blob: dedf8c82c424c786b05936930552fe95e50bbda4 [file] [log] [blame]
//===--- ParseSIL.cpp - SIL File Parsing logic ----------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/AST/ASTWalker.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/Basic/Defer.h"
#include "swift/Parse/Lexer.h"
#include "swift/Parse/Parser.h"
#include "swift/SIL/AbstractionPattern.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILDebugScope.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILUndef.h"
#include "swift/Subsystems.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/SaveAndRestore.h"
using namespace swift;
//===----------------------------------------------------------------------===//
// SILParserState implementation
//===----------------------------------------------------------------------===//
namespace swift {
class SILParserTUState {
public:
SILParserTUState(SILModule &M) : M(M) {}
~SILParserTUState();
SILModule &M;
/// This is all of the forward referenced functions with
/// the location for where the reference is.
llvm::DenseMap<Identifier,
std::pair<SILFunction*, SourceLoc>> ForwardRefFns;
/// A list of all functions forward-declared by a sil_scope.
llvm::DenseSet<SILFunction *> PotentialZombieFns;
/// A map from textual .sil scope number to SILDebugScopes.
llvm::DenseMap<unsigned, SILDebugScope *> ScopeSlots;
/// Did we parse a sil_stage for this module?
bool DidParseSILStage = false;
DiagnosticEngine *Diags = nullptr;
};
} // namespace swift
SILParserState::SILParserState(SILModule *M) : M(M) {
S = M ? new SILParserTUState(*M) : nullptr;
}
SILParserState::~SILParserState() {
delete S;
}
SILParserTUState::~SILParserTUState() {
if (!ForwardRefFns.empty())
for (auto Entry : ForwardRefFns)
if (Entry.second.second.isValid())
Diags->diagnose(Entry.second.second, diag::sil_use_of_undefined_value,
Entry.first.str());
// Turn any debug-info-only function declarations into zombies.
for (auto *Fn : PotentialZombieFns)
if (Fn->isExternalDeclaration()) {
Fn->setInlined();
M.eraseFunction(Fn);
}
}
//===----------------------------------------------------------------------===//
// SILParser
//===----------------------------------------------------------------------===//
namespace {
struct ParsedSubstitution {
SourceLoc loc;
Type replacement;
};
struct ParsedSpecAttr {
ArrayRef<RequirementRepr> requirements;
bool exported;
SILSpecializeAttr::SpecializationKind kind;
};
class SILParser {
friend Parser;
public:
Parser &P;
SILModule &SILMod;
SILParserTUState &TUState;
SILFunction *F = nullptr;
GenericEnvironment *GenericEnv = nullptr;
FunctionOwnershipEvaluator OwnershipEvaluator;
private:
/// HadError - Have we seen an error parsing this function?
bool HadError = false;
/// Data structures used to perform name lookup of basic blocks.
llvm::DenseMap<Identifier, SILBasicBlock*> BlocksByName;
llvm::DenseMap<SILBasicBlock*,
std::pair<SourceLoc, Identifier>> UndefinedBlocks;
/// Data structures used to perform name lookup for local values.
llvm::StringMap<ValueBase*> LocalValues;
llvm::StringMap<SourceLoc> ForwardRefLocalValues;
/// A callback to be invoked every time a type was deserialized.
std::function<void(Type)> ParsedTypeCallback;
bool performTypeLocChecking(TypeLoc &T, bool IsSILType,
GenericEnvironment *GenericEnv = nullptr,
DeclContext *DC = nullptr);
void convertRequirements(SILFunction *F, ArrayRef<RequirementRepr> From,
SmallVectorImpl<Requirement> &To);
ProtocolConformance *
parseProtocolConformanceHelper(ProtocolDecl *&proto,
GenericEnvironment *GenericEnv,
bool localScope);
public:
SILParser(Parser &P)
: P(P), SILMod(*P.SIL->M), TUState(*P.SIL->S),
ParsedTypeCallback([](Type ty) {}) {}
/// diagnoseProblems - After a function is fully parse, emit any diagnostics
/// for errors and return true if there were any.
bool diagnoseProblems();
/// getGlobalNameForReference - Given a reference to a global name, look it
/// up and return an appropriate SIL function.
SILFunction *getGlobalNameForReference(Identifier Name,
CanSILFunctionType Ty,
SourceLoc Loc,
bool IgnoreFwdRef = false);
/// getGlobalNameForDefinition - Given a definition of a global name, look
/// it up and return an appropriate SIL function.
SILFunction *getGlobalNameForDefinition(Identifier Name,
CanSILFunctionType Ty,
SourceLoc Loc);
/// getBBForDefinition - Return the SILBasicBlock for a definition of the
/// specified block.
SILBasicBlock *getBBForDefinition(Identifier Name, SourceLoc Loc);
/// getBBForReference - return the SILBasicBlock of the specified name. The
/// source location is used to diagnose a failure if the block ends up never
/// being defined.
SILBasicBlock *getBBForReference(Identifier Name, SourceLoc Loc);
struct UnresolvedValueName {
StringRef Name;
SourceLoc NameLoc;
bool isUndef() const { return Name == "undef"; }
};
/// getLocalValue - Get a reference to a local value with the specified name
/// and type.
SILValue getLocalValue(UnresolvedValueName Name, SILType Type,
SILLocation L, SILBuilder &B);
/// setLocalValue - When an instruction or block argument is defined, this
/// method is used to register it and update our symbol table.
void setLocalValue(ValueBase *Value, StringRef Name, SourceLoc NameLoc);
SILDebugLocation getDebugLoc(SILBuilder & B, SILLocation Loc) {
return SILDebugLocation(Loc, F->getDebugScope());
}
/// @{ Primitive parsing.
/// \verbatim
/// sil-identifier ::= [A-Za-z_0-9]+
/// \endverbatim
bool parseSILIdentifier(Identifier &Result, SourceLoc &Loc,
const Diagnostic &D);
template<typename ...DiagArgTypes, typename ...ArgTypes>
bool parseSILIdentifier(Identifier &Result, Diag<DiagArgTypes...> ID,
ArgTypes... Args) {
SourceLoc L;
return parseSILIdentifier(Result, L, Diagnostic(ID, Args...));
}
template<typename ...DiagArgTypes, typename ...ArgTypes>
bool parseSILIdentifier(Identifier &Result, SourceLoc &L,
Diag<DiagArgTypes...> ID, ArgTypes... Args) {
return parseSILIdentifier(Result, L, Diagnostic(ID, Args...));
}
bool parseVerbatim(StringRef identifier);
template <typename T> bool parseInteger(T &Result, const Diagnostic &D) {
if (!P.Tok.is(tok::integer_literal)) {
P.diagnose(P.Tok, D);
return true;
}
P.Tok.getText().getAsInteger(0, Result);
P.consumeToken(tok::integer_literal);
return false;
}
/// @}
/// @{ Type parsing.
bool parseASTType(CanType &result);
bool parseASTType(CanType &result, SourceLoc &TypeLoc) {
TypeLoc = P.Tok.getLoc();
return parseASTType(result);
}
bool parseSILOwnership(Optional<ValueOwnershipKind> &OwnershipKind) {
// We pare here @ <identifier>.
if (P.consumeIf(tok::at_sign) && P.Tok.isNot(tok::identifier)) {
// Add error here.
return true;
}
OwnershipKind =
llvm::StringSwitch<Optional<ValueOwnershipKind>>(P.Tok.getText())
.Case("trivial",
Optional<ValueOwnershipKind>(ValueOwnershipKind::Trivial))
.Case("unowned",
Optional<ValueOwnershipKind>(ValueOwnershipKind::Unowned))
.Case("owned",
Optional<ValueOwnershipKind>(ValueOwnershipKind::Owned))
.Case("guaranteed", Optional<ValueOwnershipKind>(
ValueOwnershipKind::Guaranteed))
.Default(None);
if (OwnershipKind.hasValue()) {
P.consumeToken();
return false;
}
return true;
}
bool parseSILType(SILType &Result,
GenericEnvironment *&genericEnv,
bool IsFuncDecl = false);
bool parseSILType(SILType &Result) {
GenericEnvironment *IgnoredEnv;
return parseSILType(Result, IgnoredEnv);
}
bool parseSILType(SILType &Result, SourceLoc &TypeLoc) {
TypeLoc = P.Tok.getLoc();
return parseSILType(Result);
}
bool parseSILType(SILType &Result, SourceLoc &TypeLoc,
GenericEnvironment *&GenericEnv) {
TypeLoc = P.Tok.getLoc();
return parseSILType(Result, GenericEnv);
}
/// @}
bool parseSILDottedPath(ValueDecl *&Decl,
SmallVectorImpl<ValueDecl *> &values);
bool parseSILDottedPath(ValueDecl *&Decl) {
SmallVector<ValueDecl *, 4> values;
return parseSILDottedPath(Decl, values);
}
bool parseSILDottedPathWithoutPound(ValueDecl *&Decl,
SmallVectorImpl<ValueDecl *> &values);
bool parseSILDottedPathWithoutPound(ValueDecl *&Decl) {
SmallVector<ValueDecl *, 4> values;
return parseSILDottedPathWithoutPound(Decl, values);
}
/// At the time of calling this function, we may not have the type of the
/// Decl yet. So we return a SILDeclRef on the first lookup result and also
/// return all the lookup results. After parsing the expected type, the
/// caller of this function can choose the one that has the expected type.
bool parseSILDeclRef(SILDeclRef &Result,
SmallVectorImpl<ValueDecl *> &values);
bool parseSILDeclRef(SILDeclRef &Result) {
SmallVector<ValueDecl *, 4> values;
return parseSILDeclRef(Result, values);
}
bool parseSILDeclRef(SILDeclRef &Member, bool FnTypeRequired);
bool parseGlobalName(Identifier &Name);
bool parseValueName(UnresolvedValueName &Name);
bool parseValueRef(SILValue &Result, SILType Ty, SILLocation Loc,
SILBuilder &B);
bool parseTypedValueRef(SILValue &Result, SourceLoc &Loc, SILBuilder &B);
bool parseTypedValueRef(SILValue &Result, SILBuilder &B) {
SourceLoc Tmp;
return parseTypedValueRef(Result, Tmp, B);
}
bool parseSILOpcode(ValueKind &Opcode, SourceLoc &OpcodeLoc,
StringRef &OpcodeName);
bool parseSILDebugVar(SILDebugVariable &Var);
/// \brief Parses the basic block arguments as part of branch instruction.
bool parseSILBBArgsAtBranch(SmallVector<SILValue, 6> &Args, SILBuilder &B);
bool parseSILLocation(SILLocation &L);
bool parseScopeRef(SILDebugScope *&DS);
bool parseSILDebugLocation(SILLocation &L, SILBuilder &B,
bool parsedComma = false);
bool parseSILInstruction(SILBasicBlock *BB, SILBuilder &B);
bool parseCallInstruction(SILLocation InstLoc,
ValueKind Opcode, SILBuilder &B,
SILInstruction *&ResultVal);
bool parseSILFunctionRef(SILLocation InstLoc,
SILBuilder &B, SILInstruction *&ResultVal);
bool parseSILBasicBlock(SILBuilder &B);
bool isStartOfSILInstruction();
bool parseSubstitutions(SmallVectorImpl<ParsedSubstitution> &parsed,
GenericEnvironment *GenericEnv=nullptr);
ProtocolConformance *parseProtocolConformance(ProtocolDecl *&proto,
GenericEnvironment *&genericEnv,
bool localScope);
ProtocolConformance *parseProtocolConformance() {
ProtocolDecl *dummy;
GenericEnvironment *env;
return parseProtocolConformance(dummy, env, true);
}
Optional<llvm::coverage::Counter>
parseSILCoverageExpr(llvm::coverage::CounterExpressionBuilder &Builder);
};
} // end anonymous namespace
bool SILParser::parseSILIdentifier(Identifier &Result, SourceLoc &Loc,
const Diagnostic &D) {
switch (P.Tok.getKind()) {
case tok::identifier:
Result = P.Context.getIdentifier(P.Tok.getText());
break;
case tok::string_literal: {
// Drop the double quotes.
StringRef rawString = P.Tok.getText().drop_front().drop_back();
Result = P.Context.getIdentifier(rawString);
break;
}
case tok::oper_binary_unspaced: // fixme?
case tok::oper_binary_spaced:
// A binary operator can be part of a SILDeclRef.
Result = P.Context.getIdentifier(P.Tok.getText());
break;
case tok::kw_deinit:
Result = P.Context.Id_deinit;
break;
case tok::kw_init:
Result = P.Context.Id_init;
break;
case tok::kw_subscript:
Result = P.Context.Id_subscript;
break;
default:
// If it's some other keyword, grab an identifier for it.
if (P.Tok.isKeyword()) {
Result = P.Context.getIdentifier(P.Tok.getText());
break;
}
P.diagnose(P.Tok, D);
return true;
}
Loc = P.Tok.getLoc();
P.consumeToken();
return false;
}
bool SILParser::parseVerbatim(StringRef name) {
Identifier tok;
SourceLoc loc;
if (parseSILIdentifier(tok, loc, diag::expected_tok_in_sil_instr, name)) {
return true;
}
if (tok.str() != name) {
P.diagnose(loc, diag::expected_tok_in_sil_instr, name);
return true;
}
return false;
}
/// diagnoseProblems - After a function is fully parse, emit any diagnostics
/// for errors and return true if there were any.
bool SILParser::diagnoseProblems() {
// Check for any uses of basic blocks that were not defined.
if (!UndefinedBlocks.empty()) {
// FIXME: These are going to come out in nondeterministic order.
for (auto Entry : UndefinedBlocks)
P.diagnose(Entry.second.first, diag::sil_undefined_basicblock_use,
Entry.second.second);
HadError = true;
}
if (!ForwardRefLocalValues.empty()) {
// FIXME: These are going to come out in nondeterministic order.
for (auto &Entry : ForwardRefLocalValues)
P.diagnose(Entry.second, diag::sil_use_of_undefined_value,
Entry.first());
HadError = true;
}
return HadError;
}
/// getGlobalNameForDefinition - Given a definition of a global name, look
/// it up and return an appropriate SIL function.
SILFunction *SILParser::getGlobalNameForDefinition(Identifier Name,
CanSILFunctionType Ty,
SourceLoc Loc) {
// Check to see if a function of this name has been forward referenced. If so
// complete the forward reference.
auto It = TUState.ForwardRefFns.find(Name);
if (It != TUState.ForwardRefFns.end()) {
SILFunction *Fn = It->second.first;
// Verify that the types match up.
if (Fn->getLoweredFunctionType() != Ty) {
P.diagnose(Loc, diag::sil_value_use_type_mismatch, Name.str(),
Fn->getLoweredFunctionType(), Ty);
P.diagnose(It->second.second, diag::sil_prior_reference);
auto loc = RegularLocation(Loc);
Fn =
SILMod.createFunction(SILLinkage::Private, "", Ty, nullptr, loc,
IsNotBare, IsNotTransparent, IsNotFragile);
Fn->setDebugScope(new (SILMod) SILDebugScope(loc, Fn));
}
assert(Fn->isExternalDeclaration() && "Forward defns cannot have bodies!");
TUState.ForwardRefFns.erase(It);
// Move the function to this position in the module.
SILMod.getFunctionList().remove(Fn);
SILMod.getFunctionList().push_back(Fn);
return Fn;
}
auto loc = RegularLocation(Loc);
// If we don't have a forward reference, make sure the function hasn't been
// defined already.
if (SILMod.lookUpFunction(Name.str()) != nullptr) {
P.diagnose(Loc, diag::sil_value_redefinition, Name.str());
auto *fn =
SILMod.createFunction(SILLinkage::Private, "", Ty, nullptr, loc,
IsNotBare, IsNotTransparent, IsNotFragile);
fn->setDebugScope(new (SILMod) SILDebugScope(loc, fn));
return fn;
}
// Otherwise, this definition is the first use of this name.
auto *fn = SILMod.createFunction(SILLinkage::Private, Name.str(), Ty,
nullptr, loc, IsNotBare,
IsNotTransparent, IsNotFragile);
fn->setDebugScope(new (SILMod) SILDebugScope(loc, fn));
return fn;
}
/// getGlobalNameForReference - Given a reference to a global name, look it
/// up and return an appropriate SIL function.
SILFunction *SILParser::getGlobalNameForReference(Identifier Name,
CanSILFunctionType Ty,
SourceLoc Loc,
bool IgnoreFwdRef) {
auto loc = RegularLocation(Loc);
// Check to see if we have a function by this name already.
if (SILFunction *FnRef = SILMod.lookUpFunction(Name.str())) {
// If so, check for matching types.
if (FnRef->getLoweredFunctionType() != Ty) {
P.diagnose(Loc, diag::sil_value_use_type_mismatch,
Name.str(), FnRef->getLoweredFunctionType(), Ty);
FnRef =
SILMod.createFunction(SILLinkage::Private, "", Ty, nullptr, loc,
IsNotBare, IsNotTransparent, IsNotFragile);
FnRef->setDebugScope(new (SILMod) SILDebugScope(loc, FnRef));
}
return FnRef;
}
// If we didn't find a function, create a new one - it must be a forward
// reference.
auto *Fn = SILMod.createFunction(SILLinkage::Private, Name.str(), Ty,
nullptr, loc, IsNotBare,
IsNotTransparent, IsNotFragile);
Fn->setDebugScope(new (SILMod) SILDebugScope(loc, Fn));
TUState.ForwardRefFns[Name] = { Fn, IgnoreFwdRef ? SourceLoc() : Loc };
TUState.Diags = &P.Diags;
return Fn;
}
/// getBBForDefinition - Return the SILBasicBlock for a definition of the
/// specified block.
SILBasicBlock *SILParser::getBBForDefinition(Identifier Name, SourceLoc Loc) {
// If there was no name specified for this block, just create a new one.
if (Name.empty())
return F->createBasicBlock();
SILBasicBlock *&BB = BlocksByName[Name];
// If the block has never been named yet, just create it.
if (BB == nullptr)
return BB = F->createBasicBlock();
// If it already exists, it was either a forward reference or a redefinition.
// If it is a forward reference, it should be in our undefined set.
if (!UndefinedBlocks.erase(BB)) {
// If we have a redefinition, return a new BB to avoid inserting
// instructions after the terminator.
P.diagnose(Loc, diag::sil_basicblock_redefinition, Name);
HadError = true;
return F->createBasicBlock();
}
// FIXME: Splice the block to the end of the function so they come out in the
// right order.
return BB;
}
/// getBBForReference - return the SILBasicBlock of the specified name. The
/// source location is used to diagnose a failure if the block ends up never
/// being defined.
SILBasicBlock *SILParser::getBBForReference(Identifier Name, SourceLoc Loc) {
// If the block has already been created, use it.
SILBasicBlock *&BB = BlocksByName[Name];
if (BB != nullptr)
return BB;
// Otherwise, create it and remember that this is a forward reference so
// that we can diagnose use without definition problems.
BB = F->createBasicBlock();
UndefinedBlocks[BB] = {Loc, Name};
return BB;
}
/// sil-global-name:
/// '@' identifier
bool SILParser::parseGlobalName(Identifier &Name) {
return P.parseToken(tok::at_sign, diag::expected_sil_value_name) ||
parseSILIdentifier(Name, diag::expected_sil_value_name);
}
/// getLocalValue - Get a reference to a local value with the specified name
/// and type.
SILValue SILParser::getLocalValue(UnresolvedValueName Name, SILType Type,
SILLocation Loc, SILBuilder &B) {
if (Name.isUndef())
return SILUndef::get(Type, &SILMod);
// Check to see if this is already defined.
ValueBase *&Entry = LocalValues[Name.Name];
if (Entry) {
// If this value is already defined, check it to make sure types match.
SILType EntryTy = Entry->getType();
if (EntryTy != Type) {
HadError = true;
P.diagnose(Name.NameLoc, diag::sil_value_use_type_mismatch, Name.Name,
EntryTy.getSwiftRValueType(), Type.getSwiftRValueType());
// Make sure to return something of the requested type.
return new (SILMod) GlobalAddrInst(getDebugLoc(B, Loc), Type);
}
return SILValue(Entry);
}
// Otherwise, this is a forward reference. Create a dummy node to represent
// it until we see a real definition.
ForwardRefLocalValues[Name.Name] = Name.NameLoc;
Entry = new (SILMod) GlobalAddrInst(getDebugLoc(B, Loc), Type);
return Entry;
}
/// setLocalValue - When an instruction or block argument is defined, this
/// method is used to register it and update our symbol table.
void SILParser::setLocalValue(ValueBase *Value, StringRef Name,
SourceLoc NameLoc) {
ValueBase *&Entry = LocalValues[Name];
// If this value was already defined, it is either a redefinition, or a
// specification for a forward referenced value.
if (Entry) {
if (!ForwardRefLocalValues.erase(Name)) {
P.diagnose(NameLoc, diag::sil_value_redefinition, Name);
HadError = true;
return;
}
// If the forward reference was of the wrong type, diagnose this now.
if (Entry->getType() != Value->getType()) {
P.diagnose(NameLoc, diag::sil_value_def_type_mismatch, Name,
Entry->getType().getSwiftRValueType(),
Value->getType().getSwiftRValueType());
HadError = true;
} else {
// Forward references only live here if they have a single result.
Entry->replaceAllUsesWith(Value);
}
Entry = Value;
return;
}
// Otherwise, just store it in our map.
Entry = Value;
}
//===----------------------------------------------------------------------===//
// SIL Parsing Logic
//===----------------------------------------------------------------------===//
/// parseSILLinkage - Parse a linkage specifier if present.
/// sil-linkage:
/// /*empty*/ // default depends on whether this is a definition
/// 'public'
/// 'hidden'
/// 'shared'
/// 'private'
/// 'public_external'
/// 'hidden_external'
/// 'private_external'
static bool parseSILLinkage(Optional<SILLinkage> &Result, Parser &P) {
// Begin by initializing result to our base value of None.
