blob: 70da549a8b7885229f768021386fefbde42066b4 [file] [log] [blame]
//===--- SILOwnershipVerifier.cpp -----------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-ownership-verifier"
#include "TransitivelyUnreachableBlocks.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/AnyFunctionRef.h"
#include "swift/AST/Decl.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/Module.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Range.h"
#include "swift/Basic/STLExtras.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/SIL/Dominance.h"
#include "swift/SIL/DynamicCasts.h"
#include "swift/SIL/PrettyStackTrace.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/SILBuiltinVisitor.h"
#include "swift/SIL/SILDebugScope.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILOpenedArchetypesTracker.h"
#include "swift/SIL/SILVTable.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SIL/TypeLowering.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <algorithm>
using namespace swift;
// The verifier is basically all assertions, so don't compile it with NDEBUG to
// prevent release builds from triggering spurious unused variable warnings.
#ifndef NDEBUG
// This is an option to put the SILOwnershipVerifier in testing mode. This
// causes the following:
//
// 1. Instead of printing an error message and aborting, the verifier will print
// the message and continue. This allows for FileCheck testing of the verifier.
//
// 2. SILInstruction::verifyOperandOwnership() is disabled. This is used for
// verification in SILBuilder. This causes errors to be printed twice, once when
// we build the IR and a second time when we perform a full verification of the
// IR. For testing purposes, we just want the later.
llvm::cl::opt<bool> IsSILOwnershipVerifierTestingEnabled(
"sil-ownership-verifier-enable-testing",
llvm::cl::desc("Put the sil ownership verifier in testing mode. See "
"comment in SILOwnershipVerifier.cpp above option for more "
"information."));
//===----------------------------------------------------------------------===//
// Generalized User
//===----------------------------------------------------------------------===//
namespace {
/// This is a class that models normal users and also cond_br users that are
/// associated with the block in the target block. This is safe to do since in
/// Semantic SIL, cond_br with non-trivial arguments are not allowed to have
/// critical edges.
class GeneralizedUser {
using InnerTy = llvm::PointerIntPair<SILInstruction *, 1>;
InnerTy User;
public:
GeneralizedUser(SILInstruction *I) : User(I) {
assert(!isa<CondBranchInst>(I));
}
GeneralizedUser(CondBranchInst *I) : User(I) {}
GeneralizedUser(CondBranchInst *I, unsigned SuccessorIndex)
: User(I, SuccessorIndex) {
assert(SuccessorIndex == CondBranchInst::TrueIdx ||
SuccessorIndex == CondBranchInst::FalseIdx);
}
GeneralizedUser(const GeneralizedUser &Other) : User(Other.User) {}
GeneralizedUser &operator=(const GeneralizedUser &Other) {
User = Other.User;
return *this;
}
operator SILInstruction *() { return User.getPointer(); }
operator const SILInstruction *() const { return User.getPointer(); }
SILInstruction *getInst() const { return User.getPointer(); }
SILBasicBlock *getParent() const;
bool isCondBranchUser() const {
return isa<CondBranchInst>(User.getPointer());
}
unsigned getCondBranchSuccessorID() const {
assert(isCondBranchUser());
return User.getInt();
}
SILBasicBlock::iterator getIterator() const {
return User.getPointer()->getIterator();
}
void *getAsOpaqueValue() const {
return llvm::PointerLikeTypeTraits<InnerTy>::getAsVoidPointer(User);
}
static GeneralizedUser getFromOpaqueValue(void *p) {
InnerTy TmpUser =
llvm::PointerLikeTypeTraits<InnerTy>::getFromVoidPointer(p);
if (auto *CBI = dyn_cast<CondBranchInst>(TmpUser.getPointer())) {
return GeneralizedUser(CBI, TmpUser.getInt());
}
return GeneralizedUser(TmpUser.getPointer());
}
enum {
NumLowBitsAvailable =
llvm::PointerLikeTypeTraits<InnerTy>::NumLowBitsAvailable
};
};
} // end anonymous namespace
SILBasicBlock *GeneralizedUser::getParent() const {
if (!isCondBranchUser()) {
return getInst()->getParent();
}
auto *CBI = cast<CondBranchInst>(getInst());
unsigned Number = getCondBranchSuccessorID();
if (Number == CondBranchInst::TrueIdx)
return CBI->getTrueBB();
return CBI->getFalseBB();
}
namespace llvm {
template <> class PointerLikeTypeTraits<GeneralizedUser> {
public:
static void *getAsVoidPointer(GeneralizedUser v) {
return v.getAsOpaqueValue();
}
static GeneralizedUser getFromVoidPointer(void *p) {
return GeneralizedUser::getFromOpaqueValue(p);
}
enum { NumLowBitsAvailable = GeneralizedUser::NumLowBitsAvailable };
};
} // namespace llvm
//===----------------------------------------------------------------------===//
// Utility
//===----------------------------------------------------------------------===//
static bool compatibleOwnershipKinds(ValueOwnershipKind K1,
ValueOwnershipKind K2) {
return K1.merge(K2).hasValue();
}
static bool isValueAddressOrTrivial(SILValue V, SILModule &M) {
return V->getType().isAddress() ||
V.getOwnershipKind() == ValueOwnershipKind::Trivial;
}
static bool isOwnershipForwardingValueKind(ValueKind K) {
switch (K) {
case ValueKind::TupleInst:
case ValueKind::StructInst:
case ValueKind::EnumInst:
case ValueKind::OpenExistentialRefInst:
case ValueKind::UpcastInst:
case ValueKind::UncheckedRefCastInst:
case ValueKind::ConvertFunctionInst:
case ValueKind::RefToBridgeObjectInst:
case ValueKind::BridgeObjectToRefInst:
case ValueKind::UnconditionalCheckedCastInst:
case ValueKind::UnconditionalCheckedCastOpaqueInst:
case ValueKind::TupleExtractInst:
case ValueKind::StructExtractInst:
case ValueKind::UncheckedEnumDataInst:
case ValueKind::MarkUninitializedInst:
case ValueKind::SelectEnumInst:
return true;
default:
return false;
}
}
static bool isOwnershipForwardingValue(SILValue V) {
return isOwnershipForwardingValueKind(V->getKind());
}
static bool isOwnershipForwardingInst(SILInstruction *I) {
return isOwnershipForwardingValueKind(I->getKind());
}
//===----------------------------------------------------------------------===//
// OwnershipCompatibilityUseChecker
//===----------------------------------------------------------------------===//
namespace {
struct OwnershipUseCheckerResult {
bool HasCompatibleOwnership;
bool ShouldCheckForDataflowViolations;
};
class OwnershipCompatibilityUseChecker
: public SILInstructionVisitor<OwnershipCompatibilityUseChecker,
OwnershipUseCheckerResult> {
SILModule &Mod;
const Operand &Op;
SILValue BaseValue;
public:
/// Create a new OwnershipCompatibilityUseChecker.
///
/// In most cases, one should only pass in \p Op and \p BaseValue will be set
/// to Op.get(). In cases where one is trying to verify subobjects, Op.get()
/// should be the subobject and Value should be the parent object. An example
/// of where one would want to do this is in the case of value projections
/// like struct_extract.
OwnershipCompatibilityUseChecker(SILModule &M, const Operand &Op,
SILValue BaseValue)
: Mod(M), Op(Op), BaseValue(BaseValue) {
assert((BaseValue == Op.get() ||
BaseValue.getOwnershipKind() == ValueOwnershipKind::Guaranteed) &&
"Guaranteed values are the only values allowed to have subobject");
// We only support subobjects on objects.
assert((BaseValue->getType().isObject() || !isCheckingSubObject()) &&
"Checking a subobject, but do not have an object base value?!");
}
bool isCheckingSubObject() const { return Op.get() != BaseValue; }
SILValue getValue() const { return Op.get(); }
ValueOwnershipKind getOwnershipKind() const {
assert(getValue().getOwnershipKind() == Op.get().getOwnershipKind() &&
"Expected ownership kind of parent value and operand");
return getValue().getOwnershipKind();
}
unsigned getOperandIndex() const { return Op.getOperandNumber(); }
SILType getType() const { return Op.get()->getType(); }
bool compatibleWithOwnership(ValueOwnershipKind Kind) const {
return compatibleOwnershipKinds(getOwnershipKind(), Kind);
}
bool isAddressOrTrivialType() const {
if (getType().isAddress())
return true;
return getOwnershipKind() == ValueOwnershipKind::Trivial;
}
OwnershipUseCheckerResult visitForwardingInst(SILInstruction *I,
ArrayRef<Operand> Ops);
OwnershipUseCheckerResult visitForwardingInst(SILInstruction *I) {
return visitForwardingInst(I, I->getAllOperands());
}
OwnershipUseCheckerResult
visitApplyArgument(ValueOwnershipKind RequiredConvention, bool ShouldCheck);
OwnershipUseCheckerResult
visitNonTrivialEnum(EnumDecl *E, ValueOwnershipKind RequiredConvention);
/// Check if \p User as compatible ownership with the SILValue that we are
/// checking.
