF.SGM.getSetUpCast(loc);
} else {
llvm_unreachable("unsupported collection upcast kind");
}
// This will have been diagnosed by the accessors above.
if (!fn) return SGF.emitUndefRValue(E, E->getType());
auto fnGenericParams = fn->getGenericParams()->getParams();
auto fromSubsts = fromCollection->gatherAllSubstitutions(
SGF.SGM.SwiftModule, nullptr);
auto toSubsts = toCollection->gatherAllSubstitutions(
SGF.SGM.SwiftModule, nullptr);
assert(fnGenericParams.size() == fromSubsts.size() + toSubsts.size() &&
"wrong number of generic collection parameters");
(void) fnGenericParams;
// Form type parameter substitutions.
SmallVector<Substitution, 4> subs;
subs.append(fromSubsts.begin(), fromSubsts.end());
subs.append(toSubsts.begin(), toSubsts.end());
return SGF.emitApplyOfLibraryIntrinsic(loc, fn, subs, {mv}, C);
}
RValue RValueEmitter::visitArchetypeToSuperExpr(ArchetypeToSuperExpr *E,
SGFContext C) {
ManagedValue archetype = SGF.emitRValueAsSingleValue(E->getSubExpr());
// Replace the cleanup with a new one on the superclass value so we always use
// concrete retain/release operations.
SILValue base = SGF.B.createUpcast(E,
archetype.forward(SGF),
SGF.getLoweredLoadableType(E->getType()));
return RValue(SGF, E, SGF.emitManagedRValueWithCleanup(base));
}
static ManagedValue convertCFunctionSignature(SILGenFunction &SGF,
FunctionConversionExpr *e,
SILType loweredResultTy,
llvm::function_ref<ManagedValue ()> fnEmitter) {
SILType loweredDestTy = SGF.getLoweredType(e->getType());
ManagedValue result;
// We're converting between C function pointer types. They better be
// ABI-compatible, since we can't emit a thunk.
switch (SGF.SGM.Types.checkForABIDifferences(loweredResultTy, loweredDestTy)){
case TypeConverter::ABIDifference::Trivial:
result = fnEmitter();
assert(result.getType() == loweredResultTy);
if (loweredResultTy != loweredDestTy) {
result = ManagedValue::forUnmanaged(
SGF.B.createConvertFunction(e, result.getUnmanagedValue(),
loweredDestTy));
}
break;
case TypeConverter::ABIDifference::NeedsThunk:
// Note: in this case, we don't call the emitter at all -- doing so
// just runs the risk of tripping up asserts in SILGenBridging.cpp
SGF.SGM.diagnose(e, diag::unsupported_c_function_pointer_conversion,
e->getSubExpr()->getType(), e->getType());
result = SGF.emitUndef(e, loweredDestTy);
break;
case TypeConverter::ABIDifference::ThinToThick:
llvm_unreachable("Cannot have thin to thick conversion here");
}
return result;
}
static
ManagedValue emitCFunctionPointer(SILGenFunction &gen,
FunctionConversionExpr *conversionExpr) {
auto expr = conversionExpr->getSubExpr();
// Look through base-ignored exprs to get to the function ref.
auto semanticExpr = expr->getSemanticsProvidingExpr();
while (auto ignoredBase = dyn_cast<DotSyntaxBaseIgnoredExpr>(semanticExpr)){
gen.emitIgnoredExpr(ignoredBase->getLHS());
semanticExpr = ignoredBase->getRHS()->getSemanticsProvidingExpr();
}
// Recover the decl reference.
SILDeclRef::Loc loc;
auto setLocFromConcreteDeclRef = [&](ConcreteDeclRef declRef) {
// TODO: Handle generic instantiations, where we need to eagerly specialize
// on the given generic parameters, and static methods, where we need to drop
// in the metatype.
assert(!declRef.getDecl()->getDeclContext()->isTypeContext()
&& "c pointers to static methods not implemented");
assert(declRef.getSubstitutions().empty()
&& "c pointers to generics not implemented");
loc = declRef.getDecl();
};
if (auto declRef = dyn_cast<DeclRefExpr>(semanticExpr)) {
setLocFromConcreteDeclRef(declRef->getDeclRef());
} else if (auto memberRef = dyn_cast<MemberRefExpr>(semanticExpr)) {
setLocFromConcreteDeclRef(memberRef->getMember());
} else if (auto closure = dyn_cast<AbstractClosureExpr>(semanticExpr)) {
loc = closure;
// Emit the closure body.
gen.SGM.emitClosure(closure);
} else {
llvm_unreachable("c function pointer converted from a non-concrete decl ref");
}
// Produce a reference to the C-compatible entry point for the function.
SILDeclRef constant(loc, ResilienceExpansion::Minimal,
/*uncurryLevel*/ 0,
/*foreign*/ true);
SILConstantInfo constantInfo = gen.getConstantInfo(constant);
return convertCFunctionSignature(
gen, conversionExpr,
constantInfo.getSILType(),
[&]() -> ManagedValue {
SILValue cRef = gen.emitGlobalFunctionRef(expr, constant);
return ManagedValue::forUnmanaged(cRef);
});
}
// Change the representation without changing the signature or
// abstraction level.
static ManagedValue convertFunctionRepresentation(SILGenFunction &SGF,
SILLocation loc,
ManagedValue result,
CanAnyFunctionType srcTy,
CanAnyFunctionType destTy) {
auto resultFTy = result.getType().castTo<SILFunctionType>();
// Note that conversions to and from block require a thunk
switch (destTy->getRepresentation()) {
// Convert thin, c, block => thick
case AnyFunctionType::Representation::Swift: {
switch (resultFTy->getRepresentation()) {
case SILFunctionType::Representation::Thin: {
auto v = SGF.B.createThinToThickFunction(loc, result.getValue(),
SILType::getPrimitiveObjectType(
adjustFunctionType(resultFTy, SILFunctionType::Representation::Thick)));
result = ManagedValue(v, result.getCleanup());
break;
}
case SILFunctionType::Representation::Thick:
llvm_unreachable("should not try thick-to-thick repr change");
case SILFunctionType::Representation::CFunctionPointer:
case SILFunctionType::Representation::Block:
result = SGF.emitBlockToFunc(loc, result,
SGF.getLoweredType(destTy).castTo<SILFunctionType>());
break;
case SILFunctionType::Representation::Method:
case SILFunctionType::Representation::Closure:
case SILFunctionType::Representation::ObjCMethod:
case SILFunctionType::Representation::WitnessMethod:
llvm_unreachable("should not do function conversion from method rep");
}
break;
}
// Convert thin, thick, c => block
case AnyFunctionType::Representation::Block:
switch (resultFTy->getRepresentation()) {
case SILFunctionType::Representation::Thin: {
// Make thick first.
auto v = SGF.B.createThinToThickFunction(loc, result.getValue(),
SILType::getPrimitiveObjectType(
adjustFunctionType(resultFTy, SILFunctionType::Representation::Thick)));
result = ManagedValue(v, result.getCleanup());
LLVM_FALLTHROUGH;
}
case SILFunctionType::Representation::Thick:
case SILFunctionType::Representation::CFunctionPointer:
// Convert to a block.
result = SGF.emitFuncToBlock(loc, result,
SGF.getLoweredType(destTy).castTo<SILFunctionType>());
break;
case SILFunctionType::Representation::Block:
llvm_unreachable("should not try block-to-block repr change");
case SILFunctionType::Representation::Method:
case SILFunctionType::Representation::Closure:
case SILFunctionType::Representation::ObjCMethod:
case SILFunctionType::Representation::WitnessMethod:
llvm_unreachable("should not do function conversion from method rep");
}
break;
// Unsupported
case AnyFunctionType::Representation::Thin:
llvm_unreachable("should not do function conversion to thin");
case AnyFunctionType::Representation::CFunctionPointer:
llvm_unreachable("should not do C function pointer conversion here");
}
return result;
}
RValue RValueEmitter::visitFunctionConversionExpr(FunctionConversionExpr *e,
SGFContext C)
{
CanAnyFunctionType srcRepTy =
cast<FunctionType>(e->getSubExpr()->getType()->getCanonicalType());
CanAnyFunctionType destRepTy =
cast<FunctionType>(e->getType()->getCanonicalType());
if (destRepTy->getRepresentation() ==
FunctionTypeRepresentation::CFunctionPointer) {
ManagedValue result;
if (srcRepTy->getRepresentation() !=
FunctionTypeRepresentation::CFunctionPointer) {
// A "conversion" of a DeclRef a C function pointer is done by referencing
// the thunk (or original C function) with the C calling convention.
result = emitCFunctionPointer(SGF, e);
} else {
// Ok, we're converting a C function pointer value to another C function
// pointer.
// Emit the C function pointer
result = SGF.emitRValueAsSingleValue(e->getSubExpr());
// Possibly bitcast the C function pointer to account for ABI-compatible
// parameter and result type conversions
result = convertCFunctionSignature(SGF, e, result.getType(),
[&]() -> ManagedValue {
return result;
});
}
return RValue(SGF, e, result);
}
// Break the conversion into three stages:
// 1) changing the representation from foreign to native
// 2) changing the signature within the representation
// 3) changing the representation from native to foreign
//
// We only do one of 1) or 3), but we have to do them in the right order
// with respect to 2).
CanAnyFunctionType srcTy = srcRepTy;
CanAnyFunctionType destTy = destRepTy;
switch(srcRepTy->getRepresentation()) {
case AnyFunctionType::Representation::Swift:
case AnyFunctionType::Representation::Thin:
// Source is native, so we can convert signature first.
destTy = adjustFunctionType(destRepTy,
srcTy->getRepresentation());
break;
case AnyFunctionType::Representation::Block:
case AnyFunctionType::Representation::CFunctionPointer:
// Source is foreign, so do the representation change first.
srcTy = adjustFunctionType(srcRepTy,
destRepTy->getRepresentation());
}
auto result = SGF.emitRValueAsSingleValue(e->getSubExpr());
if (srcRepTy != srcTy)
result = convertFunctionRepresentation(SGF, e, result, srcRepTy, srcTy);
if (srcTy != destTy)
result = SGF.emitTransformedValue(e, result, srcTy, destTy);
if (destTy != destRepTy)
result = convertFunctionRepresentation(SGF, e, result, destTy, destRepTy);
return RValue(SGF, e, result);
}
RValue RValueEmitter::visitCovariantFunctionConversionExpr(
CovariantFunctionConversionExpr *e,
SGFContext C) {
ManagedValue original = SGF.emitRValueAsSingleValue(e->getSubExpr());
CanAnyFunctionType destTy
= cast<AnyFunctionType>(e->getType()->getCanonicalType());
SILType resultType = SGF.getLoweredType(destTy);
SILValue result = SGF.B.createConvertFunction(e,
original.forward(SGF),
resultType);
return RValue(SGF, e, SGF.emitManagedRValueWithCleanup(result));
}
static ManagedValue createUnsafeDowncast(SILGenFunction &gen,
SILLocation loc,
ManagedValue input,
SILType resultTy) {
SILValue result = gen.B.createUncheckedRefCast(loc,
input.forward(gen),
resultTy);
return gen.emitManagedRValueWithCleanup(result);
}
RValue RValueEmitter::visitCovariantReturnConversionExpr(
CovariantReturnConversionExpr *e,
SGFContext C) {
SILType resultType = SGF.getLoweredType(e->getType());
ManagedValue original = SGF.emitRValueAsSingleValue(e->getSubExpr());
ManagedValue result;
if (resultType.getSwiftRValueType().getAnyOptionalObjectType()) {
result = SGF.emitOptionalToOptional(e, original, resultType,
createUnsafeDowncast);
} else {
result = createUnsafeDowncast(SGF, e, original, resultType);
}
return RValue(SGF, e, result);
}
RValue RValueEmitter::visitErasureExpr(ErasureExpr *E, SGFContext C) {
auto &existentialTL = SGF.getTypeLowering(E->getType());
auto concreteFormalType = E->getSubExpr()->getType()->getCanonicalType();
auto archetype = ArchetypeType::getAnyOpened(E->getType());
AbstractionPattern abstractionPattern(archetype);
auto &concreteTL = SGF.getTypeLowering(abstractionPattern,
concreteFormalType);
ManagedValue mv = SGF.emitExistentialErasure(E, concreteFormalType,
concreteTL, existentialTL,
E->getConformances(), C,
[&](SGFContext C) -> ManagedValue {
return SGF.emitRValueAsOrig(E->getSubExpr(),
abstractionPattern,
concreteTL, C);
});
return RValue(SGF, E, mv);
}
RValue SILGenFunction::emitAnyHashableErasure(SILLocation loc,
ManagedValue value,
Type type,
ProtocolConformanceRef conformance,
SGFContext C) {
// Ensure that the intrinsic function exists.
auto convertFn = SGM.getConvertToAnyHashable(loc);
if (!convertFn)
return emitUndefRValue(
loc, getASTContext().getAnyHashableDecl()->getDeclaredType());
// Construct the substitution for T: Hashable.
