blob: 97e61fb7fa4995f548ea92e948656d736dff8bb9 [file] [log] [blame]
//===--- IRGenSIL.cpp - Swift Per-Function IR Generation ------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements basic setup and teardown for the class which
// performs IR generation for function bodies.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "irgensil"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Support/Debug.h"
#include "clang/AST/ASTContext.h"
#include "clang/Basic/TargetInfo.h"
#include "swift/Basic/Range.h"
#include "swift/Basic/STLExtras.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/IRGenOptions.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/AST/Types.h"
#include "swift/SIL/Dominance.h"
#include "swift/SIL/PrettyStackTrace.h"
#include "swift/SIL/SILDebugScope.h"
#include "swift/SIL/SILDeclRef.h"
#include "swift/SIL/SILLinkage.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILType.h"
#include "swift/SIL/SILVisitor.h"
#include "clang/CodeGen/CodeGenABITypes.h"
#include "CallEmission.h"
#include "Explosion.h"
#include "GenArchetype.h"
#include "GenBuiltin.h"
#include "GenCall.h"
#include "GenCast.h"
#include "GenClass.h"
#include "GenConstant.h"
#include "GenEnum.h"
#include "GenExistential.h"
#include "GenFunc.h"
#include "GenHeap.h"
#include "GenMeta.h"
#include "GenObjC.h"
#include "GenOpaque.h"
#include "GenPoly.h"
#include "GenProto.h"
#include "GenStruct.h"
#include "GenTuple.h"
#include "GenType.h"
#include "IRGenDebugInfo.h"
#include "IRGenModule.h"
#include "NativeConventionSchema.h"
#include "ReferenceTypeInfo.h"
#include "WeakTypeInfo.h"
using namespace swift;
using namespace irgen;
namespace {
class LoweredValue;
/// Represents a statically-known function as a SIL thin function value.
class StaticFunction {
/// The function reference.
llvm::Function *Function;
ForeignFunctionInfo ForeignInfo;
/// The function's native representation.
SILFunctionTypeRepresentation Rep;
public:
StaticFunction(llvm::Function *function, ForeignFunctionInfo foreignInfo,
SILFunctionTypeRepresentation rep)
: Function(function), ForeignInfo(foreignInfo), Rep(rep)
{}
llvm::Function *getFunction() const { return Function; }
SILFunctionTypeRepresentation getRepresentation() const { return Rep; }
const ForeignFunctionInfo &getForeignInfo() const { return ForeignInfo; }
llvm::Value *getExplosionValue(IRGenFunction &IGF) const;
};
/// Represents a SIL value lowered to IR, in one of these forms:
/// - an Address, corresponding to a SIL address value;
/// - an Explosion of (unmanaged) Values, corresponding to a SIL "register"; or
/// - a CallEmission for a partially-applied curried function or method.
class LoweredValue {
public:
enum class Kind {
/// The first two LoweredValue kinds correspond to a SIL address value.
///
/// The LoweredValue of an existential alloc_stack keeps an owning container
/// in addition to the address of the allocated buffer.
/// Depending on the allocated type, the container may be equal to the
/// buffer itself (for types with known sizes) or it may be the address
/// of a fixed-size container which points to the heap-allocated buffer.
/// In this case the address-part may be null, which means that the buffer
/// is not allocated yet.
ContainedAddress,
/// The LoweredValue of a resilient, generic, or loadable typed alloc_stack
/// keeps an optional stackrestore point in addition to the address of the
/// allocated buffer. For all other address values the stackrestore point is
/// just null.
/// If the stackrestore point is set (currently, this might happen for
/// opaque types: generic and resilient) the deallocation of the stack must
/// reset the stack pointer to this point.
Address,
/// The following kinds correspond to SIL non-address values.
Value_First,
/// A normal value, represented as an exploded array of llvm Values.
Explosion = Value_First,
/// A @box together with the address of the box value.
BoxWithAddress,
/// A value that represents a statically-known function symbol that
/// can be called directly, represented as a StaticFunction.
StaticFunction,
/// A value that represents an Objective-C method that must be called with
/// a form of objc_msgSend.
ObjCMethod,
Value_Last = ObjCMethod,
};
Kind kind;
private:
using ExplosionVector = SmallVector<llvm::Value *, 4>;
union {
ContainedAddress containedAddress;
StackAddress address;
OwnedAddress boxWithAddress;
struct {
ExplosionVector values;
} explosion;
StaticFunction staticFunction;
ObjCMethod objcMethod;
};
public:
/// Create an address value without a stack restore point.
LoweredValue(const Address &address)
: kind(Kind::Address), address(address)
{}
/// Create an address value with an optional stack restore point.
LoweredValue(const StackAddress &address)
: kind(Kind::Address), address(address)
{}
enum ContainerForUnallocatedAddress_t { ContainerForUnallocatedAddress };
/// Create an address value for an alloc_stack, consisting of a container and
/// a not yet allocated buffer.
LoweredValue(const Address &container, ContainerForUnallocatedAddress_t)
: kind(Kind::ContainedAddress), containedAddress(container, Address())
{}
/// Create an address value for an alloc_stack, consisting of a container and
/// the address of the allocated buffer.
LoweredValue(const ContainedAddress &address)
: kind(Kind::ContainedAddress), containedAddress(address)
{}
LoweredValue(StaticFunction &&staticFunction)
: kind(Kind::StaticFunction), staticFunction(std::move(staticFunction))
{}
LoweredValue(ObjCMethod &&objcMethod)
: kind(Kind::ObjCMethod), objcMethod(std::move(objcMethod))
{}
LoweredValue(Explosion &e)
: kind(Kind::Explosion), explosion{{}} {
auto Elts = e.claimAll();
explosion.values.append(Elts.begin(), Elts.end());
}
LoweredValue(const OwnedAddress &boxWithAddress)
: kind(Kind::BoxWithAddress), boxWithAddress(boxWithAddress)
{}
LoweredValue(LoweredValue &&lv)
: kind(lv.kind)
{
switch (kind) {
case Kind::ContainedAddress:
::new (&containedAddress) ContainedAddress(std::move(lv.containedAddress));
break;
case Kind::Address:
::new (&address) StackAddress(std::move(lv.address));
break;
case Kind::Explosion:
::new (&explosion.values) ExplosionVector(std::move(lv.explosion.values));
break;
case Kind::BoxWithAddress:
::new (&boxWithAddress) OwnedAddress(std::move(lv.boxWithAddress));
break;
case Kind::StaticFunction:
::new (&staticFunction) StaticFunction(std::move(lv.staticFunction));
break;
case Kind::ObjCMethod:
::new (&objcMethod) ObjCMethod(std::move(lv.objcMethod));
break;
}
}
LoweredValue &operator=(LoweredValue &&lv) {
assert(this != &lv);
this->~LoweredValue();
::new (this) LoweredValue(std::move(lv));
return *this;
}
bool isAddress() const {
return kind == Kind::Address && address.getAddress().isValid();
}
bool isUnallocatedAddressInBuffer() const {
return kind == Kind::ContainedAddress &&
!containedAddress.getAddress().isValid();
}
bool isValue() const {
return kind >= Kind::Value_First && kind <= Kind::Value_Last;
}
bool isBoxWithAddress() const {
return kind == Kind::BoxWithAddress;
}
Address getAddress() const {
assert(isAddress() && "not an allocated address");
return address.getAddress();
}
StackAddress getStackAddress() const {
assert(isAddress() && "not an allocated address");
return address;
}
Address getContainerOfAddress() const {
assert(kind == Kind::ContainedAddress);
assert(containedAddress.getContainer().isValid() && "address has no container");
return containedAddress.getContainer();
}
Address getAddressInContainer() const {
assert(kind == Kind::ContainedAddress);
assert(containedAddress.getContainer().isValid() &&
"address has no container");
return containedAddress.getAddress();
}
void getExplosion(IRGenFunction &IGF, Explosion &ex) const;
Explosion getExplosion(IRGenFunction &IGF) const {
Explosion e;
getExplosion(IGF, e);
return e;
}
Address getAddressOfBox() const {
assert(kind == Kind::BoxWithAddress);
return boxWithAddress.getAddress();
}
llvm::Value *getSingletonExplosion(IRGenFunction &IGF) const;
const StaticFunction &getStaticFunction() const {
assert(kind == Kind::StaticFunction && "not a static function");
return staticFunction;
}
const ObjCMethod &getObjCMethod() const {
assert(kind == Kind::ObjCMethod && "not an objc method");
return objcMethod;
}
~LoweredValue() {
switch (kind) {
case Kind::Address:
address.~StackAddress();
break;
case Kind::ContainedAddress:
containedAddress.~ContainedAddress();
break;
case Kind::Explosion:
explosion.values.~ExplosionVector();
break;
case Kind::BoxWithAddress:
boxWithAddress.~OwnedAddress();
break;
case Kind::StaticFunction:
staticFunction.~StaticFunction();
break;
case Kind::ObjCMethod:
objcMethod.~ObjCMethod();
break;
}
}
};
using PHINodeVector = llvm::TinyPtrVector<llvm::PHINode*>;
/// Represents a lowered SIL basic block. This keeps track
/// of SIL branch arguments so that they can be lowered to LLVM phi nodes.
struct LoweredBB {
llvm::BasicBlock *bb;
PHINodeVector phis;
LoweredBB() = default;
explicit LoweredBB(llvm::BasicBlock *bb, PHINodeVector &&phis)
: bb(bb), phis(std::move(phis))
{}
};
/// Visits a SIL Function and generates LLVM IR.
class IRGenSILFunction :
public IRGenFunction, public SILInstructionVisitor<IRGenSILFunction>
{
public:
llvm::DenseMap<SILValue, LoweredValue> LoweredValues;
llvm::DenseMap<SILType, LoweredValue> LoweredUndefs;
/// All alloc_ref instructions which allocate the object on the stack.
llvm::SmallPtrSet<SILInstruction *, 8> StackAllocs;
/// With closure captures it is actually possible to have two function
/// arguments that both have the same name. Until this is fixed, we need to
/// also hash the ArgNo here.
typedef std::pair<unsigned, std::pair<const SILDebugScope *, StringRef>>
StackSlotKey;
/// Keeps track of the mapping of source variables to -O0 shadow copy allocas.
llvm::SmallDenseMap<StackSlotKey, Address, 8> ShadowStackSlots;
llvm::SmallDenseMap<Decl *, SmallString<4>, 8> AnonymousVariables;
llvm::SmallDenseMap<llvm::Instruction *, DominancePoint, 8> ValueVariables;
unsigned NumAnonVars = 0;
unsigned NumCondFails = 0;
/// Accumulative amount of allocated bytes on the stack. Used to limit the
/// size for stack promoted objects.
/// We calculate it on demand, so that we don't have to do it if the
/// function does not have any stack promoted allocations.
int EstimatedStackSize = -1;
llvm::MapVector<SILBasicBlock *, LoweredBB> LoweredBBs;
// Destination basic blocks for condfail traps.
llvm::SmallVector<llvm::BasicBlock *, 8> FailBBs;
SILFunction *CurSILFn;
Address IndirectReturn;
// A cached dominance analysis.
std::unique_ptr<DominanceInfo> Dominance;
IRGenSILFunction(IRGenModule &IGM, SILFunction *f);
~IRGenSILFunction();
/// Generate IR for the SIL Function.
void emitSILFunction();
/// Calculates EstimatedStackSize.
void estimateStackSize();
void setLoweredValue(SILValue v, LoweredValue &&lv) {
auto inserted = LoweredValues.insert({v, std::move(lv)});
assert(inserted.second && "already had lowered value for sil value?!");
(void)inserted;
}
/// Create a new Address corresponding to the given SIL address value.
void setLoweredAddress(SILValue v, const Address &address) {
assert(v->getType().isAddress() && "address for non-address value?!");
setLoweredValue(v, address);
}
void setLoweredStackAddress(SILValue v, const StackAddress &address) {
assert(v->getType().isAddress() && "address for non-address value?!");
setLoweredValue(v, address);
}
void setContainerOfUnallocatedAddress(SILValue v,
const Address &buffer) {
assert(v->getType().isAddress() && "address for non-address value?!");
setLoweredValue(v,
LoweredValue(buffer, LoweredValue::ContainerForUnallocatedAddress));
}
void overwriteAllocatedAddress(SILValue v, const Address &address) {
assert(v->getType().isAddress() && "address for non-address value?!");
auto it = LoweredValues.find(v);
assert(it != LoweredValues.end() && "no existing entry for overwrite?");
assert(it->second.isUnallocatedAddressInBuffer() &&
"not an unallocated address");
it->second = ContainedAddress(it->second.getContainerOfAddress(), address);
}
void setAllocatedAddressForBuffer(SILValue v, const Address &allocedAddress);
/// Create a new Explosion corresponding to the given SIL value.
void setLoweredExplosion(SILValue v, Explosion &e) {
assert(v->getType().isObject() && "explosion for address value?!");
setLoweredValue(v, LoweredValue(e));
}
void setLoweredBox(SILValue v, const OwnedAddress &box) {
assert(v->getType().isObject() && "box for address value?!");
setLoweredValue(v, LoweredValue(box));
}
/// Create a new StaticFunction corresponding to the given SIL value.
void setLoweredStaticFunction(SILValue v,
llvm::Function *f,
SILFunctionTypeRepresentation rep,
ForeignFunctionInfo foreignInfo) {
assert(v->getType().isObject() && "function for address value?!");
assert(v->getType().is<SILFunctionType>() &&
"function for non-function value?!");
setLoweredValue(v, StaticFunction{f, foreignInfo, rep});
}
/// Create a new Objective-C method corresponding to the given SIL value.
void setLoweredObjCMethod(SILValue v, SILDeclRef method) {
assert(v->getType().isObject() && "function for address value?!");
assert(v->getType().is<SILFunctionType>() &&
"function for non-function value?!");
setLoweredValue(v, ObjCMethod{method, SILType(), false});
}
/// Create a new Objective-C method corresponding to the given SIL value that
/// starts its search from the given search type.