///
/// \returns true if the user is a use that must be checked for dataflow
/// violations.
bool check(SILInstruction *User) {
auto Result = visit(User);
if (!Result.HasCompatibleOwnership) {
llvm::errs() << "Function: '" << User->getFunction()->getName() << "'\n"
<< "Have operand with incompatible ownership?!\n"
<< "Value: " << *getValue() << "BaseValue: " << *BaseValue
<< "User: " << *User << "Conv: " << getOwnershipKind()
<< "\n\n";
if (IsSILOwnershipVerifierTestingEnabled)
return false;
llvm_unreachable("triggering standard assertion failure routine");
}
assert((!Result.ShouldCheckForDataflowViolations ||
!isAddressOrTrivialType()) &&
"Address or trivial types should never be checked for dataflow "
"violations");
return Result.ShouldCheckForDataflowViolations;
}
OwnershipUseCheckerResult visitValueBase(ValueBase *) {
llvm_unreachable("Unimplemented?!");
}
OwnershipUseCheckerResult visitCallee(CanSILFunctionType SubstCalleeType);
OwnershipUseCheckerResult
checkTerminatorArgumentMatchesDestBB(SILBasicBlock *DestBB, unsigned OpIndex);
// Create declarations for all instructions, so we get a warning at compile
// time if any instructions do not have an implementation.
#define INST(Id, Parent, TextualName, MemBehavior, MayRelease) \
OwnershipUseCheckerResult visit##Id(Id *);
#include "swift/SIL/SILNodes.def"
};
} // end anonymous namespace
/// Implementation for instructions without operands. These should never be
/// visited.
#define NO_OPERAND_INST(INST) \
OwnershipUseCheckerResult \
OwnershipCompatibilityUseChecker::visit##INST##Inst(INST##Inst *I) { \
assert(I->getNumOperands() == 0 && \
"Expected instruction without operands?!"); \
llvm_unreachable("Instruction without operand can not be compatible with " \
"any def's OwnershipValueKind"); \
}
NO_OPERAND_INST(AllocBox)
NO_OPERAND_INST(AllocExistentialBox)
NO_OPERAND_INST(AllocGlobal)
NO_OPERAND_INST(AllocStack)
NO_OPERAND_INST(FloatLiteral)
NO_OPERAND_INST(FunctionRef)
NO_OPERAND_INST(GlobalAddr)
NO_OPERAND_INST(IntegerLiteral)
NO_OPERAND_INST(Metatype)
NO_OPERAND_INST(ObjCProtocol)
NO_OPERAND_INST(RetainValue)
NO_OPERAND_INST(StringLiteral)
NO_OPERAND_INST(StrongRetain)
NO_OPERAND_INST(StrongRetainUnowned)
NO_OPERAND_INST(UnownedRetain)
NO_OPERAND_INST(Unreachable)
#undef NO_OPERAND_INST
/// Instructions whose arguments are always compatible with one convention.
#define CONSTANT_OWNERSHIP_INST(OWNERSHIP, \
SHOULD_CHECK_FOR_DATAFLOW_VIOLATIONS, INST) \
OwnershipUseCheckerResult \
OwnershipCompatibilityUseChecker::visit##INST##Inst(INST##Inst *I) { \
assert(I->getNumOperands() && "Expected to have non-zero operands"); \
if (ValueOwnershipKind::OWNERSHIP == ValueOwnershipKind::Trivial) { \
assert(isAddressOrTrivialType() && \
"Trivial ownership requires a trivial type or an address"); \
} \
\
return {compatibleWithOwnership(ValueOwnershipKind::OWNERSHIP), \
SHOULD_CHECK_FOR_DATAFLOW_VIOLATIONS}; \
}
CONSTANT_OWNERSHIP_INST(Guaranteed, true, EndBorrowArgument)
CONSTANT_OWNERSHIP_INST(Guaranteed, false, RefElementAddr)
CONSTANT_OWNERSHIP_INST(Owned, true, AutoreleaseValue)
CONSTANT_OWNERSHIP_INST(Owned, true, DeallocBox)
CONSTANT_OWNERSHIP_INST(Owned, true, DeallocExistentialBox)
CONSTANT_OWNERSHIP_INST(Owned, true, DeallocPartialRef)
CONSTANT_OWNERSHIP_INST(Owned, true, DeallocRef)
CONSTANT_OWNERSHIP_INST(Owned, true, DestroyValue)
CONSTANT_OWNERSHIP_INST(Owned, true, ReleaseValue)
CONSTANT_OWNERSHIP_INST(Owned, true, StrongRelease)
CONSTANT_OWNERSHIP_INST(Owned, true, StrongUnpin)
CONSTANT_OWNERSHIP_INST(Owned, true, UnownedRelease)
CONSTANT_OWNERSHIP_INST(Owned, true, InitExistentialRef)
CONSTANT_OWNERSHIP_INST(Owned, true, OpenExistentialOpaque)
CONSTANT_OWNERSHIP_INST(Trivial, false, AddressToPointer)
CONSTANT_OWNERSHIP_INST(Trivial, false, BindMemory)
CONSTANT_OWNERSHIP_INST(Trivial, false, CheckedCastAddrBranch)
CONSTANT_OWNERSHIP_INST(Trivial, false, CondFail)
CONSTANT_OWNERSHIP_INST(Trivial, false, CopyAddr)
CONSTANT_OWNERSHIP_INST(Trivial, false, DeallocStack)
CONSTANT_OWNERSHIP_INST(Trivial, false, DebugValueAddr)
CONSTANT_OWNERSHIP_INST(Trivial, false, DeinitExistentialAddr)
CONSTANT_OWNERSHIP_INST(Trivial, false, DestroyAddr)
CONSTANT_OWNERSHIP_INST(Trivial, false, IndexAddr)
CONSTANT_OWNERSHIP_INST(Trivial, false, IndexRawPointer)
CONSTANT_OWNERSHIP_INST(Trivial, false, InitBlockStorageHeader)
CONSTANT_OWNERSHIP_INST(Trivial, false, InitEnumDataAddr)
CONSTANT_OWNERSHIP_INST(Trivial, false, InitExistentialAddr)
CONSTANT_OWNERSHIP_INST(Trivial, false, InitExistentialMetatype)
CONSTANT_OWNERSHIP_INST(Trivial, false, InjectEnumAddr)
CONSTANT_OWNERSHIP_INST(Trivial, false, IsNonnull)
CONSTANT_OWNERSHIP_INST(Trivial, false, IsUnique)
CONSTANT_OWNERSHIP_INST(Trivial, false, IsUniqueOrPinned)
CONSTANT_OWNERSHIP_INST(Trivial, false, Load)
CONSTANT_OWNERSHIP_INST(Trivial, false, LoadBorrow)
CONSTANT_OWNERSHIP_INST(Trivial, false, LoadUnowned)
CONSTANT_OWNERSHIP_INST(Trivial, false, LoadWeak)
CONSTANT_OWNERSHIP_INST(Trivial, false, MarkFunctionEscape)
CONSTANT_OWNERSHIP_INST(Trivial, false, MarkUninitializedBehavior)
CONSTANT_OWNERSHIP_INST(Trivial, false, ObjCExistentialMetatypeToObject)
CONSTANT_OWNERSHIP_INST(Trivial, false, ObjCMetatypeToObject)
CONSTANT_OWNERSHIP_INST(Trivial, false, ObjCToThickMetatype)
CONSTANT_OWNERSHIP_INST(Trivial, false, OpenExistentialAddr)
CONSTANT_OWNERSHIP_INST(Trivial, false, OpenExistentialMetatype)
CONSTANT_OWNERSHIP_INST(Trivial, false, PointerToAddress)
CONSTANT_OWNERSHIP_INST(Trivial, false, PointerToThinFunction)
CONSTANT_OWNERSHIP_INST(Trivial, false, ProjectBlockStorage)
CONSTANT_OWNERSHIP_INST(Trivial, false, ProjectValueBuffer)
CONSTANT_OWNERSHIP_INST(Trivial, false, RawPointerToRef)
CONSTANT_OWNERSHIP_INST(Trivial, false, SelectEnumAddr)
CONSTANT_OWNERSHIP_INST(Trivial, false, SelectValue)
CONSTANT_OWNERSHIP_INST(Trivial, false, StructElementAddr)
CONSTANT_OWNERSHIP_INST(Trivial, false, SwitchEnumAddr)
CONSTANT_OWNERSHIP_INST(Trivial, false, SwitchValue)
CONSTANT_OWNERSHIP_INST(Trivial, false, TailAddr)
CONSTANT_OWNERSHIP_INST(Trivial, false, ThickToObjCMetatype)
CONSTANT_OWNERSHIP_INST(Trivial, false, ThinFunctionToPointer)
CONSTANT_OWNERSHIP_INST(Trivial, false, ThinToThickFunction)
CONSTANT_OWNERSHIP_INST(Trivial, false, TupleElementAddr)
CONSTANT_OWNERSHIP_INST(Trivial, false, UncheckedAddrCast)
CONSTANT_OWNERSHIP_INST(Trivial, false, UncheckedRefCastAddr)
CONSTANT_OWNERSHIP_INST(Trivial, false, UncheckedTakeEnumDataAddr)
CONSTANT_OWNERSHIP_INST(Trivial, false, UnconditionalCheckedCastAddr)
CONSTANT_OWNERSHIP_INST(Trivial, false, UnmanagedToRef)
CONSTANT_OWNERSHIP_INST(Trivial, false, AllocValueBuffer)
CONSTANT_OWNERSHIP_INST(Trivial, false, DeallocValueBuffer)
#undef CONSTANT_OWNERSHIP_INST
/// Instructions whose arguments are always compatible with one convention.