Result = None;
// Unfortunate collision with access control keywords.
if (P.Tok.is(tok::kw_public)) {
Result = SILLinkage::Public;
P.consumeToken();
return false;
}
// Unfortunate collision with access control keywords.
if (P.Tok.is(tok::kw_private)) {
Result = SILLinkage::Private;
P.consumeToken();
return false;
}
// If we do not have an identifier, bail. All SILLinkages that we are parsing
// are identifiers.
if (P.Tok.isNot(tok::identifier))
return false;
// Then use a string switch to try and parse the identifier.
Result = llvm::StringSwitch<Optional<SILLinkage>>(P.Tok.getText())
.Case("hidden", SILLinkage::Hidden)
.Case("shared", SILLinkage::Shared)
.Case("public_external", SILLinkage::PublicExternal)
.Case("hidden_external", SILLinkage::HiddenExternal)
.Case("shared_external", SILLinkage::SharedExternal)
.Case("private_external", SILLinkage::PrivateExternal)
.Default(None);
// If we succeed, consume the token.
if (Result) {
P.consumeToken(tok::identifier);
}
return false;
}
/// Given whether it's known to be a definition, resolve an optional
/// SIL linkage to a real one.
static SILLinkage resolveSILLinkage(Optional<SILLinkage> linkage,
bool isDefinition) {
if (linkage.hasValue()) {
return linkage.getValue();
} else if (isDefinition) {
return SILLinkage::DefaultForDefinition;
} else {
return SILLinkage::DefaultForDeclaration;
}
}
static bool parseSILOptional(StringRef &Result, SILParser &SP) {
if (SP.P.consumeIf(tok::l_square)) {
Identifier Id;
SP.parseSILIdentifier(Id, diag::expected_in_attribute_list);
SP.P.parseToken(tok::r_square, diag::expected_in_attribute_list);
Result = Id.str();
return true;
}
return false;
}
/// Parse an option attribute ('[' Expected ']')?
static bool parseSILOptional(bool &Result, SILParser &SP, StringRef Expected) {
StringRef Optional;
if (parseSILOptional(Optional, SP)) {
if (Optional != Expected)
return true;
Result = true;
}
return false;
}
namespace {
/// A helper class to perform lookup of IdentTypes in the
/// current parser scope.
class IdentTypeReprLookup : public ASTWalker {
Parser &P;
public:
IdentTypeReprLookup(Parser &P) : P(P) {}
bool walkToTypeReprPre(TypeRepr *Ty) {
auto *T = dyn_cast_or_null<IdentTypeRepr>(Ty);
auto Comp = T->getComponentRange().front();
if (auto Entry = P.lookupInScope(Comp->getIdentifier()))
if (isa<TypeDecl>(Entry)) {
Comp->setValue(Entry);
return false;
}
return true;
}
};
} // end anonymous namespace
/// Remap RequirementReps to Requirements.
void SILParser::convertRequirements(SILFunction *F,
ArrayRef<RequirementRepr> From,
SmallVectorImpl<Requirement> &To) {
if (From.empty()) {
To.clear();
return;
}
auto *GenericEnv = F->getGenericEnvironment();
assert(GenericEnv);
IdentTypeReprLookup PerformLookup(P);
// Use parser lexical scopes to resolve references
// to the generic parameters.
auto ResolveToInterfaceType = [&](TypeLoc Ty) -> Type {
Ty.getTypeRepr()->walk(PerformLookup);
performTypeLocChecking(Ty, /* IsSIL */ false);
assert(Ty.getType());
return GenericEnv->mapTypeOutOfContext(Ty.getType()->getCanonicalType());
};
for (auto &Req : From) {
if (Req.getKind() == RequirementReprKind::SameType) {
auto FirstType = ResolveToInterfaceType(Req.getFirstTypeLoc());
auto SecondType = ResolveToInterfaceType(Req.getSecondTypeLoc());
Requirement ConvertedRequirement(RequirementKind::SameType, FirstType,
SecondType);
To.push_back(ConvertedRequirement);
continue;
}
if (Req.getKind() == RequirementReprKind::TypeConstraint) {
auto FirstType = ResolveToInterfaceType(Req.getFirstTypeLoc());
auto SecondType = ResolveToInterfaceType(Req.getSecondTypeLoc());
Requirement ConvertedRequirement(RequirementKind::Conformance, FirstType,
SecondType);
To.push_back(ConvertedRequirement);
continue;
}
if (Req.getKind() == RequirementReprKind::LayoutConstraint) {
auto Subject = ResolveToInterfaceType(Req.getSubjectLoc());
Requirement ConvertedRequirement(RequirementKind::Layout, Subject,
Req.getLayoutConstraint());
To.push_back(ConvertedRequirement);
continue;
}
llvm_unreachable("Unsupported requirement kind");
}
}
static bool parseDeclSILOptional(bool *isTransparent, bool *isFragile,
IsThunk_t *isThunk, bool *isGlobalInit,
Inline_t *inlineStrategy, bool *isLet,
SmallVectorImpl<std::string> *Semantics,
SmallVectorImpl<ParsedSpecAttr> *SpecAttrs,
ValueDecl **ClangDecl,
EffectsKind *MRK, SILParser &SP) {
while (SP.P.consumeIf(tok::l_square)) {
if (isLet && SP.P.Tok.is(tok::kw_let)) {
*isLet = true;
SP.P.consumeToken(tok::kw_let);
SP.P.parseToken(tok::r_square, diag::expected_in_attribute_list);
continue;
}
else if (SP.P.Tok.isNot(tok::identifier)) {
SP.P.diagnose(SP.P.Tok, diag::expected_in_attribute_list);
return true;
} else if (isTransparent && SP.P.Tok.getText() == "transparent")
*isTransparent = true;
else if (isFragile && SP.P.Tok.getText() == "fragile")
*isFragile = true;
else if (isThunk && SP.P.Tok.getText() == "thunk")
*isThunk = IsThunk;
else if (isThunk && SP.P.Tok.getText() == "reabstraction_thunk")
*isThunk = IsReabstractionThunk;
else if (isGlobalInit && SP.P.Tok.getText() == "global_init")
*isGlobalInit = true;
else if (inlineStrategy && SP.P.Tok.getText() == "noinline")
*inlineStrategy = NoInline;
else if (inlineStrategy && SP.P.Tok.getText() == "always_inline")
*inlineStrategy = AlwaysInline;
else if (MRK && SP.P.Tok.getText() == "readnone")
*MRK = EffectsKind::ReadNone;
else if (MRK && SP.P.Tok.getText() == "readonly")
*MRK = EffectsKind::ReadOnly;
else if (MRK && SP.P.Tok.getText() == "readwrite")
*MRK = EffectsKind::ReadWrite;
else if (Semantics && SP.P.Tok.getText() == "_semantics") {
SP.P.consumeToken(tok::identifier);
if (SP.P.Tok.getKind() != tok::string_literal) {
SP.P.diagnose(SP.P.Tok, diag::expected_in_attribute_list);
return true;
}
// Drop the double quotes.
StringRef rawString = SP.P.Tok.getText().drop_front().drop_back();
Semantics->push_back(rawString);
SP.P.consumeToken(tok::string_literal);
SP.P.parseToken(tok::r_square, diag::expected_in_attribute_list);
continue;
}
else if (SpecAttrs && SP.P.Tok.getText() == "_specialize") {
SourceLoc AtLoc = SP.P.Tok.getLoc();
SourceLoc Loc(AtLoc);
// Parse a _specialized attribute, building a parsed substitution list
// and pushing a new ParsedSpecAttr on the SpecAttrs list. Conformances
// cannot be generated until the function declaration is fully parsed so
// that the function's generic signature can be consulted.
ParsedSpecAttr SpecAttr;
SpecAttr.requirements = {};
SpecAttr.exported = false;
SpecAttr.kind = SILSpecializeAttr::SpecializationKind::Full;
SpecializeAttr *Attr;
if (!SP.P.parseSpecializeAttribute(tok::r_square, AtLoc, Loc, Attr))
return true;
// Convert SpecializeAttr into ParsedSpecAttr.
SpecAttr.requirements = Attr->getTrailingWhereClause()->getRequirements();
SpecAttr.kind = Attr->getSpecializationKind() ==
swift::SpecializeAttr::SpecializationKind::Full
? SILSpecializeAttr::SpecializationKind::Full
: SILSpecializeAttr::SpecializationKind::Partial;
SpecAttr.exported = Attr->isExported();
SpecAttrs->emplace_back(SpecAttr);
continue;
}
else if (ClangDecl && SP.P.Tok.getText() == "clang") {
SP.P.consumeToken(tok::identifier);
if (SP.parseSILDottedPathWithoutPound(*ClangDecl))
return true;
SP.P.parseToken(tok::r_square, diag::expected_in_attribute_list);
continue;
}
else {
SP.P.diagnose(SP.P.Tok, diag::expected_in_attribute_list);
return true;
}
SP.P.consumeToken(tok::identifier);
SP.P.parseToken(tok::r_square, diag::expected_in_attribute_list);
}
return false;
}
bool SILParser::performTypeLocChecking(TypeLoc &T, bool IsSILType,
GenericEnvironment *GenericEnv,
DeclContext *DC) {
// Do some type checking / name binding for the parsed type.
assert(P.SF.ASTStage == SourceFile::Parsing &&
"Unexpected stage during parsing!");
if (GenericEnv == nullptr)
GenericEnv = this->GenericEnv;
if (!DC)
DC = &P.SF;
return swift::performTypeLocChecking(P.Context, T,
/*isSILMode=*/true, IsSILType,
GenericEnv, DC);
}
/// Find the top-level ValueDecl or Module given a name.
static llvm::PointerUnion<ValueDecl*, ModuleDecl*> lookupTopDecl(Parser &P,
Identifier Name) {
// Use UnqualifiedLookup to look through all of the imports.
// We have to lie and say we're done with parsing to make this happen.
assert(P.SF.ASTStage == SourceFile::Parsing &&
"Unexpected stage during parsing!");
llvm::SaveAndRestore<SourceFile::ASTStage_t> ASTStage(P.SF.ASTStage,
SourceFile::Parsed);
UnqualifiedLookup DeclLookup(Name, &P.SF, nullptr);
assert(DeclLookup.isSuccess() && DeclLookup.Results.size() == 1);
ValueDecl *VD = DeclLookup.Results.back().getValueDecl();
return VD;
}
/// Find the ValueDecl given an interface type and a member name.
static ValueDecl *lookupMember(Parser &P, Type Ty, Identifier Name,
SourceLoc Loc,
SmallVectorImpl<ValueDecl *> &Lookup,
bool ExpectMultipleResults) {
Type CheckTy = Ty;
if (auto MetaTy = CheckTy->getAs<AnyMetatypeType>())
CheckTy = MetaTy->getInstanceType();
if (auto nominal = CheckTy->getAnyNominal()) {
auto found = nominal->lookupDirect(Name);
Lookup.append(found.begin(), found.end());
} else if (auto moduleTy = CheckTy->getAs<ModuleType>()) {
moduleTy->getModule()->lookupValue({ }, Name, NLKind::QualifiedLookup,
Lookup);
} else {
P.diagnose(Loc, diag::sil_member_lookup_bad_type, Name, Ty);
return nullptr;
}
if (Lookup.empty() || (!ExpectMultipleResults && Lookup.size() != 1)) {
P.diagnose(Loc, diag::sil_named_member_decl_not_found, Name, Ty);
return nullptr;
}
return Lookup[0];
}
bool SILParser::parseASTType(CanType &result) {
ParserResult<TypeRepr> parsedType = P.parseType();
if (parsedType.isNull()) return true;
TypeLoc loc = parsedType.get();
if (performTypeLocChecking(loc, /*IsSILType=*/ false))
return true;
result = loc.getType()->getCanonicalType();
// Invoke the callback on the parsed type.
ParsedTypeCallback(loc.getType());
return false;
}
/// sil-type:
/// '$' '*'? attribute-list (generic-params)? type
///
bool SILParser::parseSILType(SILType &Result,
GenericEnvironment *&GenericEnv,
bool IsFuncDecl){
GenericEnv = nullptr;
if (P.parseToken(tok::sil_dollar, diag::expected_sil_type))
return true;
// If we have a '*', then this is an address type.
SILValueCategory category = SILValueCategory::Object;
if (P.Tok.isAnyOperator() && P.Tok.getText().startswith("*")) {
category = SILValueCategory::Address;
P.consumeStartingCharacterOfCurrentToken();
}
// Parse attributes.
SourceLoc inoutLoc;
TypeAttributes attrs;
P.parseTypeAttributeList(inoutLoc, attrs);
// Global functions are implicitly @convention(thin) if not specified otherwise.
if (IsFuncDecl && !attrs.has(TAK_convention)) {
// Use a random location.
attrs.setAttr(TAK_convention, P.PreviousLoc);
attrs.convention = "thin";
}
ParserResult<TypeRepr> TyR = P.parseType(diag::expected_sil_type,
/*handleCodeCompletion*/ true,
/*isSILFuncDecl*/ IsFuncDecl);
if (TyR.isNull())
return true;
// Resolve the generic environments for parsed generic function and box types.
class HandleSILGenericParamsWalker : public ASTWalker {
ASTContext &C;
SourceFile *SF;
public:
HandleSILGenericParamsWalker(ASTContext &C,
SourceFile *SF)
: C(C), SF(SF)
{}
bool walkToTypeReprPre(TypeRepr *T) override {
if (auto fnType = dyn_cast<FunctionTypeRepr>(T)) {
if (auto generics = fnType->getGenericParams()) {
auto env = handleSILGenericParams(C, generics, SF);
fnType->setGenericEnvironment(env);
}
}
if (auto boxType = dyn_cast<SILBoxTypeRepr>(T)) {
if (auto generics = boxType->getGenericParams()) {
auto env = handleSILGenericParams(C, generics, SF);
boxType->setGenericEnvironment(env);
}
}
return true;
}
};
TyR.get()
->walk(HandleSILGenericParamsWalker(P.Context, &P.SF));
// Save the top-level function generic environment if there was one.
if (auto fnType = dyn_cast<FunctionTypeRepr>(TyR.get()))
if (auto env = fnType->getGenericEnvironment())
GenericEnv = env;
// Apply attributes to the type.
TypeLoc Ty = P.applyAttributeToType(TyR.get(), inoutLoc, attrs);
if (performTypeLocChecking(Ty, /*IsSILType=*/true, nullptr))
return true;
Result = SILType::getPrimitiveType(Ty.getType()->getCanonicalType(),
category);
// Invoke the callback on the parsed type.
ParsedTypeCallback(Ty.getType());
return false;
}
bool SILParser::parseSILDottedPath(ValueDecl *&Decl,
SmallVectorImpl<ValueDecl *> &values) {
if (P.parseToken(tok::pound, diag::expected_sil_constant))
return true;
return parseSILDottedPathWithoutPound(Decl, values);
}
bool SILParser::parseSILDottedPathWithoutPound(ValueDecl *&Decl,
SmallVectorImpl<ValueDecl *> &values) {
// Handle sil-dotted-path.
Identifier Id;
SmallVector<Identifier, 4> FullName;
SmallVector<SourceLoc, 4> Locs;
do {
Locs.push_back(P.Tok.getLoc());
if (parseSILIdentifier(Id, diag::expected_sil_constant))
return true;
FullName.push_back(Id);
} while (P.consumeIf(tok::period));
// Look up ValueDecl from a dotted path.
ValueDecl *VD;
llvm::PointerUnion<ValueDecl*, ModuleDecl *> Res = lookupTopDecl(P, FullName[0]);
// It is possible that the last member lookup can return multiple lookup
// results. One example is the overloaded member functions.
if (Res.is<ModuleDecl*>()) {
assert(FullName.size() > 1 &&
"A single module is not a full path to SILDeclRef");
auto Mod = Res.get<ModuleDecl*>();
values.clear();
VD = lookupMember(P, ModuleType::get(Mod), FullName[1], Locs[1], values,
FullName.size() == 2/*ExpectMultipleResults*/);
for (unsigned I = 2, E = FullName.size(); I < E; I++) {
values.clear();
VD = lookupMember(P, VD->getInterfaceType(), FullName[I], Locs[I], values,
I == FullName.size() - 1/*ExpectMultipleResults*/);
}
} else {
VD = Res.get<ValueDecl*>();
for (unsigned I = 1, E = FullName.size(); I < E; I++) {
values.clear();
VD = lookupMember(P, VD->getInterfaceType(), FullName[I], Locs[I], values,
I == FullName.size() - 1/*ExpectMultipleResults*/);
}
}
Decl = VD;
return false;
}
static AccessorKind getAccessorKind(StringRef ident) {
return llvm::StringSwitch<AccessorKind>(ident)
.Case("getter", AccessorKind::IsGetter)
.Case("setter", AccessorKind::IsSetter)
.Case("addressor", AccessorKind::IsAddressor)
.Case("mutableAddressor", AccessorKind::IsMutableAddressor)
.Case("materializeForSet", AccessorKind::IsMaterializeForSet)
.Default(AccessorKind::NotAccessor);
}
/// sil-decl-ref ::= '#' sil-identifier ('.' sil-identifier)* sil-decl-subref?
/// sil-decl-subref ::= '!' sil-decl-subref-part ('.' sil-decl-uncurry-level)?
/// ('.' sil-decl-lang)?
/// sil-decl-subref ::= '!' sil-decl-uncurry-level ('.' sil-decl-lang)?
/// sil-decl-subref ::= '!' sil-decl-lang
/// sil-decl-subref-part ::= 'getter'
/// sil-decl-subref-part ::= 'setter'
/// sil-decl-subref-part ::= 'materializeForSet'
/// sil-decl-subref-part ::= 'allocator'
/// sil-decl-subref-part ::= 'initializer'
/// sil-decl-subref-part ::= 'enumelt'
/// sil-decl-subref-part ::= 'destroyer'
/// sil-decl-subref-part ::= 'globalaccessor'
/// sil-decl-uncurry-level ::= [0-9]+
/// sil-decl-lang ::= 'foreign'
bool SILParser::parseSILDeclRef(SILDeclRef &Result,
SmallVectorImpl<ValueDecl *> &values) {
ValueDecl *VD;
if (parseSILDottedPath(VD, values))
return true;
// Initialize Kind, uncurryLevel and IsObjC.
SILDeclRef::Kind Kind = SILDeclRef::Kind::Func;
unsigned uncurryLevel = 0;
bool IsObjC = false;
ResilienceExpansion expansion = ResilienceExpansion::Minimal;
if (!P.consumeIf(tok::sil_exclamation)) {
// Construct SILDeclRef.
Result = SILDeclRef(VD, Kind, expansion, uncurryLevel, IsObjC);
return false;
}
// Handle sil-constant-kind-and-uncurry-level.
// ParseState indicates the value we just handled.
// 1 means we just handled Kind, 2 means we just handled uncurryLevel.
// We accept func|getter|setter|...|foreign or an integer when ParseState is
// 0; accept foreign or an integer when ParseState is 1; accept foreign when
// ParseState is 2.
unsigned ParseState = 0;
Identifier Id;
do {
if (P.Tok.is(tok::identifier)) {
auto IdLoc = P.Tok.getLoc();
if (parseSILIdentifier(Id, diag::expected_sil_constant))
return true;
AccessorKind accessorKind;
if (!ParseState && Id.str() == "func") {
Kind = SILDeclRef::Kind::Func;
ParseState = 1;
} else if (!ParseState &&
(accessorKind = getAccessorKind(Id.str()))
!= AccessorKind::NotAccessor) {
auto storageDecl = dyn_cast<AbstractStorageDecl>(VD);
auto accessor = (storageDecl
? storageDecl->getAccessorFunction(accessorKind)
: nullptr);
if (!accessor) {
P.diagnose(IdLoc, diag::referenced_value_no_accessor, 0);
return true;
}
Kind = SILDeclRef::Kind::Func;
VD = accessor;
// Update values for this accessor kind.
for (unsigned I = 0, E = values.size(); I < E; I++)
if (auto otherDecl = dyn_cast<AbstractStorageDecl>(values[I]))
if (auto otherAccessor = otherDecl->getAccessorFunction(accessorKind))
values[I] = otherAccessor;
ParseState = 1;
} else if (!ParseState && Id.str() == "allocator") {
Kind = SILDeclRef::Kind::Allocator;
ParseState = 1;
} else if (!ParseState && Id.str() == "initializer") {
Kind = SILDeclRef::Kind::Initializer;
ParseState = 1;
} else if (!ParseState && Id.str() == "enumelt") {
Kind = SILDeclRef::Kind::EnumElement;
ParseState = 1;
} else if (!ParseState && Id.str() == "destroyer") {
Kind = SILDeclRef::Kind::Destroyer;
ParseState = 1;
} else if (!ParseState && Id.str() == "deallocator") {
Kind = SILDeclRef::Kind::Deallocator;
ParseState = 1;
} else if (!ParseState && Id.str() == "globalaccessor") {
Kind = SILDeclRef::Kind::GlobalAccessor;
ParseState = 1;
} else if (!ParseState && Id.str() == "globalgetter") {
Kind = SILDeclRef::Kind::GlobalGetter;
ParseState = 1;
} else if (!ParseState && Id.str() == "ivardestroyer") {
Kind = SILDeclRef::Kind::IVarDestroyer;
ParseState = 1;
} else if (!ParseState && Id.str() == "ivarinitializer") {
Kind = SILDeclRef::Kind::IVarInitializer;
ParseState = 1;
} else if (!ParseState && Id.str() == "defaultarg") {
Kind = SILDeclRef::Kind::IVarInitializer;
ParseState = 1;
} else if (!ParseState && Id.str() == "propertyinit") {
Kind = SILDeclRef::Kind::StoredPropertyInitializer;
ParseState = 1;
} else if (Id.str() == "foreign") {
IsObjC = true;
break;
} else
break;
} else if (ParseState < 2 && P.Tok.is(tok::integer_literal)) {
P.Tok.getText().getAsInteger(0, uncurryLevel);
P.consumeToken(tok::integer_literal);
ParseState = 2;
} else
// TODO: resilience expansion?
break;
} while (P.consumeIf(tok::period));
// Construct SILDeclRef.
Result = SILDeclRef(VD, Kind, expansion, uncurryLevel, IsObjC);
return false;
}
/// parseValueName - Parse a value name without a type available yet.