///
/// Unlike \c setLoweredObjCMethod, which finds the method in the actual
/// runtime type of the object, this routine starts at the static type of the
/// object and searches up the class hierarchy (toward superclasses).
///
/// \param searchType The class from which the Objective-C runtime will start
/// its search for a method.
///
/// \param startAtSuper Whether we want to start at the superclass of the
/// static type (vs. the static type itself).
void setLoweredObjCMethodBounded(SILValue v, SILDeclRef method,
SILType searchType, bool startAtSuper) {
assert(v->getType().isObject() && "function for address value?!");
assert(v->getType().is<SILFunctionType>() &&
"function for non-function value?!");
setLoweredValue(v, ObjCMethod{method, searchType, startAtSuper});
}
LoweredValue &getUndefLoweredValue(SILType t) {
auto found = LoweredUndefs.find(t);
if (found != LoweredUndefs.end())
return found->second;
auto &ti = getTypeInfo(t);
switch (t.getCategory()) {
case SILValueCategory::Address: {
Address undefAddr = ti.getAddressForPointer(
llvm::UndefValue::get(ti.getStorageType()->getPointerTo()));
LoweredUndefs.insert({t, LoweredValue(undefAddr)});
break;
}
case SILValueCategory::Object: {
auto schema = ti.getSchema();
Explosion e;
for (auto &elt : schema) {
assert(!elt.isAggregate()
&& "non-scalar element in loadable type schema?!");
e.add(llvm::UndefValue::get(elt.getScalarType()));
}
LoweredUndefs.insert({t, LoweredValue(e)});
break;
}
}
found = LoweredUndefs.find(t);
assert(found != LoweredUndefs.end());
return found->second;
}
/// Get the LoweredValue corresponding to the given SIL value, which must
/// have been lowered.
LoweredValue &getLoweredValue(SILValue v) {
if (isa<SILUndef>(v))
return getUndefLoweredValue(v->getType());
auto foundValue = LoweredValues.find(v);
assert(foundValue != LoweredValues.end() &&
"no lowered explosion for sil value!");
return foundValue->second;
}
/// Get the Address of a SIL value of address type, which must have been
/// lowered.
Address getLoweredAddress(SILValue v) {
if (getLoweredValue(v).kind == LoweredValue::Kind::Address)
return getLoweredValue(v).getAddress();
else
return getLoweredValue(v).getAddressInContainer();
}
StackAddress getLoweredStackAddress(SILValue v) {
return getLoweredValue(v).getStackAddress();
}
/// Add the unmanaged LLVM values lowered from a SIL value to an explosion.
void getLoweredExplosion(SILValue v, Explosion &e) {
getLoweredValue(v).getExplosion(*this, e);
}
/// Create an Explosion containing the unmanaged LLVM values lowered from a
/// SIL value.
Explosion getLoweredExplosion(SILValue v) {
return getLoweredValue(v).getExplosion(*this);
}
/// Return the single member of the lowered explosion for the
/// given SIL value.
llvm::Value *getLoweredSingletonExplosion(SILValue v) {
return getLoweredValue(v).getSingletonExplosion(*this);
}
LoweredBB &getLoweredBB(SILBasicBlock *bb) {
auto foundBB = LoweredBBs.find(bb);
assert(foundBB != LoweredBBs.end() && "no llvm bb for sil bb?!");
return foundBB->second;
}
StringRef getOrCreateAnonymousVarName(VarDecl *Decl) {
llvm::SmallString<4> &Name = AnonymousVariables[Decl];
if (Name.empty()) {
{
llvm::raw_svector_ostream S(Name);
S << '_' << NumAnonVars++;
}
AnonymousVariables.insert({Decl, Name});
}
return Name;
}
template <class DebugVarCarryingInst>
StringRef getVarName(DebugVarCarryingInst *i) {
StringRef Name = i->getVarInfo().Name;
// The $match variables generated by the type checker are not
// guaranteed to be unique within their scope, but they have
// unique VarDecls.
if ((Name.empty() || Name == "$match") && i->getDecl())
return getOrCreateAnonymousVarName(i->getDecl());
return Name;
}
/// At -Onone, forcibly keep all LLVM values that are tracked by
/// debug variables alive by inserting an empty inline assembler
/// expression depending on the value in the blocks dominated by the
/// value.
void emitDebugVariableRangeExtension(const SILBasicBlock *CurBB) {
if (IGM.IRGen.Opts.Optimize)
return;
for (auto &Variable : ValueVariables) {
auto VarDominancePoint = Variable.second;
llvm::Value *Storage = Variable.first;
if (getActiveDominancePoint() == VarDominancePoint ||
isActiveDominancePointDominatedBy(VarDominancePoint)) {
llvm::Type *ArgTys;
auto *Ty = Storage->getType();
// Vectors, Pointers and Floats are expected to fit into a register.
if (Ty->isPointerTy() || Ty->isFloatingPointTy() || Ty->isVectorTy())
ArgTys = { Ty };
else {
// If this is not a scalar or vector type, we can't handle it.
if (isa<llvm::CompositeType>(Ty))
continue;
// The storage is guaranteed to be no larger than the register width.
// Extend the storage so it would fit into a register.
llvm::Type *IntTy;
switch (IGM.getClangASTContext().getTargetInfo().getRegisterWidth()) {
case 64: IntTy = IGM.Int64Ty; break;
case 32: IntTy = IGM.Int32Ty; break;
default: llvm_unreachable("unsupported register width");
}
ArgTys = { IntTy };
Storage = Builder.CreateZExtOrBitCast(Storage, IntTy);
}
// Emit an empty inline assembler expression depending on the register.
auto *AsmFnTy = llvm::FunctionType::get(IGM.VoidTy, ArgTys, false);
auto *InlineAsm = llvm::InlineAsm::get(AsmFnTy, "", "r", true);
Builder.CreateCall(InlineAsm, Storage);
// Propagate the dbg.value intrinsics into the later basic blocks. Note
// that this shouldn't be necessary. LiveDebugValues should be doing
// this but can't in general because it currently only tracks register
// locations.
llvm::Instruction *Value = Variable.first;
auto It = llvm::BasicBlock::iterator(Value);
auto *BB = Value->getParent();
auto *CurBB = Builder.GetInsertBlock();
if (BB != CurBB)
for (auto I = std::next(It), E = BB->end(); I != E; ++I) {
auto *DVI = dyn_cast<llvm::DbgValueInst>(I);
if (DVI && DVI->getValue() == Value)
IGM.DebugInfo->getBuilder().insertDbgValueIntrinsic(
DVI->getValue(), 0, DVI->getVariable(), DVI->getExpression(),
DVI->getDebugLoc(), &*CurBB->getFirstInsertionPt());
else
// Found all dbg.value intrinsics describing this location.
break;
}
}
}
}
/// Account for bugs in LLVM.
///
/// - The LLVM type legalizer currently doesn't update debug
/// intrinsics when a large value is split up into smaller
/// pieces. Note that this heuristic as a bit too conservative
/// on 32-bit targets as it will also fire for doubles.
///
/// - CodeGen Prepare may drop dbg.values pointing to PHI instruction.
bool needsShadowCopy(llvm::Value *Storage) {
return (IGM.DataLayout.getTypeSizeInBits(Storage->getType()) >
IGM.getClangASTContext().getTargetInfo().getRegisterWidth()) ||
isa<llvm::PHINode>(Storage);
}
/// At -Onone, emit a shadow copy of an Address in an alloca, so the
/// register allocator doesn't elide the dbg.value intrinsic when
/// register pressure is high. There is a trade-off to this: With
/// shadow copies, we lose the precise lifetime.
llvm::Value *emitShadowCopy(llvm::Value *Storage,
const SILDebugScope *Scope,
StringRef Name, unsigned ArgNo,
Alignment Align = Alignment(0)) {
auto Ty = Storage->getType();
// Never emit shadow copies when optimizing, or if already on the stack.
if (IGM.IRGen.Opts.Optimize ||
isa<llvm::AllocaInst>(Storage) ||
isa<llvm::UndefValue>(Storage) ||
Ty == IGM.RefCountedPtrTy) // No debug info is emitted for refcounts.
return Storage;
// Always emit shadow copies for function arguments.
if (ArgNo == 0)
// Otherwise only if debug value range extension is not feasible.
if (!needsShadowCopy(Storage)) {
// Mark for debug value range extension unless this is a constant.
if (auto *Value = dyn_cast<llvm::Instruction>(Storage))
ValueVariables.insert({Value, getActiveDominancePoint()});
return Storage;
}
if (Align.isZero())
Align = IGM.getPointerAlignment();
auto &Alloca = ShadowStackSlots[{ArgNo, {Scope, Name}}];
if (!Alloca.isValid())
Alloca = createAlloca(Ty, Align, Name+".addr");
ArtificialLocation AutoRestore(getDebugScope(), IGM.DebugInfo, Builder);
Builder.CreateStore(Storage, Alloca.getAddress(), Align);
return Alloca.getAddress();
}
llvm::Value *emitShadowCopy(Address Storage, const SILDebugScope *Scope,
StringRef Name, unsigned ArgNo) {
return emitShadowCopy(Storage.getAddress(), Scope, Name, ArgNo,
Storage.getAlignment());
}
void emitShadowCopy(ArrayRef<llvm::Value *> vals, const SILDebugScope *Scope,
StringRef Name, unsigned ArgNo,
llvm::SmallVectorImpl<llvm::Value *> &copy) {
// Only do this at -O0.
if (IGM.IRGen.Opts.Optimize) {
copy.append(vals.begin(), vals.end());
return;
}
// Single or empty values.
if (vals.size() <= 1) {
for (auto val : vals)
copy.push_back(emitShadowCopy(val, Scope, Name, ArgNo));
return;
}
// Create a single aggregate alloca for explosions.
// TODO: why are we doing this instead of using the TypeInfo?
llvm::StructType *aggregateType = [&] {
SmallVector<llvm::Type *, 8> eltTypes;
for (auto val : vals)
eltTypes.push_back(val->getType());
return llvm::StructType::get(IGM.LLVMContext, eltTypes);
}();
auto layout = IGM.DataLayout.getStructLayout(aggregateType);
Alignment align(layout->getAlignment());
auto alloca = createAlloca(aggregateType, align, Name + ".debug");
ArtificialLocation AutoRestore(getDebugScope(), IGM.DebugInfo, Builder);
size_t i = 0;
for (auto val : vals) {
auto addr = Builder.CreateStructGEP(alloca, i,
Size(layout->getElementOffset(i)));
Builder.CreateStore(val, addr);
i++;
}
copy.push_back(alloca.getAddress());
}
/// Determine whether a generic variable has been inlined.
static bool isInlinedGeneric(VarDecl *VarDecl, const SILDebugScope *DS) {
if (!DS->InlinedCallSite)
return false;
if (VarDecl->hasType())
return VarDecl->getType()->hasArchetype();
return VarDecl->getInterfaceType()->hasTypeParameter();
}
/// Emit debug info for a function argument or a local variable.
template <typename StorageType>
void emitDebugVariableDeclaration(StorageType Storage,
DebugTypeInfo Ty,
SILType SILTy,
const SILDebugScope *DS,
VarDecl *VarDecl,
StringRef Name,
unsigned ArgNo = 0,
IndirectionKind Indirection = DirectValue) {
// Force all archetypes referenced by the type to be bound by this point.