#define CONSTANT_OR_TRIVIAL_OWNERSHIP_INST(OWNERSHIP, \
SHOULD_CHECK_FOR_DATAFLOW_VIOLATIONS, INST) \
OwnershipUseCheckerResult \
OwnershipCompatibilityUseChecker::visit##INST##Inst(INST##Inst *I) { \
assert(I->getNumOperands() && "Expected to have non-zero operands"); \
if (ValueOwnershipKind::OWNERSHIP == ValueOwnershipKind::Trivial) { \
assert(isAddressOrTrivialType() && \
"Trivial ownership requires a trivial type or an address"); \
} \
\
if (compatibleWithOwnership(ValueOwnershipKind::Trivial)) { \
return {true, false}; \
} \
return {compatibleWithOwnership(ValueOwnershipKind::OWNERSHIP), \
SHOULD_CHECK_FOR_DATAFLOW_VIOLATIONS}; \
}
CONSTANT_OR_TRIVIAL_OWNERSHIP_INST(Owned, true, CheckedCastBranch)
CONSTANT_OR_TRIVIAL_OWNERSHIP_INST(Owned, true, SwitchEnum)
CONSTANT_OR_TRIVIAL_OWNERSHIP_INST(Owned, true, InitExistentialOpaque)
CONSTANT_OR_TRIVIAL_OWNERSHIP_INST(Owned, true, DeinitExistentialOpaque)
#undef CONSTANT_OR_TRIVIAL_OWNERSHIP_INST
#define ACCEPTS_ANY_OWNERSHIP_INST(INST) \
OwnershipUseCheckerResult \
OwnershipCompatibilityUseChecker::visit##INST##Inst(INST##Inst *I) { \
return {true, false}; \
}
ACCEPTS_ANY_OWNERSHIP_INST(BeginBorrow)
ACCEPTS_ANY_OWNERSHIP_INST(CopyValue)
ACCEPTS_ANY_OWNERSHIP_INST(DebugValue)
ACCEPTS_ANY_OWNERSHIP_INST(FixLifetime)
ACCEPTS_ANY_OWNERSHIP_INST(UncheckedBitwiseCast) // Is this right?
ACCEPTS_ANY_OWNERSHIP_INST(WitnessMethod) // Is this right?
ACCEPTS_ANY_OWNERSHIP_INST(ProjectBox) // The result is a T*.
ACCEPTS_ANY_OWNERSHIP_INST(DynamicMethodBranch)
ACCEPTS_ANY_OWNERSHIP_INST(UncheckedTrivialBitCast)
ACCEPTS_ANY_OWNERSHIP_INST(ExistentialMetatype)
ACCEPTS_ANY_OWNERSHIP_INST(ValueMetatype)
#undef ACCEPTS_ANY_OWNERSHIP_INST
// Trivial if trivial typed, otherwise must accept owned?
#define ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(SHOULD_CHECK_FOR_DATAFLOW_VIOLATIONS, \
INST) \
OwnershipUseCheckerResult \
OwnershipCompatibilityUseChecker::visit##INST##Inst(INST##Inst *I) { \
assert(I->getNumOperands() && "Expected to have non-zero operands"); \
assert(!isAddressOrTrivialType() && \
"Shouldn't have an address or a non trivial type"); \
bool compatible = getOwnershipKind() == ValueOwnershipKind::Any || \
!compatibleWithOwnership(ValueOwnershipKind::Trivial); \
return {compatible, SHOULD_CHECK_FOR_DATAFLOW_VIOLATIONS}; \
}
ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(false, SuperMethod)
ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(false, BridgeObjectToWord)
ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(false, ClassMethod)
ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(false, CopyBlock)
ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(false, DynamicMethod)
ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(false, OpenExistentialBox)
ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(false, RefTailAddr)
ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(false, RefToRawPointer)
ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(false, RefToUnmanaged)
ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(false, RefToUnowned)
ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(false, SetDeallocating)
ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(false, StrongPin)
ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(false, UnownedToRef)
ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(false, CopyUnownedValue)
ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(false, ProjectExistentialBox)
ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(false, UnmanagedRetainValue)
ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(false, UnmanagedReleaseValue)
ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP(false, UnmanagedAutoreleaseValue)
#undef ACCEPTS_ANY_NONTRIVIAL_OWNERSHIP
OwnershipUseCheckerResult
OwnershipCompatibilityUseChecker::visitForwardingInst(SILInstruction *I, ArrayRef<Operand> Ops) {
assert(I->getNumOperands() && "Expected to have non-zero operands");
assert(isOwnershipForwardingInst(I) &&
"Expected to have an ownership forwarding inst");
// Find the first index where we have a trivial value.
auto Iter = find_if(Ops, [&I](const Operand &Op) -> bool {
if (I->isTypeDependentOperand(Op))
return false;
return Op.get().getOwnershipKind() != ValueOwnershipKind::Trivial;
});
// All trivial.
if (Iter == Ops.end()) {
return {compatibleWithOwnership(ValueOwnershipKind::Trivial), false};
}
unsigned Index = std::distance(Ops.begin(), Iter);
ValueOwnershipKind Base = Ops[Index].get().getOwnershipKind();
for (const Operand &Op : Ops.slice(Index + 1)) {
if (I->isTypeDependentOperand(Op))
continue;
auto OpKind = Op.get().getOwnershipKind();
if (OpKind.merge(ValueOwnershipKind::Trivial))
continue;
auto MergedValue = Base.merge(OpKind.Value);
if (!MergedValue.hasValue()) {
return {false, true};
}
Base = MergedValue.getValue();
}
// We only need to treat a forwarded instruction as a lifetime ending use of
// it is owned.
return {true, compatibleWithOwnership(ValueOwnershipKind::Owned)};
}
#define FORWARD_ANY_OWNERSHIP_INST(INST) \
OwnershipUseCheckerResult \
OwnershipCompatibilityUseChecker::visit##INST##Inst(INST##Inst *I) { \
return visitForwardingInst(I); \
}
FORWARD_ANY_OWNERSHIP_INST(Tuple)
FORWARD_ANY_OWNERSHIP_INST(Struct)
FORWARD_ANY_OWNERSHIP_INST(Enum)
FORWARD_ANY_OWNERSHIP_INST(OpenExistentialRef)
FORWARD_ANY_OWNERSHIP_INST(Upcast)
FORWARD_ANY_OWNERSHIP_INST(UncheckedRefCast)
FORWARD_ANY_OWNERSHIP_INST(ConvertFunction)
FORWARD_ANY_OWNERSHIP_INST(RefToBridgeObject)
FORWARD_ANY_OWNERSHIP_INST(BridgeObjectToRef)
FORWARD_ANY_OWNERSHIP_INST(UnconditionalCheckedCast)
FORWARD_ANY_OWNERSHIP_INST(UnconditionalCheckedCastOpaque)
FORWARD_ANY_OWNERSHIP_INST(MarkUninitialized)
FORWARD_ANY_OWNERSHIP_INST(UncheckedEnumData)
#undef FORWARD_ANY_OWNERSHIP_INST
// An instruction that forwards a constant ownership or trivial ownership.
#define FORWARD_CONSTANT_OR_TRIVIAL_OWNERSHIP_INST( \
OWNERSHIP, SHOULD_CHECK_FOR_DATAFLOW_VIOLATIONS, INST) \
OwnershipUseCheckerResult \
OwnershipCompatibilityUseChecker::visit##INST##Inst(INST##Inst *I) { \
assert(I->getNumOperands() && "Expected to have non-zero operands"); \
assert(isOwnershipForwardingInst(I) && \
"Expected an ownership forwarding inst"); \
if (ValueOwnershipKind::OWNERSHIP != ValueOwnershipKind::Trivial && \
getOwnershipKind() == ValueOwnershipKind::Trivial) { \
assert(isAddressOrTrivialType() && \
"Trivial ownership requires a trivial type or an address"); \
return {true, false}; \
} \
if (ValueOwnershipKind::OWNERSHIP == ValueOwnershipKind::Trivial) { \
assert(isAddressOrTrivialType() && \
"Trivial ownership requires a trivial type or an address"); \
} \
\
return {compatibleWithOwnership(ValueOwnershipKind::OWNERSHIP), \
SHOULD_CHECK_FOR_DATAFLOW_VIOLATIONS}; \
}
FORWARD_CONSTANT_OR_TRIVIAL_OWNERSHIP_INST(Guaranteed, false, TupleExtract)
FORWARD_CONSTANT_OR_TRIVIAL_OWNERSHIP_INST(Guaranteed, false, StructExtract)
#undef CONSTANT_OR_TRIVIAL_OWNERSHIP_INST
OwnershipUseCheckerResult
OwnershipCompatibilityUseChecker::visitSelectEnumInst(SelectEnumInst *I) {
if (getValue() == I->getEnumOperand()) {
return {true, false};
}
return visitForwardingInst(I, I->getAllOperands().drop_front());
}
OwnershipUseCheckerResult
OwnershipCompatibilityUseChecker::visitAllocRefInst(AllocRefInst *I) {
assert(I->getNumOperands() != 0
&& "If we reach this point, we must have a tail operand");
return {compatibleWithOwnership(ValueOwnershipKind::Trivial), false};
}
OwnershipUseCheckerResult
OwnershipCompatibilityUseChecker::visitAllocRefDynamicInst(
AllocRefDynamicInst *I) {
assert(I->getNumOperands() != 0 &&
"If we reach this point, we must have a tail operand");
return {compatibleWithOwnership(ValueOwnershipKind::Trivial), false};
}
OwnershipUseCheckerResult
OwnershipCompatibilityUseChecker::checkTerminatorArgumentMatchesDestBB(
SILBasicBlock *DestBB, unsigned OpIndex) {
// Grab the ownership kind of the destination block.