ProtocolConformanceRef conformances[] = { conformance };
Substitution sub(type, getASTContext().AllocateCopy(conformances));
return emitApplyOfLibraryIntrinsic(loc, convertFn, sub, value, C);
}
RValue RValueEmitter::visitAnyHashableErasureExpr(AnyHashableErasureExpr *E,
SGFContext C) {
// Emit the source value into a temporary.
auto sourceOrigType = AbstractionPattern::getOpaque();
auto source =
SGF.emitMaterializedRValueAsOrig(E->getSubExpr(), sourceOrigType);
return SGF.emitAnyHashableErasure(E, source,
E->getSubExpr()->getType(),
E->getConformance(), C);
}
/// Treating this as a successful operation, turn a CMV into a +1 MV.
ManagedValue SILGenFunction::getManagedValue(SILLocation loc,
ConsumableManagedValue value) {
// If the consumption rules say that this is already +1 given a
// successful operation, just use the value.
if (value.isOwned())
return value.getFinalManagedValue();
SILType valueTy = value.getType();
auto &valueTL = getTypeLowering(valueTy);
// If the type is trivial, it's always +1.
if (valueTL.isTrivial())
return ManagedValue::forUnmanaged(value.getValue());
// If it's an object, retain and enter a release cleanup.
if (valueTy.isObject()) {
valueTL.emitCopyValue(B, loc, value.getValue());
return emitManagedRValueWithCleanup(value.getValue(), valueTL);
}
// Otherwise, produce a temporary and copy into that.
auto temporary = emitTemporary(loc, valueTL);
valueTL.emitCopyInto(B, loc, value.getValue(), temporary->getAddress(),
IsNotTake, IsInitialization);
temporary->finishInitialization(*this);
return temporary->getManagedAddress();
}
RValue RValueEmitter::visitForcedCheckedCastExpr(ForcedCheckedCastExpr *E,
SGFContext C) {
return emitUnconditionalCheckedCast(SGF, E, E->getSubExpr(), E->getType(),
E->getCastKind(), C);
}
RValue RValueEmitter::
visitConditionalCheckedCastExpr(ConditionalCheckedCastExpr *E,
SGFContext C) {
ManagedValue operand = SGF.emitRValueAsSingleValue(E->getSubExpr());
return emitConditionalCheckedCast(SGF, E, operand, E->getSubExpr()->getType(),
E->getType(), E->getCastKind(), C);
}
RValue RValueEmitter::visitIsExpr(IsExpr *E, SGFContext C) {
SILValue isa = emitIsa(SGF, E, E->getSubExpr(),
E->getCastTypeLoc().getType(), E->getCastKind());
// Call the _getBool library intrinsic.
ASTContext &ctx = SGF.getASTContext();
auto result =
SGF.emitApplyOfLibraryIntrinsic(E, ctx.getGetBoolDecl(nullptr), {},
ManagedValue::forUnmanaged(isa),
C);
return result;
}
RValue RValueEmitter::visitEnumIsCaseExpr(EnumIsCaseExpr *E,
SGFContext C) {
ASTContext &ctx = SGF.getASTContext();
// Get the enum value.
auto subExpr = SGF.emitRValueAsSingleValue(E->getSubExpr(),
SGFContext(SGFContext::AllowImmediatePlusZero));
// Test its case.
auto i1Ty = SILType::getBuiltinIntegerType(1, SGF.getASTContext());
auto t = SGF.B.createIntegerLiteral(E, i1Ty, 1);
auto f = SGF.B.createIntegerLiteral(E, i1Ty, 0);
SILValue selected;
if (subExpr.getType().isAddress()) {
selected = SGF.B.createSelectEnumAddr(E, subExpr.getValue(), i1Ty, f,
{{E->getEnumElement(), t}});
} else {
selected = SGF.B.createSelectEnum(E, subExpr.getValue(), i1Ty, f,
{{E->getEnumElement(), t}});
}
// Call the _getBool library intrinsic.
auto result =
SGF.emitApplyOfLibraryIntrinsic(E, ctx.getGetBoolDecl(nullptr), {},
ManagedValue::forUnmanaged(selected),
C);
return result;
}
RValue RValueEmitter::visitCoerceExpr(CoerceExpr *E, SGFContext C) {
return visit(E->getSubExpr(), C);
}
VarargsInfo Lowering::emitBeginVarargs(SILGenFunction &gen, SILLocation loc,
CanType baseTy, CanType arrayTy,
unsigned numElements) {
// Reabstract the base type against the array element type.
auto baseAbstraction = AbstractionPattern::getOpaque();
// Allocate the array.
SILValue numEltsVal = gen.B.createIntegerLiteral(loc,
SILType::getBuiltinWordType(gen.getASTContext()),
numElements);
// The first result is the array value.
ManagedValue array;
// The second result is a RawPointer to the base address of the array.
SILValue basePtr;
std::tie(array, basePtr)
= gen.emitUninitializedArrayAllocation(arrayTy, numEltsVal, loc);
// Temporarily deactivate the main array cleanup.
if (array.hasCleanup())
gen.Cleanups.setCleanupState(array.getCleanup(), CleanupState::Dormant);
// Push a new cleanup to deallocate the array.
auto abortCleanup =
gen.enterDeallocateUninitializedArrayCleanup(array.getValue());
auto &baseTL = gen.getTypeLowering(baseAbstraction, baseTy);
// Turn the pointer into an address.
basePtr = gen.B.createPointerToAddress(
loc, basePtr, baseTL.getLoweredType().getAddressType(), /*isStrict*/ true);
return VarargsInfo(array, abortCleanup, basePtr, baseTL, baseAbstraction);
}
ManagedValue Lowering::emitEndVarargs(SILGenFunction &gen, SILLocation loc,
VarargsInfo &&varargs) {
// Kill the abort cleanup.
gen.Cleanups.setCleanupState(varargs.getAbortCleanup(), CleanupState::Dead);
// Reactivate the result cleanup.
auto result = varargs.getArray();
if (result.hasCleanup())
gen.Cleanups.setCleanupState(result.getCleanup(), CleanupState::Active);
return result;
}
static ManagedValue emitVarargs(SILGenFunction &gen,
SILLocation loc,
Type _baseTy,
ArrayRef<ManagedValue> elements,
Type _arrayTy) {
auto baseTy = _baseTy->getCanonicalType();
auto arrayTy = _arrayTy->getCanonicalType();
auto varargs = emitBeginVarargs(gen, loc, baseTy, arrayTy, elements.size());
AbstractionPattern baseAbstraction = varargs.getBaseAbstractionPattern();
SILValue basePtr = varargs.getBaseAddress();
// Initialize the members.
// TODO: If we need to cleanly unwind at this point, we would need to arrange
// for the partially-initialized array to be cleaned up somehow, maybe by
// poking its count to the actually-initialized size at the point of failure.
for (size_t i = 0, size = elements.size(); i < size; ++i) {
SILValue eltPtr = basePtr;
if (i != 0) {
SILValue index = gen.B.createIntegerLiteral(loc,
SILType::getBuiltinWordType(gen.F.getASTContext()), i);
eltPtr = gen.B.createIndexAddr(loc, basePtr, index);
}
ManagedValue v = elements[i];
v = gen.emitSubstToOrigValue(loc, v, baseAbstraction, baseTy);
v.forwardInto(gen, loc, eltPtr);
}
return emitEndVarargs(gen, loc, std::move(varargs));
}
RValue RValueEmitter::visitTupleExpr(TupleExpr *E, SGFContext C) {
auto type = cast<TupleType>(E->getType()->getCanonicalType());
// If we have an Initialization, emit the tuple elements into its elements.
if (Initialization *I = C.getEmitInto()) {
bool implodeTuple = false;
if (auto Address = I->getAddressOrNull()) {
if (isa<GlobalAddrInst>(Address) &&
SGF.getTypeLowering(type).getLoweredType().isTrivial(SGF.SGM.M)) {
// Implode tuples in initialization of globals if they are
// of trivial types.
implodeTuple = true;
}
}
if (!implodeTuple && I->canSplitIntoTupleElements()) {
SmallVector<InitializationPtr, 4> subInitializationBuf;
auto subInitializations =
I->splitIntoTupleElements(SGF, RegularLocation(E), type,
subInitializationBuf);
assert(subInitializations.size() == E->getElements().size() &&
"initialization for tuple has wrong number of elements");
for (unsigned i = 0, size = subInitializations.size(); i < size; ++i)
SGF.emitExprInto(E->getElement(i), subInitializations[i].get());
I->finishInitialization(SGF);
return RValue();
}
}
RValue result(type);
for (Expr *elt : E->getElements())
result.addElement(SGF.emitRValue(elt));
return result;
}
namespace {
/// A helper function with context that tries to emit member refs of nominal
/// types avoiding the conservative lvalue logic.
class NominalTypeMemberRefRValueEmitter {
using SelfTy = NominalTypeMemberRefRValueEmitter;
/// The member ref expression we are emitting.
MemberRefExpr *Expr;
/// The passed in SGFContext.
SGFContext Context;
/// The typedecl of the base expression of the member ref expression.
NominalTypeDecl *Base;
/// The field of the member.
VarDecl *Field;
public:
NominalTypeMemberRefRValueEmitter(MemberRefExpr *Expr, SGFContext Context,
NominalTypeDecl *Base)
: Expr(Expr), Context(Context), Base(Base),
Field(cast<VarDecl>(Expr->getMember().getDecl())) {}
/// Emit the RValue.
Optional<RValue> emit(SILGenFunction &SGF) {
// If we don't have a class or a struct, bail.
if (!isa<ClassDecl>(Base) && !isa<StructDecl>(Base))
return None;
// Check that we have a stored access strategy. If we don't bail.
AccessStrategy strategy =
Field->getAccessStrategy(Expr->getAccessSemantics(), AccessKind::Read);
if (strategy != AccessStrategy::Storage)
return None;
if (isa<StructDecl>(Base))
return emitStructDecl(SGF);
assert(isa<ClassDecl>(Base) && "Expected class");
return emitClassDecl(SGF);
}
NominalTypeMemberRefRValueEmitter(const SelfTy &) = delete;
NominalTypeMemberRefRValueEmitter(SelfTy &&) = delete;
~NominalTypeMemberRefRValueEmitter() = default;
private:
RValue emitStructDecl(SILGenFunction &SGF) {
ManagedValue base =
SGF.emitRValueAsSingleValue(Expr->getBase(),
SGFContext::AllowImmediatePlusZero);
CanType baseFormalType =
Expr->getBase()->getType()->getCanonicalType();
assert(baseFormalType->isMaterializable());
RValue result =
SGF.emitRValueForPropertyLoad(Expr, base, baseFormalType,
Expr->isSuper(),
Field,
Expr->getMember().getSubstitutions(),
Expr->getAccessSemantics(),
Expr->getType(), Context);
return result;
}
Optional<RValue> emitClassDecl(SILGenFunction &SGF) {
// If guaranteed plus zero is not ok, we bail.
if (!Context.isGuaranteedPlusZeroOk())
return None;
// If the field is not a let, bail. We need to use the lvalue logic.
if (!Field->isLet())
return None;
// Ok, now we know that we are able to emit our base at guaranteed plus zero
// emit base.
ManagedValue base =
SGF.emitRValueAsSingleValue(Expr->getBase(), Context);
CanType baseFormalType =
Expr->getBase()->getType()->getCanonicalType();
assert(baseFormalType->isMaterializable());
// And then emit our property using whether or not base is at +0 to
// discriminate whether or not the base was guaranteed.