// TODO: just make sure that we have a path to them that the debug info
// can follow.
// FIXME: The debug info type of all inlined instances of a variable must be
// the same as the type of the abstract variable.
if (isInlinedGeneric(VarDecl, DS))
return;
auto runtimeTy = getRuntimeReifiedType(IGM,
Ty.getType()->getCanonicalType());
if (!IGM.IRGen.Opts.Optimize && runtimeTy->hasArchetype())
runtimeTy.visit([&](Type t) {
if (auto archetype = dyn_cast<ArchetypeType>(CanType(t)))
emitTypeMetadataRef(archetype);
});
assert(IGM.DebugInfo && "debug info not enabled");
if (ArgNo) {
PrologueLocation AutoRestore(IGM.DebugInfo, Builder);
IGM.DebugInfo->emitVariableDeclaration(Builder, Storage, Ty, DS, VarDecl,
Name, ArgNo, Indirection);
} else
IGM.DebugInfo->emitVariableDeclaration(Builder, Storage, Ty, DS, VarDecl,
Name, 0, Indirection);
}
void emitFailBB() {
if (!FailBBs.empty()) {
// Move the trap basic blocks to the end of the function.
for (auto *FailBB : FailBBs) {
auto &BlockList = CurFn->getBasicBlockList();
BlockList.splice(BlockList.end(), BlockList, FailBB);
}
}
}
//===--------------------------------------------------------------------===//
// SIL instruction lowering
//===--------------------------------------------------------------------===//
void visitSILBasicBlock(SILBasicBlock *BB);
void emitErrorResultVar(SILResultInfo ErrorInfo, DebugValueInst *DbgValue);
void emitDebugInfoForAllocStack(AllocStackInst *i, const TypeInfo &type,
llvm::Value *addr);
void visitAllocStackInst(AllocStackInst *i);
void visitAllocRefInst(AllocRefInst *i);
void visitAllocRefDynamicInst(AllocRefDynamicInst *i);
void visitAllocBoxInst(AllocBoxInst *i);
void visitProjectBoxInst(ProjectBoxInst *i);
void visitApplyInst(ApplyInst *i);
void visitTryApplyInst(TryApplyInst *i);
void visitFullApplySite(FullApplySite i);
void visitPartialApplyInst(PartialApplyInst *i);
void visitBuiltinInst(BuiltinInst *i);
void visitFunctionRefInst(FunctionRefInst *i);
void visitAllocGlobalInst(AllocGlobalInst *i);
void visitGlobalAddrInst(GlobalAddrInst *i);
void visitIntegerLiteralInst(IntegerLiteralInst *i);
void visitFloatLiteralInst(FloatLiteralInst *i);
void visitStringLiteralInst(StringLiteralInst *i);
void visitLoadInst(LoadInst *i);
void visitStoreInst(StoreInst *i);
void visitAssignInst(AssignInst *i) {
llvm_unreachable("assign is not valid in canonical SIL");
}
void visitMarkUninitializedInst(MarkUninitializedInst *i) {
llvm_unreachable("mark_uninitialized is not valid in canonical SIL");
}
void visitMarkUninitializedBehaviorInst(MarkUninitializedBehaviorInst *i) {
llvm_unreachable("mark_uninitialized_behavior is not valid in canonical SIL");
}
void visitMarkFunctionEscapeInst(MarkFunctionEscapeInst *i) {
llvm_unreachable("mark_function_escape is not valid in canonical SIL");
}
void visitLoadBorrowInst(LoadBorrowInst *i) {
llvm_unreachable("unimplemented");
}
void visitDebugValueInst(DebugValueInst *i);
void visitDebugValueAddrInst(DebugValueAddrInst *i);
void visitLoadWeakInst(LoadWeakInst *i);
void visitStoreWeakInst(StoreWeakInst *i);
void visitRetainValueInst(RetainValueInst *i);
void visitCopyValueInst(CopyValueInst *i);
void visitCopyUnownedValueInst(CopyUnownedValueInst *i) {
llvm_unreachable("unimplemented");
}
void visitReleaseValueInst(ReleaseValueInst *i);
void visitDestroyValueInst(DestroyValueInst *i);
void visitAutoreleaseValueInst(AutoreleaseValueInst *i);
void visitSetDeallocatingInst(SetDeallocatingInst *i);
void visitStructInst(StructInst *i);
void visitTupleInst(TupleInst *i);
void visitEnumInst(EnumInst *i);
void visitInitEnumDataAddrInst(InitEnumDataAddrInst *i);
void visitSelectEnumInst(SelectEnumInst *i);
void visitSelectEnumAddrInst(SelectEnumAddrInst *i);
void visitSelectValueInst(SelectValueInst *i);
void visitUncheckedEnumDataInst(UncheckedEnumDataInst *i);
void visitUncheckedTakeEnumDataAddrInst(UncheckedTakeEnumDataAddrInst *i);
void visitInjectEnumAddrInst(InjectEnumAddrInst *i);
void visitObjCProtocolInst(ObjCProtocolInst *i);
void visitMetatypeInst(MetatypeInst *i);
void visitValueMetatypeInst(ValueMetatypeInst *i);
void visitExistentialMetatypeInst(ExistentialMetatypeInst *i);
void visitTupleExtractInst(TupleExtractInst *i);
void visitTupleElementAddrInst(TupleElementAddrInst *i);
void visitStructExtractInst(StructExtractInst *i);
void visitStructElementAddrInst(StructElementAddrInst *i);
void visitRefElementAddrInst(RefElementAddrInst *i);
void visitRefTailAddrInst(RefTailAddrInst *i);
void visitClassMethodInst(ClassMethodInst *i);
void visitSuperMethodInst(SuperMethodInst *i);
void visitWitnessMethodInst(WitnessMethodInst *i);
void visitDynamicMethodInst(DynamicMethodInst *i);
void visitAllocValueBufferInst(AllocValueBufferInst *i);
void visitProjectValueBufferInst(ProjectValueBufferInst *i);
void visitDeallocValueBufferInst(DeallocValueBufferInst *i);
void visitOpenExistentialAddrInst(OpenExistentialAddrInst *i);
void visitOpenExistentialMetatypeInst(OpenExistentialMetatypeInst *i);
void visitOpenExistentialRefInst(OpenExistentialRefInst *i);
void visitOpenExistentialOpaqueInst(OpenExistentialOpaqueInst *i);
void visitInitExistentialAddrInst(InitExistentialAddrInst *i);
void visitInitExistentialOpaqueInst(InitExistentialOpaqueInst *i);
void visitInitExistentialMetatypeInst(InitExistentialMetatypeInst *i);
void visitInitExistentialRefInst(InitExistentialRefInst *i);
void visitDeinitExistentialAddrInst(DeinitExistentialAddrInst *i);
void visitDeinitExistentialOpaqueInst(DeinitExistentialOpaqueInst *i);
void visitAllocExistentialBoxInst(AllocExistentialBoxInst *i);
void visitOpenExistentialBoxInst(OpenExistentialBoxInst *i);
void visitProjectExistentialBoxInst(ProjectExistentialBoxInst *i);
void visitDeallocExistentialBoxInst(DeallocExistentialBoxInst *i);
void visitProjectBlockStorageInst(ProjectBlockStorageInst *i);
void visitInitBlockStorageHeaderInst(InitBlockStorageHeaderInst *i);
void visitFixLifetimeInst(FixLifetimeInst *i);
void visitBeginBorrowInst(BeginBorrowInst *i) {
llvm_unreachable("unimplemented");
}
void visitEndBorrowInst(EndBorrowInst *i) {
llvm_unreachable("unimplemented");
}
void visitEndBorrowArgumentInst(EndBorrowArgumentInst *i) {
llvm_unreachable("unimplemented");
}
void visitStoreBorrowInst(StoreBorrowInst *i) {
llvm_unreachable("unimplemented");
}
void visitUnmanagedRetainValueInst(UnmanagedRetainValueInst *i) {
llvm_unreachable("unimplemented");
}
void visitUnmanagedReleaseValueInst(UnmanagedReleaseValueInst *i) {
llvm_unreachable("unimplemented");
}
void visitUnmanagedAutoreleaseValueInst(UnmanagedAutoreleaseValueInst *i) {
llvm_unreachable("unimplemented");
}
void visitMarkDependenceInst(MarkDependenceInst *i);
void visitCopyBlockInst(CopyBlockInst *i);
void visitStrongPinInst(StrongPinInst *i);
void visitStrongUnpinInst(StrongUnpinInst *i);
void visitStrongRetainInst(StrongRetainInst *i);
void visitStrongReleaseInst(StrongReleaseInst *i);
void visitStrongRetainUnownedInst(StrongRetainUnownedInst *i);
void visitUnownedRetainInst(UnownedRetainInst *i);
void visitUnownedReleaseInst(UnownedReleaseInst *i);
void visitLoadUnownedInst(LoadUnownedInst *i);
void visitStoreUnownedInst(StoreUnownedInst *i);
void visitIsUniqueInst(IsUniqueInst *i);
void visitIsUniqueOrPinnedInst(IsUniqueOrPinnedInst *i);
void visitDeallocStackInst(DeallocStackInst *i);
void visitDeallocBoxInst(DeallocBoxInst *i);
void visitDeallocRefInst(DeallocRefInst *i);
void visitDeallocPartialRefInst(DeallocPartialRefInst *i);
void visitCopyAddrInst(CopyAddrInst *i);
void visitDestroyAddrInst(DestroyAddrInst *i);
void visitBindMemoryInst(BindMemoryInst *i);
void visitCondFailInst(CondFailInst *i);
void visitConvertFunctionInst(ConvertFunctionInst *i);
void visitThinFunctionToPointerInst(ThinFunctionToPointerInst *i);
void visitPointerToThinFunctionInst(PointerToThinFunctionInst *i);
void visitUpcastInst(UpcastInst *i);
void visitAddressToPointerInst(AddressToPointerInst *i);
void visitPointerToAddressInst(PointerToAddressInst *i);
void visitUncheckedRefCastInst(UncheckedRefCastInst *i);
void visitUncheckedRefCastAddrInst(UncheckedRefCastAddrInst *i);
void visitUncheckedAddrCastInst(UncheckedAddrCastInst *i);
void visitUncheckedTrivialBitCastInst(UncheckedTrivialBitCastInst *i);
void visitUncheckedBitwiseCastInst(UncheckedBitwiseCastInst *i);
void visitRefToRawPointerInst(RefToRawPointerInst *i);
void visitRawPointerToRefInst(RawPointerToRefInst *i);
void visitRefToUnownedInst(RefToUnownedInst *i);
void visitUnownedToRefInst(UnownedToRefInst *i);
void visitRefToUnmanagedInst(RefToUnmanagedInst *i);
void visitUnmanagedToRefInst(UnmanagedToRefInst *i);
void visitThinToThickFunctionInst(ThinToThickFunctionInst *i);
void visitThickToObjCMetatypeInst(ThickToObjCMetatypeInst *i);
void visitObjCToThickMetatypeInst(ObjCToThickMetatypeInst *i);
void visitUnconditionalCheckedCastInst(UnconditionalCheckedCastInst *i);
void visitUnconditionalCheckedCastAddrInst(UnconditionalCheckedCastAddrInst *i);
void visitUnconditionalCheckedCastOpaqueInst(
UnconditionalCheckedCastOpaqueInst *i);
void visitObjCMetatypeToObjectInst(ObjCMetatypeToObjectInst *i);
void visitObjCExistentialMetatypeToObjectInst(
ObjCExistentialMetatypeToObjectInst *i);
void visitRefToBridgeObjectInst(RefToBridgeObjectInst *i);
void visitBridgeObjectToRefInst(BridgeObjectToRefInst *i);
void visitBridgeObjectToWordInst(BridgeObjectToWordInst *i);
void visitIsNonnullInst(IsNonnullInst *i);
void visitIndexAddrInst(IndexAddrInst *i);
void visitTailAddrInst(TailAddrInst *i);
void visitIndexRawPointerInst(IndexRawPointerInst *i);
void visitUnreachableInst(UnreachableInst *i);
void visitBranchInst(BranchInst *i);
void visitCondBranchInst(CondBranchInst *i);
void visitReturnInst(ReturnInst *i);
void visitThrowInst(ThrowInst *i);
void visitSwitchValueInst(SwitchValueInst *i);
void visitSwitchEnumInst(SwitchEnumInst *i);
void visitSwitchEnumAddrInst(SwitchEnumAddrInst *i);
void visitDynamicMethodBranchInst(DynamicMethodBranchInst *i);
void visitCheckedCastBranchInst(CheckedCastBranchInst *i);
void visitCheckedCastAddrBranchInst(CheckedCastAddrBranchInst *i);
};
} // end anonymous namespace
llvm::Value *StaticFunction::getExplosionValue(IRGenFunction &IGF) const {
return IGF.Builder.CreateBitCast(Function, IGF.IGM.Int8PtrTy);
}
void LoweredValue::getExplosion(IRGenFunction &IGF, Explosion &ex) const {
switch (kind) {
case Kind::Address:
case Kind::ContainedAddress:
llvm_unreachable("not a value");
case Kind::Explosion:
for (auto *value : explosion.values)
ex.add(value);
break;
case Kind::BoxWithAddress:
ex.add(boxWithAddress.getOwner());
break;
case Kind::StaticFunction:
ex.add(staticFunction.getExplosionValue(IGF));
break;
case Kind::ObjCMethod:
ex.add(objcMethod.getExplosionValue(IGF));
break;
}
}
llvm::Value *LoweredValue::getSingletonExplosion(IRGenFunction &IGF) const {
switch (kind) {
case Kind::Address:
case Kind::ContainedAddress:
llvm_unreachable("not a value");
case Kind::Explosion:
assert(explosion.values.size() == 1);
return explosion.values[0];
case Kind::BoxWithAddress:
return boxWithAddress.getOwner();
case Kind::StaticFunction:
return staticFunction.getExplosionValue(IGF);
case Kind::ObjCMethod:
return objcMethod.getExplosionValue(IGF);
}
llvm_unreachable("bad lowered value kind!");
}
IRGenSILFunction::IRGenSILFunction(IRGenModule &IGM,
SILFunction *f)
: IRGenFunction(IGM, IGM.getAddrOfSILFunction(f, ForDefinition),
f->getDebugScope(), f->getLocation()),
CurSILFn(f) {
// Apply sanitizer attributes to the function.