///
/// sil-value-name:
/// sil-local-name
/// 'undef'
///
bool SILParser::parseValueName(UnresolvedValueName &Result) {
Result.Name = P.Tok.getText();
if (P.Tok.is(tok::kw_undef)) {
Result.NameLoc = P.consumeToken(tok::kw_undef);
return false;
}
// Parse the local-name.
if (P.parseToken(tok::sil_local_name, Result.NameLoc,
diag::expected_sil_value_name))
return true;
return false;
}
/// parseValueRef - Parse a value, given a contextual type.
///
/// sil-value-ref:
/// sil-local-name
///
bool SILParser::parseValueRef(SILValue &Result, SILType Ty,
SILLocation Loc, SILBuilder &B) {
UnresolvedValueName Name;
if (parseValueName(Name)) return true;
Result = getLocalValue(Name, Ty, Loc, B);
return false;
}
/// parseTypedValueRef - Parse a type/value reference pair.
///
/// sil-typed-valueref:
/// sil-value-ref ':' sil-type
///
bool SILParser::parseTypedValueRef(SILValue &Result, SourceLoc &Loc,
SILBuilder &B) {
Loc = P.Tok.getLoc();
UnresolvedValueName Name;
SILType Ty;
if (parseValueName(Name) ||
P.parseToken(tok::colon, diag::expected_sil_colon_value_ref) ||
parseSILType(Ty))
return true;
Result = getLocalValue(Name, Ty, RegularLocation(Loc), B);
return false;
}
/// getInstructionKind - This method maps the string form of a SIL instruction
/// opcode to an enum.
bool SILParser::parseSILOpcode(ValueKind &Opcode, SourceLoc &OpcodeLoc,
StringRef &OpcodeName) {
OpcodeLoc = P.Tok.getLoc();
OpcodeName = P.Tok.getText();
// Parse this textually to avoid Swift keywords (like 'return') from
// interfering with opcode recognition.
Optional<ValueKind> MaybeOpcode =
llvm::StringSwitch<Optional<ValueKind>>(OpcodeName)
#define INST(Id, Parent, TextualName, MemBehavior, MayRelease) \
.Case(#TextualName, ValueKind::Id)
#include "swift/SIL/SILNodes.def"
.Default(None);
if (!MaybeOpcode) {
P.diagnose(OpcodeLoc, diag::expected_sil_instr_opcode);
return true;
}
Opcode = MaybeOpcode.getValue();
P.consumeToken();
return false;
}
static bool peekSILDebugLocation(Parser &P) {
auto T = P.peekToken().getText();
return P.Tok.is(tok::comma) && (T == "loc" || T == "scope");
}
bool SILParser::parseSILDebugVar(SILDebugVariable &Var) {
while (P.Tok.is(tok::comma) && !peekSILDebugLocation(P)) {
P.consumeToken();
StringRef Key = P.Tok.getText();
if (Key == "name") {
P.consumeToken();
if (P.Tok.getKind() != tok::string_literal) {
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "string");
return true;
}
// Drop the double quotes.
StringRef Val = P.Tok.getText().drop_front().drop_back();
Var.Name = Val;
} else if (Key == "argno") {
P.consumeToken();
if (P.Tok.getKind() != tok::integer_literal) {
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "integer");
return true;
}
if (P.Tok.getText().getAsInteger(0, Var.ArgNo))
return true;
} else if (Key == "let") {
Var.Constant = true;
} else if (Key == "var") {
Var.Constant = false;
} else if (Key == "loc") {
Var.Constant = false;
} else {
P.diagnose(P.Tok, diag::sil_dbg_unknown_key, Key);
return true;
}
P.consumeToken();
}
return false;
}
bool SILParser::parseSILBBArgsAtBranch(SmallVector<SILValue, 6> &Args,
SILBuilder &B) {
if (P.Tok.is(tok::l_paren)) {
SourceLoc LParenLoc = P.consumeToken(tok::l_paren);
SourceLoc RParenLoc;
if (P.parseList(tok::r_paren, LParenLoc, RParenLoc,
/*AllowSepAfterLast=*/false,
diag::sil_basicblock_arg_rparen,
[&]() -> ParserStatus {
SILValue Arg;
SourceLoc ArgLoc;
if (parseTypedValueRef(Arg, ArgLoc, B))
return makeParserError();
Args.push_back(Arg);
return makeParserSuccess();
}).isError())
return true;
}
return false;
}
/// Parse the substitution list for an apply instruction or
/// specialized protocol conformance.
bool SILParser::parseSubstitutions(SmallVectorImpl<ParsedSubstitution> &parsed,
GenericEnvironment *GenericEnv) {
// Check for an opening '<' bracket.
if (!P.Tok.isContextualPunctuator("<"))
return false;
P.consumeToken();
// Parse a list of Substitutions.
do {
SourceLoc Loc = P.Tok.getLoc();
// Parse substitution as AST type.
ParserResult<TypeRepr> TyR = P.parseType();
if (TyR.isNull())
return true;
TypeLoc Ty = TyR.get();
if (performTypeLocChecking(Ty, /*IsSILType=*/ false, GenericEnv))
return true;
parsed.push_back({Loc, Ty.getType()});
} while (P.consumeIf(tok::comma));
// Consume the closing '>'.
if (!P.Tok.isContextualPunctuator(">")) {
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, ">");
return true;
}
P.consumeToken();
return false;
}
/// Collect conformances by looking up the conformance from replacement
/// type and protocol decl.
static bool getConformancesForSubstitution(Parser &P,
ArrayRef<ProtocolDecl *> protocols,
Type subReplacement,
SourceLoc loc,
SmallVectorImpl<ProtocolConformanceRef> &conformances) {
auto M = P.SF.getParentModule();
for (auto proto : protocols) {
auto conformance = M->lookupConformance(subReplacement, proto, nullptr);
if (conformance) {
conformances.push_back(*conformance);
continue;
}
P.diagnose(loc, diag::sil_substitution_mismatch, subReplacement,
proto->getName());
return true;
}
return false;
}
/// Reconstruct AST substitutions from parsed substitutions using archetypes
/// from a SILFunctionType.
bool getApplySubstitutionsFromParsed(
SILParser &SP,
GenericEnvironment *env,
ArrayRef<ParsedSubstitution> parses,
SmallVectorImpl<Substitution> &subs) {
if (parses.empty()) {
assert(!env);
return false;
}
assert(env);
auto loc = parses[0].loc;
// Collect conformance requirements in a convenient form.
llvm::DenseMap<TypeBase *, SmallVector<ProtocolDecl *, 2>> conformsTo;
for (auto reqt : env->getGenericSignature()->getRequirements()) {
if (reqt.getKind() == RequirementKind::Conformance) {
auto canTy = reqt.getFirstType()->getCanonicalType();
auto nominal = reqt.getSecondType()->getAnyNominal();
conformsTo[canTy.getPointer()].push_back(cast<ProtocolDecl>(nominal));
}
}
// The replacement is for the corresponding dependent type by ordering.
for (auto depTy : env->getGenericSignature()->getAllDependentTypes()) {
auto canTy = depTy->getCanonicalType().getPointer();
if (parses.empty()) {
SP.P.diagnose(loc, diag::sil_missing_substitutions);
return true;
}
auto parsed = parses.front();
parses = parses.slice(1);
SmallVector<ProtocolConformanceRef, 2> conformances;
if (getConformancesForSubstitution(SP.P, conformsTo[canTy],
parsed.replacement,
parsed.loc, conformances))
return true;
subs.push_back({parsed.replacement,
SP.P.Context.AllocateCopy(conformances)});
}
if (!parses.empty()) {
SP.P.diagnose(loc, diag::sil_too_many_substitutions);
return true;
}
return false;
}
static ArrayRef<ProtocolConformanceRef>
collectExistentialConformances(Parser &P, CanType conformingType, SourceLoc loc,
CanType protocolType) {
SmallVector<ProtocolDecl *, 2> protocols;
bool isExistential = protocolType->isAnyExistentialType(protocols);
assert(isExistential);
(void)isExistential;
if (protocols.empty())
return {};
SmallVector<ProtocolConformanceRef, 2> conformances;
getConformancesForSubstitution(P, protocols, conformingType,
loc, conformances);
return P.Context.AllocateCopy(conformances);
}
/// sil-loc ::= 'loc' string-literal ':' [0-9]+ ':' [0-9]+
bool SILParser::parseSILLocation(SILLocation &Loc) {
SILLocation::DebugLoc L;
if (parseVerbatim("loc"))
return true;
if (P.Tok.getKind() != tok::string_literal) {
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "string");
return true;
}
// Drop the double quotes.
StringRef File = P.Tok.getText().drop_front().drop_back();
L.Filename = P.Context.getIdentifier(File).str().data();
P.consumeToken(tok::string_literal);
if (P.parseToken(tok::colon, diag::expected_colon_in_sil_location))
return true;
if (parseInteger(L.Line, diag::sil_invalid_line_in_sil_location))
return true;
if (P.parseToken(tok::colon, diag::expected_colon_in_sil_location))
return true;
if (parseInteger(L.Column, diag::sil_invalid_column_in_sil_location))
return true;
Loc.setDebugInfoLoc(L);
return false;
}
bool SILParser::parseScopeRef(SILDebugScope *&DS) {
unsigned Slot;
SourceLoc SlotLoc = P.Tok.getLoc();
if (parseInteger(Slot, diag::sil_invalid_scope_slot))
return true;
DS = TUState.ScopeSlots[Slot];
if (!DS) {
P.diagnose(SlotLoc, diag::sil_scope_undeclared, Slot);
return true;
}
return false;
}
/// (',' sil-loc)? (',' sil-scope-ref)?
bool SILParser::parseSILDebugLocation(SILLocation &L, SILBuilder &B,
bool parsedComma) {
// Parse the debug information, if any.
if (P.Tok.is(tok::comma)) {
P.consumeToken();
parsedComma = true;
}
if (!parsedComma)
return false;
bool requireScope = false;
if (P.Tok.getText() == "loc") {
if (parseSILLocation(L))
return true;
if (P.Tok.is(tok::comma)) {
P.consumeToken();
requireScope = true;
}
}
if (P.Tok.getText() == "scope" || requireScope) {
parseVerbatim("scope");
SILDebugScope *DS = nullptr;
if (parseScopeRef(DS))
return true;
if (DS)
B.setCurrentDebugScope(DS);
}
return false;
}
static bool parseLoadOwnershipQualifier(LoadOwnershipQualifier &Result,
SILParser &P) {
StringRef Str;
// If we do not parse '[' ... ']', we have unqualified. Set value and return.
if (!parseSILOptional(Str, P)) {
Result = LoadOwnershipQualifier::Unqualified;
return false;
}
// Then try to parse one of our other qualifiers. We do not support parsing
// unqualified here so we use that as our fail value.
auto Tmp = llvm::StringSwitch<LoadOwnershipQualifier>(Str)
.Case("take", LoadOwnershipQualifier::Take)
.Case("copy", LoadOwnershipQualifier::Copy)
.Case("trivial", LoadOwnershipQualifier::Trivial)
.Default(LoadOwnershipQualifier::Unqualified);
// Thus return true (following the conventions in this file) if we fail.
if (Tmp == LoadOwnershipQualifier::Unqualified)
return true;
// Otherwise, assign Result and return false.
Result = Tmp;
return false;
}
static bool parseStoreOwnershipQualifier(StoreOwnershipQualifier &Result,
SILParser &P) {
StringRef Str;
// If we do not parse '[' ... ']', we have unqualified. Set value and return.
if (!parseSILOptional(Str, P)) {
Result = StoreOwnershipQualifier::Unqualified;
return false;
}
// Then try to parse one of our other qualifiers. We do not support parsing
// unqualified here so we use that as our fail value.
auto Tmp = llvm::StringSwitch<StoreOwnershipQualifier>(Str)
.Case("init", StoreOwnershipQualifier::Init)
.Case("assign", StoreOwnershipQualifier::Assign)
.Case("trivial", StoreOwnershipQualifier::Trivial)
.Default(StoreOwnershipQualifier::Unqualified);
// Thus return true (following the conventions in this file) if we fail.
if (Tmp == StoreOwnershipQualifier::Unqualified)
return true;
// Otherwise, assign Result and return false.
Result = Tmp;
return false;
}
bool SILParser::parseSILDeclRef(SILDeclRef &Member, bool FnTypeRequired) {
SourceLoc TyLoc;
SmallVector<ValueDecl *, 4> values;
if (parseSILDeclRef(Member, values))
return true;
// : ( or : < means that what follows is function type.
if (!P.Tok.is(tok::colon))
return false;
if (FnTypeRequired &&
!P.peekToken().is(tok::l_paren) &&
!P.peekToken().isContextualPunctuator("<"))
return false;
// Type of the SILDeclRef is optional to be compatible with the old format.
if (!P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":")) {
// Parse the type for SILDeclRef.
Optional<Scope> GenericsScope;
GenericsScope.emplace(&P, ScopeKind::Generics);
ParserResult<TypeRepr> TyR = P.parseType();
GenericsScope.reset();
if (TyR.isNull())
return true;
TypeLoc Ty = TyR.get();
// The type can be polymorphic.
GenericEnvironment *genericEnv = nullptr;
if (auto fnType = dyn_cast<FunctionTypeRepr>(TyR.get())) {
if (auto generics = fnType->getGenericParams()) {
assert(!Ty.wasValidated() && Ty.getType().isNull());
genericEnv = handleSILGenericParams(P.Context, generics, &P.SF);
fnType->setGenericEnvironment(genericEnv);
}
}
if (performTypeLocChecking(Ty, /*IsSILType=*/ false, genericEnv))
return true;
// Pick the ValueDecl that has the right type.
ValueDecl *TheDecl = nullptr;
auto declTy = Ty.getType()->getCanonicalType();
auto unlabeledDecl =
declTy->getUnlabeledType(P.Context)->getCanonicalType();
for (unsigned I = 0, E = values.size(); I < E; I++) {
auto lookupTy = values[I]->getInterfaceType();
auto unlabeledLookup =
lookupTy->getUnlabeledType(P.Context)->getCanonicalType();
if (unlabeledDecl == unlabeledLookup) {
TheDecl = values[I];
// Update SILDeclRef to point to the right Decl.
Member.loc = TheDecl;
break;
}
if (values.size() == 1 && !TheDecl) {
P.diagnose(TyLoc, diag::sil_member_decl_type_mismatch, declTy,
lookupTy);
return true;
}
}
if (!TheDecl) {
P.diagnose(TyLoc, diag::sil_member_decl_not_found);
return true;
}
}
return false;
}
/// sil-instruction-def ::= (sil-value-name '=')? sil-instruction
/// (',' sil-scope-ref)? (',' sil-loc)?
bool SILParser::parseSILInstruction(SILBasicBlock *BB, SILBuilder &B) {
// We require SIL instructions to be at the start of a line to assist
// recovery.
if (!P.Tok.isAtStartOfLine()) {
P.diagnose(P.Tok, diag::expected_sil_instr_start_of_line);
return true;
}
StringRef ResultName;
SourceLoc ResultNameLoc;
// If the instruction has a name '%foo =', parse it.
if (P.Tok.is(tok::sil_local_name)) {
ResultName = P.Tok.getText();
ResultNameLoc = P.Tok.getLoc();
P.consumeToken(tok::sil_local_name);
if (P.parseToken(tok::equal, diag::expected_equal_in_sil_instr))
return true;
}
ValueKind Opcode;
SourceLoc OpcodeLoc;
StringRef OpcodeName;
// Parse the opcode name.
if (parseSILOpcode(Opcode, OpcodeLoc, OpcodeName))
return true;
B.setInsertionPoint(BB);
SmallVector<SILValue, 4> OpList;
SILValue Val;
SILLocation InstLoc = RegularLocation(OpcodeLoc);
auto parseCastConsumptionKind = [&](Identifier name, SourceLoc loc,
CastConsumptionKind &out) -> bool {
auto kind = llvm::StringSwitch<Optional<CastConsumptionKind>>(name.str())
.Case("take_always", CastConsumptionKind::TakeAlways)
.Case("take_on_success", CastConsumptionKind::TakeOnSuccess)
.Case("copy_on_success", CastConsumptionKind::CopyOnSuccess)
.Default(None);
if (kind) {
out = kind.getValue();
return false;
}
P.diagnose(loc, diag::expected_tok_in_sil_instr, "cast consumption kind");
return true;
};
auto parseOpenExistAddrKind = [&](Identifier name, SourceLoc loc,
OpenedExistentialAccess &out) -> bool {
auto kind =
llvm::StringSwitch<Optional<OpenedExistentialAccess>>(name.str())
.Case("mutable_access", OpenedExistentialAccess::Mutable)
.Case("immutable_access", OpenedExistentialAccess::Immutable)
.Default(None);
if (kind) {
out = kind.getValue();
return false;
}
P.diagnose(loc, diag::expected_tok_in_sil_instr,
"opened existential access kind");
return true;
};
// Validate the opcode name, and do opcode-specific parsing logic based on the
// opcode we find.
SILInstruction *ResultVal;
switch (Opcode) {
case ValueKind::SILPHIArgument:
case ValueKind::SILFunctionArgument:
case ValueKind::SILUndef:
llvm_unreachable("not an instruction");
case ValueKind::AllocBoxInst: {
SILType Ty;
if (parseSILType(Ty)) return true;
SILDebugVariable VarInfo;
if (parseSILDebugVar(VarInfo))
return true;
if (parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createAllocBox(InstLoc, Ty.castTo<SILBoxType>(), VarInfo);
break;
}
case ValueKind::ApplyInst:
case ValueKind::PartialApplyInst:
case ValueKind::TryApplyInst:
if (parseCallInstruction(InstLoc, Opcode, B, ResultVal))
return true;
break;
case ValueKind::IntegerLiteralInst: {
SILType Ty;
if (parseSILType(Ty) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ","))
return true;
bool Negative = false;
if (P.Tok.isAnyOperator() && P.Tok.getText() == "-") {
Negative = true;
P.consumeToken();
}
if (P.Tok.getKind() != tok::integer_literal) {
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "integer");
return true;
}
auto intTy = Ty.getAs<BuiltinIntegerType>();
if (!intTy) {
P.diagnose(P.Tok, diag::sil_integer_literal_not_integer_type);
return true;
}
APInt value(intTy->getGreatestWidth(), 0);
bool error = P.Tok.getText().getAsInteger(0, value);
assert(!error && "integer_literal token did not parse as APInt?!");
(void)error;
if (Negative)
value = -value;
if (value.getBitWidth() != intTy->getGreatestWidth())
value = value.zextOrTrunc(intTy->getGreatestWidth());
P.consumeToken(tok::integer_literal);
if (parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createIntegerLiteral(InstLoc, Ty, value);
break;
}
case ValueKind::FloatLiteralInst: {
SILType Ty;
if (parseSILType(Ty) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ","))
return true;
// The value is expressed as bits.
if (P.Tok.getKind() != tok::integer_literal) {
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "integer");
return true;
}
auto floatTy = Ty.getAs<BuiltinFloatType>();
if (!floatTy) {
P.diagnose(P.Tok, diag::sil_float_literal_not_float_type);
return true;
}
APInt bits(floatTy->getBitWidth(), 0);
bool error = P.Tok.getText().getAsInteger(0, bits);
assert(!error && "float_literal token did not parse as APInt?!");
(void)error;
if (bits.getBitWidth() != floatTy->getBitWidth())
bits = bits.zextOrTrunc(floatTy->getBitWidth());
APFloat value(floatTy->getAPFloatSemantics(), bits);
if (parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createFloatLiteral(InstLoc, Ty, value);
P.consumeToken(tok::integer_literal);
break;
}
case ValueKind::StringLiteralInst: {
if (P.Tok.getKind() != tok::identifier) {
P.diagnose(P.Tok, diag::sil_string_no_encoding);
return true;
}
StringLiteralInst::Encoding encoding;
if (P.Tok.getText() == "utf8") {
encoding = StringLiteralInst::Encoding::UTF8;
} else if (P.Tok.getText() == "utf16") {
encoding = StringLiteralInst::Encoding::UTF16;
} else if (P.Tok.getText() == "objc_selector") {
encoding = StringLiteralInst::Encoding::ObjCSelector;
} else {
P.diagnose(P.Tok, diag::sil_string_invalid_encoding, P.Tok.getText());
return true;
}
P.consumeToken(tok::identifier);
if (P.Tok.getKind() != tok::string_literal) {
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "string");
return true;
}
// Drop the double quotes.
StringRef rawString = P.Tok.getText().drop_front().drop_back();
// Ask the lexer to interpret the entire string as a literal segment.