RValue result =
SGF.emitRValueForPropertyLoad(Expr, base, baseFormalType,
Expr->isSuper(),
Field,
Expr->getMember().getSubstitutions(),
Expr->getAccessSemantics(),
Expr->getType(), Context,
base.isPlusZeroRValueOrTrivial());
return std::move(result);
}
};
} // end anonymous namespace
RValue RValueEmitter::visitMemberRefExpr(MemberRefExpr *E, SGFContext C) {
assert(!E->getType()->is<LValueType>() &&
"RValueEmitter shouldn't be called on lvalues");
if (isa<TypeDecl>(E->getMember().getDecl())) {
// Emit the metatype for the associated type.
visit(E->getBase());
SILValue MT =
SGF.B.createMetatype(E, SGF.getLoweredLoadableType(E->getType()));
return RValue(SGF, E, ManagedValue::forUnmanaged(MT));
}
// If we have a nominal type decl as our base, try to emit the base rvalue's
// member using special logic that will let us avoid extra retains
// and releases.
if (auto *N = E->getBase()->getType()->getNominalOrBoundGenericNominal())
if (auto RV = NominalTypeMemberRefRValueEmitter(E, C, N).emit(SGF))
return RValue(std::move(RV.getValue()));
// Everything else should use the l-value logic.
// Any writebacks for this access are tightly scoped.
FormalEvaluationScope scope(SGF);
LValue lv = SGF.emitLValue(E, AccessKind::Read);
return SGF.emitLoadOfLValue(E, std::move(lv), C);
}
RValue RValueEmitter::visitDynamicMemberRefExpr(DynamicMemberRefExpr *E,
SGFContext C) {
return SGF.emitDynamicMemberRefExpr(E, C);
}
RValue RValueEmitter::
visitDotSyntaxBaseIgnoredExpr(DotSyntaxBaseIgnoredExpr *E, SGFContext C) {
visit(E->getLHS());
return visit(E->getRHS());
}
RValue RValueEmitter::visitSubscriptExpr(SubscriptExpr *E, SGFContext C) {
// Any writebacks for this access are tightly scoped.
FormalEvaluationScope scope(SGF);
LValue lv = SGF.emitLValue(E, AccessKind::Read);
return SGF.emitLoadOfLValue(E, std::move(lv), C);
}
RValue RValueEmitter::visitDynamicSubscriptExpr(
DynamicSubscriptExpr *E, SGFContext C) {
return SGF.emitDynamicSubscriptExpr(E, C);
}
RValue RValueEmitter::visitTupleElementExpr(TupleElementExpr *E,
SGFContext C) {
assert(!E->getType()->is<LValueType>() &&
"RValueEmitter shouldn't be called on lvalues");
// If our client is ok with a +0 result, then we can compute our base as +0
// and return its element that way. It would not be ok to reuse the Context's
// address buffer though, since our base value will a different type than the
// element.
SGFContext SubContext = C.withFollowingProjection();
return visit(E->getBase(), SubContext).extractElement(E->getFieldNumber());
}
RValue
SILGenFunction::emitApplyOfDefaultArgGenerator(SILLocation loc,
ConcreteDeclRef defaultArgsOwner,
unsigned destIndex,
CanType resultType,
AbstractionPattern origResultType,
SGFContext C) {
SILDeclRef generator
= SILDeclRef::getDefaultArgGenerator(defaultArgsOwner.getDecl(),
destIndex);
// TODO: Should apply the default arg generator's captures, but Sema doesn't
// track them.
auto fnRef = ManagedValue::forUnmanaged(emitGlobalFunctionRef(loc,generator));
auto fnType = fnRef.getType().castTo<SILFunctionType>();
auto substFnType = fnType->substGenericArgs(SGM.M,
defaultArgsOwner.getSubstitutions());
return emitApply(loc, fnRef, defaultArgsOwner.getSubstitutions(),
{}, substFnType,
origResultType, resultType,
ApplyOptions::None, None, None, C);
}
RValue SILGenFunction::emitApplyOfStoredPropertyInitializer(
SILLocation loc,
const PatternBindingEntry &entry,
SubstitutionList subs,
CanType resultType,
AbstractionPattern origResultType,
SGFContext C) {
VarDecl *var = entry.getAnchoringVarDecl();
SILDeclRef constant(var, SILDeclRef::Kind::StoredPropertyInitializer);
auto fnRef = ManagedValue::forUnmanaged(emitGlobalFunctionRef(loc, constant));
auto fnType = fnRef.getType().castTo<SILFunctionType>();
auto substFnType = fnType->substGenericArgs(SGM.M, subs);
return emitApply(loc, fnRef, subs, {},
substFnType,
origResultType,
resultType,
ApplyOptions::None, None, None, C);
}
static void emitTupleShuffleExprInto(RValueEmitter &emitter,
TupleShuffleExpr *E,
Initialization *outerTupleInit) {
CanTupleType outerTuple = cast<TupleType>(E->getType()->getCanonicalType());
auto outerFields = outerTuple->getElements();
(void) outerFields;
// Decompose the initialization.
SmallVector<InitializationPtr, 4> outerInitsBuffer;
auto outerInits =
outerTupleInit->splitIntoTupleElements(emitter.SGF, RegularLocation(E),
outerTuple, outerInitsBuffer);
assert(outerInits.size() == outerFields.size() &&
"initialization size does not match tuple size?!");
// Map outer initializations into a tuple of inner initializations:
// - fill out the initialization elements with null
TupleInitialization innerTupleInit;
if (E->isSourceScalar()) {
innerTupleInit.SubInitializations.push_back(nullptr);
} else {
CanTupleType innerTuple =
cast<TupleType>(E->getSubExpr()->getType()->getCanonicalType());
innerTupleInit.SubInitializations.resize(innerTuple->getNumElements());
}
// Map all the outer initializations to their appropriate targets.
for (unsigned outerIndex = 0; outerIndex != outerInits.size(); outerIndex++) {
auto innerMapping = E->getElementMapping()[outerIndex];
assert(innerMapping >= 0 &&
"non-argument tuple shuffle with default arguments or variadics?");
innerTupleInit.SubInitializations[innerMapping] =
std::move(outerInits[outerIndex]);
}
#ifndef NDEBUG
for (auto &innerInit : innerTupleInit.SubInitializations) {
assert(innerInit != nullptr && "didn't map all inner elements");
}
#endif
// Emit the sub-expression into the tuple initialization we just built.
if (E->isSourceScalar()) {
emitter.SGF.emitExprInto(E->getSubExpr(),
innerTupleInit.SubInitializations[0].get());
} else {
emitter.SGF.emitExprInto(E->getSubExpr(), &innerTupleInit);
}
outerTupleInit->finishInitialization(emitter.SGF);
}
RValue RValueEmitter::visitTupleShuffleExpr(TupleShuffleExpr *E,
SGFContext C) {
// If we're emitting into an initialization, we can try shuffling the
// elements of the initialization.
if (Initialization *I = C.getEmitInto()) {
// In Swift 3 mode, we might be stripping off labels from a
// one-element tuple; the destination type is a ParenType in
// that case.
//
// FIXME: Remove this eventually.
if (I->canSplitIntoTupleElements() &&
!(isa<ParenType>(E->getType().getPointer()) &&
SGF.getASTContext().isSwiftVersion3())) {
emitTupleShuffleExprInto(*this, E, I);
return RValue();
}
}
// Emit the sub-expression tuple and destructure it into elements.
SmallVector<RValue, 4> elements;
if (E->isSourceScalar()) {
elements.push_back(visit(E->getSubExpr()));
} else {
visit(E->getSubExpr()).extractElements(elements);
}
// Prepare a new tuple to hold the shuffled result.
RValue result(E->getType()->getCanonicalType());
// In Swift 3 mode, we might be stripping off labels from a
// one-element tuple; the destination type is a ParenType in
// that case.
//
// FIXME: Remove this eventually.
if (isa<ParenType>(E->getType().getPointer()) &&
SGF.getASTContext().isSwiftVersion3()) {
assert(E->getElementMapping().size() == 1);
auto shuffleIndex = E->getElementMapping()[0];
assert(shuffleIndex != TupleShuffleExpr::DefaultInitialize &&
shuffleIndex != TupleShuffleExpr::CallerDefaultInitialize &&
shuffleIndex != TupleShuffleExpr::Variadic &&
"Only argument tuples can have default initializers & varargs");
result.addElement(std::move(elements[shuffleIndex]));
return result;
}
auto outerFields = E->getType()->castTo<TupleType>()->getElements();
auto shuffleIndexIterator = E->getElementMapping().begin();
auto shuffleIndexEnd = E->getElementMapping().end();
(void)shuffleIndexEnd;
for (auto &field : outerFields) {
assert(shuffleIndexIterator != shuffleIndexEnd &&
"ran out of shuffle indexes before running out of fields?!");
int shuffleIndex = *shuffleIndexIterator++;
assert(shuffleIndex != TupleShuffleExpr::DefaultInitialize &&
shuffleIndex != TupleShuffleExpr::CallerDefaultInitialize &&
"Only argument tuples can have default initializers & varargs");
// If the shuffle index is Variadic, the argument sources are stored
// separately.
if (shuffleIndex != TupleShuffleExpr::Variadic) {
// Map from a different tuple element.
result.addElement(std::move(elements[shuffleIndex]));
continue;
}
assert(field.isVararg() && "Cannot initialize nonvariadic element");
// Okay, we have a varargs tuple element. The separately-stored variadic
// elements feed into the varargs portion of this, which is then
// constructed into an Array through an informal protocol captured by the
// InjectionFn in the TupleShuffleExpr.
assert(E->getVarargsArrayTypeOrNull() &&
"no injection type for varargs tuple?!");
SmallVector<ManagedValue, 4> variadicValues;
for (unsigned sourceField : E->getVariadicArgs()) {
variadicValues.push_back(
std::move(elements[sourceField]).getAsSingleValue(SGF, E));
}
ManagedValue varargs = emitVarargs(SGF, E, field.getVarargBaseTy(),
variadicValues,
E->getVarargsArrayType());
result.addElement(RValue(SGF, E, field.getType()->getCanonicalType(),
varargs));
break;
}
return result;
}
SILValue SILGenFunction::emitMetatypeOfValue(SILLocation loc, Expr *baseExpr) {
Type formalBaseType = baseExpr->getType()->getLValueOrInOutObjectType();
CanType baseTy = formalBaseType->getCanonicalType();
// For class, archetype, and protocol types, look up the dynamic metatype.
if (baseTy.isAnyExistentialType()) {
SILType metaTy = getLoweredLoadableType(
CanExistentialMetatypeType::get(baseTy));
auto base = emitRValueAsSingleValue(baseExpr,
SGFContext::AllowImmediatePlusZero).getValue();
return B.createExistentialMetatype(loc, metaTy, base);
}
SILType metaTy = getLoweredLoadableType(CanMetatypeType::get(baseTy));
// If the lowered metatype has a thick representation, we need to derive it
// dynamically from the instance.
if (metaTy.castTo<MetatypeType>()->getRepresentation()
!= MetatypeRepresentation::Thin) {
auto base = emitRValueAsSingleValue(baseExpr,
SGFContext::AllowImmediatePlusZero).getValue();
return B.createValueMetatype(loc, metaTy, base);
}
// Otherwise, ignore the base and return the static thin metatype.
emitIgnoredExpr(baseExpr);
return B.createMetatype(loc, metaTy);
}
RValue RValueEmitter::visitDynamicTypeExpr(DynamicTypeExpr *E, SGFContext C) {
auto metatype = SGF.emitMetatypeOfValue(E, E->getBase());
return RValue(SGF, E, ManagedValue::forUnmanaged(metatype));
}
RValue RValueEmitter::visitCaptureListExpr(CaptureListExpr *E, SGFContext C) {
// Ensure that weak captures are in a separate scope.
DebugScope scope(SGF, CleanupLocation(E));
// ClosureExpr's evaluate their bound variables.
for (auto capture : E->getCaptureList()) {
SGF.visit(capture.Var);
SGF.visit(capture.Init);
}
// Then they evaluate to their body.
return visit(E->getClosureBody(), C);
}
RValue RValueEmitter::visitAbstractClosureExpr(AbstractClosureExpr *e,
SGFContext C) {
// Emit the closure body.
SGF.SGM.emitClosure(e);
SubstitutionList subs;
if (e->getCaptureInfo().hasGenericParamCaptures())
subs = SGF.getForwardingSubstitutions();
// Generate the closure value (if any) for the closure expr's function
// reference.
auto refType = e->getType()->getCanonicalType();
ManagedValue result = SGF.emitClosureValue(e, SILDeclRef(e),
refType, subs);
return RValue(SGF, e, refType, result);
}
RValue RValueEmitter::
visitInterpolatedStringLiteralExpr(InterpolatedStringLiteralExpr *E,
SGFContext C) {
return visit(E->getSemanticExpr(), C);
}
RValue RValueEmitter::
visitObjectLiteralExpr(ObjectLiteralExpr *E, SGFContext C) {
return visit(E->getSemanticExpr(), C);
}
RValue RValueEmitter::
visitEditorPlaceholderExpr(EditorPlaceholderExpr *E, SGFContext C) {
return visit(E->getSemanticExpr(), C);
}
RValue RValueEmitter::visitObjCSelectorExpr(ObjCSelectorExpr *e, SGFContext C) {
SILType loweredSelectorTy = SGF.getLoweredType(e->getType());
// Dig out the declaration of the Selector type.
auto selectorDecl = e->getType()->getAs<StructType>()->getDecl();
// Dig out the type of its pointer.