// TODO: Check if the function is ASan black listed either in the external
// file or via annotations.
if (IGM.IRGen.Opts.Sanitize == SanitizerKind::Address)
CurFn->addFnAttr(llvm::Attribute::SanitizeAddress);
if (IGM.IRGen.Opts.Sanitize == SanitizerKind::Thread) {
if (dyn_cast_or_null<DestructorDecl>(f->getDeclContext()))
// Do not report races in deinit and anything called from it
// because TSan does not observe synchronization between retain
// count dropping to '0' and the object deinitialization.
CurFn->addFnAttr("sanitize_thread_no_checking_at_run_time");
else
CurFn->addFnAttr(llvm::Attribute::SanitizeThread);
}
}
IRGenSILFunction::~IRGenSILFunction() {
assert(Builder.hasPostTerminatorIP() && "did not terminate BB?!");
// Emit the fail BB if we have one.
if (!FailBBs.empty())
emitFailBB();
DEBUG(CurFn->print(llvm::dbgs()));
}
template<typename ValueVector>
static void emitPHINodesForType(IRGenSILFunction &IGF, SILType type,
const TypeInfo &ti, unsigned predecessors,
ValueVector &phis) {
if (type.isAddress()) {
phis.push_back(IGF.Builder.CreatePHI(ti.getStorageType()->getPointerTo(),
predecessors));
} else {
// PHIs are always emitted with maximal explosion.
ExplosionSchema schema = ti.getSchema();
for (auto &elt : schema) {
if (elt.isScalar())
phis.push_back(
IGF.Builder.CreatePHI(elt.getScalarType(), predecessors));
else
phis.push_back(
IGF.Builder.CreatePHI(elt.getAggregateType()->getPointerTo(),
predecessors));
}
}
}
static PHINodeVector
emitPHINodesForBBArgs(IRGenSILFunction &IGF,
SILBasicBlock *silBB,
llvm::BasicBlock *llBB) {
PHINodeVector phis;
unsigned predecessors = std::distance(silBB->pred_begin(), silBB->pred_end());
IGF.Builder.SetInsertPoint(llBB);
if (IGF.IGM.DebugInfo) {
// Use the location of the first instruction in the basic block
// for the φ-nodes.
if (!silBB->empty()) {
SILInstruction &I = *silBB->begin();
auto DS = I.getDebugScope();
assert(DS);
IGF.IGM.DebugInfo->setCurrentLoc(IGF.Builder, DS, I.getLoc());
}
}
for (SILArgument *arg : make_range(silBB->args_begin(), silBB->args_end())) {
size_t first = phis.size();
const TypeInfo &ti = IGF.getTypeInfo(arg->getType());
emitPHINodesForType(IGF, arg->getType(), ti, predecessors, phis);
if (arg->getType().isAddress()) {
IGF.setLoweredAddress(arg,
ti.getAddressForPointer(phis.back()));
} else {
Explosion argValue;
for (llvm::PHINode *phi :
swift::make_range(phis.begin()+first, phis.end()))
argValue.add(phi);
IGF.setLoweredExplosion(arg, argValue);
}
}
// Since we return to the entry of the function, reset the location.
if (IGF.IGM.DebugInfo)
IGF.IGM.DebugInfo->clearLoc(IGF.Builder);
return phis;
}
static void addIncomingExplosionToPHINodes(IRGenSILFunction &IGF,
LoweredBB &lbb,
unsigned &phiIndex,
Explosion &argValue);
// TODO: Handle this during SIL AddressLowering.
static ArrayRef<SILArgument*> emitEntryPointIndirectReturn(
IRGenSILFunction &IGF,
SILBasicBlock *entry,
Explosion &params,
CanSILFunctionType funcTy,
llvm::function_ref<bool(SILType)> requiresIndirectResult) {
// Map an indirect return for a type SIL considers loadable but still
// requires an indirect return at the IR level.
SILFunctionConventions fnConv(funcTy, IGF.getSILModule());
SILType directResultType =
IGF.CurSILFn->mapTypeIntoContext(fnConv.getSILResultType());
if (requiresIndirectResult(directResultType)) {
auto &retTI = IGF.IGM.getTypeInfo(directResultType);
IGF.IndirectReturn = retTI.getAddressForPointer(params.claimNext());
}
auto bbargs = entry->getArguments();
// Map the indirect returns if present.
unsigned numIndirectResults = fnConv.getNumIndirectSILResults();
for (unsigned i = 0; i != numIndirectResults; ++i) {
SILArgument *ret = bbargs[i];
auto &retTI = IGF.IGM.getTypeInfo(ret->getType());
IGF.setLoweredAddress(ret, retTI.getAddressForPointer(params.claimNext()));
}
return bbargs.slice(numIndirectResults);
}
static void bindParameter(IRGenSILFunction &IGF,
SILArgument *param,
Explosion &allParamValues) {
// Pull out the parameter value and its formal type.
auto &paramTI = IGF.getTypeInfo(param->getType());
// If the SIL parameter isn't passed indirectly, we need to map it
// to an explosion.
if (param->getType().isObject()) {
Explosion paramValues;
auto &loadableTI = cast<LoadableTypeInfo>(paramTI);
// If the explosion must be passed indirectly, load the value from the
// indirect address.
auto &nativeSchema = paramTI.nativeParameterValueSchema(IGF.IGM);
if (nativeSchema.requiresIndirect()) {
Address paramAddr
= loadableTI.getAddressForPointer(allParamValues.claimNext());
loadableTI.loadAsTake(IGF, paramAddr, paramValues);
} else {
if (!nativeSchema.empty()) {
// Otherwise, we map from the native convention to the type's explosion
// schema.
Explosion nativeParam;
allParamValues.transferInto(nativeParam, nativeSchema.size());
paramValues = nativeSchema.mapFromNative(IGF.IGM, IGF, nativeParam,
param->getType());
} else {
assert(paramTI.getSchema().empty());
}
}
IGF.setLoweredExplosion(param, paramValues);
return;
}
// Okay, the type is passed indirectly in SIL, so we need to map
// it to an address.
// FIXME: that doesn't mean we should physically pass it
// indirectly at this resilience expansion. An @in or @in_guaranteed parameter
// could be passed by value in the right resilience domain.
Address paramAddr
= paramTI.getAddressForPointer(allParamValues.claimNext());
IGF.setLoweredAddress(param, paramAddr);
}
/// Emit entry point arguments for a SILFunction with the Swift calling
/// convention.
static void emitEntryPointArgumentsNativeCC(IRGenSILFunction &IGF,
SILBasicBlock *entry,
Explosion &allParamValues) {
auto funcTy = IGF.CurSILFn->getLoweredFunctionType();
// Map the indirect return if present.
ArrayRef<SILArgument *> params = emitEntryPointIndirectReturn(
IGF, entry, allParamValues, funcTy, [&](SILType retType) -> bool {
auto &schema =
IGF.IGM.getTypeInfo(retType).nativeReturnValueSchema(IGF.IGM);
return schema.requiresIndirect();
});
// The witness method CC passes Self as a final argument.
WitnessMetadata witnessMetadata;
if (funcTy->getRepresentation() == SILFunctionTypeRepresentation::WitnessMethod) {
collectTrailingWitnessMetadata(IGF, *IGF.CurSILFn, allParamValues,
witnessMetadata);
}
// Bind the error result by popping it off the parameter list.
if (funcTy->hasErrorResult()) {
IGF.setErrorResultSlot(allParamValues.takeLast());
}
// The 'self' argument might be in the context position, which is
// now the end of the parameter list. Bind it now.
if (funcTy->hasSelfParam() &&
isSelfContextParameter(funcTy->getSelfParameter())) {
SILArgument *selfParam = params.back();
params = params.drop_back();
Explosion selfTemp;
selfTemp.add(allParamValues.takeLast());
bindParameter(IGF, selfParam, selfTemp);
// Even if we don't have a 'self', if we have an error result, we
// should have a placeholder argument here.
} else if (funcTy->hasErrorResult() ||
funcTy->getRepresentation() == SILFunctionTypeRepresentation::Thick)
{
llvm::Value *contextPtr = allParamValues.takeLast(); (void) contextPtr;
assert(contextPtr->getType() == IGF.IGM.RefCountedPtrTy);
}
// Map the remaining SIL parameters to LLVM parameters.
for (SILArgument *param : params) {
bindParameter(IGF, param, allParamValues);
}
// Bind polymorphic arguments. This can only be done after binding
// all the value parameters.
if (hasPolymorphicParameters(funcTy)) {
emitPolymorphicParameters(IGF, *IGF.CurSILFn, allParamValues,
&witnessMetadata,
[&](unsigned paramIndex) -> llvm::Value* {
SILValue parameter =
IGF.CurSILFn->getArgumentsWithoutIndirectResults()[paramIndex];
return IGF.getLoweredSingletonExplosion(parameter);
});
}
assert(allParamValues.empty() && "didn't claim all parameters!");
}
/// Emit entry point arguments for the parameters of a C function, or the
/// method parameters of an ObjC method.
static void emitEntryPointArgumentsCOrObjC(IRGenSILFunction &IGF,
SILBasicBlock *entry,
Explosion &params,
CanSILFunctionType funcTy) {
// First, lower the method type.
ForeignFunctionInfo foreignInfo = IGF.IGM.getForeignFunctionInfo(funcTy);
assert(foreignInfo.ClangInfo);
auto &FI = *foreignInfo.ClangInfo;
// Okay, start processing the parameters explosion.
// First, claim all the indirect results.
ArrayRef<SILArgument*> args
= emitEntryPointIndirectReturn(IGF, entry, params, funcTy,
[&](SILType directResultType) -> bool {
return FI.getReturnInfo().isIndirect();
});
unsigned nextArgTyIdx = 0;
// Handle the arguments of an ObjC method.
if (IGF.CurSILFn->getRepresentation() ==
SILFunctionTypeRepresentation::ObjCMethod) {
// Claim the self argument from the end of the formal arguments.
SILArgument *selfArg = args.back();
args = args.slice(0, args.size() - 1);
// Set the lowered explosion for the self argument.
auto &selfTI = cast<LoadableTypeInfo>(IGF.getTypeInfo(selfArg->getType()));
auto selfSchema = selfTI.getSchema();
assert(selfSchema.size() == 1 && "Expected self to be a single element!");
auto *selfValue = params.claimNext();
auto *bodyType = selfSchema.begin()->getScalarType();
if (selfValue->getType() != bodyType)
selfValue = IGF.coerceValue(selfValue, bodyType, IGF.IGM.DataLayout);
Explosion self;
self.add(selfValue);
IGF.setLoweredExplosion(selfArg, self);
// Discard the implicit _cmd argument.
params.claimNext();
// We've handled the self and _cmd arguments, so when we deal with
// generating explosions for the remaining arguments we can skip
// these.
nextArgTyIdx = 2;
}
assert(args.size() == (FI.arg_size() - nextArgTyIdx) &&
"Number of arguments not equal to number of argument types!");
// Generate lowered explosions for each explicit argument.
for (auto i : indices(args)) {
SILArgument *arg = args[i];
auto argTyIdx = i + nextArgTyIdx;
auto &argTI = IGF.getTypeInfo(arg->getType());
// Bitcast indirect argument pointers to the right storage type.
if (arg->getType().isAddress()) {
llvm::Value *ptr = params.claimNext();
ptr = IGF.Builder.CreateBitCast(ptr,
argTI.getStorageType()->getPointerTo());
IGF.setLoweredAddress(arg, Address(ptr, argTI.getBestKnownAlignment()));
continue;
}
auto &loadableArgTI = cast<LoadableTypeInfo>(argTI);
Explosion argExplosion;
emitForeignParameter(IGF, params, foreignInfo, argTyIdx,
arg->getType(), loadableArgTI, argExplosion);
IGF.setLoweredExplosion(arg, argExplosion);
}
assert(params.empty() && "didn't claim all parameters!");
// emitPolymorphicParameters() may create function calls, so we need
// to initialize the debug location here.