SmallVector<char, 128> stringBuffer;
StringRef string = P.L->getEncodedStringSegment(rawString, stringBuffer);
P.consumeToken(tok::string_literal);
if (parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createStringLiteral(InstLoc, string, encoding);
break;
}
case ValueKind::AllocValueBufferInst: {
SILType Ty;
if (parseSILType(Ty) ||
parseVerbatim("in") ||
parseTypedValueRef(Val, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createAllocValueBuffer(InstLoc, Ty, Val);
break;
}
case ValueKind::ProjectValueBufferInst: {
SILType Ty;
if (parseSILType(Ty) ||
parseVerbatim("in") ||
parseTypedValueRef(Val, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createProjectValueBuffer(InstLoc, Ty, Val);
break;
}
case ValueKind::DeallocValueBufferInst: {
SILType Ty;
if (parseSILType(Ty) ||
parseVerbatim("in") ||
parseTypedValueRef(Val, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createDeallocValueBuffer(InstLoc, Ty, Val);
break;
}
case ValueKind::ProjectBoxInst: {
if (parseTypedValueRef(Val, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ","))
return true;
if (!P.Tok.is(tok::integer_literal)) {
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "integer");
return true;
}
unsigned Index;
bool error = P.Tok.getText().getAsInteger(0, Index);
assert(!error && "project_box index did not parse as integer?!");
(void)error;
P.consumeToken(tok::integer_literal);
if (parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createProjectBox(InstLoc, Val, Index);
break;
}
case ValueKind::ProjectExistentialBoxInst: {
SILType Ty;
if (parseSILType(Ty) ||
parseVerbatim("in") ||
parseTypedValueRef(Val, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createProjectExistentialBox(InstLoc, Ty, Val);
break;
}
case ValueKind::FunctionRefInst:
if (parseSILFunctionRef(InstLoc, B, ResultVal))
return true;
break;
case ValueKind::BuiltinInst: {
if (P.Tok.getKind() != tok::string_literal) {
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr,"builtin name");
return true;
}
StringRef Str = P.Tok.getText();
Identifier Id = P.Context.getIdentifier(Str.substr(1, Str.size()-2));
P.consumeToken(tok::string_literal);
// Find the builtin in the Builtin module
SmallVector<ValueDecl*, 2> foundBuiltins;
P.Context.TheBuiltinModule->lookupMember(foundBuiltins,
P.Context.TheBuiltinModule, Id,
Identifier());
if (foundBuiltins.empty()) {
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr,"builtin name");
return true;
}
assert(foundBuiltins.size() == 1 && "ambiguous builtin name?!");
auto *builtinFunc = cast<FuncDecl>(foundBuiltins[0]);
GenericEnvironment *genericEnv = builtinFunc->getGenericEnvironment();
SmallVector<ParsedSubstitution, 4> parsedSubs;
SmallVector<Substitution, 4> subs;
if (parseSubstitutions(parsedSubs))
return true;
if (!parsedSubs.empty()) {
if (!genericEnv) {
P.diagnose(P.Tok, diag::sil_substitutions_on_non_polymorphic_type);
return true;
}
if (getApplySubstitutionsFromParsed(*this, genericEnv, parsedSubs, subs))
return true;
}
if (P.Tok.getKind() != tok::l_paren) {
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "(");
return true;
}
P.consumeToken(tok::l_paren);
SmallVector<SILValue, 4> Args;
while (true) {
if (P.consumeIf(tok::r_paren))
break;
SILValue Val;
if (parseTypedValueRef(Val, B))
return true;
Args.push_back(Val);
if (P.consumeIf(tok::comma))
continue;
if (P.consumeIf(tok::r_paren))
break;
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "(' or ',");
return true;
}
if (P.Tok.getKind() != tok::colon) {
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, ":");
return true;
}
P.consumeToken(tok::colon);
SILType ResultTy;
if (parseSILType(ResultTy))
return true;
if (parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createBuiltin(InstLoc, Id, ResultTy, subs, Args);
break;
}
case ValueKind::OpenExistentialAddrInst:
case ValueKind::OpenExistentialBoxInst:
case ValueKind::OpenExistentialMetatypeInst:
case ValueKind::OpenExistentialRefInst:
case ValueKind::OpenExistentialOpaqueInst: {
SILType Ty;
Identifier ToToken;
SourceLoc ToLoc;
OpenedExistentialAccess accessKind;
Identifier accessKindToken;
SourceLoc accessKindLoc;
if (Opcode == ValueKind::OpenExistentialAddrInst) {
if (parseSILIdentifier(accessKindToken, accessKindLoc,
diag::expected_tok_in_sil_instr,
"opened existential access kind") ||
parseOpenExistAddrKind(accessKindToken, accessKindLoc, accessKind))
return true;
}
if (parseTypedValueRef(Val, B) ||
parseSILIdentifier(ToToken, ToLoc,
diag::expected_tok_in_sil_instr, "to") ||
parseSILType(Ty))
return true;
if (ToToken.str() != "to") {
P.diagnose(ToLoc, diag::expected_tok_in_sil_instr, "to");
return true;
}
if (parseSILDebugLocation(InstLoc, B))
return true;
switch (Opcode) {
case ValueKind::OpenExistentialAddrInst:
ResultVal = B.createOpenExistentialAddr(InstLoc, Val, Ty, accessKind);
break;
case ValueKind::OpenExistentialMetatypeInst:
ResultVal = B.createOpenExistentialMetatype(InstLoc, Val, Ty);
break;
case ValueKind::OpenExistentialRefInst:
ResultVal = B.createOpenExistentialRef(InstLoc, Val, Ty);
break;
case ValueKind::OpenExistentialBoxInst:
ResultVal = B.createOpenExistentialBox(InstLoc, Val, Ty);
break;
case ValueKind::OpenExistentialOpaqueInst:
ResultVal = B.createOpenExistentialOpaque(InstLoc, Val, Ty);
break;
default:
llvm_unreachable("Inner switch out of sync with outer switch");
}
break;
}
#define UNARY_INSTRUCTION(ID) \
case ValueKind::ID##Inst: \
if (parseTypedValueRef(Val, B)) return true; \
if (parseSILDebugLocation(InstLoc, B)) return true; \
ResultVal = B.create##ID(InstLoc, Val); \
break;
#define REFCOUNTING_INSTRUCTION(ID) \
case ValueKind::ID##Inst: { \
Atomicity atomicity = Atomicity::Atomic; \
StringRef Optional; \
if (parseSILOptional(Optional, *this)) { \
if (Optional == "nonatomic") { \
atomicity = Atomicity::NonAtomic; \
} else { \
return true; \
} \
} \
if (parseTypedValueRef(Val, B)) \
return true; \
if (parseSILDebugLocation(InstLoc, B)) \
return true; \
ResultVal = B.create##ID(InstLoc, Val, atomicity); \
} break;
UNARY_INSTRUCTION(FixLifetime)
UNARY_INSTRUCTION(CopyBlock)
UNARY_INSTRUCTION(IsUnique)
UNARY_INSTRUCTION(IsUniqueOrPinned)
UNARY_INSTRUCTION(DestroyAddr)
UNARY_INSTRUCTION(CopyValue)
UNARY_INSTRUCTION(CopyUnownedValue)
UNARY_INSTRUCTION(DestroyValue)
UNARY_INSTRUCTION(CondFail)
UNARY_INSTRUCTION(EndBorrowArgument)
REFCOUNTING_INSTRUCTION(UnmanagedReleaseValue)
REFCOUNTING_INSTRUCTION(UnmanagedRetainValue)
REFCOUNTING_INSTRUCTION(UnmanagedAutoreleaseValue)
REFCOUNTING_INSTRUCTION(StrongPin)
REFCOUNTING_INSTRUCTION(StrongRetain)
REFCOUNTING_INSTRUCTION(StrongRelease)
REFCOUNTING_INSTRUCTION(StrongUnpin)
REFCOUNTING_INSTRUCTION(StrongRetainUnowned)
REFCOUNTING_INSTRUCTION(UnownedRetain)
REFCOUNTING_INSTRUCTION(UnownedRelease)
REFCOUNTING_INSTRUCTION(AutoreleaseValue)
REFCOUNTING_INSTRUCTION(SetDeallocating)
REFCOUNTING_INSTRUCTION(ReleaseValue)
REFCOUNTING_INSTRUCTION(RetainValue)
#undef UNARY_INSTRUCTION
#undef REFCOUNTING_INSTRUCTION
case ValueKind::DebugValueInst:
case ValueKind::DebugValueAddrInst: {
SILDebugVariable VarInfo;
if (parseTypedValueRef(Val, B) ||
parseSILDebugVar(VarInfo) ||
parseSILDebugLocation(InstLoc, B))
return true;
if (Opcode == ValueKind::DebugValueInst)
ResultVal = B.createDebugValue(InstLoc, Val, VarInfo);
else
ResultVal = B.createDebugValueAddr(InstLoc, Val, VarInfo);
break;
}
case ValueKind::LoadInst: {
LoadOwnershipQualifier Qualifier;
SourceLoc AddrLoc;
if (parseLoadOwnershipQualifier(Qualifier, *this) ||
parseTypedValueRef(Val, AddrLoc, B) || parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createLoad(InstLoc, Val, Qualifier);
break;
}
case ValueKind::LoadBorrowInst: {
SourceLoc AddrLoc;
if (parseTypedValueRef(Val, AddrLoc, B) || parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createLoadBorrow(InstLoc, Val);
break;
}
case ValueKind::BeginBorrowInst: {
SourceLoc AddrLoc;
if (parseTypedValueRef(Val, AddrLoc, B) || parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createBeginBorrow(InstLoc, Val);
break;
}
case ValueKind::LoadUnownedInst:
case ValueKind::LoadWeakInst: {
bool isTake = false;
SourceLoc addrLoc;
if (parseSILOptional(isTake, *this, "take") ||
parseTypedValueRef(Val, addrLoc, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
if (Opcode == ValueKind::LoadUnownedInst) {
if (!Val->getType().is<UnownedStorageType>()) {
P.diagnose(addrLoc, diag::sil_operand_not_unowned_address, "source",
OpcodeName);
}
ResultVal = B.createLoadUnowned(InstLoc, Val, IsTake_t(isTake));
} else {
if (!Val->getType().is<WeakStorageType>()) {
P.diagnose(addrLoc, diag::sil_operand_not_weak_address, "source",
OpcodeName);
}
ResultVal = B.createLoadWeak(InstLoc, Val, IsTake_t(isTake));
}
break;
}
case ValueKind::MarkDependenceInst: {
SILValue Base;
if (parseTypedValueRef(Val, B) ||
parseVerbatim("on") ||
parseTypedValueRef(Base, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createMarkDependence(InstLoc, Val, Base);
break;
}
// Conversion instructions.
case ValueKind::UncheckedRefCastInst:
case ValueKind::UncheckedAddrCastInst:
case ValueKind::UncheckedTrivialBitCastInst:
case ValueKind::UncheckedBitwiseCastInst:
case ValueKind::UpcastInst:
case ValueKind::AddressToPointerInst:
case ValueKind::BridgeObjectToRefInst:
case ValueKind::BridgeObjectToWordInst:
case ValueKind::RefToRawPointerInst:
case ValueKind::RawPointerToRefInst:
case ValueKind::RefToUnownedInst:
case ValueKind::UnownedToRefInst:
case ValueKind::RefToUnmanagedInst:
case ValueKind::UnmanagedToRefInst:
case ValueKind::ThinFunctionToPointerInst:
case ValueKind::PointerToThinFunctionInst:
case ValueKind::ThinToThickFunctionInst:
case ValueKind::ThickToObjCMetatypeInst:
case ValueKind::ObjCToThickMetatypeInst:
case ValueKind::ConvertFunctionInst:
case ValueKind::ObjCExistentialMetatypeToObjectInst:
case ValueKind::ObjCMetatypeToObjectInst: {
SILType Ty;
Identifier ToToken;
SourceLoc ToLoc;
if (parseTypedValueRef(Val, B) ||
parseSILIdentifier(ToToken, ToLoc,
diag::expected_tok_in_sil_instr, "to") ||
parseSILType(Ty) ||
parseSILDebugLocation(InstLoc, B))
return true;
if (ToToken.str() != "to") {
P.diagnose(ToLoc, diag::expected_tok_in_sil_instr, "to");
return true;
}
switch (Opcode) {
default: llvm_unreachable("Out of sync with parent switch");
case ValueKind::UncheckedRefCastInst:
ResultVal = B.createUncheckedRefCast(InstLoc, Val, Ty);
break;
case ValueKind::UncheckedAddrCastInst:
ResultVal = B.createUncheckedAddrCast(InstLoc, Val, Ty);
break;
case ValueKind::UncheckedTrivialBitCastInst:
ResultVal = B.createUncheckedTrivialBitCast(InstLoc, Val, Ty);
break;
case ValueKind::UncheckedBitwiseCastInst:
ResultVal = B.createUncheckedBitwiseCast(InstLoc, Val, Ty);
break;
case ValueKind::UpcastInst:
ResultVal = B.createUpcast(InstLoc, Val, Ty);
break;
case ValueKind::ConvertFunctionInst:
ResultVal = B.createConvertFunction(InstLoc, Val, Ty);
break;
case ValueKind::AddressToPointerInst:
ResultVal = B.createAddressToPointer(InstLoc, Val, Ty);
break;
case ValueKind::BridgeObjectToRefInst:
ResultVal = B.createBridgeObjectToRef(InstLoc, Val, Ty);
break;
case ValueKind::BridgeObjectToWordInst:
ResultVal = B.createBridgeObjectToWord(InstLoc, Val);
break;
case ValueKind::RefToRawPointerInst:
ResultVal = B.createRefToRawPointer(InstLoc, Val, Ty);
break;
case ValueKind::RawPointerToRefInst:
ResultVal = B.createRawPointerToRef(InstLoc, Val, Ty);
break;
case ValueKind::RefToUnownedInst:
ResultVal = B.createRefToUnowned(InstLoc, Val, Ty);
break;
case ValueKind::UnownedToRefInst:
ResultVal = B.createUnownedToRef(InstLoc, Val, Ty);
break;
case ValueKind::RefToUnmanagedInst:
ResultVal = B.createRefToUnmanaged(InstLoc, Val, Ty);
break;
case ValueKind::UnmanagedToRefInst:
ResultVal = B.createUnmanagedToRef(InstLoc, Val, Ty);
break;
case ValueKind::ThinFunctionToPointerInst:
ResultVal = B.createThinFunctionToPointer(InstLoc, Val, Ty);
break;
case ValueKind::PointerToThinFunctionInst:
ResultVal = B.createPointerToThinFunction(InstLoc, Val, Ty);
break;
case ValueKind::ThinToThickFunctionInst:
ResultVal = B.createThinToThickFunction(InstLoc, Val, Ty);
break;
case ValueKind::ThickToObjCMetatypeInst:
ResultVal = B.createThickToObjCMetatype(InstLoc, Val, Ty);
break;
case ValueKind::ObjCToThickMetatypeInst:
ResultVal = B.createObjCToThickMetatype(InstLoc, Val, Ty);
break;
case ValueKind::ObjCMetatypeToObjectInst:
ResultVal = B.createObjCMetatypeToObject(InstLoc, Val, Ty);
break;
case ValueKind::ObjCExistentialMetatypeToObjectInst:
ResultVal = B.createObjCExistentialMetatypeToObject(InstLoc, Val, Ty);
break;
}
break;
}
case ValueKind::PointerToAddressInst: {
SILType Ty;
Identifier ToToken;
SourceLoc ToLoc;
bool isStrict = false;
if (parseTypedValueRef(Val, B) ||
parseSILIdentifier(ToToken, ToLoc,
diag::expected_tok_in_sil_instr, "to") ||
parseSILOptional(isStrict, *this, "strict") ||
parseSILType(Ty) ||
parseSILDebugLocation(InstLoc, B))
return true;
if (ToToken.str() != "to") {
P.diagnose(ToLoc, diag::expected_tok_in_sil_instr, "to");
return true;
}
ResultVal = B.createPointerToAddress(InstLoc, Val, Ty, isStrict);
break;
}
case ValueKind::RefToBridgeObjectInst: {
SILValue BitsVal;
if (parseTypedValueRef(Val, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseTypedValueRef(BitsVal, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createRefToBridgeObject(InstLoc, Val, BitsVal);
break;
}
// Indirect checked conversion instructions.
case ValueKind::UnconditionalCheckedCastAddrInst:
case ValueKind::CheckedCastAddrBranchInst:
case ValueKind::UncheckedRefCastAddrInst: {
CastConsumptionKind consumptionKind;
if (Opcode == ValueKind::UncheckedRefCastAddrInst)
consumptionKind = CastConsumptionKind::TakeAlways;
else {
Identifier consumptionKindToken;
SourceLoc consumptionKindLoc;
if (parseSILIdentifier(consumptionKindToken, consumptionKindLoc,
diag::expected_tok_in_sil_instr,
"cast consumption kind") ||
parseCastConsumptionKind(consumptionKindToken,
consumptionKindLoc,
consumptionKind))
return true;
}
auto parseFormalTypeAndValue = [&](CanType &formalType,
SILValue &value) -> bool {
return (parseASTType(formalType) ||
parseVerbatim("in") ||
parseTypedValueRef(value, B));
};
CanType sourceType, targetType;
SILValue sourceAddr, destAddr;
if (parseFormalTypeAndValue(sourceType, sourceAddr) ||
parseVerbatim("to") ||
parseFormalTypeAndValue(targetType, destAddr))
return true;
if (Opcode == ValueKind::UncheckedRefCastAddrInst) {
if (parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createUncheckedRefCastAddr(InstLoc,
sourceAddr, sourceType,
destAddr, targetType);
break;
} else if (Opcode == ValueKind::UnconditionalCheckedCastAddrInst) {
if (parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createUnconditionalCheckedCastAddr(InstLoc,
consumptionKind,
sourceAddr, sourceType,
destAddr, targetType);
break;
}
// The conditional cast still needs its branch destinations.
Identifier successBBName, failureBBName;
SourceLoc successBBLoc, failureBBLoc;
if (P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILIdentifier(successBBName, successBBLoc,
diag::expected_sil_block_name) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILIdentifier(failureBBName, failureBBLoc,
diag::expected_sil_block_name) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createCheckedCastAddrBranch(InstLoc, consumptionKind,
sourceAddr, sourceType,
destAddr, targetType,
getBBForReference(successBBName, successBBLoc),
getBBForReference(failureBBName, failureBBLoc));
break;
}
// Checked Conversion instructions.
case ValueKind::UnconditionalCheckedCastInst:
case ValueKind::UnconditionalCheckedCastOpaqueInst:
case ValueKind::CheckedCastBranchInst: {
SILType ty;
SILValue destVal;
Identifier toToken;
SourceLoc toLoc;
bool isExact = false;
if (Opcode == ValueKind::CheckedCastBranchInst &&
parseSILOptional(isExact, *this, "exact"))
return true;
if (parseTypedValueRef(Val, B) ||
parseVerbatim("to") ||
parseSILType(ty))
return true;
// An unconditional cast instruction is finished here.
if (Opcode == ValueKind::UnconditionalCheckedCastInst) {
if (parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createUnconditionalCheckedCast(InstLoc, Val, ty);
break;
} else if (Opcode == ValueKind::UnconditionalCheckedCastOpaqueInst) {
if (parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createUnconditionalCheckedCastOpaque(InstLoc, Val, ty);
break;
}
// The conditional cast still needs its branch destinations.
Identifier successBBName, failureBBName;
SourceLoc successBBLoc, failureBBLoc;
if (P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILIdentifier(successBBName, successBBLoc,
diag::expected_sil_block_name) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILIdentifier(failureBBName, failureBBLoc,
diag::expected_sil_block_name) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createCheckedCastBranch(InstLoc, isExact, Val, ty,
getBBForReference(successBBName, successBBLoc),
getBBForReference(failureBBName, failureBBLoc));
break;
}
case ValueKind::MarkUninitializedInst: {
if (P.parseToken(tok::l_square, diag::expected_tok_in_sil_instr, "["))
return true;
Identifier KindId;
SourceLoc KindLoc = P.Tok.getLoc();
if (P.consumeIf(tok::kw_var))
KindId = P.Context.getIdentifier("var");
else if (P.parseIdentifier(KindId, KindLoc,
diag::expected_tok_in_sil_instr, "kind"))
return true;
if (P.parseToken(tok::r_square, diag::expected_tok_in_sil_instr, "]"))
return true;
MarkUninitializedInst::Kind Kind;
if (KindId.str() == "var")
Kind = MarkUninitializedInst::Var;
else if (KindId.str() == "rootself")
Kind = MarkUninitializedInst::RootSelf;
else if (KindId.str() == "derivedself")
Kind = MarkUninitializedInst::DerivedSelf;
else if (KindId.str() == "derivedselfonly")
Kind = MarkUninitializedInst::DerivedSelfOnly;
else if (KindId.str() == "delegatingself")
Kind = MarkUninitializedInst::DelegatingSelf;
else {
P.diagnose(KindLoc, diag::expected_tok_in_sil_instr,
"var, rootself, derivedself, derivedselfonly, "
"or delegatingself");
return true;
}
if (parseTypedValueRef(Val, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createMarkUninitialized(InstLoc, Val, Kind);
break;
}
case ValueKind::MarkUninitializedBehaviorInst: {
UnresolvedValueName InitStorageFuncName, StorageName,
SetterFuncName, SelfName;
SmallVector<ParsedSubstitution, 4> ParsedInitStorageSubs,
ParsedSetterSubs;
GenericEnvironment *InitStorageEnv, *SetterEnv;
SILType InitStorageTy, SetterTy;
// mark_uninitialized_behavior %init<Subs>(%storage) : $T -> U,
// %set<Subs>(%self) : $V -> W
if (parseValueName(InitStorageFuncName)
|| parseSubstitutions(ParsedInitStorageSubs)
|| P.parseToken(tok::l_paren, diag::expected_tok_in_sil_instr, "(")
|| parseValueName(StorageName)
|| P.parseToken(tok::r_paren, diag::expected_tok_in_sil_instr, ")")
|| P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":")
|| parseSILType(InitStorageTy, InitStorageEnv)
|| P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",")
|| parseValueName(SetterFuncName)
|| parseSubstitutions(ParsedSetterSubs)
|| P.parseToken(tok::l_paren, diag::expected_tok_in_sil_instr, "(")
|| parseValueName(SelfName)
|| P.parseToken(tok::r_paren, diag::expected_tok_in_sil_instr, ")")
|| P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":")
|| parseSILType(SetterTy, SetterEnv)
|| parseSILDebugLocation(InstLoc, B))
return true;
// Resolve the types of the operands.