Type selectorMemberTy;
for (auto member : selectorDecl->getMembers()) {
if (auto var = dyn_cast<VarDecl>(member)) {
if (!var->isStatic() && var->hasStorage()) {
selectorMemberTy = var->getInterfaceType()->getRValueType();
break;
}
}
}
if (!selectorMemberTy) {
SGF.SGM.diagnose(e, diag::objc_selector_malformed);
return RValue(SGF, e, SGF.emitUndef(e, loweredSelectorTy));
}
// Form the selector string.
llvm::SmallString<64> selectorScratch;
auto selectorString =
e->getMethod()->getObjCSelector().getString(selectorScratch);
// Create an Objective-C selector string literal.
auto selectorLiteral =
SGF.B.createStringLiteral(e, selectorString,
StringLiteralInst::Encoding::ObjCSelector);
// Create the pointer struct from the raw pointer.
SILType loweredPtrTy = SGF.getLoweredType(selectorMemberTy);
auto ptrValue = SGF.B.createStruct(e, loweredPtrTy, { selectorLiteral });
// Wrap that up in a Selector and return it.
auto selectorValue = SGF.B.createStruct(e, loweredSelectorTy, { ptrValue });
return RValue(SGF, e, ManagedValue::forUnmanaged(selectorValue));
}
RValue RValueEmitter::visitObjCKeyPathExpr(ObjCKeyPathExpr *E, SGFContext C) {
return visit(E->getSemanticExpr(), C);
}
RValue RValueEmitter::
visitMagicIdentifierLiteralExpr(MagicIdentifierLiteralExpr *E, SGFContext C) {
ASTContext &Ctx = SGF.getASTContext();
SILType Ty = SGF.getLoweredLoadableType(E->getType());
SourceLoc Loc;
// If "overrideLocationForMagicIdentifiers" is set, then we use it as the
// location point for these magic identifiers.
if (SGF.overrideLocationForMagicIdentifiers)
Loc = SGF.overrideLocationForMagicIdentifiers.getValue();
else
Loc = E->getStartLoc();
switch (E->getKind()) {
case MagicIdentifierLiteralExpr::File:
case MagicIdentifierLiteralExpr::Function:
return SGF.emitLiteral(E, C);
case MagicIdentifierLiteralExpr::Line: {
unsigned Value = 0;
if (Loc.isValid())
Value = Ctx.SourceMgr.getLineAndColumn(Loc).first;
SILValue V = SGF.B.createIntegerLiteral(E, Ty, Value);
return RValue(SGF, E, ManagedValue::forUnmanaged(V));
}
case MagicIdentifierLiteralExpr::Column: {
unsigned Value = 0;
if (Loc.isValid())
Value = Ctx.SourceMgr.getLineAndColumn(Loc).second;
SILValue V = SGF.B.createIntegerLiteral(E, Ty, Value);
return RValue(SGF, E, ManagedValue::forUnmanaged(V));
}
case MagicIdentifierLiteralExpr::DSOHandle: {
auto SILLoc = SILLocation(E);
auto UnsafeRawPointer = SGF.getASTContext().getUnsafeRawPointerDecl();
auto UnsafeRawPtrTy =
SGF.getLoweredType(UnsafeRawPointer->getDeclaredInterfaceType());
SILType BuiltinRawPtrTy = SILType::getRawPointerType(SGF.getASTContext());
auto DSOGlobal = SGF.SGM.M.lookUpGlobalVariable("__dso_handle");
if (!DSOGlobal)
DSOGlobal = SILGlobalVariable::create(SGF.SGM.M,
SILLinkage::HiddenExternal,
IsNotFragile, "__dso_handle",
BuiltinRawPtrTy);
auto DSOAddr = SGF.B.createGlobalAddr(SILLoc, DSOGlobal);
auto DSOPointer = SGF.B.createAddressToPointer(SILLoc, DSOAddr,
BuiltinRawPtrTy);
auto UnsafeRawPtrStruct = SGF.B.createStruct(SILLoc, UnsafeRawPtrTy,
{ DSOPointer });
return RValue(SGF, E, ManagedValue::forUnmanaged(UnsafeRawPtrStruct));
}
}
llvm_unreachable("Unhandled MagicIdentifierLiteralExpr in switch.");
}
RValue RValueEmitter::visitCollectionExpr(CollectionExpr *E, SGFContext C) {
return visit(E->getSemanticExpr(), C);
}
/// Flattens one level of optional from a nested optional value.
static ManagedValue flattenOptional(SILGenFunction &SGF, SILLocation loc,
ManagedValue optVal) {
// FIXME: Largely copied from SILGenFunction::emitOptionalToOptional.
auto contBB = SGF.createBasicBlock();
auto isNotPresentBB = SGF.createBasicBlock();
auto isPresentBB = SGF.createBasicBlock();
SILType resultTy = optVal.getType().getAnyOptionalObjectType();
auto &resultTL = SGF.getTypeLowering(resultTy);
assert(resultTy.getSwiftRValueType().getAnyOptionalObjectType() &&
"input was not a nested optional value");
// If the result is address-only, we need to return something in memory,
// otherwise the result is the BBArgument in the merge point.
SILValue result;
if (resultTL.isAddressOnly())
result = SGF.emitTemporaryAllocation(loc, resultTy);
else
result = contBB->createPHIArgument(resultTy, ValueOwnershipKind::Owned);
// Branch on whether the input is optional, this doesn't consume the value.
auto isPresent = SGF.emitDoesOptionalHaveValue(loc, optVal.getValue());
SGF.B.createCondBranch(loc, isPresent, isPresentBB, isNotPresentBB);
// If it's present, apply the recursive transformation to the value.
SGF.B.emitBlock(isPresentBB);
SILValue branchArg;
{
// Don't allow cleanups to escape the conditional block.
FullExpr presentScope(SGF.Cleanups, CleanupLocation::get(loc));
// Pull the value out. This will load if the value is not address-only.
auto &inputTL = SGF.getTypeLowering(optVal.getType());
auto resultValue = SGF.emitUncheckedGetOptionalValueFrom(loc, optVal,
inputTL);
// Inject that into the result type if the result is address-only.
if (resultTL.isAddressOnly())
resultValue.forwardInto(SGF, loc, result);
else
branchArg = resultValue.forward(SGF);
}
if (branchArg)
SGF.B.createBranch(loc, contBB, branchArg);
else
SGF.B.createBranch(loc, contBB);
// If it's not present, inject 'nothing' into the result.
SGF.B.emitBlock(isNotPresentBB);
if (resultTL.isAddressOnly()) {
SGF.emitInjectOptionalNothingInto(loc, result, resultTL);
SGF.B.createBranch(loc, contBB);
} else {
branchArg = SGF.getOptionalNoneValue(loc, resultTL);
SGF.B.createBranch(loc, contBB, branchArg);
}
// Continue.
SGF.B.emitBlock(contBB);
if (resultTL.isAddressOnly())
return SGF.emitManagedBufferWithCleanup(result, resultTL);
return SGF.emitManagedRValueWithCleanup(result, resultTL);
}
static ManagedValue
computeNewSelfForRebindSelfInConstructorExpr(SILGenFunction &SGF,
RebindSelfInConstructorExpr *E) {
// Get newSelf, forward the cleanup for newSelf and clean everything else
// up.
FormalEvaluationScope Scope(SGF);
ManagedValue newSelfWithCleanup =
SGF.emitRValueAsSingleValue(E->getSubExpr());
SGF.InitDelegationSelf = ManagedValue();
SGF.SuperInitDelegationSelf = ManagedValue();
SGF.InitDelegationLoc.reset();
return newSelfWithCleanup;
}
RValue RValueEmitter::visitRebindSelfInConstructorExpr(
RebindSelfInConstructorExpr *E, SGFContext C) {
auto selfDecl = E->getSelf();
auto ctorDecl = cast<ConstructorDecl>(selfDecl->getDeclContext());
auto selfTy = selfDecl->getType()->getInOutObjectType();
auto newSelfTy = E->getSubExpr()->getType();
OptionalTypeKind failability;
if (auto objTy = newSelfTy->getAnyOptionalObjectType(failability))
newSelfTy = objTy;
// "try? self.init()" can give us two levels of optional if the initializer
// we delegate to is failable.
OptionalTypeKind extraFailability;
if (auto objTy = newSelfTy->getAnyOptionalObjectType(extraFailability))
newSelfTy = objTy;
bool requiresDowncast = !newSelfTy->isEqual(selfTy);
// The subexpression consumes the current 'self' binding.
assert(SGF.SelfInitDelegationState == SILGenFunction::NormalSelf
&& "already doing something funky with self?!");
SGF.SelfInitDelegationState = SILGenFunction::WillSharedBorrowSelf;
SGF.InitDelegationLoc.emplace(E);
// Emit the subexpression, computing new self. New self is always returned at
// +1.
ManagedValue newSelf = computeNewSelfForRebindSelfInConstructorExpr(SGF, E);
// We know that self is a box, so get its address.
SILValue selfAddr =
SGF.emitLValueForDecl(E, selfDecl, selfTy->getCanonicalType(),
AccessKind::Write).getLValueAddress();
// Handle a nested optional case (see above).
if (extraFailability != OTK_None)
newSelf = flattenOptional(SGF, E, newSelf);
// If both the delegated-to initializer and our enclosing initializer can
// fail, deal with the failure.
if (failability != OTK_None && ctorDecl->getFailability() != OTK_None) {
SILBasicBlock *someBB = SGF.createBasicBlock();
auto hasValue = SGF.emitDoesOptionalHaveValue(E, newSelf.getValue());
assert(SGF.FailDest.isValid() && "too big to fail");
// On the failure case, we don't need to clean up the 'self' returned
// by the call to the other constructor, since we know it is nil and
// therefore dynamically trivial.
if (newSelf.getCleanup().isValid())
SGF.Cleanups.setCleanupState(newSelf.getCleanup(),
CleanupState::Dormant);
auto noneBB = SGF.Cleanups.emitBlockForCleanups(SGF.FailDest, E);
if (newSelf.getCleanup().isValid())
SGF.Cleanups.setCleanupState(newSelf.getCleanup(),
CleanupState::Active);
SGF.B.createCondBranch(E, hasValue, someBB, noneBB);
// Otherwise, project out the value and carry on.
SGF.B.emitBlock(someBB);
// If the current constructor is not failable, force out the value.
newSelf = SGF.emitUncheckedGetOptionalValueFrom(E, newSelf,
SGF.getTypeLowering(newSelf.getType()),
SGFContext());
}
// If we called a constructor that requires a downcast, perform the downcast.
if (requiresDowncast) {
assert(newSelf.getType().isObject() &&
newSelf.getType().hasReferenceSemantics() &&
"ctor type mismatch for non-reference type?!");
CleanupHandle newSelfCleanup = newSelf.getCleanup();
SILValue newSelfValue;
auto destTy = SGF.getLoweredLoadableType(
E->getSelf()->getType()->getInOutObjectType());
// Assume that the returned 'self' is the appropriate subclass
// type (or a derived class thereof). Only Objective-C classes can
// violate this assumption.
newSelfValue = SGF.B.createUncheckedRefCast(E, newSelf.getValue(),
destTy);
newSelf = ManagedValue(newSelfValue, newSelfCleanup);
}
// Forward or assign into the box depending on whether we actually consumed
// 'self'.
switch (SGF.SelfInitDelegationState) {
case SILGenFunction::NormalSelf:
llvm_unreachable("self isn't normal in a constructor delegation");
case SILGenFunction::WillSharedBorrowSelf:
// We did not perform any borrow of self, exclusive or shared. This means
// that old self is still located in the relevant box. This will ensure that
// old self is destroyed.
newSelf.assignInto(SGF, E, selfAddr);
break;
case SILGenFunction::DidSharedBorrowSelf:
// We performed a shared borrow of self. This means that old self is still
// located in the self box. Perform an assign to destroy old self.
newSelf.assignInto(SGF, E, selfAddr);
break;
case SILGenFunction::WillExclusiveBorrowSelf:
llvm_unreachable("Should never have newSelf without finishing an exclusive "
"borrow scope");
case SILGenFunction::DidExclusiveBorrowSelf:
// We performed an exclusive borrow of self and have a new value to
// writeback. Writeback the self value into the now empty box.
newSelf.forwardInto(SGF, E, selfAddr);
break;
}
SGF.SelfInitDelegationState = SILGenFunction::NormalSelf;
SGF.InitDelegationSelf = ManagedValue();
// If we are using Objective-C allocation, the caller can return
// nil. When this happens with an explicitly-written super.init or
// self.init invocation, return early if we did get nil.