ArtificialLocation Loc(IGF.getDebugScope(), IGF.IGM.DebugInfo, IGF.Builder);
// Bind polymorphic arguments. This can only be done after binding
// all the value parameters, and must be done even for non-polymorphic
// functions because of imported Objective-C generics.
emitPolymorphicParameters(
IGF, *IGF.CurSILFn, params, nullptr,
[&](unsigned paramIndex) -> llvm::Value * {
SILValue parameter = entry->getArguments()[paramIndex];
return IGF.getLoweredSingletonExplosion(parameter);
});
}
/// Get metadata for the dynamic Self type if we have it.
static void emitLocalSelfMetadata(IRGenSILFunction &IGF) {
if (!IGF.CurSILFn->hasSelfMetadataParam())
return;
const SILArgument *selfArg = IGF.CurSILFn->getSelfMetadataArgument();
CanMetatypeType metaTy =
dyn_cast<MetatypeType>(selfArg->getType().getSwiftRValueType());
IRGenFunction::LocalSelfKind selfKind;
if (!metaTy)
selfKind = IRGenFunction::ObjectReference;
else switch (metaTy->getRepresentation()) {
case MetatypeRepresentation::Thin:
llvm_unreachable("class metatypes are never thin");
case MetatypeRepresentation::Thick:
selfKind = IRGenFunction::SwiftMetatype;
break;
case MetatypeRepresentation::ObjC:
selfKind = IRGenFunction::ObjCMetatype;
break;
}
llvm::Value *value = IGF.getLoweredExplosion(selfArg).claimNext();
IGF.setLocalSelfMetadata(value, selfKind);
}
/// Emit the definition for the given SIL constant.
void IRGenModule::emitSILFunction(SILFunction *f) {
if (f->isExternalDeclaration())
return;
PrettyStackTraceSILFunction stackTrace("emitting IR", f);
IRGenSILFunction(*this, f).emitSILFunction();
}
void IRGenSILFunction::emitSILFunction() {
DEBUG(llvm::dbgs() << "emitting SIL function: ";
CurSILFn->printName(llvm::dbgs());
llvm::dbgs() << '\n';
CurSILFn->print(llvm::dbgs()));
assert(!CurSILFn->empty() && "function has no basic blocks?!");
// Configure the dominance resolver.
// TODO: consider re-using a dom analysis from the PassManager
// TODO: consider using a cheaper analysis at -O0
setDominanceResolver([](IRGenFunction &IGF_,
DominancePoint activePoint,
DominancePoint dominatingPoint) -> bool {
IRGenSILFunction &IGF = static_cast<IRGenSILFunction&>(IGF_);
if (!IGF.Dominance) {
IGF.Dominance.reset(new DominanceInfo(IGF.CurSILFn));
}
return IGF.Dominance->dominates(dominatingPoint.as<SILBasicBlock>(),
activePoint.as<SILBasicBlock>());
});
if (IGM.DebugInfo)
IGM.DebugInfo->emitFunction(*CurSILFn, CurFn);
// Map the entry bb.
LoweredBBs[&*CurSILFn->begin()] = LoweredBB(&*CurFn->begin(), {});
// Create LLVM basic blocks for the other bbs.
for (auto bi = std::next(CurSILFn->begin()), be = CurSILFn->end(); bi != be;
++bi) {
// FIXME: Use the SIL basic block's name.
llvm::BasicBlock *llBB = llvm::BasicBlock::Create(IGM.getLLVMContext());
auto phis = emitPHINodesForBBArgs(*this, &*bi, llBB);
CurFn->getBasicBlockList().push_back(llBB);
LoweredBBs[&*bi] = LoweredBB(llBB, std::move(phis));
}
auto entry = LoweredBBs.begin();
Builder.SetInsertPoint(entry->second.bb);
// Map the LLVM arguments to arguments on the entry point BB.
Explosion params = collectParameters();
auto funcTy = CurSILFn->getLoweredFunctionType();
switch (funcTy->getLanguage()) {
case SILFunctionLanguage::Swift:
emitEntryPointArgumentsNativeCC(*this, entry->first, params);
break;
case SILFunctionLanguage::C:
emitEntryPointArgumentsCOrObjC(*this, entry->first, params, funcTy);
break;
}
emitLocalSelfMetadata(*this);
assert(params.empty() && "did not map all llvm params to SIL params?!");
// It's really nice to be able to assume that we've already emitted
// all the values from dominating blocks --- it makes simple
// peepholing more powerful and allows us to avoid the need for
// nasty "forward-declared" values. We can do this by emitting
// blocks using a simple walk through the successor graph.
//
// We do want to preserve the original source order, but that's done
// by having previously added all the primary blocks to the LLVM
// function in their original order. As long as any secondary
// blocks are inserted after the current IP instead of at the end
// of the function, we're fine.
// Invariant: for every block in the work queue, we have visited all
// of its dominators.
llvm::SmallPtrSet<SILBasicBlock*, 8> visitedBlocks;
SmallVector<SILBasicBlock*, 8> workQueue; // really a stack
// Queue up the entry block, for which the invariant trivially holds.
visitedBlocks.insert(&*CurSILFn->begin());
workQueue.push_back(&*CurSILFn->begin());
while (!workQueue.empty()) {
auto bb = workQueue.pop_back_val();
// Emit the block.
visitSILBasicBlock(bb);
#ifndef NDEBUG
// Assert that the current IR IP (if valid) is immediately prior
// to the initial IR block for the next primary SIL block.
// It's not semantically necessary to preserve SIL block order,
// but we really should.
if (auto curBB = Builder.GetInsertBlock()) {
auto next = std::next(SILFunction::iterator(bb));
if (next != CurSILFn->end()) {
auto nextBB = LoweredBBs[&*next].bb;
assert(&*std::next(curBB->getIterator()) == nextBB &&
"lost source SIL order?");
}
}
#endif
// The immediate dominator of a successor of this block needn't be
// this block, but it has to be something which dominates this
// block. In either case, we've visited it.
//
// Therefore the invariant holds of all the successors, and we can
// queue them up if we haven't already visited them.
for (auto *succBB : bb->getSuccessorBlocks()) {
if (visitedBlocks.insert(succBB).second)
workQueue.push_back(succBB);
}
}
// If there are dead blocks in the SIL function, we might have left
// invalid blocks in the IR. Do another pass and kill them off.
for (SILBasicBlock &bb : *CurSILFn)
if (!visitedBlocks.count(&bb))
LoweredBBs[&bb].bb->eraseFromParent();
}
void IRGenSILFunction::estimateStackSize() {
if (EstimatedStackSize >= 0)
return;
// TODO: as soon as we generate alloca instructions with accurate lifetimes
// we should also do a better stack size calculation here. Currently we
// add all stack sizes even if life ranges do not overlap.
for (SILBasicBlock &BB : *CurSILFn) {
for (SILInstruction &I : BB) {
if (auto *ASI = dyn_cast<AllocStackInst>(&I)) {
const TypeInfo &type = getTypeInfo(ASI->getElementType());
if (llvm::Constant *SizeConst = type.getStaticSize(IGM)) {
auto *SizeInt = cast<llvm::ConstantInt>(SizeConst);
EstimatedStackSize += (int)SizeInt->getSExtValue();
}
}
}
}
}
void IRGenSILFunction::visitSILBasicBlock(SILBasicBlock *BB) {
// Insert into the lowered basic block.
llvm::BasicBlock *llBB = getLoweredBB(BB).bb;
Builder.SetInsertPoint(llBB);
bool InEntryBlock = BB->pred_empty();
// Set this block as the dominance point. This implicitly communicates
// with the dominance resolver configured in emitSILFunction.
DominanceScope dominance(*this, InEntryBlock ? DominancePoint::universal()
: DominancePoint(BB));
// The basic blocks are visited in a random order. Reset the debug location.
std::unique_ptr<AutoRestoreLocation> ScopedLoc;
if (InEntryBlock)
ScopedLoc = llvm::make_unique<PrologueLocation>(IGM.DebugInfo, Builder);
else
ScopedLoc = llvm::make_unique<ArtificialLocation>(
CurSILFn->getDebugScope(), IGM.DebugInfo, Builder);
// Generate the body.
bool InCleanupBlock = false;
bool KeepCurrentLocation = false;
for (auto InsnIter = BB->begin(); InsnIter != BB->end(); ++InsnIter) {
auto &I = *InsnIter;
#ifndef NDEBUG
IGM.EligibleConfs.collect(&I);
IGM.CurrentInst = &I;
#endif
if (IGM.DebugInfo) {
// Set the debug info location for I, if applicable.
SILLocation ILoc = I.getLoc();
auto DS = I.getDebugScope();
// Handle cleanup locations.
if (ILoc.is<CleanupLocation>()) {
// Cleanup locations point to the decl of the value that is
// being destroyed (for diagnostic generation). As far as
// the linetable is concerned, cleanups at the end of a
// lexical scope should point to the cleanup location, which
// is the location of the last instruction in the basic block.
if (!InCleanupBlock) {
InCleanupBlock = true;
// Scan ahead to see if this is the final cleanup block in
// this basic block.
auto It = InsnIter;
do ++It; while (It != BB->end() &&
It->getLoc().is<CleanupLocation>());
// We are still in the middle of a basic block?
if (It != BB->end() && !isa<TermInst>(It))
KeepCurrentLocation = true;
}
// Assign the cleanup location to this instruction.
if (!KeepCurrentLocation) {
assert(BB->getTerminator());
ILoc = BB->getTerminator()->getLoc();
DS = BB->getTerminator()->getDebugScope();
}
} else if (InCleanupBlock) {
KeepCurrentLocation = false;
InCleanupBlock = false;
}
// Until SILDebugScopes are properly serialized, bare functions
// are allowed to not have a scope.
if (!DS) {
if (CurSILFn->isBare())
DS = CurSILFn->getDebugScope();
assert(maybeScopeless(I) && "instruction has location, but no scope");
}
// Set the builder's debug location.
if (DS && !KeepCurrentLocation)
IGM.DebugInfo->setCurrentLoc(Builder, DS, ILoc);
else
// Use an artificial (line 0) location.
IGM.DebugInfo->setCurrentLoc(Builder, DS);
if (isa<TermInst>(&I))
emitDebugVariableRangeExtension(BB);
}
visit(&I);
#ifndef NDEBUG
IGM.EligibleConfs.clear();
IGM.CurrentInst = nullptr;
#endif
}
assert(Builder.hasPostTerminatorIP() && "SIL bb did not terminate block?!");
}
void IRGenSILFunction::visitFunctionRefInst(FunctionRefInst *i) {
auto fn = i->getReferencedFunction();
llvm::Function *fnptr = IGM.getAddrOfSILFunction(fn, NotForDefinition);
auto foreignInfo = IGM.getForeignFunctionInfo(fn->getLoweredFunctionType());
// Store the function constant and calling
// convention as a StaticFunction so we can avoid bitcasting or thunking if
// we don't need to.
setLoweredStaticFunction(i, fnptr, fn->getRepresentation(), foreignInfo);
}
void IRGenSILFunction::visitAllocGlobalInst(AllocGlobalInst *i) {
SILGlobalVariable *var = i->getReferencedGlobal();
SILType loweredTy = var->getLoweredType();
auto &ti = getTypeInfo(loweredTy);
auto expansion = IGM.getResilienceExpansionForLayout(var);
// If the global is fixed-size in all resilience domains that can see it,
// we allocated storage for it statically, and there's nothing to do.
if (ti.isFixedSize(expansion))
return;
// Otherwise, the static storage for the global consists of a fixed-size
// buffer.