SILValue InitStorageFunc = getLocalValue(InitStorageFuncName,
InitStorageTy, InstLoc, B);
SILValue SetterFunc = getLocalValue(SetterFuncName, SetterTy, InstLoc, B);
SmallVector<Substitution, 4> InitStorageSubs, SetterSubs;
if (getApplySubstitutionsFromParsed(*this, InitStorageEnv,
ParsedInitStorageSubs, InitStorageSubs)
|| getApplySubstitutionsFromParsed(*this, SetterEnv,
ParsedSetterSubs, SetterSubs))
return true;
auto SubstInitStorageTy = InitStorageTy.castTo<SILFunctionType>()
->substGenericArgs(B.getModule(), InitStorageSubs);
auto SubstSetterTy = SetterTy.castTo<SILFunctionType>()
->substGenericArgs(B.getModule(), SetterSubs);
// Derive the storage type from the initStorage method.
auto StorageTy = SILType::getPrimitiveAddressType(
SubstInitStorageTy->getSingleResult().getType());
auto Storage = getLocalValue(StorageName, StorageTy, InstLoc, B);
SILFunctionConventions substConv(SubstSetterTy, B.getModule());
auto SelfTy = substConv.getSILType(SubstSetterTy->getSelfParameter());
auto Self = getLocalValue(SelfName, SelfTy, InstLoc, B);
auto PropTy = SubstInitStorageTy->getParameters()[0]
.getSILStorageType()
.getAddressType();
ResultVal = B.createMarkUninitializedBehavior(InstLoc,
InitStorageFunc,
InitStorageSubs,
Storage,
SetterFunc,
SetterSubs,
Self,
PropTy);
break;
}
case ValueKind::MarkFunctionEscapeInst: {
SmallVector<SILValue, 4> OpList;
do {
if (parseTypedValueRef(Val, B)) return true;
OpList.push_back(Val);
} while (!peekSILDebugLocation(P) && P.consumeIf(tok::comma));
if (parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createMarkFunctionEscape(InstLoc, OpList);
break;
}
case ValueKind::StoreInst: {
UnresolvedValueName From;
SourceLoc ToLoc, AddrLoc;
Identifier ToToken;
SILValue AddrVal;
StoreOwnershipQualifier Qualifier;
if (parseValueName(From) ||
parseSILIdentifier(ToToken, ToLoc, diag::expected_tok_in_sil_instr,
"to"))
return true;
if (parseStoreOwnershipQualifier(Qualifier, *this))
return true;
if (parseTypedValueRef(AddrVal, AddrLoc, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
if (ToToken.str() != "to") {
P.diagnose(ToLoc, diag::expected_tok_in_sil_instr, "to");
return true;
}
if (!AddrVal->getType().isAddress()) {
P.diagnose(AddrLoc, diag::sil_operand_not_address, "destination",
OpcodeName);
return true;
}
SILType ValType = AddrVal->getType().getObjectType();
ResultVal = B.createStore(InstLoc, getLocalValue(From, ValType, InstLoc, B),
AddrVal, Qualifier);
break;
}
case ValueKind::EndBorrowInst: {
UnresolvedValueName BorrowedFromName, BorrowedValueName;
SourceLoc ToLoc;
Identifier ToToken;
SILType BorrowedFromTy, BorrowedValueTy;
if (parseValueName(BorrowedValueName) ||
parseSILIdentifier(ToToken, ToLoc, diag::expected_tok_in_sil_instr,
"from") ||
parseValueName(BorrowedFromName) ||
P.parseToken(tok::colon, diag::expected_sil_colon_value_ref) ||
parseSILType(BorrowedValueTy) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILType(BorrowedFromTy) || parseSILDebugLocation(InstLoc, B))
return true;
if (ToToken.str() != "from") {
P.diagnose(ToLoc, diag::expected_tok_in_sil_instr, "from");
return true;
}
SILValue BorrowedValue =
getLocalValue(BorrowedValueName, BorrowedValueTy, InstLoc, B);
SILValue BorrowedFrom =
getLocalValue(BorrowedFromName, BorrowedFromTy, InstLoc, B);
ResultVal = B.createEndBorrow(InstLoc, BorrowedValue, BorrowedFrom);
break;
}
case ValueKind::StoreBorrowInst:
case ValueKind::AssignInst:
case ValueKind::StoreUnownedInst:
case ValueKind::StoreWeakInst: {
UnresolvedValueName from;
SourceLoc toLoc, addrLoc;
Identifier toToken;
SILValue addrVal;
bool isInit = false;
if (parseValueName(from) ||
parseSILIdentifier(toToken, toLoc,
diag::expected_tok_in_sil_instr, "to") ||
((Opcode == ValueKind::StoreWeakInst ||
Opcode == ValueKind::StoreUnownedInst) &&
parseSILOptional(isInit, *this, "initialization")) ||
parseTypedValueRef(addrVal, addrLoc, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
if (toToken.str() != "to") {
P.diagnose(toLoc, diag::expected_tok_in_sil_instr, "to");
return true;
}
if (!addrVal->getType().isAddress()) {
P.diagnose(addrLoc, diag::sil_operand_not_address,
"destination", OpcodeName);
return true;
}
if (Opcode == ValueKind::StoreBorrowInst) {
SILType valueTy = addrVal->getType().getObjectType();
ResultVal = B.createStoreBorrow(
InstLoc, getLocalValue(from, valueTy, InstLoc, B), addrVal);
break;
}
if (Opcode == ValueKind::StoreUnownedInst) {
auto refType = addrVal->getType().getAs<UnownedStorageType>();
if (!refType) {
P.diagnose(addrLoc, diag::sil_operand_not_unowned_address,
"destination", OpcodeName);
return true;
}
auto valueTy = SILType::getPrimitiveObjectType(refType.getReferentType());
ResultVal = B.createStoreUnowned(InstLoc,
getLocalValue(from, valueTy, InstLoc, B),
addrVal, IsInitialization_t(isInit));
break;
}
if (Opcode == ValueKind::StoreWeakInst) {
auto refType = addrVal->getType().getAs<WeakStorageType>();
if (!refType) {
P.diagnose(addrLoc, diag::sil_operand_not_weak_address,
"destination", OpcodeName);
return true;
}
auto valueTy = SILType::getPrimitiveObjectType(refType.getReferentType());
ResultVal = B.createStoreWeak(InstLoc,
getLocalValue(from, valueTy, InstLoc, B),
addrVal, IsInitialization_t(isInit));
break;
}
SILType ValType = addrVal->getType().getObjectType();
assert(Opcode == ValueKind::AssignInst);
ResultVal = B.createAssign(InstLoc,
getLocalValue(from, ValType, InstLoc, B),
addrVal);
break;
}
case ValueKind::AllocStackInst:
case ValueKind::MetatypeInst: {
SILType Ty;
if (parseSILType(Ty))
return true;
if (Opcode == ValueKind::AllocStackInst) {
SILDebugVariable VarInfo;
if (parseSILDebugVar(VarInfo) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createAllocStack(InstLoc, Ty, VarInfo);
} else {
assert(Opcode == ValueKind::MetatypeInst);
if (parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createMetatype(InstLoc, Ty);
}
break;
}
case ValueKind::AllocRefInst:
case ValueKind::AllocRefDynamicInst: {
bool IsObjC = false;
bool OnStack = false;
SmallVector<SILType, 2> ElementTypes;
SmallVector<SILValue, 2> ElementCounts;
StringRef Optional;
while (P.consumeIf(tok::l_square)) {
Identifier Id;
parseSILIdentifier(Id, diag::expected_in_attribute_list);
StringRef Optional = Id.str();
if (Optional == "objc") {
IsObjC = true;
} else if (Optional == "stack") {
OnStack = true;
} else if (Optional == "tail_elems") {
SILType ElemTy;
if (parseSILType(ElemTy) ||
!P.Tok.isAnyOperator() ||
P.Tok.getText() != "*")
return true;
P.consumeToken();
SILValue ElemCount;
if (parseTypedValueRef(ElemCount, B))
return true;
ElementTypes.push_back(ElemTy);
ElementCounts.push_back(ElemCount);
} else {
return true;
}
P.parseToken(tok::r_square, diag::expected_in_attribute_list);
}
SILValue Metadata;
if (Opcode == ValueKind::AllocRefDynamicInst) {
if (parseTypedValueRef(Metadata, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ","))
return true;
}
SILType ObjectType;
if (parseSILType(ObjectType))
return true;
if (parseSILDebugLocation(InstLoc, B))
return true;
if (IsObjC && ElementTypes.size() != 0) {
P.diagnose(P.Tok, diag::sil_objc_with_tail_elements);
return true;
}
if (Opcode == ValueKind::AllocRefDynamicInst) {
if (OnStack)
return true;
ResultVal = B.createAllocRefDynamic(InstLoc, Metadata, ObjectType,
IsObjC, ElementTypes, ElementCounts);
} else {
ResultVal = B.createAllocRef(InstLoc, ObjectType, IsObjC, OnStack,
ElementTypes, ElementCounts);
}
break;
}
case ValueKind::DeallocStackInst:
if (parseTypedValueRef(Val, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createDeallocStack(InstLoc, Val);
break;
case ValueKind::DeallocRefInst: {
bool OnStack = false;
if (parseSILOptional(OnStack, *this, "stack"))
return true;
if (parseTypedValueRef(Val, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createDeallocRef(InstLoc, Val, OnStack);
break;
}
case ValueKind::DeallocPartialRefInst: {
SILValue Metatype, Instance;
if (parseTypedValueRef(Instance, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseTypedValueRef(Metatype, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createDeallocPartialRef(InstLoc, Instance, Metatype);
break;
}
case ValueKind::DeallocBoxInst:
if (parseTypedValueRef(Val, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createDeallocBox(InstLoc, Val);
break;
case ValueKind::ValueMetatypeInst:
case ValueKind::ExistentialMetatypeInst: {
SILType Ty;
if (parseSILType(Ty) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseTypedValueRef(Val, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
switch (Opcode) {
default: llvm_unreachable("Out of sync with parent switch");
case ValueKind::ValueMetatypeInst:
ResultVal = B.createValueMetatype(InstLoc, Ty, Val);
break;
case ValueKind::ExistentialMetatypeInst:
ResultVal = B.createExistentialMetatype(InstLoc, Ty, Val);
break;
case ValueKind::DeallocBoxInst:
ResultVal = B.createDeallocBox(InstLoc, Val);
break;
}
break;
}
case ValueKind::DeallocExistentialBoxInst: {
CanType ConcreteTy;
if (parseTypedValueRef(Val, B)
|| P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",")
|| P.parseToken(tok::sil_dollar, diag::expected_tok_in_sil_instr, "$")
|| parseASTType(ConcreteTy)
|| parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createDeallocExistentialBox(InstLoc, ConcreteTy, Val);
break;
}
case ValueKind::TupleInst: {
// Tuple instructions have two different syntaxes, one for simple tuple
// types, one for complicated ones.
if (P.Tok.isNot(tok::sil_dollar)) {
// If there is no type, parse the simple form.
if (P.parseToken(tok::l_paren, diag::expected_tok_in_sil_instr, "("))
return true;
// TODO: Check for a type here. This is how tuples with "interesting"
// types are described.
// This form is used with tuples that have elements with no names or
// default values.
SmallVector<TupleTypeElt, 4> TypeElts;
if (P.Tok.isNot(tok::r_paren)) {
do {
if (parseTypedValueRef(Val, B)) return true;
OpList.push_back(Val);
TypeElts.push_back(Val->getType().getSwiftRValueType());
} while (P.consumeIf(tok::comma));
}
HadError |= P.parseToken(tok::r_paren,
diag::expected_tok_in_sil_instr,")");
auto Ty = TupleType::get(TypeElts, P.Context);
auto Ty2 = SILType::getPrimitiveObjectType(Ty->getCanonicalType());
if (parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createTuple(InstLoc, Ty2, OpList);
break;
}
// Otherwise, parse the fully general form.
SILType Ty;
if (parseSILType(Ty) ||
P.parseToken(tok::l_paren, diag::expected_tok_in_sil_instr, "("))
return true;
TupleType *TT = Ty.getAs<TupleType>();
if (TT == nullptr) {
P.diagnose(OpcodeLoc, diag::expected_tuple_type_in_tuple);
return true;
}
SmallVector<TupleTypeElt, 4> TypeElts;
if (P.Tok.isNot(tok::r_paren)) {
do {
if (TypeElts.size() > TT->getNumElements()) {
P.diagnose(P.Tok, diag::sil_tuple_inst_wrong_value_count,
TT->getNumElements());
return true;
}
Type EltTy = TT->getElement(TypeElts.size()).getType();
if (parseValueRef(Val,
SILType::getPrimitiveObjectType(EltTy->getCanonicalType()),
RegularLocation(P.Tok.getLoc()), B))
return true;
OpList.push_back(Val);
TypeElts.push_back(Val->getType().getSwiftRValueType());
} while (P.consumeIf(tok::comma));
}
HadError |= P.parseToken(tok::r_paren,
diag::expected_tok_in_sil_instr,")");
if (TypeElts.size() != TT->getNumElements()) {
P.diagnose(OpcodeLoc, diag::sil_tuple_inst_wrong_value_count,
TT->getNumElements());
return true;
}
if (parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createTuple(InstLoc, Ty, OpList);
break;
}
case ValueKind::EnumInst: {
SILType Ty;
SILDeclRef Elt;
SILValue Operand;
if (parseSILType(Ty) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILDeclRef(Elt))
return true;
if (P.Tok.is(tok::comma) && !peekSILDebugLocation(P)) {
P.consumeToken(tok::comma);
if (parseTypedValueRef(Operand, B))
return true;
}
if (parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createEnum(InstLoc, Operand,
cast<EnumElementDecl>(Elt.getDecl()), Ty);
break;
}
case ValueKind::InitEnumDataAddrInst:
case ValueKind::UncheckedEnumDataInst:
case ValueKind::UncheckedTakeEnumDataAddrInst: {
SILValue Operand;
SILDeclRef EltRef;
if (parseTypedValueRef(Operand, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILDeclRef(EltRef) ||
parseSILDebugLocation(InstLoc, B))
return true;
EnumElementDecl *Elt = cast<EnumElementDecl>(EltRef.getDecl());
auto ResultTy = Operand->getType().getEnumElementType(Elt, SILMod);
switch (Opcode) {
case swift::ValueKind::InitEnumDataAddrInst:
ResultVal = B.createInitEnumDataAddr(InstLoc, Operand, Elt, ResultTy);
break;
case swift::ValueKind::UncheckedTakeEnumDataAddrInst:
ResultVal = B.createUncheckedTakeEnumDataAddr(InstLoc, Operand, Elt,
ResultTy);
break;
case swift::ValueKind::UncheckedEnumDataInst:
ResultVal = B.createUncheckedEnumData(InstLoc, Operand, Elt, ResultTy);
break;
default:
llvm_unreachable("switch out of sync");
}
break;
}
case ValueKind::InjectEnumAddrInst: {
SILValue Operand;
SILDeclRef EltRef;
if (parseTypedValueRef(Operand, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILDeclRef(EltRef) ||
parseSILDebugLocation(InstLoc, B))
return true;
EnumElementDecl *Elt = cast<EnumElementDecl>(EltRef.getDecl());
ResultVal = B.createInjectEnumAddr(InstLoc, Operand, Elt);
break;
}
case ValueKind::TupleElementAddrInst:
case ValueKind::TupleExtractInst: {
SourceLoc NameLoc;
if (parseTypedValueRef(Val, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ","))
return true;
unsigned Field = 0;
TupleType *TT = Val->getType().getAs<TupleType>();
if (P.Tok.isNot(tok::integer_literal) ||
P.Tok.getText().getAsInteger(10, Field) ||
Field >= TT->getNumElements()) {
P.diagnose(P.Tok, diag::sil_tuple_inst_wrong_field);
return true;
}
P.consumeToken(tok::integer_literal);
if (parseSILDebugLocation(InstLoc, B))
return true;
auto ResultTy = TT->getElement(Field).getType()->getCanonicalType();
if (Opcode == ValueKind::TupleElementAddrInst)
ResultVal = B.createTupleElementAddr(InstLoc, Val, Field,
SILType::getPrimitiveAddressType(ResultTy));
else
ResultVal = B.createTupleExtract(InstLoc, Val, Field,
SILType::getPrimitiveObjectType(ResultTy));
break;
}
case ValueKind::ReturnInst: {
if (parseTypedValueRef(Val, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createReturn(InstLoc, Val);
break;
}
case ValueKind::ThrowInst: {
if (parseTypedValueRef(Val, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createThrow(InstLoc, Val);
break;
}
case ValueKind::BranchInst: {
Identifier BBName;
SourceLoc NameLoc;
if (parseSILIdentifier(BBName, NameLoc, diag::expected_sil_block_name))
return true;
SmallVector<SILValue, 6> Args;
if (parseSILBBArgsAtBranch(Args, B))
return true;
if (parseSILDebugLocation(InstLoc, B))
return true;
// Note, the basic block here could be a reference to an undefined
// basic block, which will be parsed later on.
ResultVal = B.createBranch(InstLoc, getBBForReference(BBName, NameLoc),
Args);
break;
}
case ValueKind::CondBranchInst: {
UnresolvedValueName Cond;
Identifier BBName, BBName2;
SourceLoc NameLoc, NameLoc2;
SmallVector<SILValue, 6> Args, Args2;
if (parseValueName(Cond) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILIdentifier(BBName, NameLoc, diag::expected_sil_block_name) ||
parseSILBBArgsAtBranch(Args, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILIdentifier(BBName2, NameLoc2,
diag::expected_sil_block_name) ||
parseSILBBArgsAtBranch(Args2, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
auto I1Ty =
SILType::getBuiltinIntegerType(1, BB->getParent()->getASTContext());
SILValue CondVal = getLocalValue(Cond, I1Ty, InstLoc, B);
ResultVal = B.createCondBranch(InstLoc, CondVal,
getBBForReference(BBName, NameLoc),
Args,
getBBForReference(BBName2, NameLoc2),
Args2);
break;
}
case ValueKind::UnreachableInst:
if (parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createUnreachable(InstLoc);
break;
case ValueKind::ClassMethodInst:
case ValueKind::SuperMethodInst:
case ValueKind::DynamicMethodInst: {
bool IsVolatile = false;
if (parseSILOptional(IsVolatile, *this, "volatile"))
return true;
SILDeclRef Member;
SILType MethodTy;
SourceLoc TyLoc;
SmallVector<ValueDecl *, 4> values;
if (parseTypedValueRef(Val, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ","))
return true;
if (parseSILDeclRef(Member, true))
return true;
if (P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILType(MethodTy, TyLoc) ||
parseSILDebugLocation(InstLoc, B))
return true;
switch (Opcode) {
default: llvm_unreachable("Out of sync with parent switch");
case ValueKind::ClassMethodInst:
ResultVal = B.createClassMethod(InstLoc, Val, Member, MethodTy,
IsVolatile);
break;
case ValueKind::SuperMethodInst:
ResultVal = B.createSuperMethod(InstLoc, Val, Member, MethodTy,
IsVolatile);
break;
case ValueKind::DynamicMethodInst:
ResultVal = B.createDynamicMethod(InstLoc, Val, Member, MethodTy,
IsVolatile);
break;
}
break;
}
case ValueKind::WitnessMethodInst: {
bool IsVolatile = false;
if (parseSILOptional(IsVolatile, *this, "volatile"))
return true;
CanType LookupTy;
SILDeclRef Member;
SILType MethodTy;
SourceLoc TyLoc;
if (P.parseToken(tok::sil_dollar, diag::expected_tok_in_sil_instr, "$") ||
parseASTType(LookupTy) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ","))
return true;
if (parseSILDeclRef(Member, true))
return true;
// Optional operand.
SILValue Operand;
if (P.Tok.is(tok::comma)) {
P.consumeToken(tok::comma);
if (parseTypedValueRef(Operand, B))
return true;
}
if (P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":") ||
parseSILType(MethodTy, TyLoc) ||
parseSILDebugLocation(InstLoc, B))
return true;
// If LookupTy is a non-archetype, look up its conformance.