//
// TODO: Remove this when failable initializers are fully implemented.
auto classDecl = selfTy->getClassOrBoundGenericClass();
if (classDecl && !E->getSubExpr()->isImplicit() &&
usesObjCAllocator(classDecl)) {
// Check whether the new self is null.
SILValue isNonnullSelf = SGF.B.createIsNonnull(E, newSelf.getValue());
Condition cond = SGF.emitCondition(isNonnullSelf, E,
/*hasFalseCode=*/false,
/*invertValue=*/true,
{ });
// If self is null, branch to the epilog.
cond.enterTrue(SGF);
SGF.Cleanups.emitBranchAndCleanups(SGF.ReturnDest, E, { });
cond.exitTrue(SGF);
cond.complete(SGF);
}
return SGF.emitEmptyTupleRValue(E, C);
}
static bool isVerbatimNullableTypeInC(SILModule &M, Type ty) {
ty = ty->getLValueOrInOutObjectType()->getReferenceStorageReferent();
// Class instances, and @objc existentials are all nullable.
if (ty->hasReferenceSemantics()) {
// So are blocks, but we usually bridge them to Swift closures before we get
// a chance to check for optional promotion, so we're already screwed if
// an API lies about nullability.
if (auto fnTy = ty->getAs<AnyFunctionType>()) {
switch (fnTy->getRepresentation()) {
// Carried verbatim from C.
case FunctionTypeRepresentation::Block:
case FunctionTypeRepresentation::CFunctionPointer:
return true;
// Was already bridged.
case FunctionTypeRepresentation::Swift:
case FunctionTypeRepresentation::Thin:
return false;
}
}
return true;
}
// Other types like UnsafePointer can also be nullable.
const DeclContext *DC = M.getAssociatedContext();
if (!DC)
DC = M.getSwiftModule();
ty = OptionalType::get(ty);
return ty->isTriviallyRepresentableIn(ForeignLanguage::C, DC);
}
/// Determine whether the given declaration returns a non-optional object that
/// might actually be nil.
///
/// This is an awful hack that makes it possible to work around several kinds
/// of problems:
/// - initializers currently cannot fail, so they always return non-optional.
/// - an Objective-C method might have been annotated to state (incorrectly)
/// that it returns a non-optional object
/// - an Objective-C property might be annotated to state (incorrectly) that
/// it is non-optional
static bool mayLieAboutNonOptionalReturn(SILModule &M,
ValueDecl *decl) {
// Any Objective-C initializer, because failure propagates from any
// initializer written in Objective-C (and there's no way to tell).
if (auto constructor = dyn_cast<ConstructorDecl>(decl)) {
return constructor->isObjC();
}
// Functions that return non-optional reference type and were imported from
// Objective-C.
if (auto func = dyn_cast<FuncDecl>(decl)) {
assert((func->getResultInterfaceType()->hasTypeParameter()
|| isVerbatimNullableTypeInC(M, func->getResultInterfaceType()))
&& "func's result type is not nullable?!");
return func->hasClangNode();
}
// Computed properties of non-optional reference type that were imported from
// Objective-C.
if (auto var = dyn_cast<VarDecl>(decl)) {
#ifndef NDEBUG
auto type = var->getInterfaceType();
assert((type->hasTypeParameter()
|| isVerbatimNullableTypeInC(M, type->getReferenceStorageReferent()))
&& "property's result type is not nullable?!");
#endif
return var->hasClangNode();
}
// Subscripts of non-optional reference type that were imported from
// Objective-C.
if (auto subscript = dyn_cast<SubscriptDecl>(decl)) {
assert((subscript->getElementInterfaceType()->hasTypeParameter()
|| isVerbatimNullableTypeInC(M, subscript->getElementInterfaceType()))
&& "subscript's result type is not nullable?!");
return subscript->hasClangNode();
}
return false;
}
/// Determine whether the given expression returns a non-optional object that
/// might actually be nil.
///
/// This is an awful hack that makes it possible to work around several kinds
/// of problems:
/// - an Objective-C method might have been annotated to state (incorrectly)
/// that it returns a non-optional object
/// - an Objective-C property might be annotated to state (incorrectly) that
/// it is non-optional
static bool mayLieAboutNonOptionalReturn(SILModule &M, Expr *expr) {
expr = expr->getSemanticsProvidingExpr();
// An application that produces a reference type, which we look through to
// get the function we're calling.
if (auto apply = dyn_cast<ApplyExpr>(expr)) {
// The result has to be a nullable type.
if (!isVerbatimNullableTypeInC(M, apply->getType()))
return false;
auto getFuncDeclFromDynamicMemberLookup = [&](Expr *expr) -> FuncDecl * {
if (auto open = dyn_cast<OpenExistentialExpr>(expr))
expr = open->getSubExpr();
if (auto memberRef = dyn_cast<DynamicMemberRefExpr>(expr))
return dyn_cast<FuncDecl>(memberRef->getMember().getDecl());
return nullptr;
};
// The function should come from C, being either an ObjC function or method
// or having a C-derived convention.
ValueDecl *method = nullptr;
if (auto selfApply = dyn_cast<ApplyExpr>(apply->getFn())) {
if (auto methodRef = dyn_cast<DeclRefExpr>(selfApply->getFn())) {
method = methodRef->getDecl();
}
} else if (auto force = dyn_cast<ForceValueExpr>(apply->getFn())) {
method = getFuncDeclFromDynamicMemberLookup(force->getSubExpr());
} else if (auto bind = dyn_cast<BindOptionalExpr>(apply->getFn())) {
method = getFuncDeclFromDynamicMemberLookup(bind->getSubExpr());
} else if (auto fnRef = dyn_cast<DeclRefExpr>(apply->getFn())) {
// Only consider a full application of a method. Partial applications
// never lie.
if (auto func = dyn_cast<AbstractFunctionDecl>(fnRef->getDecl()))
if (func->getParameterLists().size() == 1)
method = fnRef->getDecl();
}
if (method && mayLieAboutNonOptionalReturn(M, method))
return true;
auto convention = apply->getFn()->getType()->castTo<AnyFunctionType>()
->getRepresentation();
switch (convention) {
case FunctionTypeRepresentation::Block:
case FunctionTypeRepresentation::CFunctionPointer:
return true;
case FunctionTypeRepresentation::Swift:
case FunctionTypeRepresentation::Thin:
return false;
}
}
// A load.
if (auto load = dyn_cast<LoadExpr>(expr)) {
return mayLieAboutNonOptionalReturn(M, load->getSubExpr());
}
// A reference to a member property.
if (auto member = dyn_cast<MemberRefExpr>(expr)) {
return isVerbatimNullableTypeInC(M, member->getType()) &&
mayLieAboutNonOptionalReturn(M, member->getMember().getDecl());
}
// A reference to a subscript.
if (auto subscript = dyn_cast<SubscriptExpr>(expr)) {
return isVerbatimNullableTypeInC(M, subscript->getType()) &&
mayLieAboutNonOptionalReturn(M, subscript->getDecl().getDecl());
}
// A reference to a member property found via dynamic lookup.
if (auto member = dyn_cast<DynamicMemberRefExpr>(expr)) {
return isVerbatimNullableTypeInC(M, member->getType()) &&
mayLieAboutNonOptionalReturn(M, member->getMember().getDecl());
}
// A reference to a subscript found via dynamic lookup.
if (auto subscript = dyn_cast<DynamicSubscriptExpr>(expr)) {
return isVerbatimNullableTypeInC(M, subscript->getType()) &&
mayLieAboutNonOptionalReturn(M, subscript->getMember().getDecl());
}
return false;
}
RValue RValueEmitter::visitInjectIntoOptionalExpr(InjectIntoOptionalExpr *E,
SGFContext C) {
// This is an awful hack. When the source expression might produce a
// non-optional reference that could legitimated be nil, such as with an
// initializer, allow this workaround to capture that nil:
//
// let x: NSFoo? = NSFoo(potentiallyFailingInit: x)
//
// However, our optimizer is smart enough now to recognize that an initializer
// can "never" produce nil, and will optimize away any attempts to check the
// resulting optional for nil. As a special case, when we're injecting the
// result of an ObjC constructor into an optional, do it using an unchecked
// bitcast, which is opaque to the optimizer.
if (mayLieAboutNonOptionalReturn(SGF.SGM.M, E->getSubExpr())) {
auto result = SGF.emitRValueAsSingleValue(E->getSubExpr());
auto optType = SGF.getLoweredLoadableType(E->getType());
SILValue bitcast = SGF.B.createUncheckedBitCast(E, result.getValue(),
optType);
ManagedValue bitcastMV = ManagedValue(bitcast, result.getCleanup());
return RValue(SGF, E, bitcastMV);
}
OptionalTypeKind OTK;
E->getType()->getAnyOptionalObjectType(OTK);
assert(OTK != OTK_None);
auto someDecl = SGF.getASTContext().getOptionalSomeDecl(OTK);
ManagedValue result = SGF.emitInjectEnum(E, ArgumentSource(E->getSubExpr()),
SGF.getLoweredType(E->getType()),
someDecl, C);
if (result.isInContext())
return RValue();
return RValue(SGF, E, result);
}
RValue RValueEmitter::visitLValueToPointerExpr(LValueToPointerExpr *E,
SGFContext C) {
LValue lv = SGF.emitLValue(E->getSubExpr(), AccessKind::ReadWrite);
SILValue address = SGF.emitAddressOfLValue(E->getSubExpr(),
std::move(lv),
AccessKind::ReadWrite)
.getUnmanagedValue();
// TODO: Reabstract the lvalue to match the abstraction level expected by
// the inout address conversion's InOutType. For now, just report cases where
// we would need a reabstraction as unsupported.
SILType abstractedTy
= SGF.getLoweredType(AbstractionPattern(E->getAbstractionPatternType()),
E->getSubExpr()->getType()->getLValueOrInOutObjectType());
if (address->getType().getObjectType() != abstractedTy)
SGF.SGM.diagnose(E, diag::not_implemented,
"abstraction difference in inout conversion");
SILValue ptr = SGF.B.createAddressToPointer(E, address,
SILType::getRawPointerType(SGF.getASTContext()));
return RValue(SGF, E, ManagedValue::forUnmanaged(ptr));
}
RValue RValueEmitter::visitClassMetatypeToObjectExpr(
ClassMetatypeToObjectExpr *E,
SGFContext C) {
ManagedValue v = SGF.emitRValueAsSingleValue(E->getSubExpr());
SILType resultTy = SGF.getLoweredLoadableType(E->getType());
return RValue(SGF, E, SGF.emitClassMetatypeToObject(E, v, resultTy));
}
RValue RValueEmitter::visitExistentialMetatypeToObjectExpr(
ExistentialMetatypeToObjectExpr *E,
SGFContext C) {
ManagedValue v = SGF.emitRValueAsSingleValue(E->getSubExpr());
SILType resultTy = SGF.getLoweredLoadableType(E->getType());
return RValue(SGF, E, SGF.emitExistentialMetatypeToObject(E, v, resultTy));
}
RValue RValueEmitter::visitProtocolMetatypeToObjectExpr(
ProtocolMetatypeToObjectExpr *E,
SGFContext C) {
SGF.emitIgnoredExpr(E->getSubExpr());
CanType inputTy = E->getSubExpr()->getType()->getCanonicalType();
SILType resultTy = SGF.getLoweredLoadableType(E->getType());
ManagedValue v = SGF.emitProtocolMetatypeToObject(E, inputTy, resultTy);
return RValue(SGF, E, v);
}
RValue RValueEmitter::visitIfExpr(IfExpr *E, SGFContext C) {
auto &lowering = SGF.getTypeLowering(E->getType());
if (lowering.isLoadable()) {
// If the result is loadable, emit each branch and forward its result
// into the destination block argument.
// FIXME: We could avoid imploding and reexploding tuples here.