Address addr = IGM.getAddrOfSILGlobalVariable(var, ti,
NotForDefinition);
(void) ti.allocateBuffer(*this, addr, loweredTy);
}
void IRGenSILFunction::visitGlobalAddrInst(GlobalAddrInst *i) {
SILGlobalVariable *var = i->getReferencedGlobal();
SILType loweredTy = var->getLoweredType();
assert(loweredTy == i->getType().getObjectType());
auto &ti = getTypeInfo(loweredTy);
auto expansion = IGM.getResilienceExpansionForLayout(var);
// If the variable is empty in all resilience domains that can see it,
// don't actually emit a symbol for the global at all, just return undef.
if (ti.isKnownEmpty(expansion)) {
setLoweredAddress(i, ti.getUndefAddress());
return;
}
Address addr = IGM.getAddrOfSILGlobalVariable(var, ti,
NotForDefinition);
// If the global is fixed-size in all resilience domains that can see it,
// we allocated storage for it statically, and there's nothing to do.
if (ti.isFixedSize(expansion)) {
setLoweredAddress(i, addr);
return;
}
// Otherwise, the static storage for the global consists of a fixed-size
// buffer; project it.
addr = ti.projectBuffer(*this, addr, loweredTy);
setLoweredAddress(i, addr);
}
void IRGenSILFunction::visitMetatypeInst(swift::MetatypeInst *i) {
auto metaTy = i->getType().castTo<MetatypeType>();
Explosion e;
emitMetatypeRef(*this, metaTy, e);
setLoweredExplosion(i, e);
}
static llvm::Value *getClassBaseValue(IRGenSILFunction &IGF,
SILValue v) {
if (v->getType().isAddress()) {
auto addr = IGF.getLoweredAddress(v);
return IGF.Builder.CreateLoad(addr);
}
Explosion e = IGF.getLoweredExplosion(v);
return e.claimNext();
}
static llvm::Value *getClassMetatype(IRGenFunction &IGF,
llvm::Value *baseValue,
MetatypeRepresentation repr,
SILType instanceType) {
switch (repr) {
case MetatypeRepresentation::Thin:
llvm_unreachable("Class metatypes are never thin");
case MetatypeRepresentation::Thick:
return emitDynamicTypeOfHeapObject(IGF, baseValue, instanceType);
case MetatypeRepresentation::ObjC:
return emitHeapMetadataRefForHeapObject(IGF, baseValue, instanceType);
}
llvm_unreachable("Not a valid MetatypeRepresentation.");
}
void IRGenSILFunction::visitValueMetatypeInst(swift::ValueMetatypeInst *i) {
SILType instanceTy = i->getOperand()->getType();
auto metaTy = i->getType().castTo<MetatypeType>();
if (metaTy->getRepresentation() == MetatypeRepresentation::Thin) {
Explosion empty;
setLoweredExplosion(i, empty);
return;
}
Explosion e;
if (instanceTy.getClassOrBoundGenericClass()) {
e.add(getClassMetatype(*this,
getClassBaseValue(*this, i->getOperand()),
metaTy->getRepresentation(), instanceTy));
} else if (auto arch = instanceTy.getAs<ArchetypeType>()) {
if (arch->requiresClass()) {
e.add(getClassMetatype(*this,
getClassBaseValue(*this, i->getOperand()),
metaTy->getRepresentation(), instanceTy));
} else {
Address base = getLoweredAddress(i->getOperand());
e.add(emitDynamicTypeOfOpaqueArchetype(*this, base,
i->getOperand()->getType()));
// FIXME: We need to convert this back to an ObjC class for an
// ObjC metatype representation.
if (metaTy->getRepresentation() == MetatypeRepresentation::ObjC)
unimplemented(i->getLoc().getSourceLoc(),
"objc metatype of non-class-bounded archetype");
}
} else {
emitMetatypeRef(*this, metaTy, e);
}
setLoweredExplosion(i, e);
}
void IRGenSILFunction::visitExistentialMetatypeInst(
swift::ExistentialMetatypeInst *i) {
Explosion result;
SILValue op = i->getOperand();
SILType opType = op->getType();
switch (opType.getPreferredExistentialRepresentation(IGM.getSILModule())) {
case ExistentialRepresentation::Metatype: {
Explosion existential = getLoweredExplosion(op);
emitMetatypeOfMetatype(*this, existential, opType, result);
break;
}
case ExistentialRepresentation::Class: {
Explosion existential = getLoweredExplosion(op);
emitMetatypeOfClassExistential(*this, existential, i->getType(),
opType, result);
break;
}
case ExistentialRepresentation::Boxed: {
Explosion existential = getLoweredExplosion(op);
emitMetatypeOfBoxedExistential(*this, existential, opType, result);
break;
}
case ExistentialRepresentation::Opaque: {
Address existential = getLoweredAddress(op);
emitMetatypeOfOpaqueExistential(*this, existential, opType, result);
break;
}
case ExistentialRepresentation::None:
llvm_unreachable("Bad existential representation");
}
setLoweredExplosion(i, result);
}
static void emitApplyArgument(IRGenSILFunction &IGF,
SILValue arg,
SILType paramType,
Explosion &out) {
bool isSubstituted = (arg->getType() != paramType);
// For indirect arguments, we just need to pass a pointer.
if (paramType.isAddress()) {
// This address is of the substituted type.
auto addr = IGF.getLoweredAddress(arg);
// If a substitution is in play, just bitcast the address.
if (isSubstituted) {
auto origType = IGF.IGM.getStoragePointerType(paramType);
addr = IGF.Builder.CreateBitCast(addr, origType);
}
out.add(addr.getAddress());
return;
}
// Otherwise, it's an explosion, which we may need to translate,
// both in terms of explosion level and substitution levels.
assert(arg->getType().isObject());
// Fast path: avoid an unnecessary temporary explosion.
if (!isSubstituted) {
IGF.getLoweredExplosion(arg, out);
return;
}
Explosion temp = IGF.getLoweredExplosion(arg);
reemitAsUnsubstituted(IGF, paramType, arg->getType(),
temp, out);
}
static llvm::Value *getObjCClassForValue(IRGenSILFunction &IGF,
llvm::Value *selfValue,
CanAnyMetatypeType selfType) {
// If we have a Swift metatype, map it to the heap metadata, which
// will be the Class for an ObjC type.
switch (selfType->getRepresentation()) {
case swift::MetatypeRepresentation::ObjC:
return selfValue;
case swift::MetatypeRepresentation::Thick:
// Convert thick metatype to Objective-C metatype.
return emitClassHeapMetadataRefForMetatype(IGF, selfValue,
selfType.getInstanceType());
case swift::MetatypeRepresentation::Thin:
llvm_unreachable("Cannot convert Thin metatype to ObjC metatype");
}
llvm_unreachable("bad metatype representation");
}
static llvm::Value *emitWitnessTableForLoweredCallee(IRGenSILFunction &IGF,
CanSILFunctionType origCalleeType,
SubstitutionList subs) {
auto &M = *IGF.getSwiftModule();
llvm::Value *wtable;
if (auto *proto = origCalleeType->getDefaultWitnessMethodProtocol(M)) {
// The generic signature for a witness method with abstract Self must
// have exactly one protocol requirement.
//
// We recover the witness table from the substitution that was used to
// produce the substituted callee type.
auto subMap = origCalleeType->getGenericSignature()
->getSubstitutionMap(subs);
auto origSelfType = proto->getSelfInterfaceType()->getCanonicalType();
auto substSelfType = origSelfType.subst(subMap)->getCanonicalType();
auto conformance = *subMap.lookupConformance(origSelfType, proto);
llvm::Value *argMetadata = IGF.emitTypeMetadataRef(substSelfType);
wtable = emitWitnessTableRef(IGF, substSelfType, &argMetadata,
conformance);
} else {
// Otherwise, we have no way of knowing the original protocol or
// conformance, since the witness has a concrete self type.
//
// Protocol witnesses for concrete types are thus not allowed to touch
// the witness table; they already know all the witnesses, and we can't
// say who they are.
wtable = llvm::ConstantPointerNull::get(IGF.IGM.WitnessTablePtrTy);
}
assert(wtable->getType() == IGF.IGM.WitnessTablePtrTy);
return wtable;
}
static CallEmission getCallEmissionForLoweredValue(IRGenSILFunction &IGF,
CanSILFunctionType origCalleeType,
CanSILFunctionType substCalleeType,
const LoweredValue &lv,
llvm::Value *selfValue,
SubstitutionList substitutions,
WitnessMetadata *witnessMetadata,
Explosion &args) {
llvm::Value *calleeFn, *calleeData;
ForeignFunctionInfo foreignInfo;
switch (lv.kind) {
case LoweredValue::Kind::StaticFunction:
calleeFn = lv.getStaticFunction().getFunction();
calleeData = selfValue;
foreignInfo = lv.getStaticFunction().getForeignInfo();
if (origCalleeType->getRepresentation()
== SILFunctionType::Representation::WitnessMethod) {
llvm::Value *wtable = emitWitnessTableForLoweredCallee(
IGF, origCalleeType, substitutions);
witnessMetadata->SelfWitnessTable = wtable;
}
break;
case LoweredValue::Kind::ObjCMethod: {
assert(selfValue);
auto &objcMethod = lv.getObjCMethod();
ObjCMessageKind kind = objcMethod.getMessageKind();
CallEmission emission =
prepareObjCMethodRootCall(IGF, objcMethod.getMethod(),
origCalleeType, substCalleeType,
substitutions, kind);
// Convert a metatype 'self' argument to the ObjC Class pointer.
// FIXME: Should be represented in SIL.
if (auto metatype = dyn_cast<AnyMetatypeType>(
origCalleeType->getSelfParameter().getType())) {
selfValue = getObjCClassForValue(IGF, selfValue, metatype);
}
addObjCMethodCallImplicitArguments(IGF, args, objcMethod.getMethod(),
selfValue,
objcMethod.getSearchType());
return emission;
}
case LoweredValue::Kind::Explosion: {
switch (origCalleeType->getRepresentation()) {
case SILFunctionType::Representation::Block: {
assert(!selfValue && "block function with self?");
// Grab the block pointer and make it the first physical argument.
llvm::Value *blockPtr = lv.getSingletonExplosion(IGF);
blockPtr = IGF.Builder.CreateBitCast(blockPtr, IGF.IGM.ObjCBlockPtrTy);
args.add(blockPtr);
// Extract the invocation pointer for blocks.
llvm::Value *invokeAddr = IGF.Builder.CreateStructGEP(
/*Ty=*/nullptr, blockPtr, 3);
calleeFn = IGF.Builder.CreateLoad(invokeAddr, IGF.IGM.getPointerAlignment());
calleeData = nullptr;
break;
}
case SILFunctionType::Representation::Thin:
case SILFunctionType::Representation::CFunctionPointer:
case SILFunctionType::Representation::Method:
case SILFunctionType::Representation::Closure:
case SILFunctionType::Representation::ObjCMethod:
case SILFunctionType::Representation::WitnessMethod:
case SILFunctionType::Representation::Thick: {
Explosion calleeValues = lv.getExplosion(IGF);
calleeFn = calleeValues.claimNext();
if (origCalleeType->getRepresentation()
== SILFunctionType::Representation::WitnessMethod) {
witnessMetadata->SelfWitnessTable = emitWitnessTableForLoweredCallee(
IGF, origCalleeType, substitutions);
}
if (origCalleeType->getRepresentation()
== SILFunctionType::Representation::Thick) {
// @convention(thick) callees are exploded as a pair
// consisting of the function and the self value.
assert(!selfValue);
calleeData = calleeValues.claimNext();
} else {
calleeData = selfValue;
}
break;
}
}
// Cast the callee pointer to the right function type.
llvm::AttributeSet attrs;
llvm::FunctionType *fnTy =
IGF.IGM.getFunctionType(origCalleeType, attrs, &foreignInfo);
calleeFn = IGF.Builder.CreateBitCast(calleeFn, fnTy->getPointerTo());
break;
}
case LoweredValue::Kind::BoxWithAddress:
llvm_unreachable("@box isn't a valid callee");
case LoweredValue::Kind::ContainedAddress:
case LoweredValue::Kind::Address:
llvm_unreachable("sil address isn't a valid callee");
}
Callee callee = Callee::forKnownFunction(origCalleeType, substCalleeType,
substitutions, calleeFn, calleeData,
foreignInfo);
CallEmission callEmission(IGF, callee);
if (IGF.CurSILFn->isThunk())
callEmission.addAttribute(llvm::AttributeSet::FunctionIndex, llvm::Attribute::NoInline);
return callEmission;
}
void IRGenSILFunction::visitBuiltinInst(swift::BuiltinInst *i) {
auto argValues = i->getArguments();
Explosion args;
for (auto argValue : argValues) {
// Builtin arguments should never be substituted, so use the value's type
// as the parameter type.
emitApplyArgument(*this, argValue, argValue->getType(), args);
}
Explosion result;
emitBuiltinCall(*this, i->getName(), i->getType(),
args, result, i->getSubstitutions());
setLoweredExplosion(i, result);
}
void IRGenSILFunction::visitApplyInst(swift::ApplyInst *i) {
visitFullApplySite(i);
}
void IRGenSILFunction::visitTryApplyInst(swift::TryApplyInst *i) {
visitFullApplySite(i);
}
void IRGenSILFunction::visitFullApplySite(FullApplySite site) {
const LoweredValue &calleeLV = getLoweredValue(site.getCallee());
auto origCalleeType = site.getOrigCalleeType();
auto substCalleeType = site.getSubstCalleeType();
auto args = site.getArguments();
SILFunctionConventions origConv(origCalleeType, getSILModule());
assert(origConv.getNumSILArguments() == args.size());
// Extract 'self' if it needs to be passed as the context parameter.
llvm::Value *selfValue = nullptr;
if (origCalleeType->hasSelfParam() &&
isSelfContextParameter(origCalleeType->getSelfParameter())) {
SILValue selfArg = args.back();
args = args.drop_back();
if (selfArg->getType().isObject()) {
selfValue = getLoweredSingletonExplosion(selfArg);
} else {
selfValue = getLoweredAddress(selfArg).getAddress();
}
}
Explosion llArgs;
WitnessMetadata witnessMetadata;
CallEmission emission =
getCallEmissionForLoweredValue(*this, origCalleeType, substCalleeType,
calleeLV, selfValue, site.getSubstitutions(),
&witnessMetadata, llArgs);
// Lower the arguments and return value in the callee's generic context.