ValueOwnershipKind DestBlockArgOwnershipKind =
DestBB->getArgument(OpIndex)->getOwnershipKind();
// Then if we do not have an enum, make sure that the conventions match.
EnumDecl *E = getType().getEnumOrBoundGenericEnum();
if (!E) {
return {compatibleWithOwnership(DestBlockArgOwnershipKind),
getOwnershipKind() == ValueOwnershipKind::Owned};
}
return visitNonTrivialEnum(E, DestBlockArgOwnershipKind);
}
OwnershipUseCheckerResult
OwnershipCompatibilityUseChecker::visitBranchInst(BranchInst *BI) {
return checkTerminatorArgumentMatchesDestBB(BI->getDestBB(),
getOperandIndex());
}
OwnershipUseCheckerResult
OwnershipCompatibilityUseChecker::visitCondBranchInst(CondBranchInst *CBI) {
// If our conditional branch is the condition, it is trivial. Check that the
// ownership kind is trivial.
if (CBI->isConditionOperandIndex(getOperandIndex()))
return {compatibleWithOwnership(ValueOwnershipKind::Trivial), false};
// Otherwise, make sure that our operand matches the
if (CBI->isTrueOperandIndex(getOperandIndex())) {
unsigned TrueOffset = 1;
return checkTerminatorArgumentMatchesDestBB(CBI->getTrueBB(),
getOperandIndex() - TrueOffset);
}
assert(CBI->isFalseOperandIndex(getOperandIndex()) &&
"If an operand is not the condition index or a true operand index, it "
"must be a false operand index");
unsigned FalseOffset = 1 + CBI->getTrueOperands().size();
return checkTerminatorArgumentMatchesDestBB(CBI->getFalseBB(),
getOperandIndex() - FalseOffset);
}
OwnershipUseCheckerResult
OwnershipCompatibilityUseChecker::visitReturnInst(ReturnInst *RI) {
SILModule &M = RI->getModule();
bool IsTrivial = RI->getOperand()->getType().isTrivial(M);
SILFunctionConventions fnConv = RI->getFunction()->getConventions();
auto Results = fnConv.getDirectSILResults();
if (Results.empty() || IsTrivial) {
return {compatibleWithOwnership(ValueOwnershipKind::Trivial), false};
}
CanGenericSignature Sig = fnConv.funcTy->getGenericSignature();
// Find the first index where we have a trivial value.
auto Iter = find_if(Results, [&M, &Sig](const SILResultInfo &Info) -> bool {
return Info.getOwnershipKind(M, Sig) != ValueOwnershipKind::Trivial;
});
// If we have all trivial, then we must be trivial. Why wasn't our original
// type trivial? This is a hard error since this is a logic error in our code
// here.
if (Iter == Results.end())
llvm_unreachable("Should have already checked a trivial type?!");
ValueOwnershipKind Base = Iter->getOwnershipKind(M, Sig);
for (const SILResultInfo &ResultInfo :
SILFunctionConventions::DirectSILResultRange(std::next(Iter),
Results.end())) {
auto RKind = ResultInfo.getOwnershipKind(M, Sig);
// Ignore trivial types.
if (RKind.merge(ValueOwnershipKind::Trivial))
continue;
auto MergedValue = Base.merge(RKind);
// If we fail to merge all types in, bail. We can not come up with a proper
// result type.
if (!MergedValue.hasValue()) {
return {false, false};
}
// In case Base is Any.
Base = MergedValue.getValue();
}
return {compatibleWithOwnership(Base), true};
}
OwnershipUseCheckerResult
OwnershipCompatibilityUseChecker::visitEndBorrowInst(EndBorrowInst *I) {
// We do not consider the original value to be a verified use. But the value
// does need to be alive.
if (getOperandIndex() == EndBorrowInst::OriginalValue)
return {true, false};
// The borrowed value is a verified use though of the begin_borrow.
return {compatibleWithOwnership(ValueOwnershipKind::Guaranteed), true};
}
OwnershipUseCheckerResult
OwnershipCompatibilityUseChecker::visitThrowInst(ThrowInst *I) {
return {compatibleWithOwnership(ValueOwnershipKind::Owned), true};
}
OwnershipUseCheckerResult
OwnershipCompatibilityUseChecker::visitStoreUnownedInst(StoreUnownedInst *I) {
if (getValue() == I->getSrc())
return {compatibleWithOwnership(ValueOwnershipKind::Owned), true};
return {compatibleWithOwnership(ValueOwnershipKind::Trivial), false};
}
OwnershipUseCheckerResult
OwnershipCompatibilityUseChecker::visitStoreWeakInst(StoreWeakInst *I) {
if (getValue() == I->getSrc())
return {compatibleWithOwnership(ValueOwnershipKind::Owned), true};
return {compatibleWithOwnership(ValueOwnershipKind::Trivial), false};
}
OwnershipUseCheckerResult
OwnershipCompatibilityUseChecker::visitStoreBorrowInst(StoreBorrowInst *I) {
if (getValue() == I->getSrc())
return {compatibleWithOwnership(ValueOwnershipKind::Guaranteed), false};
return {compatibleWithOwnership(ValueOwnershipKind::Trivial), false};
}
// FIXME: Why not use SILArgumentConvention here?
OwnershipUseCheckerResult OwnershipCompatibilityUseChecker::visitCallee(
CanSILFunctionType SubstCalleeType) {
ParameterConvention Conv = SubstCalleeType->getCalleeConvention();
switch (Conv) {
case ParameterConvention::Indirect_In:
assert(!SILModuleConventions(Mod).isSILIndirect(
SILParameterInfo(SubstCalleeType, Conv)));
return {compatibleWithOwnership(ValueOwnershipKind::Owned), true};
case ParameterConvention::Indirect_In_Guaranteed:
assert(!SILModuleConventions(Mod).isSILIndirect(
SILParameterInfo(SubstCalleeType, Conv)));
return {compatibleWithOwnership(ValueOwnershipKind::Owned), false};
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_InoutAliasable:
llvm_unreachable("Illegal convention for callee");
case ParameterConvention::Direct_Unowned:
return {compatibleWithOwnership(ValueOwnershipKind::Trivial), false};
case ParameterConvention::Direct_Owned:
return {compatibleWithOwnership(ValueOwnershipKind::Owned), true};
case ParameterConvention::Direct_Guaranteed:
return {compatibleWithOwnership(ValueOwnershipKind::Guaranteed), false};
}
llvm_unreachable("Unhandled ParameterConvention in switch.");
}
OwnershipUseCheckerResult OwnershipCompatibilityUseChecker::visitNonTrivialEnum(
EnumDecl *E, ValueOwnershipKind RequiredKind) {
// Otherwise, first see if the enum is completely trivial. In such a case, we
// need an argument with a trivial convention. If we have an enum with at
// least 1 non-trivial case, then we need an argument with a non-trivial
// convention. If our parameter is trivial, then we just let it through in
// such a case. Otherwise we need to make sure that the non-trivial ownership
// convention matches the one on the argument parameter.
// Check if this enum has at least one case that is non-trivially typed.
bool HasNonTrivialCase =
llvm::any_of(E->getAllElements(), [this](EnumElementDecl *E) -> bool {
if (!E->getArgumentInterfaceType())
return false;
SILType EnumEltType = getType().getEnumElementType(E, Mod);
return !EnumEltType.isTrivial(Mod);
});
// If we have all trivial cases, make sure we are compatible with a trivial
// ownership kind.
if (!HasNonTrivialCase) {
return {compatibleWithOwnership(ValueOwnershipKind::Trivial), false};
}
// Otherwise, if this value is a trivial ownership kind, return.
if (compatibleWithOwnership(ValueOwnershipKind::Trivial)) {
return {true, false};
}
// And finally finish by making sure that if we have a non-trivial ownership
// kind that it matches the argument's convention.
return {compatibleWithOwnership(RequiredKind),
compatibleWithOwnership(ValueOwnershipKind::Owned)};
}
// We allow for trivial cases of enums with non-trivial cases to be passed in
// non-trivial argument positions. This fits with modeling of a
// SILFunctionArgument as a phi in a global program graph.
OwnershipUseCheckerResult
OwnershipCompatibilityUseChecker::visitApplyArgument(ValueOwnershipKind Kind,
bool ShouldCheck) {
// Check if we have an enum. If not, then we just check against the passed in
// convention.