Condition cond = SGF.emitCondition(E->getCondExpr(),
/*hasFalse*/ true,
/*invertCondition*/ false,
SGF.getLoweredType(E->getType()));
cond.enterTrue(SGF);
SGF.emitProfilerIncrement(E->getThenExpr());
SILValue trueValue;
{
auto TE = E->getThenExpr();
FullExpr trueScope(SGF.Cleanups, CleanupLocation(TE));
trueValue = visit(TE).forwardAsSingleValue(SGF, TE);
}
cond.exitTrue(SGF, trueValue);
cond.enterFalse(SGF);
SILValue falseValue;
{
auto EE = E->getElseExpr();
FullExpr falseScope(SGF.Cleanups, CleanupLocation(EE));
falseValue = visit(EE).forwardAsSingleValue(SGF, EE);
}
cond.exitFalse(SGF, falseValue);
SILBasicBlock *cont = cond.complete(SGF);
assert(cont && "no continuation block for if expr?!");
SILValue result = cont->args_begin()[0];
return RValue(SGF, E, SGF.emitManagedRValueWithCleanup(result));
} else {
// If the result is address-only, emit the result into a common stack buffer
// that dominates both branches.
SILValue resultAddr = SGF.getBufferForExprResult(
E, lowering.getLoweredType(), C);
Condition cond = SGF.emitCondition(E->getCondExpr(),
/*hasFalse*/ true,
/*invertCondition*/ false);
cond.enterTrue(SGF);
SGF.emitProfilerIncrement(E->getThenExpr());
{
auto TE = E->getThenExpr();
FullExpr trueScope(SGF.Cleanups, CleanupLocation(TE));
KnownAddressInitialization init(resultAddr);
SGF.emitExprInto(TE, &init);
}
cond.exitTrue(SGF);
cond.enterFalse(SGF);
{
auto EE = E->getElseExpr();
FullExpr trueScope(SGF.Cleanups, CleanupLocation(EE));
KnownAddressInitialization init(resultAddr);
SGF.emitExprInto(EE, &init);
}
cond.exitFalse(SGF);
cond.complete(SGF);
return RValue(SGF, E,
SGF.manageBufferForExprResult(resultAddr, lowering, C));
}
}
RValue SILGenFunction::emitEmptyTupleRValue(SILLocation loc,
SGFContext C) {
return RValue(CanType(TupleType::getEmpty(F.getASTContext())));
}
namespace {
/// A visitor for creating a flattened list of LValues from a
/// tuple-of-lvalues expression.
///
/// Note that we can have tuples down to arbitrary depths in the
/// type, but every branch should lead to an l-value otherwise.
class TupleLValueEmitter
: public Lowering::ExprVisitor<TupleLValueEmitter> {
SILGenFunction &SGF;
AccessKind TheAccessKind;
/// A flattened list of l-values.
SmallVectorImpl<Optional<LValue>> &Results;
public:
TupleLValueEmitter(SILGenFunction &SGF, AccessKind accessKind,
SmallVectorImpl<Optional<LValue>> &results)
: SGF(SGF), TheAccessKind(accessKind), Results(results) {}
// If the destination is a tuple, recursively destructure.
void visitTupleExpr(TupleExpr *E) {
assert(E->getType()->is<TupleType>());
assert(!E->getType()->isMaterializable() || E->getType()->isVoid());
for (auto &elt : E->getElements()) {
visit(elt);
}
}
// If the destination is '_', queue up a discard.
void visitDiscardAssignmentExpr(DiscardAssignmentExpr *E) {
Results.push_back(None);
}
// Otherwise, queue up a scalar assignment to an lvalue.
void visitExpr(Expr *E) {
assert(E->getType()->is<LValueType>());
Results.push_back(SGF.emitLValue(E, TheAccessKind));
}
};
/// A visitor for consuming tuples of l-values.
class TupleLValueAssigner
: public CanTypeVisitor<TupleLValueAssigner, void, RValue &&> {
SILGenFunction &SGF;
SILLocation AssignLoc;
MutableArrayRef<Optional<LValue>> DestLVQueue;
Optional<LValue> &&getNextDest() {
assert(!DestLVQueue.empty());
Optional<LValue> &next = DestLVQueue.front();
DestLVQueue = DestLVQueue.slice(1);
return std::move(next);
}
public:
TupleLValueAssigner(SILGenFunction &SGF, SILLocation assignLoc,
SmallVectorImpl<Optional<LValue>> &destLVs)
: SGF(SGF), AssignLoc(assignLoc), DestLVQueue(destLVs) {}
/// Top-level entrypoint.
void emit(CanType destType, RValue &&src) {
visitTupleType(cast<TupleType>(destType), std::move(src));
assert(DestLVQueue.empty() && "didn't consume all l-values!");
}
// If the destination is a tuple, recursively destructure.
void visitTupleType(CanTupleType destTupleType, RValue &&srcTuple) {
// Break up the source r-value.
SmallVector<RValue, 4> srcElts;
std::move(srcTuple).extractElements(srcElts);
// Consume source elements off the queue.
unsigned eltIndex = 0;
for (CanType destEltType : destTupleType.getElementTypes()) {
visit(destEltType, std::move(srcElts[eltIndex++]));
}
}
// Okay, otherwise we pull one destination off the queue.
void visitType(CanType destType, RValue &&src) {
assert(isa<LValueType>(destType));
Optional<LValue> &&next = getNextDest();
// If the destination is a discard, do nothing.
if (!next.hasValue())
return;
// Otherwise, emit the scalar assignment.
SGF.emitAssignToLValue(AssignLoc, std::move(src),
std::move(next.getValue()));
}
};
} // end anonymous namespace
/// Emit a simple assignment, i.e.
///
/// dest = src
///
/// The destination operand can be an arbitrarily-structured tuple of
/// l-values.
static void emitSimpleAssignment(SILGenFunction &SGF, SILLocation loc,
Expr *dest, Expr *src) {
// Handle lvalue-to-lvalue assignments with a high-level copy_addr
// instruction if possible.
if (auto *srcLoad = dyn_cast<LoadExpr>(src)) {
// Check that the two l-value expressions have the same type.
// Compound l-values like (a,b) have tuple type, so this check
// also prevents us from getting into that case.
if (dest->getType()->isEqual(srcLoad->getSubExpr()->getType())) {
assert(!dest->getType()->is<TupleType>());
FormalEvaluationScope writeback(SGF);
auto destLV = SGF.emitLValue(dest, AccessKind::Write);
auto srcLV = SGF.emitLValue(srcLoad->getSubExpr(), AccessKind::Read);
SGF.emitAssignLValueToLValue(loc, std::move(srcLV), std::move(destLV));
return;
}
}
// Handle tuple destinations by destructuring them if present.
CanType destType = dest->getType()->getCanonicalType();
assert(!destType->isMaterializable() || destType->isVoid());
// But avoid this in the common case.
if (!isa<TupleType>(destType)) {
// If we're assigning to a discard, just emit the operand as ignored.
dest = dest->getSemanticsProvidingExpr();
if (isa<DiscardAssignmentExpr>(dest)) {
SGF.emitIgnoredExpr(src);
return;
}
FormalEvaluationScope writeback(SGF);
LValue destLV = SGF.emitLValue(dest, AccessKind::Write);
RValue srcRV = SGF.emitRValue(src);
SGF.emitAssignToLValue(loc, std::move(srcRV), std::move(destLV));
return;
}
FormalEvaluationScope writeback(SGF);
// Produce a flattened queue of LValues.
SmallVector<Optional<LValue>, 4> destLVs;
TupleLValueEmitter(SGF, AccessKind::Write, destLVs).visit(dest);
// Emit the r-value.
RValue srcRV = SGF.emitRValue(src);
// Recurse on the type of the destination, pulling LValues as
// needed from the queue we built up before.
TupleLValueAssigner(SGF, loc, destLVs).emit(destType, std::move(srcRV));
}
RValue RValueEmitter::visitAssignExpr(AssignExpr *E, SGFContext C) {
FullExpr scope(SGF.Cleanups, CleanupLocation(E));
emitSimpleAssignment(SGF, E, E->getDest(), E->getSrc());
return SGF.emitEmptyTupleRValue(E, C);
}
void SILGenFunction::emitBindOptional(SILLocation loc,
ManagedValue optionalAddrOrValue,
unsigned depth) {
assert(depth < BindOptionalFailureDests.size());
auto failureDest = BindOptionalFailureDests[BindOptionalFailureDests.size()
- depth - 1];
// Check whether the optional has a value.
SILBasicBlock *hasValueBB = createBasicBlock();
auto hasValue = emitDoesOptionalHaveValue(loc,optionalAddrOrValue.getValue());
// If there is a cleanup for the optional value being tested, we can disable
// it on the failure path. We don't need to destroy it because we know that
// on that path it is nil.
if (optionalAddrOrValue.hasCleanup())
Cleanups.setCleanupState(optionalAddrOrValue.getCleanup(),
CleanupState::Dormant);
// If not, thread out through a bunch of cleanups.
SILBasicBlock *hasNoValueBB = Cleanups.emitBlockForCleanups(failureDest, loc);
B.createCondBranch(loc, hasValue, hasValueBB, hasNoValueBB);
// If so, continue.
B.emitBlock(hasValueBB);
// Reenable the cleanup for the optional on the normal path.
if (optionalAddrOrValue.hasCleanup())
Cleanups.setCleanupState(optionalAddrOrValue.getCleanup(),
CleanupState::Active);
}
RValue RValueEmitter::visitBindOptionalExpr(BindOptionalExpr *E, SGFContext C) {
// Create a temporary of type Optional<T> if it is address-only.
auto &optTL = SGF.getTypeLowering(E->getSubExpr()->getType());
ManagedValue optValue;
if (optTL.isLoadable()) {
optValue = SGF.emitRValueAsSingleValue(E->getSubExpr());
} else {
auto temp = SGF.emitTemporary(E, optTL);
optValue = temp->getManagedAddress();
// Emit the operand into the temporary.
SGF.emitExprInto(E->getSubExpr(), temp.get());
}
// Check to see whether the optional is present, if not, jump to the current
// nil handler block.
SGF.emitBindOptional(E, optValue, E->getDepth());
// If we continued, get the value out as the result of the expression.
auto resultValue = SGF.emitUncheckedGetOptionalValueFrom(E, optValue,
optTL, C);
return RValue(SGF, E, resultValue);
}
namespace {
/// A RAII object to save and restore BindOptionalFailureDest.
class RestoreOptionalFailureDest {
SILGenFunction &SGF;
#ifndef NDEBUG
unsigned Depth;
#endif
public:
RestoreOptionalFailureDest(SILGenFunction &SGF, JumpDest &&dest)
: SGF(SGF)
#ifndef NDEBUG
, Depth(SGF.BindOptionalFailureDests.size())
#endif
{
SGF.BindOptionalFailureDests.push_back(std::move(dest));
}
~RestoreOptionalFailureDest() {
assert(SGF.BindOptionalFailureDests.size() == Depth + 1);
SGF.BindOptionalFailureDests.pop_back();
}
};
} // end anonymous namespace
// Return an initialization address we can emit directly into.
static SILValue getAddressForInPlaceInitialization(const Initialization *I) {
return I ? I->getAddressForInPlaceInitialization() : SILValue();
}
/// emitOptimizedOptionalEvaluation - Look for cases where we can short-circuit
/// evaluation of an OptionalEvaluationExpr by pattern matching the AST.
///
static bool emitOptimizedOptionalEvaluation(OptionalEvaluationExpr *E,
SILValue &LoadableResult,
Initialization *optInit,
RValueEmitter &RVE) {
auto &SGF = RVE.SGF;
// It is a common occurrence to get conversions back and forth from T! to T?.
// Peephole these by looking for a subexpression that is a BindOptionalExpr.
// If we see one, we can produce a single instruction, which doesn't require
// a CFG diamond.
//
// Check for:
// (optional_evaluation_expr type='T?'
// (inject_into_optional type='T?'
// (bind_optional_expr type='T'
// (whatever type='T?' ...)
auto *IIO = dyn_cast<InjectIntoOptionalExpr>(E->getSubExpr()
->getSemanticsProvidingExpr());
if (!IIO) return false;
// Make sure the bind is to the OptionalEvaluationExpr we're emitting.
auto *BO = dyn_cast<BindOptionalExpr>(IIO->getSubExpr()
->getSemanticsProvidingExpr());
if (!BO || BO->getDepth() != 0) return false;
// If the subexpression type is exactly the same, then just peephole the
// whole thing away.
if (BO->getSubExpr()->getType()->isEqual(E->getType())) {
if (optInit)
SGF.emitExprInto(BO->getSubExpr(), optInit);
else
LoadableResult=SGF.emitRValueAsSingleValue(BO->getSubExpr()).forward(SGF);
return true;
}
OptionalTypeKind Kind = OTK_None; (void)Kind;
assert(BO->getSubExpr()->getType()->getAnyOptionalObjectType(Kind)
->isEqual(E->getType()->getAnyOptionalObjectType(Kind)));
// If we're not emitting into memory (which happens both because the type is
// address only or because we have a contextual memory location to
// initialize).
if (optInit == nullptr) {
LoadableResult = SGF.emitRValueAsSingleValue(BO->getSubExpr()).forward(SGF);
return true;
}
// If this is an address-only case, get the address of the buffer we want the
// result in, then cast the address of it to the right type, then emit into
// it.