ProtocolDecl *proto
= dyn_cast<ProtocolDecl>(Member.getDecl()->getDeclContext());
if (!proto) {
P.diagnose(TyLoc, diag::sil_witness_method_not_protocol);
return true;
}
ProtocolConformanceRef Conformance(proto);
if (!isa<ArchetypeType>(LookupTy)) {
auto lookup = P.SF.getParentModule()->lookupConformance(
LookupTy, proto, nullptr);
if (!lookup) {
P.diagnose(TyLoc, diag::sil_witness_method_type_does_not_conform);
return true;
}
Conformance = ProtocolConformanceRef(*lookup);
}
ResultVal = B.createWitnessMethod(InstLoc, LookupTy, Conformance, Member,
MethodTy, IsVolatile);
break;
}
case ValueKind::CopyAddrInst: {
bool IsTake = false, IsInit = false;
UnresolvedValueName SrcLName;
SILValue DestLVal;
SourceLoc ToLoc, DestLoc;
Identifier ToToken;
if (parseSILOptional(IsTake, *this, "take") || parseValueName(SrcLName) ||
parseSILIdentifier(ToToken, ToLoc,
diag::expected_tok_in_sil_instr, "to") ||
parseSILOptional(IsInit, *this, "initialization") ||
parseTypedValueRef(DestLVal, DestLoc, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
if (ToToken.str() != "to") {
P.diagnose(ToLoc, diag::expected_tok_in_sil_instr, "to");
return true;
}
if (!DestLVal->getType().isAddress()) {
P.diagnose(DestLoc, diag::sil_invalid_instr_operands);
return true;
}
SILValue SrcLVal = getLocalValue(SrcLName, DestLVal->getType(), InstLoc, B);
ResultVal = B.createCopyAddr(InstLoc, SrcLVal, DestLVal,
IsTake_t(IsTake),
IsInitialization_t(IsInit));
break;
}
case ValueKind::BindMemoryInst: {
SILValue IndexVal;
Identifier ToToken;
SourceLoc ToLoc;
SILType EltTy;
if (parseTypedValueRef(Val, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseTypedValueRef(IndexVal, B) ||
parseSILIdentifier(ToToken, ToLoc,
diag::expected_tok_in_sil_instr, "to") ||
parseSILType(EltTy) ||
parseSILDebugLocation(InstLoc, B))
return true;
if (ToToken.str() != "to") {
P.diagnose(ToLoc, diag::expected_tok_in_sil_instr, "to");
return true;
}
ResultVal = B.createBindMemory(InstLoc, Val, IndexVal, EltTy);
break;
}
case ValueKind::StructInst: {
SILType StructTy;
if (parseSILType(StructTy) ||
P.parseToken(tok::l_paren, diag::expected_tok_in_sil_instr, "("))
return true;
// Parse a list of SILValue.
if (P.Tok.isNot(tok::r_paren)) {
do {
if (parseTypedValueRef(Val, B)) return true;
OpList.push_back(Val);
} while (P.consumeIf(tok::comma));
}
if (P.parseToken(tok::r_paren,
diag::expected_tok_in_sil_instr,")") ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createStruct(InstLoc, StructTy, OpList);
break;
}
case ValueKind::StructElementAddrInst:
case ValueKind::StructExtractInst: {
ValueDecl *FieldV;
SourceLoc NameLoc = P.Tok.getLoc();
if (parseTypedValueRef(Val, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILDottedPath(FieldV) ||
parseSILDebugLocation(InstLoc, B))
return true;
if (!FieldV || !isa<VarDecl>(FieldV)) {
P.diagnose(NameLoc, diag::sil_struct_inst_wrong_field);
return true;
}
VarDecl *Field = cast<VarDecl>(FieldV);
// FIXME: substitution means this type should be explicit to improve
// performance.
auto ResultTy = Val->getType().getFieldType(Field, SILMod);
if (Opcode == ValueKind::StructElementAddrInst)
ResultVal = B.createStructElementAddr(InstLoc, Val, Field,
ResultTy.getAddressType());
else
ResultVal = B.createStructExtract(InstLoc, Val, Field,
ResultTy.getObjectType());
break;
}
case ValueKind::RefElementAddrInst: {
ValueDecl *FieldV;
SourceLoc NameLoc;
if (parseTypedValueRef(Val, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILDottedPath(FieldV) ||
parseSILDebugLocation(InstLoc, B))
return true;
if (!FieldV || !isa<VarDecl>(FieldV)) {
P.diagnose(NameLoc, diag::sil_ref_inst_wrong_field);
return true;
}
VarDecl *Field = cast<VarDecl>(FieldV);
auto ResultTy = Val->getType().getFieldType(Field, SILMod);
ResultVal = B.createRefElementAddr(InstLoc, Val, Field, ResultTy);
break;
}
case ValueKind::RefTailAddrInst: {
SourceLoc NameLoc;
SILType ResultObjTy;
if (parseTypedValueRef(Val, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILType(ResultObjTy) ||
parseSILDebugLocation(InstLoc, B))
return true;
SILType ResultTy = ResultObjTy.getAddressType();
ResultVal = B.createRefTailAddr(InstLoc, Val, ResultTy);
break;
}
case ValueKind::IsNonnullInst: {
SourceLoc Loc;
if (parseTypedValueRef(Val, Loc, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createIsNonnull(InstLoc, Val);
break;
}
case ValueKind::IndexAddrInst: {
SILValue IndexVal;
if (parseTypedValueRef(Val, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseTypedValueRef(IndexVal, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createIndexAddr(InstLoc, Val, IndexVal);
break;
}
case ValueKind::TailAddrInst: {
SILValue IndexVal;
SILType ResultObjTy;
if (parseTypedValueRef(Val, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseTypedValueRef(IndexVal, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILType(ResultObjTy) ||
parseSILDebugLocation(InstLoc, B))
return true;
SILType ResultTy = ResultObjTy.getAddressType();
ResultVal = B.createTailAddr(InstLoc, Val, IndexVal, ResultTy);
break;
}
case ValueKind::IndexRawPointerInst: {
SILValue IndexVal;
if (parseTypedValueRef(Val, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseTypedValueRef(IndexVal, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createIndexRawPointer(InstLoc, Val, IndexVal);
break;
}
case ValueKind::ObjCProtocolInst: {
Identifier ProtocolName;
SILType Ty;
if (P.parseToken(tok::pound, diag::expected_sil_constant) ||
parseSILIdentifier(ProtocolName, diag::expected_sil_constant) ||
P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":") ||
parseSILType(Ty) ||
parseSILDebugLocation(InstLoc, B))
return true;
// Find the decl for the protocol name.
ValueDecl *VD;
SmallVector<ValueDecl*, 4> CurModuleResults;
// Perform a module level lookup on the first component of the
// fully-qualified name.
P.SF.getParentModule()->lookupValue(ModuleDecl::AccessPathTy(), ProtocolName,
NLKind::UnqualifiedLookup,
CurModuleResults);
assert(CurModuleResults.size() == 1);
VD = CurModuleResults[0];
ResultVal = B.createObjCProtocol(InstLoc, cast<ProtocolDecl>(VD), Ty);
break;
}
case ValueKind::AllocGlobalInst: {
Identifier GlobalName;
SourceLoc IdLoc;
if (P.parseToken(tok::at_sign, diag::expected_sil_value_name) ||
parseSILIdentifier(GlobalName, IdLoc, diag::expected_sil_value_name) ||
parseSILDebugLocation(InstLoc, B))
return true;
// Go through list of global variables in the SILModule.
SILGlobalVariable *global = SILMod.lookUpGlobalVariable(GlobalName.str());
if (!global) {
P.diagnose(IdLoc, diag::sil_global_variable_not_found, GlobalName);
return true;
}
ResultVal = B.createAllocGlobal(InstLoc, global);
break;
}
case ValueKind::GlobalAddrInst: {
Identifier GlobalName;
SourceLoc IdLoc;
SILType Ty;
if (P.parseToken(tok::at_sign, diag::expected_sil_value_name) ||
parseSILIdentifier(GlobalName, IdLoc, diag::expected_sil_value_name) ||
P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":") ||
parseSILType(Ty) ||
parseSILDebugLocation(InstLoc, B))
return true;
// Go through list of global variables in the SILModule.
SILGlobalVariable *global = SILMod.lookUpGlobalVariable(GlobalName.str());
if (!global) {
P.diagnose(IdLoc, diag::sil_global_variable_not_found, GlobalName);
return true;
}
if (global->getLoweredType().getAddressType() != Ty) {
P.diagnose(IdLoc, diag::sil_value_use_type_mismatch, GlobalName.str(),
global->getLoweredType().getSwiftRValueType(),
Ty.getSwiftRValueType());
return true;
}
ResultVal = B.createGlobalAddr(InstLoc, global);
break;
}
case ValueKind::SelectEnumInst:
case ValueKind::SelectEnumAddrInst: {
if (parseTypedValueRef(Val, B))
return true;
SmallVector<std::pair<EnumElementDecl*, UnresolvedValueName>, 4>
CaseValueNames;
Optional<UnresolvedValueName> DefaultValueName;
while (P.consumeIf(tok::comma)) {
Identifier BBName;
SourceLoc BBLoc;
// Parse 'default' sil-value.
UnresolvedValueName tmp;
if (P.consumeIf(tok::kw_default)) {
if (parseValueName(tmp))
return true;
DefaultValueName = tmp;
break;
}
// Parse 'case' sil-decl-ref ':' sil-value.
if (P.consumeIf(tok::kw_case)) {
SILDeclRef ElemRef;
if (parseSILDeclRef(ElemRef))
return true;
assert(ElemRef.hasDecl() && isa<EnumElementDecl>(ElemRef.getDecl()));
P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":");
parseValueName(tmp);
CaseValueNames.push_back(std::make_pair(
cast<EnumElementDecl>(ElemRef.getDecl()),
tmp));
continue;
}
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "case or default");
return true;
}
// Parse the type of the result operands.
SILType ResultType;
if (P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":")
|| parseSILType(ResultType) ||
parseSILDebugLocation(InstLoc, B))
return true;
// Resolve the results.
SmallVector<std::pair<EnumElementDecl*, SILValue>, 4> CaseValues;
SILValue DefaultValue;
if (DefaultValueName)
DefaultValue = getLocalValue(*DefaultValueName, ResultType, InstLoc, B);
for (auto &caseName : CaseValueNames)
CaseValues.push_back(std::make_pair(
caseName.first,
getLocalValue(caseName.second, ResultType, InstLoc, B)));
if (Opcode == ValueKind::SelectEnumInst)
ResultVal = B.createSelectEnum(InstLoc, Val, ResultType,
DefaultValue, CaseValues);
else
ResultVal = B.createSelectEnumAddr(InstLoc, Val, ResultType,
DefaultValue, CaseValues);
break;
}
case ValueKind::SwitchEnumInst:
case ValueKind::SwitchEnumAddrInst: {
if (parseTypedValueRef(Val, B))
return true;
SmallVector<std::pair<EnumElementDecl*, SILBasicBlock*>, 4> CaseBBs;
SILBasicBlock *DefaultBB = nullptr;
while (!peekSILDebugLocation(P) && P.consumeIf(tok::comma)) {
Identifier BBName;
SourceLoc BBLoc;
// Parse 'default' sil-identifier.
if (P.consumeIf(tok::kw_default)) {
parseSILIdentifier(BBName, BBLoc, diag::expected_sil_block_name);
DefaultBB = getBBForReference(BBName, BBLoc);
break;
}
// Parse 'case' sil-decl-ref ':' sil-identifier.
if (P.consumeIf(tok::kw_case)) {
SILDeclRef ElemRef;
if (parseSILDeclRef(ElemRef))
return true;
assert(ElemRef.hasDecl() && isa<EnumElementDecl>(ElemRef.getDecl()));
P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":");
parseSILIdentifier(BBName, BBLoc, diag::expected_sil_block_name);
CaseBBs.push_back( {cast<EnumElementDecl>(ElemRef.getDecl()),
getBBForReference(BBName, BBLoc)} );
continue;
}
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "case or default");
return true;
}
if (parseSILDebugLocation(InstLoc, B))
return true;
if (Opcode == ValueKind::SwitchEnumInst)
ResultVal = B.createSwitchEnum(InstLoc, Val, DefaultBB, CaseBBs);
else
ResultVal = B.createSwitchEnumAddr(InstLoc, Val, DefaultBB, CaseBBs);
break;
}
case ValueKind::SwitchValueInst: {
if (parseTypedValueRef(Val, B))
return true;
SmallVector<std::pair<SILValue, SILBasicBlock *>, 4> CaseBBs;
SILBasicBlock *DefaultBB = nullptr;
while (!peekSILDebugLocation(P) && P.consumeIf(tok::comma)) {
Identifier BBName;
SourceLoc BBLoc;
SILValue CaseVal;
// Parse 'default' sil-identifier.
if (P.consumeIf(tok::kw_default)) {
parseSILIdentifier(BBName, BBLoc, diag::expected_sil_block_name);
DefaultBB = getBBForReference(BBName, BBLoc);
break;
}
// Parse 'case' value-ref ':' sil-identifier.
if (P.consumeIf(tok::kw_case)) {
if (parseValueRef(CaseVal, Val->getType(),
RegularLocation(P.Tok.getLoc()), B)) {
// TODO: Issue a proper error message here
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "reference to a value");
return true;
}
auto intTy = Val->getType().getAs<BuiltinIntegerType>();
auto functionTy = Val->getType().getAs<SILFunctionType>();
if (!intTy && !functionTy) {
P.diagnose(P.Tok, diag::sil_integer_literal_not_integer_type);
return true;
}
if (intTy) {
// If it is a switch on an integer type, check that all case values
// are integer literals or undef.
if (!isa<SILUndef>(CaseVal)) {
auto *IL = dyn_cast<IntegerLiteralInst>(CaseVal);
if (!IL) {
P.diagnose(P.Tok, diag::sil_integer_literal_not_integer_type);
return true;
}
APInt CaseValue = IL->getValue();
if (CaseValue.getBitWidth() != intTy->getGreatestWidth())
CaseVal = B.createIntegerLiteral(
IL->getLoc(), Val->getType(),
CaseValue.zextOrTrunc(intTy->getGreatestWidth()));
}
}
if (functionTy) {
// If it is a switch on a function type, check that all case values
// are function references or undef.
if (!isa<SILUndef>(CaseVal)) {
auto *FR = dyn_cast<FunctionRefInst>(CaseVal);
if (!FR) {
if (auto *CF = dyn_cast<ConvertFunctionInst>(CaseVal)) {
FR = dyn_cast<FunctionRefInst>(CF->getOperand());
}
}
if (!FR) {
P.diagnose(P.Tok, diag::sil_integer_literal_not_integer_type);
return true;
}
}
}
P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":");
parseSILIdentifier(BBName, BBLoc, diag::expected_sil_block_name);
CaseBBs.push_back({CaseVal, getBBForReference(BBName, BBLoc)});
continue;
}
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "case or default");
return true;
}
if (parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createSwitchValue(InstLoc, Val, DefaultBB, CaseBBs);
break;
}
case ValueKind::SelectValueInst: {
if (parseTypedValueRef(Val, B))
return true;
SmallVector<std::pair<UnresolvedValueName, UnresolvedValueName>, 4>
CaseValueAndResultNames;
Optional<UnresolvedValueName> DefaultResultName;
while (P.consumeIf(tok::comma)) {
Identifier BBName;
SourceLoc BBLoc;
// Parse 'default' sil-value.
UnresolvedValueName tmp;
if (P.consumeIf(tok::kw_default)) {
if (parseValueName(tmp))
return true;
DefaultResultName = tmp;
break;
}
// Parse 'case' sil-decl-ref ':' sil-value.
if (P.consumeIf(tok::kw_case)) {
UnresolvedValueName casevalue;
parseValueName(casevalue);
P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":");
parseValueName(tmp);
CaseValueAndResultNames.push_back(std::make_pair(
casevalue,
tmp));
continue;
}
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "case or default");
return true;
}
if (!DefaultResultName) {
P.diagnose(P.Tok, diag::expected_tok_in_sil_instr, "default");
return true;
}
// Parse the type of the result operands.
SILType ResultType;
if (P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":") ||
parseSILType(ResultType) ||
parseSILDebugLocation(InstLoc, B))
return true;
// Resolve the results.
SmallVector<std::pair<SILValue, SILValue>, 4> CaseValues;
SILValue DefaultValue;
if (DefaultResultName)
DefaultValue = getLocalValue(*DefaultResultName, ResultType, InstLoc, B);
SILType ValType = Val->getType();
for (auto &caseName : CaseValueAndResultNames)
CaseValues.push_back(std::make_pair(
getLocalValue(caseName.first, ValType, InstLoc, B),
getLocalValue(caseName.second, ResultType, InstLoc, B)));
ResultVal = B.createSelectValue(InstLoc, Val, ResultType,
DefaultValue, CaseValues);
break;
}
case ValueKind::DeinitExistentialAddrInst: {
if (parseTypedValueRef(Val, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createDeinitExistentialAddr(InstLoc, Val);
break;
}
case ValueKind::DeinitExistentialOpaqueInst: {
if (parseTypedValueRef(Val, B) || parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createDeinitExistentialOpaque(InstLoc, Val);
break;
}
case ValueKind::InitExistentialAddrInst: {
CanType Ty;
SourceLoc TyLoc;
if (parseTypedValueRef(Val, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
P.parseToken(tok::sil_dollar, diag::expected_tok_in_sil_instr, "$") ||
parseASTType(Ty, TyLoc) ||
parseSILDebugLocation(InstLoc, B))
return true;
// Lower the type at the abstraction level of the existential.
auto archetype
= ArchetypeType::getOpened(Val->getType().getSwiftRValueType())
->getCanonicalType();
SILType LoweredTy = SILMod.Types.getLoweredType(
Lowering::AbstractionPattern(archetype), Ty)
.getAddressType();
// Collect conformances for the type.
ArrayRef<ProtocolConformanceRef> conformances
= collectExistentialConformances(P, Ty, TyLoc,
Val->getType().getSwiftRValueType());
ResultVal = B.createInitExistentialAddr(InstLoc, Val, Ty, LoweredTy,
conformances);
break;
}
case ValueKind::InitExistentialOpaqueInst: {
CanType FormalConcreteTy;
SILType ExistentialTy;
SourceLoc TyLoc;
if (parseTypedValueRef(Val, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
P.parseToken(tok::sil_dollar, diag::expected_tok_in_sil_instr, "$") ||
parseASTType(FormalConcreteTy, TyLoc) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILType(ExistentialTy) || parseSILDebugLocation(InstLoc, B))
return true;
ArrayRef<ProtocolConformanceRef> conformances =
collectExistentialConformances(P, FormalConcreteTy, TyLoc,
ExistentialTy.getSwiftRValueType());
ResultVal = B.createInitExistentialOpaque(
InstLoc, ExistentialTy, FormalConcreteTy, Val, conformances);
break;
}
case ValueKind::AllocExistentialBoxInst: {
SILType ExistentialTy;
CanType ConcreteFormalTy;
SourceLoc TyLoc;
if (parseSILType(ExistentialTy) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
P.parseToken(tok::sil_dollar, diag::expected_tok_in_sil_instr, "$") ||
parseASTType(ConcreteFormalTy, TyLoc) ||
parseSILDebugLocation(InstLoc, B))
return true;
// Collect conformances for the type.
ArrayRef<ProtocolConformanceRef> conformances
= collectExistentialConformances(P, ConcreteFormalTy, TyLoc,
ExistentialTy.getSwiftRValueType());
ResultVal = B.createAllocExistentialBox(InstLoc, ExistentialTy,
ConcreteFormalTy, conformances);
break;
}
case ValueKind::InitExistentialRefInst: {
CanType FormalConcreteTy;
SILType ExistentialTy;
SourceLoc TyLoc;
if (parseTypedValueRef(Val, B) ||
P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":") ||
P.parseToken(tok::sil_dollar, diag::expected_tok_in_sil_instr, "$") ||
parseASTType(FormalConcreteTy, TyLoc) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILType(ExistentialTy) ||
parseSILDebugLocation(InstLoc, B))
return true;
ArrayRef<ProtocolConformanceRef> conformances
= collectExistentialConformances(P, FormalConcreteTy, TyLoc,
ExistentialTy.getSwiftRValueType());
// FIXME: Conformances in InitExistentialRefInst is currently not included
// in SIL.rst.
ResultVal = B.createInitExistentialRef(InstLoc, ExistentialTy,
FormalConcreteTy, Val,
conformances);
break;
}
case ValueKind::InitExistentialMetatypeInst: {
SourceLoc TyLoc;
SILType ExistentialTy;
if (parseTypedValueRef(Val, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILType(ExistentialTy, TyLoc) ||
parseSILDebugLocation(InstLoc, B))
return true;
auto baseExType = ExistentialTy.getSwiftRValueType();
auto formalConcreteType = Val->getType().getSwiftRValueType();
while (auto instExType = dyn_cast<ExistentialMetatypeType>(baseExType)) {
baseExType = instExType.getInstanceType();
formalConcreteType =
cast<MetatypeType>(formalConcreteType).getInstanceType();
}
ArrayRef<ProtocolConformanceRef> conformances
= collectExistentialConformances(P, formalConcreteType, TyLoc,
ExistentialTy.getSwiftRValueType());
ResultVal = B.createInitExistentialMetatype(InstLoc, Val, ExistentialTy,
conformances);
break;
}
case ValueKind::DynamicMethodBranchInst: {
SILDeclRef Member;
Identifier BBName, BBName2;
SourceLoc NameLoc, NameLoc2;
if (parseTypedValueRef(Val, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILDeclRef(Member) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILIdentifier(BBName, NameLoc, diag::expected_sil_block_name) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILIdentifier(BBName2, NameLoc2,
diag::expected_sil_block_name) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createDynamicMethodBranch(InstLoc, Val, Member,
getBBForReference(BBName, NameLoc),
getBBForReference(BBName2,
NameLoc2));
break;
}
case ValueKind::ProjectBlockStorageInst: {
if (parseTypedValueRef(Val, B) ||
parseSILDebugLocation(InstLoc, B))
return true;
ResultVal = B.createProjectBlockStorage(InstLoc, Val);
break;
}
case ValueKind::InitBlockStorageHeaderInst: {
Identifier invoke, type;
SourceLoc invokeLoc, typeLoc;
UnresolvedValueName invokeName;
SILType invokeTy;
GenericEnvironment *invokeGenericEnv;
SILType blockType;
SmallVector<ParsedSubstitution, 4> parsedSubs;
if (parseTypedValueRef(Val, B) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILIdentifier(invoke, invokeLoc,
diag::expected_tok_in_sil_instr, "invoke") ||
parseValueName(invokeName) ||
parseSubstitutions(parsedSubs) ||
P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":") ||
parseSILType(invokeTy, invokeGenericEnv) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseSILIdentifier(type, typeLoc,
diag::expected_tok_in_sil_instr, "type") ||
parseSILType(blockType) ||
parseSILDebugLocation(InstLoc, B))
return true;
if (invoke.str() != "invoke") {
P.diagnose(invokeLoc, diag::expected_tok_in_sil_instr, "invoke");
return true;
}
if (type.str() != "type") {
P.diagnose(invokeLoc, diag::expected_tok_in_sil_instr, "type");
return true;
}
auto invokeVal = getLocalValue(invokeName, invokeTy, InstLoc, B);
SmallVector<Substitution, 4> subs;
if (!parsedSubs.empty()) {
if (!invokeGenericEnv) {
P.diagnose(typeLoc, diag::sil_substitutions_on_non_polymorphic_type);
return true;
}
if (getApplySubstitutionsFromParsed(*this,
invokeGenericEnv,
parsedSubs, subs))
return true;
}
ResultVal = B.createInitBlockStorageHeader(InstLoc, Val, invokeVal,
blockType, subs);
break;
}
}
// Store the named value if we had a name.
if (ResultNameLoc.isValid())
setLocalValue(ResultVal, ResultName, ResultNameLoc);
return false;
}
bool SILParser::parseCallInstruction(SILLocation InstLoc,
ValueKind Opcode, SILBuilder &B,
SILInstruction *&ResultVal) {
UnresolvedValueName FnName;
SmallVector<UnresolvedValueName, 4> ArgNames;
auto PartialApplyConvention = ParameterConvention::Direct_Owned;
bool IsNonThrowingApply = false;
StringRef AttrName;
if (parseSILOptional(AttrName, *this)) {
if (AttrName.equals("nothrow"))
IsNonThrowingApply = true;
else if (AttrName.equals("callee_guaranteed"))
PartialApplyConvention = ParameterConvention::Direct_Guaranteed;
else
return true;
}
if (parseValueName(FnName))
return true;
SmallVector<ParsedSubstitution, 4> parsedSubs;
if (parseSubstitutions(parsedSubs))
return true;
if (P.parseToken(tok::l_paren, diag::expected_tok_in_sil_instr, "("))
return true;
if (P.Tok.isNot(tok::r_paren)) {
do {
UnresolvedValueName Arg;
if (parseValueName(Arg)) return true;
ArgNames.push_back(Arg);
} while (P.consumeIf(tok::comma));
}
SILType Ty;
SourceLoc TypeLoc;
GenericEnvironment *GenericEnv = nullptr;
if (P.parseToken(tok::r_paren, diag::expected_tok_in_sil_instr, ")") ||
P.parseToken(tok::colon, diag::expected_tok_in_sil_instr, ":") ||
parseSILType(Ty, TypeLoc, GenericEnv))
return true;
auto FTI = Ty.getAs<SILFunctionType>();
if (!FTI) {
P.diagnose(TypeLoc, diag::expected_sil_type_kind, "be a function");
return true;
}
SmallVector<Substitution, 4> subs;
if (!parsedSubs.empty()) {
if (!GenericEnv) {
P.diagnose(TypeLoc, diag::sil_substitutions_on_non_polymorphic_type);
return true;
}
if (getApplySubstitutionsFromParsed(*this, GenericEnv, parsedSubs, subs))
return true;
}
SILValue FnVal = getLocalValue(FnName, Ty, InstLoc, B);
SILType FnTy = FnVal->getType();
CanSILFunctionType substFTI = FTI;
if (!subs.empty()) {
auto silFnTy = FnTy.castTo<SILFunctionType>();
substFTI
= silFnTy->substGenericArgs(SILMod, subs);
FnTy = SILType::getPrimitiveObjectType(substFTI);
}
SILFunctionConventions substConv(substFTI, B.getModule());
switch (Opcode) {
default: llvm_unreachable("Unexpected case");
case ValueKind::ApplyInst : {
if (parseSILDebugLocation(InstLoc, B))
return true;
if (substConv.getNumSILArguments() != ArgNames.size()) {
P.diagnose(TypeLoc, diag::expected_sil_type_kind,
"to have the same number of arg names as arg types");
return true;
}
unsigned ArgNo = 0;
SmallVector<SILValue, 4> Args;
for (auto &ArgName : ArgNames) {
SILType expectedTy = substConv.getSILArgumentType(ArgNo++);
Args.push_back(getLocalValue(ArgName, expectedTy, InstLoc, B));
}
ResultVal =
B.createApply(InstLoc, FnVal, FnTy, substConv.getSILResultType(), subs,
Args, IsNonThrowingApply);
break;
}
case ValueKind::PartialApplyInst: {
if (parseSILDebugLocation(InstLoc, B))
return true;
if (substFTI->getParameters().size() < ArgNames.size()) {
P.diagnose(TypeLoc, diag::expected_sil_type_kind,
"have the right argument types");
return true;
}
// Compute the result type of the partial_apply, based on which arguments
// are getting applied.