EnumDecl *E = getType().getEnumOrBoundGenericEnum();
if (!E) {
return {compatibleWithOwnership(Kind), ShouldCheck};
}
return visitNonTrivialEnum(E, Kind);
}
OwnershipUseCheckerResult
OwnershipCompatibilityUseChecker::visitApplyInst(ApplyInst *I) {
// If we are visiting the callee, handle it specially.
if (getOperandIndex() == 0)
return visitCallee(I->getSubstCalleeType());
switch (I->getArgumentConvention(getOperandIndex() - 1)) {
case SILArgumentConvention::Indirect_In:
case SILArgumentConvention::Indirect_In_Guaranteed:
case SILArgumentConvention::Indirect_Inout:
case SILArgumentConvention::Indirect_InoutAliasable:
case SILArgumentConvention::Indirect_Out:
return {compatibleWithOwnership(ValueOwnershipKind::Trivial), false};
case SILArgumentConvention::Direct_Owned:
return visitApplyArgument(ValueOwnershipKind::Owned, true);
case SILArgumentConvention::Direct_Unowned:
if (isAddressOrTrivialType())
return {compatibleWithOwnership(ValueOwnershipKind::Trivial), false};
// We accept unowned, owned, and guaranteed in unowned positions.
return {true, false};
case SILArgumentConvention::Direct_Guaranteed:
return visitApplyArgument(ValueOwnershipKind::Guaranteed, false);
case SILArgumentConvention::Direct_Deallocating:
llvm_unreachable("No ownership associated with deallocating");
}
llvm_unreachable("Unhandled SILArgumentConvention in switch.");
}
OwnershipUseCheckerResult
OwnershipCompatibilityUseChecker::visitTryApplyInst(TryApplyInst *I) {
// If we are visiting the callee, handle it specially.
if (getOperandIndex() == 0)
return visitCallee(I->getSubstCalleeType());
switch (I->getArgumentConvention(getOperandIndex() - 1)) {
case SILArgumentConvention::Indirect_In:
case SILArgumentConvention::Indirect_In_Guaranteed:
case SILArgumentConvention::Indirect_Inout:
case SILArgumentConvention::Indirect_InoutAliasable:
case SILArgumentConvention::Indirect_Out:
return {compatibleWithOwnership(ValueOwnershipKind::Trivial), false};
case SILArgumentConvention::Direct_Owned:
return visitApplyArgument(ValueOwnershipKind::Owned, true);
case SILArgumentConvention::Direct_Unowned:
if (isAddressOrTrivialType())
return {compatibleWithOwnership(ValueOwnershipKind::Trivial), false};
// We accept unowned, owned, and guaranteed in unowned positions.
return {true, false};
case SILArgumentConvention::Direct_Guaranteed:
return visitApplyArgument(ValueOwnershipKind::Guaranteed, false);
case SILArgumentConvention::Direct_Deallocating:
llvm_unreachable("No ownership associated with deallocating");
}
llvm_unreachable("Unhandled SILArgumentConvention in switch.");
}
OwnershipUseCheckerResult
OwnershipCompatibilityUseChecker::visitPartialApplyInst(PartialApplyInst *I) {
// All non-trivial types should be captured.
if (isAddressOrTrivialType()) {
return {compatibleWithOwnership(ValueOwnershipKind::Trivial), false};
}
return {compatibleWithOwnership(ValueOwnershipKind::Owned), true};
}
OwnershipUseCheckerResult
OwnershipCompatibilityUseChecker::visitAssignInst(AssignInst *I) {
if (getValue() == I->getSrc()) {
if (isAddressOrTrivialType()) {
return {compatibleWithOwnership(ValueOwnershipKind::Trivial), false};
}
return {compatibleWithOwnership(ValueOwnershipKind::Owned), true};
}
return {true, false};
}
OwnershipUseCheckerResult
OwnershipCompatibilityUseChecker::visitStoreInst(StoreInst *I) {
if (getValue() == I->getSrc()) {
if (isAddressOrTrivialType()) {
return {compatibleWithOwnership(ValueOwnershipKind::Trivial), false};
}
return {compatibleWithOwnership(ValueOwnershipKind::Owned), true};
}
return {true, false};
}
OwnershipUseCheckerResult
OwnershipCompatibilityUseChecker::visitMarkDependenceInst(
MarkDependenceInst *MDI) {
// We always treat mark dependence as a use that keeps a value alive. We will
// be introducing a begin_dependence/end_dependence version of this later.
return {true, false};
}
//===----------------------------------------------------------------------===//
// Builtin Use Checker
//===----------------------------------------------------------------------===//
namespace {
class OwnershipCompatibilityBuiltinUseChecker
: public SILBuiltinVisitor<OwnershipCompatibilityBuiltinUseChecker,
OwnershipUseCheckerResult> {
const OwnershipCompatibilityUseChecker &ParentChecker;
public:
OwnershipCompatibilityBuiltinUseChecker(
OwnershipCompatibilityUseChecker &ParentChecker)
: ParentChecker(ParentChecker) {}
SILValue getValue() const { return ParentChecker.getValue(); }
ValueOwnershipKind getOwnershipKind() const {
return ParentChecker.getOwnershipKind();
}
unsigned getOperandIndex() const { return ParentChecker.getOperandIndex(); }
SILType getType() const { return ParentChecker.getType(); }
bool compatibleWithOwnership(ValueOwnershipKind Kind) const {
return ParentChecker.compatibleWithOwnership(Kind);
}
bool isAddressOrTrivialType() const {
return ParentChecker.isAddressOrTrivialType();
}
OwnershipUseCheckerResult visitLLVMIntrinsic(BuiltinInst *BI,
llvm::Intrinsic::ID ID) {
// LLVM intrinsics do not traffic in ownership, so if we have a result, it
// must be trivial.
return {true, false};
}
#define BUILTIN(ID, NAME, ATTRS) \
OwnershipUseCheckerResult visit##ID(BuiltinInst *BI, StringRef Attr);
#include "swift/AST/Builtins.def"
OwnershipUseCheckerResult check(BuiltinInst *BI) { return visit(BI); }
};
} // end anonymous namespace
// This is correct today since we do not ahve any builtins which return
// @guaranteed parameters. This means that we can only have a lifetime ending
// use with our builtins if it is owned.
#define CONSTANT_OWNERSHIP_BUILTIN(OWNERSHIP, LIFETIME_ENDING_USE, ID) \
OwnershipUseCheckerResult \
OwnershipCompatibilityBuiltinUseChecker::visit##ID(BuiltinInst *BI, \
StringRef Attr) { \
return {compatibleWithOwnership(ValueOwnershipKind::OWNERSHIP), \
LIFETIME_ENDING_USE}; \
}
CONSTANT_OWNERSHIP_BUILTIN(Owned, false, ErrorInMain)
CONSTANT_OWNERSHIP_BUILTIN(Owned, false, UnexpectedError)
CONSTANT_OWNERSHIP_BUILTIN(Owned, false, WillThrow)
CONSTANT_OWNERSHIP_BUILTIN(Owned, true, UnsafeGuaranteed)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, AShr)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, Add)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, Alignof)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, AllocRaw)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, And)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, AssertConf)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, AssumeNonNegative)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, AtomicLoad)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, AtomicRMW)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, AtomicStore)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, BitCast)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, CanBeObjCClass)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, CmpXChg)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, CondUnreachable)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, CopyArray)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, DeallocRaw)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, DestroyArray)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, ExactSDiv)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, ExactUDiv)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, ExtractElement)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, FAdd)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, FCMP_OEQ)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, FCMP_OGE)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, FCMP_OGT)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, FCMP_OLE)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, FCMP_OLT)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, FCMP_ONE)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, FCMP_ORD)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, FCMP_UEQ)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, FCMP_UGE)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, FCMP_UGT)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, FCMP_ULE)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, FCMP_ULT)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, FCMP_UNE)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, FCMP_UNO)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, FDiv)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, FMul)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, FNeg)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, FPExt)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, FPToSI)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, FPToUI)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, FPTrunc)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, FRem)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, FSub)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, Fence)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, GetObjCTypeEncoding)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, ICMP_EQ)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, ICMP_NE)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, ICMP_SGE)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, ICMP_SGT)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, ICMP_SLE)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, ICMP_SLT)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, ICMP_UGE)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, ICMP_UGT)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, ICMP_ULE)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, ICMP_ULT)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, InsertElement)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, IntToFPWithOverflow)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, IntToPtr)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, IsOptionalType)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, IsPOD)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, LShr)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, Mul)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, OnFastPath)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, Once)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, Or)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, PtrToInt)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, SAddOver)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, SDiv)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, SExt)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, SExtOrBitCast)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, SIToFP)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, SMulOver)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, SRem)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, SSubOver)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, SToSCheckedTrunc)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, SToUCheckedTrunc)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, SUCheckedConversion)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, Shl)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, Sizeof)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, StaticReport)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, Strideof)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, Sub)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, TakeArrayBackToFront)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, TakeArrayFrontToBack)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, Trunc)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, TruncOrBitCast)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, UAddOver)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, UDiv)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, UIToFP)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, UMulOver)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, URem)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, USCheckedConversion)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, USubOver)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, UToSCheckedTrunc)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, UToUCheckedTrunc)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, Unreachable)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, UnsafeGuaranteedEnd)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, Xor)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, ZExt)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, ZExtOrBitCast)
CONSTANT_OWNERSHIP_BUILTIN(Trivial, false, ZeroInitializer)
#undef CONSTANT_OWNERSHIP_BUILTIN
// Builtins that should be lowered to SIL instructions so we should never see
// them.