SILValue optAddr = getAddressForInPlaceInitialization(optInit);
assert(optAddr && "Caller should have provided a buffer");
KnownAddressInitialization subInit(optAddr);
SGF.emitExprInto(BO->getSubExpr(), &subInit);
optInit->finishInitialization(SGF);
return true;
}
RValue RValueEmitter::visitOptionalEvaluationExpr(OptionalEvaluationExpr *E,
SGFContext C) {
auto &optTL = SGF.getTypeLowering(E->getType());
Initialization *optInit = C.getEmitInto();
bool usingProvidedContext = optInit && optInit->isSingleBuffer();
// Form the optional using address operations if the type is address-only or
// if we already have an address to use.
bool isByAddress = usingProvidedContext || optTL.isAddressOnly();
std::unique_ptr<TemporaryInitialization> optTemp;
if (!usingProvidedContext && isByAddress) {
// Allocate the temporary for the Optional<T> if we didn't get one from the
// context. This needs to happen outside of the cleanups scope we're about
// to push.
optTemp = SGF.emitTemporary(E, optTL);
optInit = optTemp.get();
} else if (!usingProvidedContext) {
// If the caller produced a context for us, but we can't use it, then don't.
optInit = nullptr;
}
// Enter a cleanups scope.
FullExpr scope(SGF.Cleanups, E);
// Install a new optional-failure destination just outside of the
// cleanups scope.
SILBasicBlock *failureBB = SGF.createBasicBlock();
RestoreOptionalFailureDest restoreFailureDest(SGF,
JumpDest(failureBB, SGF.Cleanups.getCleanupsDepth(), E));
SILValue NormalArgument;
if (emitOptimizedOptionalEvaluation(E, NormalArgument, optInit, *this)) {
// Already emitted code for this.
} else if (isByAddress) {
// Emit the operand into the temporary.
SGF.emitExprInto(E->getSubExpr(), optInit);
} else {
NormalArgument = SGF.emitRValueAsSingleValue(E->getSubExpr()).forward(SGF);
}
// We fell out of the normal result, which generated a T? as either
// a scalar in NormalArgument or directly into optInit.
// This concludes the conditional scope.
scope.pop();
// In the usual case, the code will have emitted one or more branches to the
// failure block. However, if the body is simple enough, we can end up with
// no branches to the failureBB. Detect this and simplify the generated code
// if so.
if (failureBB->pred_empty()) {
// Remove the dead failureBB.
failureBB->eraseFromParent();
// The value we provide is the one we've already got.
if (!isByAddress)
return RValue(SGF, E,
SGF.emitManagedRValueWithCleanup(NormalArgument, optTL));
// If we emitted into the provided context, we're done.
if (usingProvidedContext)
return RValue();
return RValue(SGF, E, optTemp->getManagedAddress());
}
SILBasicBlock *contBB = SGF.createBasicBlock();
// Branch to the continuation block.
if (NormalArgument)
SGF.B.createBranch(E, contBB, NormalArgument);
else
SGF.B.createBranch(E, contBB);
// If control branched to the failure block, inject .None into the
// result type.
SGF.B.emitBlock(failureBB);
if (isByAddress) {
SGF.emitInjectOptionalNothingInto(E, optInit->getAddress(), optTL);
SGF.B.createBranch(E, contBB);
} else {
auto branchArg = SGF.getOptionalNoneValue(E, optTL);
SGF.B.createBranch(E, contBB, branchArg);
}
// Emit the continuation block.
SGF.B.emitBlock(contBB);
// If this was done in SSA registers, then the value is provided as an
// argument to the block.
if (!isByAddress) {
auto arg = contBB->createPHIArgument(optTL.getLoweredType(),
ValueOwnershipKind::Owned);
return RValue(SGF, E, SGF.emitManagedRValueWithCleanup(arg, optTL));
}
// If we emitted into the provided context, we're done.
if (usingProvidedContext)
return RValue();
assert(optTemp);
return RValue(SGF, E, optTemp->getManagedAddress());
}
RValue RValueEmitter::visitForceValueExpr(ForceValueExpr *E, SGFContext C) {
return emitForceValue(E, E->getSubExpr(), 0, C);
}
/// Emit an expression in a forced context.
///
/// \param loc - the location that is causing the force
/// \param E - the forced expression
/// \param numOptionalEvaluations - the number of enclosing
/// OptionalEvaluationExprs that we've opened.
RValue RValueEmitter::emitForceValue(SILLocation loc, Expr *E,
unsigned numOptionalEvaluations,
SGFContext C) {
auto valueType = E->getType()->getAnyOptionalObjectType();
assert(valueType);
E = E->getSemanticsProvidingExpr();
// If the subexpression is a conditional checked cast, emit an unconditional
// cast, which drastically simplifies the generated SIL for something like:
//
// (x as? Foo)!
if (auto checkedCast = dyn_cast<ConditionalCheckedCastExpr>(E)) {
return emitUnconditionalCheckedCast(SGF, loc, checkedCast->getSubExpr(),
valueType, checkedCast->getCastKind(),
C);
}
// If the subexpression is a monadic optional operation, peephole
// the emission of the operation.
if (auto eval = dyn_cast<OptionalEvaluationExpr>(E)) {
CleanupLocation cleanupLoc = CleanupLocation::get(loc);
SILBasicBlock *failureBB;
JumpDest failureDest(cleanupLoc);
// Set up an optional-failure scope (which cannot actually return).
// We can just borrow the enclosing one if we're in a nested context.
if (numOptionalEvaluations) {
failureBB = nullptr; // remember that we did this
failureDest = SGF.BindOptionalFailureDests.back();
} else {
failureBB = SGF.createBasicBlock(FunctionSection::Postmatter);
failureDest = JumpDest(failureBB, SGF.Cleanups.getCleanupsDepth(),
cleanupLoc);
}
RestoreOptionalFailureDest restoreFailureDest(SGF, std::move(failureDest));
RValue result = emitForceValue(loc, eval->getSubExpr(),
numOptionalEvaluations + 1, C);
// Emit the failure destination, but only if actually used.
if (failureBB) {
if (failureBB->pred_empty()) {
SGF.eraseBasicBlock(failureBB);
} else {
SILGenBuilder failureBuilder(SGF, failureBB);
failureBuilder.setTrackingList(SGF.getBuilder().getTrackingList());
auto boolTy = SILType::getBuiltinIntegerType(1, SGF.getASTContext());
auto trueV = failureBuilder.createIntegerLiteral(loc, boolTy, 1);
failureBuilder.createCondFail(loc, trueV);
failureBuilder.createUnreachable(loc);
}
}
return result;
}
// Handle injections.
if (auto injection = dyn_cast<InjectIntoOptionalExpr>(E)) {
auto subexpr = injection->getSubExpr()->getSemanticsProvidingExpr();
// An injection of a bind is the idiom for a conversion between
// optional types (e.g. ImplicitlyUnwrappedOptional<T> -> Optional<T>).
// Handle it specially to avoid unnecessary control flow.
if (auto bindOptional = dyn_cast<BindOptionalExpr>(subexpr)) {
if (bindOptional->getDepth() < numOptionalEvaluations) {
return emitForceValue(loc, bindOptional->getSubExpr(),
numOptionalEvaluations, C);
}
}
// Otherwise, just emit the injected value directly into the result.
return SGF.emitRValue(injection->getSubExpr(), C);
}
// Otherwise, emit the optional and force its value out.
const TypeLowering &optTL = SGF.getTypeLowering(E->getType());
ManagedValue opt = SGF.emitRValueAsSingleValue(E);
ManagedValue V =
SGF.emitCheckedGetOptionalValueFrom(loc, opt, optTL, C);
return RValue(SGF, loc, valueType->getCanonicalType(), V);
}
void SILGenFunction::emitOpenExistentialExprImpl(
OpenExistentialExpr *E,
llvm::function_ref<void(Expr *)> emitSubExpr) {
Optional<FormalEvaluationScope> writebackScope;
// Emit the existential value.
ManagedValue existentialValue;
AccessKind accessKind;
if (E->getExistentialValue()->getType()->is<LValueType>()) {
// Create a writeback scope for the access to the existential lvalue.
writebackScope.emplace(*this);
accessKind = E->getExistentialValue()->getLValueAccessKind();
existentialValue = emitAddressOfLValue(
E->getExistentialValue(),
emitLValue(E->getExistentialValue(), accessKind),
accessKind);
} else {
accessKind = AccessKind::Read;
existentialValue = emitRValueAsSingleValue(
E->getExistentialValue(),
SGFContext::AllowGuaranteedPlusZero);
}
Type opaqueValueType = E->getOpaqueValue()->getType()->getRValueType();
SILGenFunction::OpaqueValueState state = emitOpenExistential(
E, existentialValue, CanArchetypeType(E->getOpenedArchetype()),
getLoweredType(opaqueValueType), accessKind);
// Register the opaque value for the projected existential.
SILGenFunction::OpaqueValueRAII opaqueValueRAII(
*this, E->getOpaqueValue(), state);
emitSubExpr(E->getSubExpr());
}
RValue RValueEmitter::visitOpenExistentialExpr(OpenExistentialExpr *E,
SGFContext C) {
return SGF.emitOpenExistentialExpr<RValue>(E,
[&](Expr *subExpr) -> RValue {
return visit(subExpr, C);
});
}
RValue RValueEmitter::visitMakeTemporarilyEscapableExpr(
MakeTemporarilyEscapableExpr *E,
SGFContext C) {
// TODO: Some day we want to specialize the representation of nonescaping
// closures to be POD and allow an arbitrary payload in their context word.
// At that point, this operation would need to wrap the nonescaping closure
// in an escaping stub, which we could dynamically check at the end of the
// expression to verify it did not in fact escape at runtime. For now, to
// get the syntax for withoutActuallyEscaping in place, this is a no-op.
// Emit the closure and bind it to an opaque value for use in the
// subexpression.
auto closure = visit(E->getNonescapingClosureValue());
SILGenFunction::OpaqueValueState opaqueValue{
std::move(closure).getAsSingleValue(SGF, E),
/*consumable*/ true,
/*hasBeenConsumed*/ false,
};
SILGenFunction::OpaqueValueRAII pushOpaqueValue(SGF, E->getOpaqueValue(),
opaqueValue);
return visit(E->getSubExpr(), C);
}
RValue RValueEmitter::visitOpaqueValueExpr(OpaqueValueExpr *E, SGFContext C) {
assert(SGF.OpaqueValues.count(E) && "Didn't bind OpaqueValueExpr");
auto &entry = SGF.OpaqueValues[E];
return RValue(SGF, E, SGF.manageOpaqueValue(entry, E, C));
}
ProtocolDecl *SILGenFunction::getPointerProtocol() {
if (SGM.PointerProtocol)
return *SGM.PointerProtocol;
SmallVector<ValueDecl*, 1> lookup;
getASTContext().lookupInSwiftModule("_Pointer", lookup);
// FIXME: Should check for protocol in Sema
assert(lookup.size() == 1 && "no _Pointer protocol");
assert(isa<ProtocolDecl>(lookup[0]) && "_Pointer is not a protocol");
SGM.PointerProtocol = cast<ProtocolDecl>(lookup[0]);
return cast<ProtocolDecl>(lookup[0]);
}
/// Produce a Substitution for a type that conforms to the standard library
/// _Pointer protocol.