GenericContextScope scope(IGM, origCalleeType->getGenericSignature());
// Lower the SIL arguments to IR arguments.
// Turn the formal SIL parameters into IR-gen things.
for (auto index : indices(args)) {
emitApplyArgument(*this, args[index], origConv.getSILArgumentType(index),
llArgs);
}
// Pass the generic arguments.
if (hasPolymorphicParameters(origCalleeType)) {
SubstitutionMap subMap;
if (auto genericSig = origCalleeType->getGenericSignature())
subMap = genericSig->getSubstitutionMap(site.getSubstitutions());
emitPolymorphicArguments(*this, origCalleeType, substCalleeType,
subMap, &witnessMetadata, llArgs);
}
// Add all those arguments.
emission.setArgs(llArgs, &witnessMetadata);
SILInstruction *i = site.getInstruction();
Explosion result;
emission.emitToExplosion(result);
if (isa<ApplyInst>(i)) {
setLoweredExplosion(i, result);
} else {
auto tryApplyInst = cast<TryApplyInst>(i);
// Load the error value.
SILFunctionConventions substConv(substCalleeType, getSILModule());
SILType errorType = substConv.getSILErrorType();
Address errorSlot = getErrorResultSlot(errorType);
auto errorValue = Builder.CreateLoad(errorSlot);
auto &normalDest = getLoweredBB(tryApplyInst->getNormalBB());
auto &errorDest = getLoweredBB(tryApplyInst->getErrorBB());
// Zero the error slot to maintain the invariant that it always
// contains null. This will frequently become a dead store.
auto nullError = llvm::Constant::getNullValue(errorValue->getType());
if (!tryApplyInst->getErrorBB()->getSinglePredecessorBlock()) {
// Only do that here if we can't move the store to the error block.
// See below.
Builder.CreateStore(nullError, errorSlot);
}
// If the error value is non-null, branch to the error destination.
auto hasError = Builder.CreateICmpNE(errorValue, nullError);
Builder.CreateCondBr(hasError, errorDest.bb, normalDest.bb);
// Set up the PHI nodes on the normal edge.
unsigned firstIndex = 0;
addIncomingExplosionToPHINodes(*this, normalDest, firstIndex, result);
assert(firstIndex == normalDest.phis.size());
// Set up the PHI nodes on the error edge.
assert(errorDest.phis.size() == 1);
errorDest.phis[0]->addIncoming(errorValue, Builder.GetInsertBlock());
if (tryApplyInst->getErrorBB()->getSinglePredecessorBlock()) {
// Zeroing out the error slot only in the error block increases the chance
// that it will become a dead store.
auto origBB = Builder.GetInsertBlock();
Builder.SetInsertPoint(errorDest.bb);
Builder.CreateStore(nullError, errorSlot);
Builder.SetInsertPoint(origBB);
}
}
}
/// If the value is a @convention(witness_method) function, the context
/// is the witness table that must be passed to the call.
///
/// \param v A value of possibly-polymorphic SILFunctionType.
/// \param subs This is the set of substitutions that we are going to be
/// applying to 'v'.
static std::tuple<llvm::Value*, llvm::Value*, CanSILFunctionType>
getPartialApplicationFunction(IRGenSILFunction &IGF, SILValue v,
SubstitutionList subs) {
LoweredValue &lv = IGF.getLoweredValue(v);
auto fnType = v->getType().castTo<SILFunctionType>();
switch (lv.kind) {
case LoweredValue::Kind::ContainedAddress:
case LoweredValue::Kind::Address:
llvm_unreachable("can't partially apply an address");
case LoweredValue::Kind::BoxWithAddress:
llvm_unreachable("can't partially apply a @box");
case LoweredValue::Kind::ObjCMethod:
llvm_unreachable("objc method partial application shouldn't get here");
case LoweredValue::Kind::StaticFunction: {
llvm::Value *context = nullptr;
switch (lv.getStaticFunction().getRepresentation()) {
case SILFunctionTypeRepresentation::CFunctionPointer:
case SILFunctionTypeRepresentation::Block:
case SILFunctionTypeRepresentation::ObjCMethod:
assert(false && "partial_apply of foreign functions not implemented");
break;
case SILFunctionTypeRepresentation::WitnessMethod:
context = emitWitnessTableForLoweredCallee(IGF, fnType, subs);
break;
case SILFunctionTypeRepresentation::Thick:
case SILFunctionTypeRepresentation::Thin:
case SILFunctionTypeRepresentation::Method:
case SILFunctionTypeRepresentation::Closure:
break;
}
return std::make_tuple(lv.getStaticFunction().getFunction(),
context, v->getType().castTo<SILFunctionType>());
}
case LoweredValue::Kind::Explosion: {
Explosion ex = lv.getExplosion(IGF);
llvm::Value *fn = ex.claimNext();
llvm::Value *context = nullptr;
switch (fnType->getRepresentation()) {
case SILFunctionType::Representation::Thin:
case SILFunctionType::Representation::Method:
case SILFunctionType::Representation::Closure:
case SILFunctionType::Representation::ObjCMethod:
break;
case SILFunctionType::Representation::WitnessMethod:
context = emitWitnessTableForLoweredCallee(IGF, fnType, subs);
break;
case SILFunctionType::Representation::CFunctionPointer:
break;
case SILFunctionType::Representation::Thick:
context = ex.claimNext();
break;
case SILFunctionType::Representation::Block:
llvm_unreachable("partial application of block not implemented");
}
return std::make_tuple(fn, context, fnType);
}
}
llvm_unreachable("Not a valid SILFunctionType.");
}
void IRGenSILFunction::visitPartialApplyInst(swift::PartialApplyInst *i) {
SILValue v(i);
// NB: We collect the arguments under the substituted type.
auto args = i->getArguments();
auto params = i->getSubstCalleeType()->getParameters();
params = params.slice(params.size() - args.size(), args.size());
Explosion llArgs;
{
// Lower the parameters in the callee's generic context.
GenericContextScope scope(IGM, i->getOrigCalleeType()->getGenericSignature());
for (auto index : indices(args)) {
assert(args[index]->getType() == IGM.silConv.getSILType(params[index]));
emitApplyArgument(*this, args[index],
IGM.silConv.getSILType(params[index]), llArgs);
}
}
auto &lv = getLoweredValue(i->getCallee());
if (lv.kind == LoweredValue::Kind::ObjCMethod) {
// Objective-C partial applications require a different path. There's no
// actual function pointer to capture, and we semantically can't cache
// dispatch, so we need to perform the message send in the partial
// application thunk.
auto &objcMethod = lv.getObjCMethod();
assert(i->getArguments().size() == 1 &&
"only partial application of objc method to self implemented");
assert(llArgs.size() == 1 &&
"objc partial_apply argument is not a single retainable pointer?!");
llvm::Value *selfVal = llArgs.claimNext();
Explosion function;
emitObjCPartialApplication(*this,
objcMethod,
i->getOrigCalleeType(),
i->getType().castTo<SILFunctionType>(),
selfVal,
i->getArguments()[0]->getType(),
function);
setLoweredExplosion(i, function);
return;
}
// Get the function value.
llvm::Value *calleeFn = nullptr;
llvm::Value *innerContext = nullptr;
CanSILFunctionType origCalleeTy;
std::tie(calleeFn, innerContext, origCalleeTy)
= getPartialApplicationFunction(*this, i->getCallee(),
i->getSubstitutions());
// Create the thunk and function value.
Explosion function;
emitFunctionPartialApplication(*this, *CurSILFn,
calleeFn, innerContext, llArgs,
params, i->getSubstitutions(),
origCalleeTy, i->getSubstCalleeType(),
i->getType().castTo<SILFunctionType>(),
function);
setLoweredExplosion(v, function);
}
void IRGenSILFunction::visitIntegerLiteralInst(swift::IntegerLiteralInst *i) {
llvm::Value *constant = emitConstantInt(IGM, i);
Explosion e;
e.add(constant);
setLoweredExplosion(i, e);
}
void IRGenSILFunction::visitFloatLiteralInst(swift::FloatLiteralInst *i) {
llvm::Value *constant = emitConstantFP(IGM, i);
Explosion e;
e.add(constant);
setLoweredExplosion(i, e);
}
void IRGenSILFunction::visitStringLiteralInst(swift::StringLiteralInst *i) {
llvm::Value *addr;
// Emit a load of a selector.
if (i->getEncoding() == swift::StringLiteralInst::Encoding::ObjCSelector)
addr = emitObjCSelectorRefLoad(i->getValue());
else
addr = emitAddrOfConstantString(IGM, i);
Explosion e;
e.add(addr);
setLoweredExplosion(i, e);
}
void IRGenSILFunction::visitUnreachableInst(swift::UnreachableInst *i) {
Builder.CreateUnreachable();
}
static void emitReturnInst(IRGenSILFunction &IGF,
SILType resultTy,
Explosion &result) {
// The invariant on the out-parameter is that it's always zeroed, so
// there's nothing to do here.
// Even if SIL has a direct return, the IR-level calling convention may
// require an indirect return.
if (IGF.IndirectReturn.isValid()) {
auto &retTI = cast<LoadableTypeInfo>(IGF.getTypeInfo(resultTy));
retTI.initialize(IGF, result, IGF.IndirectReturn);
IGF.Builder.CreateRetVoid();
} else {
auto funcLang = IGF.CurSILFn->getLoweredFunctionType()->getLanguage();
auto swiftCCReturn = funcLang == SILFunctionLanguage::Swift;
assert(swiftCCReturn ||
funcLang == SILFunctionLanguage::C && "Need to handle all cases");
IGF.emitScalarReturn(resultTy, result, swiftCCReturn);
}
}
void IRGenSILFunction::visitReturnInst(swift::ReturnInst *i) {
Explosion result = getLoweredExplosion(i->getOperand());
// Implicitly autorelease the return value if the function's result
// convention is autoreleased.
auto fnConv = CurSILFn->getConventions();
if (fnConv.getNumDirectSILResults() == 1
&& (fnConv.getDirectSILResults().begin()->getConvention()
== ResultConvention::Autoreleased)) {
Explosion temp;
temp.add(emitObjCAutoreleaseReturnValue(*this, result.claimNext()));
result = std::move(temp);
}
emitReturnInst(*this, i->getOperand()->getType(), result);
}
void IRGenSILFunction::visitThrowInst(swift::ThrowInst *i) {
// Store the exception to the error slot.
llvm::Value *exn = getLoweredSingletonExplosion(i->getOperand());
Builder.CreateStore(exn, getCallerErrorResultSlot());
// Create a normal return, but leaving the return value undefined.
auto fnTy = CurFn->getType()->getPointerElementType();
auto retTy = cast<llvm::FunctionType>(fnTy)->getReturnType();
if (retTy->isVoidTy()) {
Builder.CreateRetVoid();
} else {
Builder.CreateRet(llvm::UndefValue::get(retTy));
}
}
static llvm::BasicBlock *emitBBMapForSwitchValue(
IRGenSILFunction &IGF,
SmallVectorImpl<std::pair<SILValue, llvm::BasicBlock*>> &dests,
SwitchValueInst *inst) {
for (unsigned i = 0, e = inst->getNumCases(); i < e; ++i) {
auto casePair = inst->getCase(i);
dests.push_back({casePair.first, IGF.getLoweredBB(casePair.second).bb});
}
llvm::BasicBlock *defaultDest = nullptr;
if (inst->hasDefault())
defaultDest = IGF.getLoweredBB(inst->getDefaultBB()).bb;
return defaultDest;
}
static llvm::ConstantInt *
getSwitchCaseValue(IRGenFunction &IGF, SILValue val) {
if (auto *IL = dyn_cast<IntegerLiteralInst>(val)) {
return dyn_cast<llvm::ConstantInt>(emitConstantInt(IGF.IGM, IL));
}
else {
llvm_unreachable("Switch value cases should be integers");
}
}
static void
emitSwitchValueDispatch(IRGenSILFunction &IGF,
SILType ty,
Explosion &value,
ArrayRef<std::pair<SILValue, llvm::BasicBlock*>> dests,
llvm::BasicBlock *defaultDest) {
// Create an unreachable block for the default if the original SIL
// instruction had none.
bool unreachableDefault = false;
if (!defaultDest) {
unreachableDefault = true;
defaultDest = llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
}
if (ty.is<BuiltinIntegerType>()) {
auto *discriminator = value.claimNext();
auto *i = IGF.Builder.CreateSwitch(discriminator, defaultDest,
dests.size());
for (auto &dest : dests)
i->addCase(getSwitchCaseValue(IGF, dest.first), dest.second);
} else {
// Get the value we're testing, which is a function.
llvm::Value *val;
llvm::BasicBlock *nextTest = nullptr;
if (ty.is<SILFunctionType>()) {
val = value.claimNext(); // Function pointer.