#define BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(ID) \
OwnershipUseCheckerResult \
OwnershipCompatibilityBuiltinUseChecker::visit##ID(BuiltinInst *BI, \
StringRef Attr) { \
llvm_unreachable("Builtin should have been lowered to SIL instruction?!"); \
}
BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(Retain)
BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(Release)
BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(Autorelease)
BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(TryPin)
BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(Unpin)
BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(Load)
BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(LoadRaw)
BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(Take)
BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(Destroy)
BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(Assign)
BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(Init)
BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(CastToUnknownObject)
BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(CastFromUnknownObject)
BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(CastToNativeObject)
BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(CastFromNativeObject)
BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(CastToBridgeObject)
BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(
CastReferenceFromBridgeObject)
BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(
CastBitPatternFromBridgeObject)
BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(BridgeToRawPointer)
BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(BridgeFromRawPointer)
BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(CastReference)
BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(ReinterpretCast)
BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(AddressOf)
BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(GepRaw)
BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(Gep)
BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(GetTailAddr)
BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(CondFail)
BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(FixLifetime)
BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(IsUnique)
BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(IsUniqueOrPinned)
BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(IsUnique_native)
BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(IsUniqueOrPinned_native)
BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(BindMemory)
BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(AllocWithTailElems)
BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS(ProjectTailElems)
#undef BUILTINS_THAT_SHOULD_HAVE_BEEN_LOWERED_TO_SILINSTS
OwnershipUseCheckerResult
OwnershipCompatibilityUseChecker::visitBuiltinInst(BuiltinInst *BI) {
return OwnershipCompatibilityBuiltinUseChecker(*this).check(BI);
}
//===----------------------------------------------------------------------===//
// SILValueOwnershipChecker
//===----------------------------------------------------------------------===//
namespace {
class SILValueOwnershipChecker {
/// The module that we are in.
SILModule &Mod;
/// A cache of unreachable function blocks that we use to determine if we can
/// ignore "leaks".
const TransitivelyUnreachableBlocksInfo &TUB;
/// The value whose ownership we will check.
SILValue Value;
// The worklist that we will use for our iterative reachability query.
llvm::SmallVector<SILBasicBlock *, 32> Worklist;
// The set of blocks with lifetime ending uses.
llvm::SmallPtrSet<SILBasicBlock *, 8> BlocksWithLifetimeEndingUses;
// The set of blocks with non-lifetime ending uses and the associated
// non-lifetime ending use SILInstruction.
llvm::SmallDenseMap<SILBasicBlock *, GeneralizedUser, 8>
BlocksWithNonLifetimeEndingUses;
// The blocks that we have already visited.
llvm::SmallPtrSet<SILBasicBlock *, 32> VisitedBlocks;
// A list of successor blocks that we must visit by the time the algorithm
// terminates.
llvm::SmallPtrSet<SILBasicBlock *, 8> SuccessorBlocksThatMustBeVisited;
public:
SILValueOwnershipChecker(SILModule &M,
const TransitivelyUnreachableBlocksInfo &TUB,
SILValue V)
: Mod(M), TUB(TUB), Value(V) {}
~SILValueOwnershipChecker() = default;
SILValueOwnershipChecker(SILValueOwnershipChecker &) = delete;
SILValueOwnershipChecker(SILValueOwnershipChecker &&) = delete;
void check() {
DEBUG(llvm::dbgs() << "Verifying ownership of: " << *Value);
// First check that our uses have coherent ownership. If after evaluating
// the ownership we do not need to check dataflow (due to performs
// ValueOwnershipKind::None), then bail.
if (!checkUses())
return;
checkDataflow();
}
private:
bool checkUses();
void checkDataflow();
void checkDataflowEndConditions();
void
gatherUsers(llvm::SmallVectorImpl<GeneralizedUser> &LifetimeEndingUsers,
llvm::SmallVectorImpl<GeneralizedUser> &NonLifetimeEndingUsers);
void uniqueNonLifetimeEndingUsers(
ArrayRef<GeneralizedUser> NonLifetimeEndingUsers);
/// Returns true if the given block is in the BlocksWithLifetimeEndingUses
/// set. This is a helper to extract out large logging messages so that the
/// main logic is easy to read.
bool doesBlockDoubleConsume(
SILBasicBlock *UserBlock,
llvm::Optional<GeneralizedUser> LifetimeEndingUser = None,
bool ShouldInsert = false);
/// Returns true if the given block contains a non-lifetime ending use that is
/// strictly later in the block than a lifetime ending use. If all
/// non-lifetime ending uses are before the lifetime ending use, the block is
/// removed from the BlocksWithNonLifetimeEndingUses map to show that the uses
/// were found to properly be post-dominated by a lifetime ending use.
bool doesBlockContainUseAfterFree(GeneralizedUser LifetimeEndingUser,
SILBasicBlock *UserBlock);
bool checkValueWithoutLifetimeEndingUses();
bool checkFunctionArgWithoutLifetimeEndingUses(SILFunctionArgument *Arg);
};
} // end anonymous namespace
bool SILValueOwnershipChecker::doesBlockContainUseAfterFree(
GeneralizedUser LifetimeEndingUser, SILBasicBlock *UserBlock) {
auto Iter = BlocksWithNonLifetimeEndingUses.find(UserBlock);
if (Iter == BlocksWithNonLifetimeEndingUses.end())
return false;
GeneralizedUser NonLifetimeEndingUser = Iter->second;
// Make sure that the non-lifetime ending use is before the lifetime ending
// use. Otherwise, we have a use after free.
// First check if our lifetime ending user is a cond_br. In such a case, we
// always consider the non-lifetime ending use to be a use after free.
if (LifetimeEndingUser.isCondBranchUser()) {
llvm::errs() << "Function: '" << Value->getFunction()->getName() << "'\n"
<< "Found use after free?!\n"
<< "Value: " << *Value
<< "Consuming User: " << *LifetimeEndingUser
<< "Non Consuming User: " << *Iter->second << "Block: bb"
<< UserBlock->getDebugID() << "\n\n";
return true;
}
// Ok. At this point, we know that our lifetime ending user is not a cond
// branch user. Check if our non-lifetime ending use is. In such a case, we
// know that our non lifetime ending user is properly post-dominated so we can
// erase the non lifetime ending use and continue.
if (NonLifetimeEndingUser.isCondBranchUser()) {
BlocksWithNonLifetimeEndingUses.erase(Iter);
return false;
}
// Otherwise, we know that both of our users are non-cond branch users and
// thus must be instructions in the given block. Make sure that the non
// lifetime ending user is strictly before the lifetime ending user.
if (std::find_if(LifetimeEndingUser.getIterator(), UserBlock->end(),
[&NonLifetimeEndingUser](const SILInstruction &I) -> bool {
return NonLifetimeEndingUser == &I;
}) != UserBlock->end()) {
llvm::errs() << "Function: '" << Value->getFunction()->getName() << "'\n"
<< "Found use after free?!\n"
<< "Value: " << *Value
<< "Consuming User: " << *LifetimeEndingUser
<< "Non Consuming User: " << *Iter->second << "Block: bb"
<< UserBlock->getDebugID() << "\n\n";
return true;
}
// Erase the use since we know that it is properly joint post-dominated.
BlocksWithNonLifetimeEndingUses.erase(Iter);
return false;
}
bool SILValueOwnershipChecker::doesBlockDoubleConsume(
SILBasicBlock *UserBlock,
llvm::Optional<GeneralizedUser> LifetimeEndingUser, bool ShouldInsert) {
if ((ShouldInsert && BlocksWithLifetimeEndingUses.insert(UserBlock).second) ||
!BlocksWithLifetimeEndingUses.count(UserBlock))
return false;
llvm::errs() << "Function: '" << Value->getFunction()->getName() << "'\n"
<< "Found over consume?!\n"
<< "Value: " << *Value;
if (LifetimeEndingUser.hasValue())
llvm::errs() << "User: " << *LifetimeEndingUser.getValue();
llvm::errs() << "Block: bb" << UserBlock->getDebugID() << "\n\n";
return true;
}
void SILValueOwnershipChecker::gatherUsers(
llvm::SmallVectorImpl<GeneralizedUser> &LifetimeEndingUsers,
llvm::SmallVectorImpl<GeneralizedUser> &NonLifetimeEndingUsers) {
// See if Value is guaranteed. If we are guaranteed and not forwarding, then
// we need to look through subobject uses for more uses. Otherwise, if we are
// forwarding, we do not create any lifetime ending users/non lifetime ending
// users since we verify against our base.
bool IsGuaranteed =
Value.getOwnershipKind() == ValueOwnershipKind::Guaranteed;
if (IsGuaranteed && isOwnershipForwardingValue(Value))
return;
// Then gather up our initial list of users.
llvm::SmallVector<Operand *, 8> Users;
std::copy(Value->use_begin(), Value->use_end(), std::back_inserter(Users));
auto addCondBranchToList = [](llvm::SmallVectorImpl<GeneralizedUser> &List,
CondBranchInst *CBI, unsigned OperandIndex) {
if (CBI->isConditionOperandIndex(OperandIndex)) {
List.emplace_back(CBI);
return;
}
bool isTrueOperand = CBI->isTrueOperandIndex(OperandIndex);
List.emplace_back(CBI, isTrueOperand ? CondBranchInst::TrueIdx
: CondBranchInst::FalseIdx);
};
while (!Users.empty()) {
Operand *Op = Users.pop_back_val();
auto *User = Op->getUser();
// If this op is a type dependent operand, skip it. It is not interesting
// from an ownership perspective.