Substitution SILGenFunction::getPointerSubstitution(Type pointerType) {
auto &Ctx = getASTContext();
ProtocolDecl *pointerProto = getPointerProtocol();
auto conformance
= Ctx.getStdlibModule()->lookupConformance(pointerType, pointerProto,
nullptr);
assert(conformance && "not a _Pointer type");
// FIXME: Cache this
ProtocolConformanceRef conformances[] = {
ProtocolConformanceRef(*conformance)
};
auto conformancesCopy = Ctx.AllocateCopy(conformances);
return Substitution{pointerType, conformancesCopy};
}
namespace {
class AutoreleasingWritebackComponent : public LogicalPathComponent {
public:
AutoreleasingWritebackComponent(LValueTypeData typeData)
: LogicalPathComponent(typeData, AutoreleasingWritebackKind)
{}
std::unique_ptr<LogicalPathComponent>
clone(SILGenFunction &gen, SILLocation l) const override {
return std::unique_ptr<LogicalPathComponent>(
new AutoreleasingWritebackComponent(getTypeData()));
}
AccessKind getBaseAccessKind(SILGenFunction &gen,
AccessKind kind) const override {
return kind;
}
void set(SILGenFunction &gen, SILLocation loc,
RValue &&value, ManagedValue base) && override {
// Convert the value back to a +1 strong reference.
auto unowned = std::move(value).getAsSingleValue(gen, loc).getUnmanagedValue();
auto strongType = SILType::getPrimitiveObjectType(
unowned->getType().castTo<UnmanagedStorageType>().getReferentType());
auto owned = gen.B.createUnmanagedToRef(loc, unowned, strongType);
auto ownedMV = gen.emitManagedRetain(loc, owned);
// Reassign the +1 storage with it.
ownedMV.assignInto(gen, loc, base.getUnmanagedValue());
}
RValue get(SILGenFunction &gen, SILLocation loc,
ManagedValue base, SGFContext c) && override {
// Load the value at +0.
SILValue owned = gen.B.createLoadBorrow(loc, base.getUnmanagedValue());
// Convert it to unowned.
auto refType = owned->getType().getSwiftRValueType();
auto unownedType = SILType::getPrimitiveObjectType(
CanUnmanagedStorageType::get(refType));
SILValue unowned = gen.B.createRefToUnmanaged(loc, owned, unownedType);
// A reference type should never be exploded.
return RValue::withPreExplodedElements(ManagedValue::forUnmanaged(unowned),
refType);
}
/// Compare 'this' lvalue and the 'rhs' lvalue (which is guaranteed to have
/// the same dynamic PathComponent type as the receiver) to see if they are
/// identical. If so, there is a conflicting writeback happening, so emit a
/// diagnostic.
void diagnoseWritebackConflict(LogicalPathComponent *RHS,
SILLocation loc1, SILLocation loc2,
SILGenFunction &gen) override {
// auto &rhs = (GetterSetterComponent&)*RHS;
}
void print(raw_ostream &OS) const override {
OS << "AutoreleasingWritebackComponent()\n";
}
};
} // end anonymous namespace
RValue RValueEmitter::visitInOutToPointerExpr(InOutToPointerExpr *E,
SGFContext C) {
// If we're converting on the behalf of an
// AutoreleasingUnsafeMutablePointer, convert the lvalue to
// unowned(unsafe), so we can point at +0 storage.
PointerTypeKind pointerKind;
Type elt = E->getType()->getAnyPointerElementType(pointerKind);
assert(elt && "not a pointer");
(void)elt;
AccessKind accessKind =
((pointerKind == PTK_UnsafePointer || pointerKind == PTK_UnsafeRawPointer)
? AccessKind::Read : AccessKind::ReadWrite);
// Get the original lvalue.
LValue lv = SGF.emitLValue(cast<InOutExpr>(E->getSubExpr())->getSubExpr(),
accessKind);
auto ptr = SGF.emitLValueToPointer(E, std::move(lv),
E->getType()->getCanonicalType(),
pointerKind, accessKind);
return RValue(SGF, E, ptr);
}
/// Convert an l-value to a pointer type: unsafe, unsafe-mutable, or
/// autoreleasing-unsafe-mutable.
ManagedValue SILGenFunction::emitLValueToPointer(SILLocation loc,
LValue &&lv,
CanType pointerType,
PointerTypeKind pointerKind,
AccessKind accessKind) {
// The incoming lvalue should be at the abstraction level of T in
// Unsafe*Pointer<T>. Reabstract it if necessary.
auto opaqueTy = AbstractionPattern::getOpaque();
auto loweredTy = getLoweredType(opaqueTy, lv.getSubstFormalType());
if (lv.getTypeOfRValue().getSwiftRValueType()
!= loweredTy.getSwiftRValueType()) {
lv.addSubstToOrigComponent(opaqueTy, loweredTy);
}
switch (pointerKind) {
case PTK_UnsafeMutablePointer:
case PTK_UnsafePointer:
case PTK_UnsafeMutableRawPointer:
case PTK_UnsafeRawPointer:
// +1 is fine.
break;
case PTK_AutoreleasingUnsafeMutablePointer: {
// Set up a writeback through a +0 buffer.
LValueTypeData typeData = lv.getTypeData();
SILType rvalueType = SILType::getPrimitiveObjectType(
CanUnmanagedStorageType::get(typeData.TypeOfRValue.getSwiftRValueType()));
LValueTypeData unownedTypeData(
AbstractionPattern(
typeData.OrigFormalType.getGenericSignature(),
CanUnmanagedStorageType::get(typeData.OrigFormalType.getType())),
CanUnmanagedStorageType::get(typeData.SubstFormalType),
rvalueType);
lv.add<AutoreleasingWritebackComponent>(unownedTypeData);
break;
}
}
// Get the lvalue address as a raw pointer.
SILValue address =
emitAddressOfLValue(loc, std::move(lv), accessKind).getUnmanagedValue();
address = B.createAddressToPointer(loc, address,
SILType::getRawPointerType(getASTContext()));
// Disable nested writeback scopes for any calls evaluated during the
// conversion intrinsic.
InOutConversionScope scope(*this);
// Invoke the conversion intrinsic.
FuncDecl *converter =
getASTContext().getConvertInOutToPointerArgument(nullptr);
Substitution sub = getPointerSubstitution(pointerType);
return emitApplyOfLibraryIntrinsic(loc, converter, sub,
ManagedValue::forUnmanaged(address),
SGFContext())
.getAsSingleValue(*this, loc);
}
RValue RValueEmitter::visitArrayToPointerExpr(ArrayToPointerExpr *E,
SGFContext C) {
FormalEvaluationScope writeback(SGF);
auto &Ctx = SGF.getASTContext();
FuncDecl *converter;
ManagedValue orig;
// Convert the array mutably if it's being passed inout.
auto subExpr = E->getSubExpr();
if (subExpr->getType()->is<InOutType>()) {
converter = Ctx.getConvertMutableArrayToPointerArgument(nullptr);
orig = SGF.emitAddressOfLValue(subExpr,
SGF.emitLValue(subExpr, AccessKind::ReadWrite),
AccessKind::ReadWrite);
} else {
converter = Ctx.getConvertConstArrayToPointerArgument(nullptr);
orig = SGF.emitRValueAsSingleValue(subExpr);
}
// Invoke the conversion intrinsic, which will produce an owner-pointer pair.
Substitution subs[2] = {
Substitution{
subExpr->getType()->getInOutObjectType()
->castTo<BoundGenericType>()
->getGenericArgs()[0],
{}
},
SGF.getPointerSubstitution(E->getType()),
};
SmallVector<ManagedValue, 2> resultScalars;
SGF.emitApplyOfLibraryIntrinsic(E, converter, subs, orig, SGFContext())
.getAll(resultScalars);
assert(resultScalars.size() == 2);
// The owner's already in its own cleanup. Return the pointer.
return RValue(SGF, E, resultScalars[1]);
}
RValue RValueEmitter::visitStringToPointerExpr(StringToPointerExpr *E,
SGFContext C) {
auto &Ctx = SGF.getASTContext();
FuncDecl *converter = Ctx.getConvertConstStringToUTF8PointerArgument(nullptr);
// Get the original value.
ManagedValue orig = SGF.emitRValueAsSingleValue(E->getSubExpr());
// Invoke the conversion intrinsic, which will produce an owner-pointer pair.
Substitution sub = SGF.getPointerSubstitution(E->getType());
SmallVector<ManagedValue, 2> results;
SGF.emitApplyOfLibraryIntrinsic(E, converter, sub, orig, C).getAll(results);
assert(results.size() == 2);
// Implicitly leave the owner managed and return the pointer.
// FIXME: should this be using mark_dependence?
auto pointer = results[1];
return RValue(SGF, E, pointer);
}
RValue RValueEmitter::visitPointerToPointerExpr(PointerToPointerExpr *E,
SGFContext C) {
auto &Ctx = SGF.getASTContext();
auto converter = Ctx.getConvertPointerToPointerArgument(nullptr);
// Get the original pointer value, abstracted to the converter function's
// expected level.
AbstractionPattern origTy(converter->getInterfaceType());
origTy = origTy.getFunctionInputType();
CanType inputTy = E->getSubExpr()->getType()->getCanonicalType();
auto &origTL = SGF.getTypeLowering(origTy, inputTy);
ManagedValue orig = SGF.emitRValueAsOrig(E->getSubExpr(), origTy, origTL);
CanType outputTy = E->getType()->getCanonicalType();
return SGF.emitPointerToPointer(E, orig, inputTy, outputTy, C);
}
RValue RValueEmitter::visitForeignObjectConversionExpr(
ForeignObjectConversionExpr *E,
SGFContext C) {
// Get the original value.
ManagedValue orig = SGF.emitRValueAsSingleValue(E->getSubExpr());
ManagedValue result(SGF.B.createUncheckedRefCast(
E, orig.getValue(),
SGF.getLoweredType(E->getType())),
orig.getCleanup());
return RValue(SGF, E, E->getType()->getCanonicalType(), result);
}
RValue RValueEmitter::visitUnevaluatedInstanceExpr(UnevaluatedInstanceExpr *E,
SGFContext C) {
llvm_unreachable("unevaluated_instance expression can never be evaluated");
}
RValue SILGenFunction::emitRValue(Expr *E, SGFContext C) {
assert(E->getType()->isMaterializable() &&
"l-values must be emitted with emitLValue");
return RValueEmitter(*this).visit(E, C);
}
// Evaluate the expression as an lvalue or rvalue, discarding the result.
void SILGenFunction::emitIgnoredExpr(Expr *E) {
// If this is a tuple expression, recursively ignore its elements.
// This may let us recursively avoid work.
if (auto *TE = dyn_cast<TupleExpr>(E)) {
for (auto *elt : TE->getElements())
emitIgnoredExpr(elt);
return;
}
// TODO: Could look through arbitrary implicit conversions that don't have
// side effects, or through tuple shuffles, by emitting ignored default
// arguments.
FullExpr scope(Cleanups, CleanupLocation(E));
if (!E->getType()->isMaterializable()) {
// Emit the l-value, but don't perform an access.
FormalEvaluationScope scope(*this);
emitLValue(E, AccessKind::Read);
return;
}
// If this is a load expression, we try hard not to actually do the load
// (which could materialize a potentially expensive value with cleanups).
if (auto *LE = dyn_cast<LoadExpr>(E)) {
FormalEvaluationScope scope(*this);
LValue lv = emitLValue(LE->getSubExpr(), AccessKind::Read);
// If the lvalue is purely physical, then it won't have any side effects,
// and we don't need to drill into it.
if (lv.isPhysical())
return;
// If the last component is physical, then we just need to drill through
// side effects in the lvalue, but don't need to perform the final load.
if (lv.isLastComponentPhysical()) {
emitAddressOfLValue(E, std::move(lv), AccessKind::Read);
return;
}
// Otherwise, we must call the ultimate getter to get its potential side
// effect.
emitLoadOfLValue(E, std::move(lv), SGFContext::AllowImmediatePlusZero);
return;
}
// Otherwise, emit the result (to get any side effects), but produce it at +0
// if that allows simplification.
emitRValue(E, SGFContext::AllowImmediatePlusZero);
}
/// Emit the given expression as an r-value, then (if it is a tuple), combine
/// it together into a single ManagedValue.
ManagedValue SILGenFunction::emitRValueAsSingleValue(Expr *E, SGFContext C) {
RValue &&rv = emitRValue(E, C);
if (rv.isUsed()) return ManagedValue::forInContext();
return std::move(rv).getAsSingleValue(*this, E);
}
RValue SILGenFunction::emitUndefRValue(SILLocation loc, Type type) {
return RValue(*this, loc, type->getCanonicalType(),
emitUndef(loc, getLoweredType(type)));
}
ManagedValue SILGenFunction::emitUndef(SILLocation loc, Type type) {
return emitUndef(loc, getLoweredType(type));
}
ManagedValue SILGenFunction::emitUndef(SILLocation loc, SILType type) {
SILValue undef = SILUndef::get(type, SGM.M);
return ManagedValue::forUnmanaged(undef);
}