SmallVector<SILValue, 4> Args;
unsigned ArgNo = substConv.getNumSILArguments() - ArgNames.size();
for (auto &ArgName : ArgNames) {
SILType expectedTy = substConv.getSILArgumentType(ArgNo++);
Args.push_back(getLocalValue(ArgName, expectedTy, InstLoc, B));
}
SILType closureTy =
SILBuilder::getPartialApplyResultType(Ty, ArgNames.size(), SILMod, subs,
PartialApplyConvention);
// FIXME: Why the arbitrary order difference in IRBuilder type argument?
ResultVal = B.createPartialApply(InstLoc, FnVal, FnTy,
subs, Args, closureTy);
break;
}
case ValueKind::TryApplyInst: {
Identifier normalBBName, errorBBName;
SourceLoc normalBBLoc, errorBBLoc;
if (P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseVerbatim("normal") ||
parseSILIdentifier(normalBBName, normalBBLoc,
diag::expected_sil_block_name) ||
P.parseToken(tok::comma, diag::expected_tok_in_sil_instr, ",") ||
parseVerbatim("error") ||
parseSILIdentifier(errorBBName, errorBBLoc,
diag::expected_sil_block_name) ||
parseSILDebugLocation(InstLoc, B))
return true;
if (substConv.getNumSILArguments() != ArgNames.size()) {
P.diagnose(TypeLoc, diag::expected_sil_type_kind,
"to have the same number of arg names as arg types");
return true;
}
unsigned argNo = 0;
SmallVector<SILValue, 4> args;
for (auto &argName : ArgNames) {
SILType expectedTy = substConv.getSILArgumentType(argNo++);
args.push_back(getLocalValue(argName, expectedTy, InstLoc, B));
}
SILBasicBlock *normalBB = getBBForReference(normalBBName, normalBBLoc);
SILBasicBlock *errorBB = getBBForReference(errorBBName, errorBBLoc);
ResultVal = B.createTryApply(InstLoc, FnVal, FnTy,
subs, args, normalBB, errorBB);
break;
}
}
return false;
}
bool SILParser::parseSILFunctionRef(SILLocation InstLoc,
SILBuilder &B, SILInstruction *&ResultVal) {
Identifier Name;
SILType Ty;
SourceLoc Loc = P.Tok.getLoc();
if (parseGlobalName(Name) ||
P.parseToken(tok::colon, diag::expected_sil_colon_value_ref) ||
parseSILType(Ty) ||
parseSILDebugLocation(InstLoc, B))
return true;
auto FnTy = Ty.getAs<SILFunctionType>();
if (!FnTy || !Ty.isObject()) {
P.diagnose(Loc, diag::expected_sil_function_type);
return true;
}
ResultVal = B.createFunctionRef(InstLoc,
getGlobalNameForReference(Name, FnTy, Loc));
return false;
}
/// True if the current token sequence looks like the start of a SIL
/// instruction, either:
/// %name
/// or:
/// identifier | keyword
/// where identifier is not followed by a '(' or ':', which would indicate
/// a basic block.
bool SILParser::isStartOfSILInstruction() {
if (P.Tok.is(tok::sil_local_name))
return true;
if (P.Tok.is(tok::identifier) || P.Tok.isKeyword()) {
auto &peek = P.peekToken();
return !peek.is(tok::l_paren) && !peek.is(tok::colon);
}
return false;
}
/// sil-basic-block:
/// sil-instruction+
/// identifier sil-bb-argument-list? ':' sil-instruction+
/// sil-bb-argument-list:
/// '(' sil-typed-valueref (',' sil-typed-valueref)+ ')'
bool SILParser::parseSILBasicBlock(SILBuilder &B) {
SILBasicBlock *BB;
// The basic block name is optional.
if (P.Tok.is(tok::sil_local_name)) {
BB = getBBForDefinition(Identifier(), SourceLoc());
} else {
Identifier BBName;
SourceLoc NameLoc;
if (parseSILIdentifier(BBName, NameLoc, diag::expected_sil_block_name))
return true;
BB = getBBForDefinition(BBName, NameLoc);
// For now, since we always assume that PHIArguments have
// ValueOwnershipKind::Any, do not parse or do anything special. Eventually
// we will parse the convention.
bool IsEntry = BB->isEntry();
// If there is a basic block argument list, process it.
if (P.consumeIf(tok::l_paren)) {
do {
SILType Ty;
Optional<ValueOwnershipKind> OwnershipKind;
SourceLoc NameLoc;
StringRef Name = P.Tok.getText();
if (P.parseToken(tok::sil_local_name, NameLoc,
diag::expected_sil_value_name) ||
P.parseToken(tok::colon, diag::expected_sil_colon_value_ref))
return true;
// If SILOwnership is enabled and we are not assuming that we are
// parsing unqualified SIL, look for printed value ownership kinds.
if (!F->getModule()
.getOptions()
.AssumeUnqualifiedOwnershipWhenParsing &&
F->getModule().getOptions().EnableSILOwnership &&
parseSILOwnership(OwnershipKind))
return true;
if (parseSILType(Ty))
return true;
SILArgument *Arg;
if (IsEntry) {
Arg = BB->createFunctionArgument(Ty);
} else {
Arg = BB->createPHIArgument(
Ty, OwnershipKind.getValueOr(
ValueOwnershipKind(ValueOwnershipKind::Any)));
}
setLocalValue(Arg, Name, NameLoc);
} while (P.consumeIf(tok::comma));
if (P.parseToken(tok::r_paren, diag::sil_basicblock_arg_rparen))
return true;
}
if (P.parseToken(tok::colon, diag::expected_sil_block_colon))
return true;
}
// Make sure the block is at the end of the function so that forward
// references don't affect block layout.
F->getBlocks().remove(BB);
F->getBlocks().push_back(BB);
bool AssumeUnqualifiedOwnershipWhenParsing =
F->getModule().getOptions().AssumeUnqualifiedOwnershipWhenParsing;
if (AssumeUnqualifiedOwnershipWhenParsing) {
F->setUnqualifiedOwnership();
}
do {
if (parseSILInstruction(BB, B))
return true;
// Evaluate how the just parsed instruction effects this functions Ownership
// Qualification. For more details, see the comment on the
// FunctionOwnershipEvaluator class.
SILInstruction *ParsedInst = &*BB->rbegin();
if (!AssumeUnqualifiedOwnershipWhenParsing &&
!OwnershipEvaluator.evaluate(ParsedInst)) {
P.diagnose(ParsedInst->getLoc().getSourceLoc(),
diag::found_unqualified_instruction_in_qualified_function,
F->getName());
}
} while (isStartOfSILInstruction());
return false;
}
/// decl-sil: [[only in SIL mode]]
/// 'sil' sil-linkage '@' identifier ':' sil-type decl-sil-body?
/// decl-sil-body:
/// '{' sil-basic-block+ '}'
bool Parser::parseDeclSIL() {
// Inform the lexer that we're lexing the body of the SIL declaration. Do
// this before we consume the 'sil' token so that all later tokens are
// properly handled.
Lexer::SILBodyRAII Tmp(*L);
consumeToken(tok::kw_sil);
SILParser FunctionState(*this);
Optional<SILLinkage> FnLinkage;
Identifier FnName;
SILType FnType;
SourceLoc FnNameLoc;
Scope S(this, ScopeKind::TopLevel);
bool isTransparent = false;
bool isFragile = false;
IsThunk_t isThunk = IsNotThunk;
bool isGlobalInit = false;
Inline_t inlineStrategy = InlineDefault;
SmallVector<std::string, 1> Semantics;
SmallVector<ParsedSpecAttr, 4> SpecAttrs;
ValueDecl *ClangDecl = nullptr;
EffectsKind MRK = EffectsKind::Unspecified;
if (parseSILLinkage(FnLinkage, *this) ||
parseDeclSILOptional(&isTransparent, &isFragile, &isThunk, &isGlobalInit,
&inlineStrategy, nullptr, &Semantics, &SpecAttrs,
&ClangDecl, &MRK, FunctionState) ||
parseToken(tok::at_sign, diag::expected_sil_function_name) ||
parseIdentifier(FnName, FnNameLoc, diag::expected_sil_function_name) ||
parseToken(tok::colon, diag::expected_sil_type))
return true;
{
// Construct a Scope for the function body so TypeAliasDecl can be added to
// the scope.
Scope Body(this, ScopeKind::FunctionBody);
GenericEnvironment *GenericEnv;
if (FunctionState.parseSILType(FnType, GenericEnv, true /*IsFuncDecl*/))
return true;
auto SILFnType = FnType.getAs<SILFunctionType>();
if (!SILFnType || !FnType.isObject()) {
diagnose(FnNameLoc, diag::expected_sil_function_type);
return true;
}
FunctionState.F =
FunctionState.getGlobalNameForDefinition(FnName, SILFnType, FnNameLoc);
FunctionState.F->setBare(IsBare);
FunctionState.F->setTransparent(IsTransparent_t(isTransparent));
FunctionState.F->setFragile(IsFragile_t(isFragile));
FunctionState.F->setThunk(IsThunk_t(isThunk));
FunctionState.F->setGlobalInit(isGlobalInit);
FunctionState.F->setInlineStrategy(inlineStrategy);
FunctionState.F->setEffectsKind(MRK);
if (ClangDecl)
FunctionState.F->setClangNodeOwner(ClangDecl);
for (auto &Attr : Semantics) {
FunctionState.F->addSemanticsAttr(Attr);
}
// Now that we have a SILFunction parse the body, if present.
bool isDefinition = false;
SourceLoc LBraceLoc = Tok.getLoc();
if (consumeIf(tok::l_brace)) {
isDefinition = true;
FunctionState.GenericEnv = GenericEnv;
FunctionState.F->setGenericEnvironment(GenericEnv);
if (GenericEnv && !SpecAttrs.empty()) {
for (auto &Attr : SpecAttrs) {
SmallVector<Requirement, 4> requirements;
// Resolve types and convert requirements.
FunctionState.convertRequirements(FunctionState.F,
Attr.requirements, requirements);
FunctionState.F->addSpecializeAttr(SILSpecializeAttr::create(
FunctionState.F->getModule(), requirements, Attr.exported,
Attr.kind));
}
}
// Parse the basic block list.
FunctionState.OwnershipEvaluator.reset(FunctionState.F);
SILOpenedArchetypesTracker OpenedArchetypesTracker(*FunctionState.F);
SILBuilder B(*FunctionState.F, /*isParsing*/ true);
// Track the archetypes just like SILGen. This
// is required for adding typedef operands to instructions.
B.setOpenedArchetypesTracker(&OpenedArchetypesTracker);
// Define a callback to be invoked on the deserialized types.
auto OldParsedTypeCallback = FunctionState.ParsedTypeCallback;
SWIFT_DEFER {
FunctionState.ParsedTypeCallback = OldParsedTypeCallback;
};
FunctionState.ParsedTypeCallback = [&OpenedArchetypesTracker,
&FunctionState](Type ty) {
OpenedArchetypesTracker.registerUsedOpenedArchetypes(ty);
};
do {
if (FunctionState.parseSILBasicBlock(B))
return true;
} while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof));
SourceLoc RBraceLoc;
parseMatchingToken(tok::r_brace, RBraceLoc, diag::expected_sil_rbrace,
LBraceLoc);
// Check that there are no unresolved forward definitions of opened
// archetypes.
if (OpenedArchetypesTracker.hasUnresolvedOpenedArchetypeDefinitions())
llvm_unreachable(
"All forward definitions of opened archetypes should be resolved");
}
FunctionState.F->setLinkage(resolveSILLinkage(FnLinkage, isDefinition));
}
if (FunctionState.diagnoseProblems())
return true;
// If SIL parsing succeeded, verify the generated SIL.
if (!FunctionState.P.Diags.hadAnyError())
FunctionState.F->verify();
// Link the static initializer for global variables.
for (SILGlobalVariable &v : FunctionState.SILMod.getSILGlobals()) {
if (v.getInitializer())
if (FnName.str() == v.getInitializer()->getName())
v.setInitializer(FunctionState.F);
}
return false;
}
/// decl-sil-stage: [[only in SIL mode]]
/// 'sil_stage' ('raw' | 'canonical')
bool Parser::parseDeclSILStage() {
SourceLoc stageLoc = consumeToken(tok::kw_sil_stage);
if (!Tok.is(tok::identifier)) {
diagnose(Tok, diag::expected_sil_stage_name);
return true;
}
SILStage stage;
if (Tok.isContextualKeyword("raw")) {
stage = SILStage::Raw;
consumeToken();
} else if (Tok.isContextualKeyword("canonical")) {
stage = SILStage::Canonical;
consumeToken();
} else if (Tok.isContextualKeyword("lowered")) {
stage = SILStage::Lowered;
consumeToken();
} else {
diagnose(Tok, diag::expected_sil_stage_name);
consumeToken();
return true;
}
if (SIL->S->DidParseSILStage) {
diagnose(stageLoc, diag::multiple_sil_stage_decls);
return false;
}
SIL->M->setStage(stage);
SIL->S->DidParseSILStage = true;
return false;
}
/// decl-sil-global: [[only in SIL mode]]
/// 'sil_global' sil-linkage @name : sil-type [external]
bool Parser::parseSILGlobal() {
consumeToken(tok::kw_sil_global);
Optional<SILLinkage> GlobalLinkage;
Identifier GlobalName;
SILType GlobalType;
SourceLoc NameLoc;
bool isFragile = false;
bool isLet = false;
// Inform the lexer that we're lexing the body of the SIL declaration.
Lexer::SILBodyRAII Tmp(*L);
Scope S(this, ScopeKind::TopLevel);
SILParser State(*this);
if (parseSILLinkage(GlobalLinkage, *this) ||
parseDeclSILOptional(nullptr, &isFragile, nullptr, nullptr,
nullptr, &isLet, nullptr, nullptr, nullptr,
nullptr, State) ||
parseToken(tok::at_sign, diag::expected_sil_value_name) ||
parseIdentifier(GlobalName, NameLoc, diag::expected_sil_value_name) ||
parseToken(tok::colon, diag::expected_sil_type))
return true;
if (State.parseSILType(GlobalType))
return true;
// Non-external global variables are definitions by default.
if (!GlobalLinkage.hasValue())
GlobalLinkage = SILLinkage::DefaultForDefinition;
// FIXME: check for existing global variable?
auto *GV = SILGlobalVariable::create(*SIL->M, GlobalLinkage.getValue(),
(IsFragile_t)isFragile,
GlobalName.str(),GlobalType,
RegularLocation(NameLoc));
GV->setLet(isLet);
// Parse static initializer if exists.
if (State.P.consumeIf(tok::comma)) {
Identifier Name;
SILType Ty;
SourceLoc Loc = State.P.Tok.getLoc();
if (State.parseGlobalName(Name) ||
State.P.parseToken(tok::colon, diag::expected_sil_colon_value_ref) ||
State.parseSILType(Ty))
return true;
auto FnTy = Ty.getAs<SILFunctionType>();
if (!FnTy || !Ty.isObject()) {
State.P.diagnose(Loc, diag::expected_sil_function_type);
return true;
}
GV->setInitializer(State.getGlobalNameForReference(Name, FnTy, Loc));
}
return false;
}
/// decl-sil-vtable: [[only in SIL mode]]
/// 'sil_vtable' ClassName decl-sil-vtable-body
/// decl-sil-vtable-body:
/// '{' sil-vtable-entry* '}'
/// sil-vtable-entry:
/// SILDeclRef ':' SILFunctionName
bool Parser::parseSILVTable() {
consumeToken(tok::kw_sil_vtable);
SILParser VTableState(*this);
// Parse the class name.
Identifier Name;
SourceLoc Loc;
if (VTableState.parseSILIdentifier(Name, Loc,
diag::expected_sil_value_name))
return true;
// Find the class decl.
llvm::PointerUnion<ValueDecl*, ModuleDecl *> Res = lookupTopDecl(*this, Name);
assert(Res.is<ValueDecl*>() && "Class look-up should return a Decl");
ValueDecl *VD = Res.get<ValueDecl*>();
if (!VD) {
diagnose(Loc, diag::sil_vtable_class_not_found, Name);
return true;
}
ClassDecl *theClass = dyn_cast<ClassDecl>(VD);
if (!theClass) {
diagnose(Loc, diag::sil_vtable_class_not_found, Name);
return true;
}
SourceLoc LBraceLoc = Tok.getLoc();
consumeToken(tok::l_brace);
// We need to turn on InSILBody to parse SILDeclRef.
Lexer::SILBodyRAII Tmp(*L);
Scope S(this, ScopeKind::TopLevel);
// Parse the entry list.
std::vector<SILVTable::Entry> vtableEntries;
if (Tok.isNot(tok::r_brace)) {
do {
SILDeclRef Ref;
Identifier FuncName;
SourceLoc FuncLoc;
if (VTableState.parseSILDeclRef(Ref, true))
return true;
SILFunction *Func = nullptr;
Optional<SILLinkage> Linkage = SILLinkage::Private;
if (Tok.is(tok::kw_nil)) {
consumeToken();
} else {
if (parseToken(tok::colon, diag::expected_sil_vtable_colon) ||
parseSILLinkage(Linkage, *this) ||
VTableState.parseSILIdentifier(FuncName, FuncLoc,
diag::expected_sil_value_name))
return true;
Func = SIL->M->lookUpFunction(FuncName.str());
if (!Func) {
diagnose(FuncLoc, diag::sil_vtable_func_not_found, FuncName);
return true;
}
if (!Linkage)
Linkage = stripExternalFromLinkage(Func->getLinkage());
}
vtableEntries.emplace_back(Ref, Func, Linkage.getValue());
} while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof));
}
SourceLoc RBraceLoc;
parseMatchingToken(tok::r_brace, RBraceLoc, diag::expected_sil_rbrace,
LBraceLoc);
SILVTable::create(*SIL->M, theClass, vtableEntries);
return false;
}
static ProtocolDecl *parseProtocolDecl(Parser &P, SILParser &SP) {
Identifier DeclName;
SourceLoc DeclLoc;
if (SP.parseSILIdentifier(DeclName, DeclLoc, diag::expected_sil_value_name))
return nullptr;
// Find the protocol decl. The protocol can be imported.
llvm::PointerUnion<ValueDecl*, ModuleDecl *> Res = lookupTopDecl(P, DeclName);
assert(Res.is<ValueDecl*>() && "Protocol look-up should return a Decl");
ValueDecl *VD = Res.get<ValueDecl*>();
if (!VD) {
P.diagnose(DeclLoc, diag::sil_witness_protocol_not_found, DeclName);
return nullptr;
}
ProtocolDecl *proto = dyn_cast<ProtocolDecl>(VD);
if (!proto)
P.diagnose(DeclLoc, diag::sil_witness_protocol_not_found, DeclName);
return proto;
}
static AssociatedTypeDecl *parseAssociatedTypeDecl(Parser &P, SILParser &SP,
ProtocolDecl *proto) {
Identifier DeclName;
SourceLoc DeclLoc;
if (SP.parseSILIdentifier(DeclName, DeclLoc, diag::expected_sil_value_name))
return nullptr;
// We can return multiple decls, for now, we use the first lookup result.
// One example is two decls when searching for Generator of Sequence:
// one from Sequence, the other from _Sequence_Type.