if (User->isTypeDependentOperand(*Op))
continue;
if (OwnershipCompatibilityUseChecker(Mod, *Op, Value).check(User)) {
DEBUG(llvm::dbgs() << " Lifetime Ending User: " << *User);
if (auto *CBI = dyn_cast<CondBranchInst>(User)) {
addCondBranchToList(LifetimeEndingUsers, CBI, Op->getOperandNumber());
} else {
LifetimeEndingUsers.emplace_back(User);
}
} else {
DEBUG(llvm::dbgs() << " Regular User: " << *User);
if (auto *CBI = dyn_cast<CondBranchInst>(User)) {
addCondBranchToList(NonLifetimeEndingUsers, CBI,
Op->getOperandNumber());
} else {
NonLifetimeEndingUsers.emplace_back(User);
}
}
// If our base value is not guaranteed or our intermediate value is not an
// ownership forwarding inst, continue. We do not want to visit any
// subobjects recursively.
if (!IsGuaranteed || !isOwnershipForwardingInst(User)) {
continue;
}
// At this point, we know that we must have a forwarded subobject. Since the
// base type is guaranteed, we know that the subobject is either guaranteed
// or trivial. The trivial case is not interesting for ARC verification, so
// if the user has a trivial ownership kind, continue.
if (SILValue(User).getOwnershipKind() == ValueOwnershipKind::Trivial) {
continue;
}
// Now, we /must/ have a guaranteed subobject, so lets assert that the user
// is actually guaranteed and add the subobject's users to our worklist.
assert(SILValue(User).getOwnershipKind() ==
ValueOwnershipKind::Guaranteed &&
"Our value is guaranteed and this is a forwarding instruction. "
"Should have guaranteed ownership as well.");
std::copy(User->use_begin(), User->use_end(), std::back_inserter(Users));
}
}
// Unique our non lifetime ending user list by only selecting the last user in
// each block.
void SILValueOwnershipChecker::uniqueNonLifetimeEndingUsers(
ArrayRef<GeneralizedUser> NonLifetimeEndingUsers) {
for (GeneralizedUser User : NonLifetimeEndingUsers) {
auto *UserBlock = User.getParent();
// First try to associate User with User->getParent().
auto Result =
BlocksWithNonLifetimeEndingUses.insert(std::make_pair(UserBlock, User));
// If the insertion succeeds, then we know that there is no more work to
// be done, so process the next use.
if (Result.second)
continue;
// If the insertion fails, then we have at least two non-lifetime ending
// uses in the same block. Since we are performing a liveness type of
// dataflow, we only need the last non-lifetime ending use to show that all
// lifetime ending uses post dominate both.
//
// We begin by checking if the first use is a cond_br use from the previous
// block. In such a case, we always use the already stored value and
// continue.
if (User.isCondBranchUser()) {
continue;
}
// Then, we check if Use is after Result.first->second in the use list. If
// Use is not later, then we wish to keep the already mapped value, not use,
// so continue.
if (std::find_if(Result.first->second.getIterator(), UserBlock->end(),
[&User](const SILInstruction &I) -> bool {
return User == &I;
}) == UserBlock->end()) {
continue;
}
// At this point, we know that User is later in the Block than
// Result.first->second, so store Use instead.
Result.first->second = User;
}
}
bool SILValueOwnershipChecker::checkFunctionArgWithoutLifetimeEndingUses(
SILFunctionArgument *Arg) {
switch (Arg->getOwnershipKind()) {
case ValueOwnershipKind::Guaranteed:
case ValueOwnershipKind::Unowned:
case ValueOwnershipKind::Trivial:
return true;
case ValueOwnershipKind::Any:
llvm_unreachable(
"Function arguments should never have ValueOwnershipKind::Any");
case ValueOwnershipKind::Owned:
break;
}
if (TUB.isUnreachable(Arg->getParent()))
return true;
llvm::errs() << "Function: '" << Arg->getFunction()->getName() << "'\n"
<< " Owned function parameter without life "
"ending uses!\n"
<< "Value: " << *Arg << '\n';
if (IsSILOwnershipVerifierTestingEnabled)
return true;
llvm_unreachable("triggering standard assertion failure routine");
}
bool SILValueOwnershipChecker::checkValueWithoutLifetimeEndingUses() {
DEBUG(llvm::dbgs() << " No lifetime ending users?! Bailing early.\n");
if (auto *Arg = dyn_cast<SILFunctionArgument>(Value)) {
if (checkFunctionArgWithoutLifetimeEndingUses(Arg)) {
return true;
}
}
// Check if we are a guaranteed subobject. In such a case, we should never
// have lifetime ending uses, since our lifetime is guaranteed by our
// operand, so there is nothing further to do. So just return true.
if (isOwnershipForwardingValue(Value) &&
Value.getOwnershipKind() == ValueOwnershipKind::Guaranteed)
return true;
// If we have an unowned value, then again there is nothing left to do.
if (Value.getOwnershipKind() == ValueOwnershipKind::Unowned)
return true;
if (auto *ParentBlock = Value->getParentBlock()) {
if (TUB.isUnreachable(ParentBlock)) {
DEBUG(llvm::dbgs() << " Ignoring transitively unreachable value "
<< "without users!\n"
<< " Function: '" << Value->getFunction()->getName()
<< "'\n"
<< " Value: " << *Value << '\n');
return true;
}
}
if (!isValueAddressOrTrivial(Value, Mod)) {
llvm::errs() << "Function: '" << Value->getFunction()->getName() << "'\n"
<< "Non trivial values, non address values, and non "
"guaranteed function args must have at least one "
"lifetime ending use?!\n"
<< "Value: " << *Value << '\n';
if (IsSILOwnershipVerifierTestingEnabled)
return true;
llvm_unreachable("triggering standard assertion failure routine");
}
return true;
}
static bool isGuaranteedFunctionArgWithLifetimeEndingUses(
SILFunctionArgument *Arg,
const llvm::SmallVectorImpl<GeneralizedUser> &LifetimeEndingUsers) {
if (Arg->getOwnershipKind() != ValueOwnershipKind::Guaranteed)
return true;
llvm::errs() << " Function: '" << Arg->getFunction()->getName() << "'\n"
<< " Guaranteed function parameter with life ending uses!\n"
<< " Value: " << *Arg;
for (const auto &U : LifetimeEndingUsers) {
llvm::errs() << " Lifetime Ending User: " << *U;
}
llvm::errs() << '\n';
if (IsSILOwnershipVerifierTestingEnabled)
return false;
llvm_unreachable("triggering standard assertion failure routine");
}
static bool isSubobjectProjectionWithLifetimeEndingUses(
SILValue Value,
const llvm::SmallVectorImpl<GeneralizedUser> &LifetimeEndingUsers) {
llvm::errs() << " Function: '" << Value->getFunction()->getName() << "'\n"
<< " Subobject projection with life ending uses!\n"
<< " Value: " << *Value;
for (const auto &U : LifetimeEndingUsers) {
llvm::errs() << " Lifetime Ending User: " << *U;
}
llvm::errs() << '\n';
if (IsSILOwnershipVerifierTestingEnabled)
return false;
llvm_unreachable("triggering standard assertion failure routine");
}
bool SILValueOwnershipChecker::checkUses() {
DEBUG(llvm::dbgs() << " Gathering and classifying uses!\n");
// First go through V and gather up its uses. While we do this we:
//
// 1. Verify that none of the uses are in the same block. This would be an
// overconsume so in this case we assert.
// 2. Verify that the uses are compatible with our ownership convention.
llvm::SmallVector<GeneralizedUser, 16> LifetimeEndingUsers;
llvm::SmallVector<GeneralizedUser, 16> NonLifetimeEndingUsers;
gatherUsers(LifetimeEndingUsers, NonLifetimeEndingUsers);
// We can only have no lifetime ending uses if we have:
//
// 1. A trivial typed value.
// 2. An address type value.
// 3. A guaranteed function argument.
//
// In the first two cases, it is easy to see that there is nothing further to
// do but return false.
//
// In the case of a function argument, one must think about the issues a bit
// more. Specifically, we should have /no/ lifetime ending uses of a
// guaranteed function argument, since a guaranteed function argument should
// outlive the current function always.
if (LifetimeEndingUsers.empty() && checkValueWithoutLifetimeEndingUses()) {
return false;
}
DEBUG(llvm::dbgs() << " Found lifetime ending users! Performing initial "
"checks\n");
// See if we have a guaranteed function address. Guaranteed function addresses
// should never have any lifetime ending uses.
if (auto *Arg = dyn_cast<SILFunctionArgument>(Value)) {
if (!isGuaranteedFunctionArgWithLifetimeEndingUses(Arg,
LifetimeEndingUsers)) {
return false;
}
}
// Check if we are an instruction that forwards ownership that forwards
// guaranteed ownership. In such a case, we are a subobject projection. We
// should not have any lifetime ending uses.
if (isOwnershipForwardingValue(Value) &&
Value.getOwnershipKind() == ValueOwnershipKind::Guaranteed) {
if (!isSubobjectProjectionWithLifetimeEndingUses(Value,
LifetimeEndingUsers)) {
return false;
}
}
// Then add our non lifetime ending users and their blocks to the
// BlocksWithNonLifetimeEndingUses map. While we do this, if we have multiple
// uses in the same block, we only accept the last use since from a liveness
// perspective that is all we care about.
uniqueNonLifetimeEndingUsers(NonLifetimeEndingUsers);
// Finally, we go through each one of our lifetime ending users performing the
// following operation:
//
// 1. Verifying that no two lifetime ending users are in the same block. This
// is accomplished by adding the user blocks to the
// BlocksWithLifetimeEndingUses list. This avoids double consumes.
//
// 2. Verifying that no predecessor is a block with a lifetime ending use. The
// reason why this is necessary is because we wish to not add elements to the
// worklist twice. Thus we want to check if we have already visited a
// predecessor.
llvm::SmallVector<std::pair<GeneralizedUser, SILBasicBlock *>, 32>
PredsToAddToWorklist;
for (GeneralizedUser User : LifetimeEndingUsers) {
SILBasicBlock *UserBlock = User.getParent();
// If the block does over consume, we either assert or return false. We only
// return false when debugging.
if (doesBlockDoubleConsume(UserBlock, User, true)) {
if (IsSILOwnershipVerifierTestingEnabled)
return false;
llvm_unreachable("triggering standard assertion failure routine");
}
// Then check if the given block has a use after free.
if (doesBlockContainUseAfterFree(User, UserBlock)) {
if (IsSILOwnershipVerifierTestingEnabled)
return false;
llvm_unreachable("triggering standard assertion failure routine");
}
// If this user is in the same block as the value, do not visit
// predecessors. We must be extra tolerant here since we allow for
// unreachable code.
if (UserBlock == Value->getParentBlock())
continue;
// Then for each predecessor of this block...
for (auto *Pred : UserBlock->getPredecessorBlocks()) {
// If this block is not a block that we have already put on the list, add
// it to the worklist.
PredsToAddToWorklist.push_back({User, Pred});
}
}
for (const auto &I : LifetimeEndingUsers) {
// Finally add the user block to the visited list so we do not try to add it
// to our must visit successor list.
VisitedBlocks.insert(I.getParent());
}
// Make sure not to add predecessors to our worklist if we only have 1
// lifetime ending user and it is in the same block as our def.
if (LifetimeEndingUsers.size() == 1 &&
LifetimeEndingUsers[0].getParent() == Value->getParentBlock()) {
return true;
}
// Now that we have marked all of our producing blocks, we go through our
// PredsToAddToWorklist list and add our preds, making sure that none of these
// preds are in BlocksWithLifetimeEndingUses.
for (auto Pair : PredsToAddToWorklist) {
GeneralizedUser User = Pair.first;
SILBasicBlock *PredBlock = Pair.second;
// Make sure that the predecessor is not in our
// BlocksWithLifetimeEndingUses list.
if (doesBlockDoubleConsume(PredBlock, User)) {
if (IsSILOwnershipVerifierTestingEnabled)
return false;
llvm_unreachable("triggering standard assertion failure routine");
}
if (!VisitedBlocks.insert(PredBlock).second)
continue;
Worklist.push_back(PredBlock);
}
return true;
}
void SILValueOwnershipChecker::checkDataflow() {
DEBUG(llvm::dbgs() << " Beginning to check dataflow constraints\n");
// Until the worklist is empty...
while (!Worklist.empty()) {
// Grab the next block to visit.
SILBasicBlock *BB = Worklist.pop_back_val();
DEBUG(llvm::dbgs() << " Visiting Block: bb" << BB->getDebugID() << '\n');
// Since the block is on our worklist, we know already that it is not a
// block with lifetime ending uses, due to the invariants of our loop.
// First remove BB from the SuccessorBlocksThatMustBeVisited list. This
// ensures that when the algorithm terminates, we know that BB was not the
// beginning of a non-covered path to the exit.
SuccessorBlocksThatMustBeVisited.erase(BB);
// Then remove BB from BlocksWithNonLifetimeEndingUses so we know that
// this block was properly joint post-dominated by our lifetime ending
// users.
BlocksWithNonLifetimeEndingUses.erase(BB);
// Ok, now we know that we do not have an overconsume. If this block does
// not end in a no return function, we need to update our state for our
// successors to make sure by the end of the traversal we visit them.
//
// We must consider such no-return blocks since we may be running during
// SILGen before NoReturn folding has run.
for (SILBasicBlock *SuccBlock : BB->getSuccessorBlocks()) {
// If we already visited the successor, there is nothing to do since we
// already visited the successor.
if (VisitedBlocks.count(SuccBlock))
continue;
// Then check if the successor is a transitively unreachable block. In
// such a case, we ignore it since we are going to leak along that path.
if (TUB.isUnreachable(SuccBlock))
continue;
// Otherwise, add the successor to our SuccessorBlocksThatMustBeVisited
// set to ensure that we assert if we do not visit it by the end of the
// algorithm.
SuccessorBlocksThatMustBeVisited.insert(SuccBlock);
}
// If we are at the dominating block of our walk, continue. There is nothing
// further to do since we do not want to visit the predecessors of our
// dominating block. On the other hand, we do want to add its successors to
// the SuccessorBlocksThatMustBeVisited set.
if (BB == Value->getParentBlock())
continue;
// Then for each predecessor of this block:
//
// 1. If we have visited the predecessor already, that it is not a block
// with lifetime ending uses. If it is a block with uses, then we have a
// double release... so assert. If not, we continue.
//
// 2. We add the predecessor to the worklist if we have not visited it yet.
for (auto *PredBlock : BB->getPredecessorBlocks()) {
if (doesBlockDoubleConsume(PredBlock)) {
if (IsSILOwnershipVerifierTestingEnabled)
return;
llvm_unreachable("triggering standard assertion failure routine");
}
if (VisitedBlocks.count(PredBlock)) {
continue;
}
VisitedBlocks.insert(PredBlock);
Worklist.push_back(PredBlock);
}
}
// Make sure that we visited all successor blocks that we needed to visit to
// make sure we didn't leak.
if (!SuccessorBlocksThatMustBeVisited.empty()) {
llvm::errs()
<< "Function: '" << Value->getFunction()->getName() << "'\n"
<< "Error! Found a leak due to a consuming post-dominance failure!\n"
<< " Value: " << *Value << " Post Dominating Failure Blocks:\n";
for (auto *BB : SuccessorBlocksThatMustBeVisited) {
llvm::errs() << " bb" << BB->getDebugID();
}
llvm::errs() << '\n';
if (IsSILOwnershipVerifierTestingEnabled)
return;
llvm_unreachable("triggering standard assertion failure routine");
}
// Make sure that we do not have any lifetime ending uses left to visit. If we
// do, then these non lifetime ending uses must be outside of our "alive"
// blocks implying a use-after free.
if (!BlocksWithNonLifetimeEndingUses.empty()) {
llvm::errs()
<< "Function: '" << Value->getFunction()->getName() << "'\n"
<< "Found use after free due to unvisited non lifetime ending uses?!\n"
<< "Value: " << *Value << " Remaining Users:\n";
for (auto &Pair : BlocksWithNonLifetimeEndingUses) {
llvm::errs() << "User:" << *Pair.second << "Block: bb"
<< Pair.first->getDebugID() << "\n";
}
llvm::errs() << "\n";
if (IsSILOwnershipVerifierTestingEnabled)
return;
llvm_unreachable("triggering standard assertion failure routine");
}
}
#endif
//===----------------------------------------------------------------------===//
// Top Level Entrypoints
//===----------------------------------------------------------------------===//
void SILInstruction::verifyOperandOwnership() const {
#ifndef NDEBUG
// If SILOwnership is not enabled, do not perform verification.
if (!getModule().getOptions().EnableSILOwnership)
return;
// If the given function has unqualified ownership, there is nothing to
// verify.
if (getFunction()->hasUnqualifiedOwnership())
return;
// If we are testing the verifier, bail so we only print errors once when
// performing a full verification, instead of additionally in the SILBuilder.
if (IsSILOwnershipVerifierTestingEnabled)
return;
// If this is a terminator instruction, do not verify in SILBuilder. This is
// because when building a new function, one must create the destination block
// first which is an unnatural pattern and pretty brittle.
if (isa<TermInst>(this))
return;
auto *Self = const_cast<SILInstruction *>(this);
for (const Operand &Op : getAllOperands()) {
if (isTypeDependentOperand(Op))
continue;
OwnershipCompatibilityUseChecker(getModule(), Op, Op.get()).check(Self);
}
#endif
}
void SILValue::verifyOwnership(SILModule &Mod,
TransitivelyUnreachableBlocksInfo *TUB) const {
#ifndef NDEBUG
// If we are SILUndef, just bail. SILUndef can pair with anything. Any uses of
// the SILUndef will make sure that the matching checks out.
if (isa<SILUndef>(*this))
return;
// Since we do not have SILUndef, we now know that getFunction() should return
// a real function. Assert in case this assumption is no longer true.
SILFunction *F = (*this)->getFunction();
assert(F && "Instructions and arguments should have a function");
// If the given function has unqualified ownership, there is nothing further
// to verify.
if (F->hasUnqualifiedOwnership())
return;
if (TUB) {
SILValueOwnershipChecker(Mod, *TUB, *this).check();
} else {
PostOrderFunctionInfo NewPOFI((*this)->getFunction());
TransitivelyUnreachableBlocksInfo TUB(NewPOFI);
SILValueOwnershipChecker(Mod, TUB, *this).check();
}
#endif
}