SmallVector<ValueDecl *, 4> values;
auto VD = lookupMember(P, proto->getInterfaceType(), DeclName, DeclLoc,
values, true/*ExpectMultipleResults*/);
if (!VD) {
P.diagnose(DeclLoc, diag::sil_witness_assoc_not_found, DeclName);
return nullptr;
}
return dyn_cast<AssociatedTypeDecl>(VD);
}
static NormalProtocolConformance *parseNormalProtocolConformance(Parser &P,
SILParser &SP, Type ConformingTy, ProtocolDecl *&proto) {
Identifier ModuleKeyword, ModuleName;
SourceLoc Loc, KeywordLoc;
proto = parseProtocolDecl(P, SP);
if (!proto)
return nullptr;
if (P.parseIdentifier(ModuleKeyword, KeywordLoc,
diag::expected_tok_in_sil_instr, "module") ||
SP.parseSILIdentifier(ModuleName, Loc,
diag::expected_sil_value_name))
return nullptr;
if (ModuleKeyword.str() != "module") {
P.diagnose(KeywordLoc, diag::expected_tok_in_sil_instr, "module");
return nullptr;
}
// FIXME: we currently emit _CocoaArrayType: _CocoaArrayType.
if (ConformingTy->is<ProtocolType>() &&
ConformingTy->getAs<ProtocolType>()->getDecl() == proto)
return nullptr;
// Calling lookupConformance on a BoundGenericType will return a specialized
// conformance. We use UnboundGenericType to find the normal conformance.
Type lookupTy = ConformingTy;
if (auto bound = lookupTy->getAs<BoundGenericType>())
lookupTy = bound->getDecl()->getDeclaredType();
auto lookup = P.SF.getParentModule()->lookupConformance(
lookupTy, proto, nullptr);
if (!lookup) {
P.diagnose(KeywordLoc, diag::sil_witness_protocol_conformance_not_found);
return nullptr;
}
if (!lookup->isConcrete()) {
P.diagnose(KeywordLoc, diag::sil_witness_protocol_conformance_not_found);
return nullptr;
}
return lookup->getConcrete()->getRootNormalConformance();
}
/// protocol-conformance ::= normal-protocol-conformance
/// protocol-conformance ::=
/// generic-parameter-list? type: 'inherit' '(' protocol-conformance ')'
/// protocol-conformance ::=
/// generic-parameter-list? type: 'specialize' '<' substitution* '>'
/// '(' protocol-conformance ')'
/// normal-protocol-conformance ::=
/// generic-parameter-list? type: protocolName module ModuleName
/// Note that generic-parameter-list is already parsed before calling this.
ProtocolConformance *SILParser::parseProtocolConformance(
ProtocolDecl *&proto,
GenericEnvironment *&genericEnv,
bool localScope) {
// Parse generic params for the protocol conformance. We need to make sure
// they have the right scope.
Optional<Scope> GenericsScope;
if (localScope)
GenericsScope.emplace(&P, ScopeKind::Generics);
// Make sure we don't leave it uninitialized in the caller
genericEnv = nullptr;
auto *genericParams = P.maybeParseGenericParams().getPtrOrNull();
if (genericParams) {
genericEnv = handleSILGenericParams(P.Context, genericParams, &P.SF);
}
ProtocolConformance *retVal =
parseProtocolConformanceHelper(proto, genericEnv, localScope);
if (localScope) {
GenericsScope.reset();
}
return retVal;
}
ProtocolConformance *SILParser::parseProtocolConformanceHelper(
ProtocolDecl *&proto,
GenericEnvironment *witnessEnv,
bool localScope) {
// Parse AST type.
ParserResult<TypeRepr> TyR = P.parseType();
if (TyR.isNull())
return nullptr;
TypeLoc Ty = TyR.get();
if (performTypeLocChecking(Ty, /*IsSILType=*/ false, witnessEnv))
return nullptr;
auto ConformingTy = Ty.getType();
if (P.parseToken(tok::colon, diag::expected_sil_witness_colon))
return nullptr;
if (P.Tok.is(tok::identifier) && P.Tok.getText() == "specialize") {
P.consumeToken();
// Parse substitutions for specialized conformance.
SmallVector<ParsedSubstitution, 4> parsedSubs;
if (parseSubstitutions(parsedSubs, witnessEnv))
return nullptr;
if (P.parseToken(tok::l_paren, diag::expected_sil_witness_lparen))
return nullptr;
ProtocolDecl *dummy;
GenericEnvironment *specializedEnv;
auto genericConform =
parseProtocolConformance(dummy, specializedEnv, localScope);
if (!genericConform)
return nullptr;
if (P.parseToken(tok::r_paren, diag::expected_sil_witness_rparen))
return nullptr;
SmallVector<Substitution, 4> subs;
if (getApplySubstitutionsFromParsed(*this, specializedEnv, parsedSubs,
subs))
return nullptr;
auto result = P.Context.getSpecializedConformance(
ConformingTy, genericConform, subs);
return result;
}
if (P.Tok.is(tok::identifier) && P.Tok.getText() == "inherit") {
P.consumeToken();
if (P.parseToken(tok::l_paren, diag::expected_sil_witness_lparen))
return nullptr;
auto baseConform = parseProtocolConformance();
if (!baseConform)
return nullptr;
if (P.parseToken(tok::r_paren, diag::expected_sil_witness_rparen))
return nullptr;
return P.Context.getInheritedConformance(ConformingTy, baseConform);
}
auto retVal = parseNormalProtocolConformance(P, *this, ConformingTy, proto);
return retVal;
}
/// decl-sil-witness ::= 'sil_witness_table' sil-linkage?
/// normal-protocol-conformance decl-sil-witness-body
/// normal-protocol-conformance ::=
/// generic-parameter-list? type: protocolName module ModuleName
/// decl-sil-witness-body:
/// '{' sil-witness-entry* '}'
/// sil-witness-entry:
/// method SILDeclRef ':' @SILFunctionName
/// associated_type AssociatedTypeDeclName: Type
/// associated_type_protocol (AssocName: ProtocolName):
/// protocol-conformance|dependent
/// base_protocol ProtocolName: protocol-conformance
bool Parser::parseSILWitnessTable() {
consumeToken(tok::kw_sil_witness_table);
SILParser WitnessState(*this);
// Parse the linkage.
Optional<SILLinkage> Linkage;
parseSILLinkage(Linkage, *this);
bool isFragile = false;
if (parseDeclSILOptional(nullptr, &isFragile, nullptr, nullptr,
nullptr, nullptr, nullptr, nullptr, nullptr,
nullptr, WitnessState))
return true;
Scope S(this, ScopeKind::TopLevel);
// We should use WitnessTableBody. This ensures that the generic params
// are visible.
Optional<Scope> BodyScope;
BodyScope.emplace(this, ScopeKind::FunctionBody);
// Parse the protocol conformance.
ProtocolDecl *proto;
GenericEnvironment *witnessEnv;
auto conf = WitnessState.parseProtocolConformance(proto,
witnessEnv,
false/*localScope*/);
WitnessState.GenericEnv = witnessEnv;
NormalProtocolConformance *theConformance = conf ?
dyn_cast<NormalProtocolConformance>(conf) : nullptr;
SILWitnessTable *wt = nullptr;
if (theConformance) {
wt = SIL->M->lookUpWitnessTable(theConformance, false);
assert((!wt || wt->isDeclaration()) &&
"Attempting to create duplicate witness table.");
}
// If we don't have an lbrace, then this witness table is a declaration.
if (Tok.getKind() != tok::l_brace) {
// Default to public external linkage.
if (!Linkage)
Linkage = SILLinkage::PublicExternal;
// We ignore empty witness table without normal protocol conformance.
if (!wt && theConformance)
wt = SILWitnessTable::create(*SIL->M, *Linkage, theConformance);
BodyScope.reset();
return false;
}
if (!theConformance) {
diagnose(Tok, diag::sil_witness_protocol_conformance_not_found);
return true;
}
SourceLoc LBraceLoc = Tok.getLoc();
consumeToken(tok::l_brace);
// We need to turn on InSILBody to parse SILDeclRef.
Lexer::SILBodyRAII Tmp(*L);
// Parse the entry list.
std::vector<SILWitnessTable::Entry> witnessEntries;
if (Tok.isNot(tok::r_brace)) {
do {
Identifier EntryKeyword;
SourceLoc KeywordLoc;
if (parseIdentifier(EntryKeyword, KeywordLoc,
diag::expected_tok_in_sil_instr,
"method, associated_type, associated_type_protocol, base_protocol"))
return true;
if (EntryKeyword.str() == "base_protocol") {
ProtocolDecl *proto = parseProtocolDecl(*this, WitnessState);
if (!proto)
return true;
if (parseToken(tok::colon, diag::expected_sil_witness_colon))
return true;
ProtocolConformance *conform = WitnessState.parseProtocolConformance();
if (!conform) // Ignore this witness entry for now.
continue;
witnessEntries.push_back(SILWitnessTable::BaseProtocolWitness{
proto, conform
});
continue;
}
if (EntryKeyword.str() == "associated_type_protocol") {
if (parseToken(tok::l_paren, diag::expected_sil_witness_lparen))
return true;
AssociatedTypeDecl *assoc = parseAssociatedTypeDecl(*this,
WitnessState, proto);
if (!assoc)
return true;
if (parseToken(tok::colon, diag::expected_sil_witness_colon))
return true;
ProtocolDecl *proto = parseProtocolDecl(*this, WitnessState);
if (!proto)
return true;
if (parseToken(tok::r_paren, diag::expected_sil_witness_rparen) ||
parseToken(tok::colon, diag::expected_sil_witness_colon))
return true;
ProtocolConformanceRef conformance(proto);
if (Tok.getText() != "dependent") {
auto concrete = WitnessState.parseProtocolConformance();
if (!concrete) // Ignore this witness entry for now.
continue;
conformance = ProtocolConformanceRef(concrete);
} else {
consumeToken();
}
witnessEntries.push_back(SILWitnessTable::AssociatedTypeProtocolWitness{
assoc, proto, ProtocolConformanceRef(conformance)
});
continue;
}
if (EntryKeyword.str() == "associated_type") {
AssociatedTypeDecl *assoc = parseAssociatedTypeDecl(*this,
WitnessState, proto);
if (!assoc)
return true;
if (parseToken(tok::colon, diag::expected_sil_witness_colon))
return true;
// Parse AST type.
ParserResult<TypeRepr> TyR = parseType();
if (TyR.isNull())
return true;
TypeLoc Ty = TyR.get();
if (swift::performTypeLocChecking(Context, Ty,
/*isSILMode=*/false,
/*isSILType=*/false,
witnessEnv,
&SF))
return true;
witnessEntries.push_back(SILWitnessTable::AssociatedTypeWitness{
assoc, Ty.getType()->getCanonicalType()
});
continue;
}
if (EntryKeyword.str() != "method") {
diagnose(KeywordLoc, diag::expected_tok_in_sil_instr, "method");
return true;
}
SILDeclRef Ref;
Identifier FuncName;
SourceLoc FuncLoc;
if (WitnessState.parseSILDeclRef(Ref, true) ||
parseToken(tok::colon, diag::expected_sil_witness_colon))
return true;
SILFunction *Func = nullptr;
if (Tok.is(tok::kw_nil)) {
consumeToken();
} else {
if (parseToken(tok::at_sign, diag::expected_sil_function_name) ||
WitnessState.parseSILIdentifier(FuncName, FuncLoc,
diag::expected_sil_value_name))
return true;
Func = SIL->M->lookUpFunction(FuncName.str());
if (!Func) {
diagnose(FuncLoc, diag::sil_witness_func_not_found, FuncName);
return true;
}
}
witnessEntries.push_back(SILWitnessTable::MethodWitness{
Ref, Func
});
} while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof));
}
SourceLoc RBraceLoc;
parseMatchingToken(tok::r_brace, RBraceLoc, diag::expected_sil_rbrace,
LBraceLoc);
// Default to public linkage.
if (!Linkage)
Linkage = SILLinkage::Public;
if (!wt)
wt = SILWitnessTable::create(*SIL->M, *Linkage, theConformance);
wt->convertToDefinition(witnessEntries, isFragile);
BodyScope.reset();
return false;
}
/// decl-sil-default-witness ::= 'sil_default_witness_table'
/// sil-linkage identifier
/// decl-sil-default-witness-body
/// decl-sil-default-witness-body:
/// '{' sil-default-witness-entry* '}'
/// sil-default-witness-entry:
/// 'method' SILDeclRef ':' @SILFunctionName
/// 'no_default'
bool Parser::parseSILDefaultWitnessTable() {
consumeToken(tok::kw_sil_default_witness_table);
SILParser WitnessState(*this);
// Parse the linkage.
Optional<SILLinkage> Linkage;
parseSILLinkage(Linkage, *this);
Scope S(this, ScopeKind::TopLevel);
// We should use WitnessTableBody. This ensures that the generic params
// are visible.
Optional<Scope> BodyScope;
BodyScope.emplace(this, ScopeKind::FunctionBody);
// Parse the protocol.
ProtocolDecl *protocol = parseProtocolDecl(*this, WitnessState);
// Parse the body.
SourceLoc LBraceLoc = Tok.getLoc();
consumeToken(tok::l_brace);
// We need to turn on InSILBody to parse SILDeclRef.
Lexer::SILBodyRAII Tmp(*L);
// Parse the entry list.
std::vector<SILDefaultWitnessTable::Entry> witnessEntries;
if (Tok.isNot(tok::r_brace)) {
do {
Identifier EntryKeyword;
SourceLoc KeywordLoc;
if (parseIdentifier(EntryKeyword, KeywordLoc,
diag::expected_tok_in_sil_instr, "method, no_default"))
return true;
if (EntryKeyword.str() == "no_default") {
witnessEntries.push_back(SILDefaultWitnessTable::Entry());
continue;
}
if (EntryKeyword.str() != "method") {
diagnose(KeywordLoc, diag::expected_tok_in_sil_instr, "method");
return true;
}
SILDeclRef Ref;
Identifier FuncName;
SourceLoc FuncLoc;
if (WitnessState.parseSILDeclRef(Ref, true) ||
parseToken(tok::colon, diag::expected_sil_witness_colon))
return true;
if (parseToken(tok::at_sign, diag::expected_sil_function_name) ||
WitnessState.parseSILIdentifier(FuncName, FuncLoc,
diag::expected_sil_value_name))
return true;
SILFunction *Func = SIL->M->lookUpFunction(FuncName.str());
if (!Func) {
diagnose(FuncLoc, diag::sil_witness_func_not_found, FuncName);
return true;
}
witnessEntries.push_back(SILDefaultWitnessTable::Entry{ Ref, Func });
} while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof));
}
SourceLoc RBraceLoc;
parseMatchingToken(tok::r_brace, RBraceLoc, diag::expected_sil_rbrace,
LBraceLoc);
// Default to public linkage.
if (!Linkage)
Linkage = SILLinkage::Public;
SILDefaultWitnessTable::create(*SIL->M, *Linkage, protocol, witnessEntries);
BodyScope.reset();
return false;
}
llvm::Optional<llvm::coverage::Counter> SILParser::parseSILCoverageExpr(
llvm::coverage::CounterExpressionBuilder &Builder) {
if (P.Tok.is(tok::integer_literal)) {
unsigned CounterId;
if (parseInteger(CounterId, diag::sil_coverage_invalid_counter))
return None;
return llvm::coverage::Counter::getCounter(CounterId);
}
if (P.Tok.is(tok::identifier)) {
Identifier Zero;
SourceLoc Loc;
if (parseSILIdentifier(Zero, Loc, diag::sil_coverage_invalid_counter))
return None;
if (Zero.str() != "zero") {
P.diagnose(Loc, diag::sil_coverage_invalid_counter);
return None;
}
return llvm::coverage::Counter::getZero();
}
if (P.Tok.is(tok::l_paren)) {
P.consumeToken(tok::l_paren);
auto LHS = parseSILCoverageExpr(Builder);
if (!LHS)
return None;
Identifier Operator;
SourceLoc Loc;
if (P.parseAnyIdentifier(Operator, Loc,
diag::sil_coverage_invalid_operator))
return None;
if (Operator.str() != "+" && Operator.str() != "-") {
P.diagnose(Loc, diag::sil_coverage_invalid_operator);
return None;
}
auto RHS = parseSILCoverageExpr(Builder);
if (!RHS)
return None;
if (P.parseToken(tok::r_paren, diag::sil_coverage_expected_rparen))
return None;
if (Operator.str() == "+")
return Builder.add(*LHS, *RHS);
return Builder.subtract(*LHS, *RHS);
}
P.diagnose(P.Tok, diag::sil_coverage_invalid_counter);
return None;
}
/// decl-sil-coverage-map ::= 'sil_coverage_map' CoveredName CoverageHash
/// decl-sil-coverage-body
/// decl-sil-coverage-body:
/// '{' sil-coverage-entry* '}'
/// sil-coverage-entry:
/// sil-coverage-loc ':' sil-coverage-expr
/// sil-coverage-loc:
/// StartLine ':' StartCol '->' EndLine ':' EndCol
/// sil-coverage-expr:
/// ...
bool Parser::parseSILCoverageMap() {
consumeToken(tok::kw_sil_coverage_map);
SILParser State(*this);
// Parse the filename.
Identifier Filename;
SourceLoc FileLoc;
if (State.parseSILIdentifier(Filename, FileLoc,
diag::expected_sil_value_name))
return true;
// Parse the covered name.
Identifier FuncName;
SourceLoc FuncLoc;
if (State.parseSILIdentifier(FuncName, FuncLoc,
diag::expected_sil_value_name))
return true;
SILFunction *Func = SIL->M->lookUpFunction(FuncName.str());
if (!Func) {
diagnose(FuncLoc, diag::sil_coverage_func_not_found, FuncName);
return true;
}
uint64_t Hash;
if (State.parseInteger(Hash, diag::sil_coverage_invalid_hash))
return true;
if (!Tok.is(tok::l_brace)) {
diagnose(Tok, diag::sil_coverage_expected_lbrace);
return true;
}
SourceLoc LBraceLoc = Tok.getLoc();
consumeToken(tok::l_brace);
llvm::coverage::CounterExpressionBuilder Builder;
std::vector<SILCoverageMap::MappedRegion> Regions;
bool BodyHasError = false;
if (Tok.isNot(tok::r_brace)) {
do {
unsigned StartLine, StartCol, EndLine, EndCol;
if (State.parseInteger(StartLine, diag::sil_coverage_expected_loc) ||
parseToken(tok::colon, diag::sil_coverage_expected_loc) ||
State.parseInteger(StartCol, diag::sil_coverage_expected_loc) ||
parseToken(tok::arrow, diag::sil_coverage_expected_arrow) ||
State.parseInteger(EndLine, diag::sil_coverage_expected_loc) ||
parseToken(tok::colon, diag::sil_coverage_expected_loc) ||
State.parseInteger(EndCol, diag::sil_coverage_expected_loc)) {
BodyHasError = true;
break;
}
if (parseToken(tok::colon, diag::sil_coverage_expected_colon)) {
BodyHasError = true;
break;
}
auto Counter = State.parseSILCoverageExpr(Builder);
if (!Counter) {
BodyHasError = true;
break;
}
Regions.emplace_back(StartLine, StartCol, EndLine, EndCol, *Counter);
} while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof));
}
if (BodyHasError)
skipUntilDeclRBrace();
SourceLoc RBraceLoc;
parseMatchingToken(tok::r_brace, RBraceLoc, diag::expected_sil_rbrace,
LBraceLoc);
if (!BodyHasError)
SILCoverageMap::create(*SIL->M, Filename.str(), FuncName.str(),
Func->isPossiblyUsedExternally(), Hash, Regions,
Builder.getExpressions());
return false;
}
/// sil-scope-ref ::= 'scope' [0-9]+
/// sil-scope ::= 'sil_scope' [0-9]+ '{'
/// debug-loc
/// 'parent' scope-parent
/// ('inlined_at' sil-scope-ref)?
/// '}'
/// scope-parent ::= sil-function-name ':' sil-type
/// scope-parent ::= sil-scope-ref
/// debug-loc ::= 'loc' string-literal ':' [0-9]+ ':' [0-9]+
bool Parser::parseSILScope() {
consumeToken(tok::kw_sil_scope);
SILParser ScopeState(*this);
SourceLoc SlotLoc = Tok.getLoc();
unsigned Slot;
if (ScopeState.parseInteger(Slot, diag::sil_invalid_scope_slot))
return true;
SourceLoc LBraceLoc = Tok.getLoc();
consumeToken(tok::l_brace);
StringRef Key = Tok.getText();
RegularLocation Loc{SILLocation::DebugLoc()};
if (Key == "loc")
if (ScopeState.parseSILLocation(Loc))
return true;
ScopeState.parseVerbatim("parent");
Identifier FnName;
SILDebugScope *Parent = nullptr;
SILFunction *ParentFn = nullptr;
if (Tok.is(tok::integer_literal)) {
/// scope-parent ::= sil-scope-ref
if (ScopeState.parseScopeRef(Parent))
return true;
} else {
/// scope-parent ::= sil-function-name
SILType Ty;
SourceLoc FnLoc = Tok.getLoc();
// We need to turn on InSILBody to parse the function reference.
Lexer::SILBodyRAII Tmp(*L);
GenericEnvironment *IgnoredEnv;
Scope S(this, ScopeKind::TopLevel);
Scope Body(this, ScopeKind::FunctionBody);
if ((ScopeState.parseGlobalName(FnName)) ||
parseToken(tok::colon, diag::expected_sil_colon_value_ref) ||
ScopeState.parseSILType(Ty, IgnoredEnv, true))
return true;
// The function doesn't exist yet. Create a zombie forward declaration.
auto FnTy = Ty.getAs<SILFunctionType>();
if (!FnTy || !Ty.isObject()) {
diagnose(FnLoc, diag::expected_sil_function_type);
return true;
}
ParentFn = ScopeState.getGlobalNameForReference(FnName, FnTy, FnLoc, true);
ScopeState.TUState.PotentialZombieFns.insert(ParentFn);
}
SILDebugScope *InlinedAt = nullptr;
if (Tok.getText() == "inlined_at") {
consumeToken();
if (ScopeState.parseScopeRef(InlinedAt))
return true;
}
SourceLoc RBraceLoc;
parseMatchingToken(tok::r_brace, RBraceLoc, diag::expected_sil_rbrace,
LBraceLoc);
auto &Scope = SIL->S->ScopeSlots[Slot];
if (Scope) {
diagnose(SlotLoc, diag::sil_scope_redefined, Slot);
return true;
}
Scope = new (*SIL->M) SILDebugScope(Loc, ParentFn, Parent, InlinedAt);
return false;
}