//values.claimNext(); // Ignore the data pointer.
} else {
llvm_unreachable("switch_value operand has an unknown type");
}
for (int i = 0, e = dests.size(); i < e; ++i) {
auto casePair = dests[i];
llvm::Value *caseval;
auto casevalue = IGF.getLoweredExplosion(casePair.first);
if (casePair.first->getType().is<SILFunctionType>()) {
caseval = casevalue.claimNext(); // Function pointer.
//values.claimNext(); // Ignore the data pointer.
} else {
llvm_unreachable("switch_value operand has an unknown type");
}
// Compare operand with a case tag value.
llvm::Value *cond = IGF.Builder.CreateICmp(llvm::CmpInst::ICMP_EQ,
val, caseval);
if (i == e -1 && !unreachableDefault) {
nextTest = nullptr;
IGF.Builder.CreateCondBr(cond, casePair.second, defaultDest);
} else {
nextTest = IGF.createBasicBlock("next-test");
IGF.Builder.CreateCondBr(cond, casePair.second, nextTest);
IGF.Builder.emitBlock(nextTest);
IGF.Builder.SetInsertPoint(nextTest);
}
}
if (nextTest) {
IGF.Builder.CreateBr(defaultDest);
}
}
if (unreachableDefault) {
IGF.Builder.emitBlock(defaultDest);
IGF.Builder.CreateUnreachable();
}
}
void IRGenSILFunction::visitSwitchValueInst(SwitchValueInst *inst) {
Explosion value = getLoweredExplosion(inst->getOperand());
// Map the SIL dest bbs to their LLVM bbs.
SmallVector<std::pair<SILValue, llvm::BasicBlock*>, 4> dests;
auto *defaultDest = emitBBMapForSwitchValue(*this, dests, inst);
emitSwitchValueDispatch(*this, inst->getOperand()->getType(),
value, dests, defaultDest);
}
// Bind an incoming explosion value to an explosion of LLVM phi node(s).
static void addIncomingExplosionToPHINodes(IRGenSILFunction &IGF,
ArrayRef<llvm::Value*> phis,
Explosion &argValue) {
llvm::BasicBlock *curBB = IGF.Builder.GetInsertBlock();
unsigned phiIndex = 0;
while (!argValue.empty())
cast<llvm::PHINode>(phis[phiIndex++])
->addIncoming(argValue.claimNext(), curBB);
assert(phiIndex == phis.size() && "explosion doesn't match number of phis");
}
// Bind an incoming explosion value to a SILArgument's LLVM phi node(s).
static void addIncomingExplosionToPHINodes(IRGenSILFunction &IGF,
LoweredBB &lbb,
unsigned &phiIndex,
Explosion &argValue) {
llvm::BasicBlock *curBB = IGF.Builder.GetInsertBlock();
while (!argValue.empty())
lbb.phis[phiIndex++]->addIncoming(argValue.claimNext(), curBB);
}
// Bind an incoming address value to a SILArgument's LLVM phi node(s).
static void addIncomingAddressToPHINodes(IRGenSILFunction &IGF,
ArrayRef<llvm::Value*> phis,
Address argValue) {
llvm::BasicBlock *curBB = IGF.Builder.GetInsertBlock();
assert(phis.size() == 1 && "more than one phi for address?!");
cast<llvm::PHINode>(phis[0])->addIncoming(argValue.getAddress(), curBB);
}
// Bind an incoming address value to a SILArgument's LLVM phi node(s).
static void addIncomingAddressToPHINodes(IRGenSILFunction &IGF,
LoweredBB &lbb,
unsigned &phiIndex,
Address argValue) {
llvm::BasicBlock *curBB = IGF.Builder.GetInsertBlock();
lbb.phis[phiIndex++]->addIncoming(argValue.getAddress(), curBB);
}
// Add branch arguments to destination phi nodes.
static void addIncomingSILArgumentsToPHINodes(IRGenSILFunction &IGF,
LoweredBB &lbb,
OperandValueArrayRef args) {
unsigned phiIndex = 0;
for (SILValue arg : args) {
const LoweredValue &lv = IGF.getLoweredValue(arg);
if (lv.isAddress()) {
addIncomingAddressToPHINodes(IGF, lbb, phiIndex, lv.getAddress());
continue;
}
Explosion argValue = lv.getExplosion(IGF);
addIncomingExplosionToPHINodes(IGF, lbb, phiIndex, argValue);
}
}
static llvm::BasicBlock *emitBBMapForSwitchEnum(
IRGenSILFunction &IGF,
SmallVectorImpl<std::pair<EnumElementDecl*, llvm::BasicBlock*>> &dests,
SwitchEnumInstBase *inst) {
for (unsigned i = 0, e = inst->getNumCases(); i < e; ++i) {
auto casePair = inst->getCase(i);
// If the destination BB accepts the case argument, set up a waypoint BB so
// we can feed the values into the argument's PHI node(s).
//
// FIXME: This is cheesy when the destination BB has only the switch
// as a predecessor.
if (!casePair.second->args_empty())
dests.push_back({casePair.first,
llvm::BasicBlock::Create(IGF.IGM.getLLVMContext())});
else
dests.push_back({casePair.first, IGF.getLoweredBB(casePair.second).bb});
}
llvm::BasicBlock *defaultDest = nullptr;
if (inst->hasDefault())
defaultDest = IGF.getLoweredBB(inst->getDefaultBB()).bb;
return defaultDest;
}
void IRGenSILFunction::visitSwitchEnumInst(SwitchEnumInst *inst) {
Explosion value = getLoweredExplosion(inst->getOperand());
// Map the SIL dest bbs to their LLVM bbs.
SmallVector<std::pair<EnumElementDecl*, llvm::BasicBlock*>, 4> dests;
llvm::BasicBlock *defaultDest
= emitBBMapForSwitchEnum(*this, dests, inst);
// Emit the dispatch.
auto &EIS = getEnumImplStrategy(IGM, inst->getOperand()->getType());
EIS.emitValueSwitch(*this, value, dests, defaultDest);
// Bind arguments for cases that want them.
for (unsigned i = 0, e = inst->getNumCases(); i < e; ++i) {
auto casePair = inst->getCase(i);
if (!casePair.second->args_empty()) {
auto waypointBB = dests[i].second;
auto &destLBB = getLoweredBB(casePair.second);
Builder.emitBlock(waypointBB);
Explosion inValue = getLoweredExplosion(inst->getOperand());
Explosion projected;
emitProjectLoadableEnum(*this, inst->getOperand()->getType(),
inValue, casePair.first, projected);
unsigned phiIndex = 0;
addIncomingExplosionToPHINodes(*this, destLBB, phiIndex, projected);
Builder.CreateBr(destLBB.bb);
}
}
}
void
IRGenSILFunction::visitSwitchEnumAddrInst(SwitchEnumAddrInst *inst) {
Address value = getLoweredAddress(inst->getOperand());
// Map the SIL dest bbs to their LLVM bbs.
SmallVector<std::pair<EnumElementDecl*, llvm::BasicBlock*>, 4> dests;
llvm::BasicBlock *defaultDest
= emitBBMapForSwitchEnum(*this, dests, inst);
// Emit the dispatch.
emitSwitchAddressOnlyEnumDispatch(*this, inst->getOperand()->getType(),
value, dests, defaultDest);
}
// FIXME: We could lower select_enum directly to LLVM select in a lot of cases.
// For now, just emit a switch and phi nodes, like a chump.
template<class C, class T>
static llvm::BasicBlock *
emitBBMapForSelect(IRGenSILFunction &IGF,
Explosion &resultPHI,
SmallVectorImpl<std::pair<T, llvm::BasicBlock*>> &BBs,
llvm::BasicBlock *&defaultBB,
SelectInstBase<C, T> *inst) {
auto origBB = IGF.Builder.GetInsertBlock();
// Set up a continuation BB and phi nodes to receive the result value.
llvm::BasicBlock *contBB = IGF.createBasicBlock("select_enum");
IGF.Builder.SetInsertPoint(contBB);
// Emit an explosion of phi node(s) to receive the value.
SmallVector<llvm::Value*, 4> phis;
auto &ti = IGF.getTypeInfo(inst->getType());
emitPHINodesForType(IGF, inst->getType(), ti,
inst->getNumCases() + inst->hasDefault(),
phis);
resultPHI.add(phis);
IGF.Builder.SetInsertPoint(origBB);
auto addIncoming = [&](SILValue value) {
if (value->getType().isAddress()) {
addIncomingAddressToPHINodes(IGF, resultPHI.getAll(),
IGF.getLoweredAddress(value));
} else {
Explosion ex = IGF.getLoweredExplosion(value);
addIncomingExplosionToPHINodes(IGF, resultPHI.getAll(), ex);
}
};
for (unsigned i = 0, e = inst->getNumCases(); i < e; ++i) {
auto casePair = inst->getCase(i);
// Create a basic block destination for this case.
llvm::BasicBlock *destBB = IGF.createBasicBlock("");
IGF.Builder.emitBlock(destBB);
// Feed the corresponding result into the phi nodes.
addIncoming(casePair.second);
// Jump immediately to the continuation.
IGF.Builder.CreateBr(contBB);
BBs.push_back(std::make_pair(casePair.first, destBB));
}
if (inst->hasDefault()) {
defaultBB = IGF.createBasicBlock("");
IGF.Builder.emitBlock(defaultBB);
addIncoming(inst->getDefaultResult());
IGF.Builder.CreateBr(contBB);
} else {
defaultBB = nullptr;
}
IGF.Builder.emitBlock(contBB);
IGF.Builder.SetInsertPoint(origBB);
return contBB;
}
// Try to map the value of a select_enum directly to an int type with a simple
// cast from the tag value to the result type. Optionally also by adding a
// constant offset.
// This is useful, e.g. for rawValue or hashValue of C-like enums.
static llvm::Value *
mapTriviallyToInt(IRGenSILFunction &IGF, const EnumImplStrategy &EIS, SelectEnumInst *inst) {
// All cases must be covered
if (inst->hasDefault())
return nullptr;
auto &ti = IGF.getTypeInfo(inst->getType());
ExplosionSchema schema = ti.getSchema();
// Check if the select_enum's result is a single integer scalar.
if (schema.size() != 1)
return nullptr;
if (!schema[0].isScalar())
return nullptr;
llvm::Type *type = schema[0].getScalarType();
llvm::IntegerType *resultType = dyn_cast<llvm::IntegerType>(type);
if (!resultType)
return nullptr;
// Check if the case values directly map to the tag values, maybe with a
// constant offset.
APInt commonOffset;
bool offsetValid = false;
for (unsigned i = 0, e = inst->getNumCases(); i < e; ++i) {
auto casePair = inst->getCase(i);
int64_t index = EIS.getDiscriminatorIndex(casePair.first);
if (index < 0)
return nullptr;
IntegerLiteralInst *intLit = dyn_cast<IntegerLiteralInst>(casePair.second);
if (!intLit)
return nullptr;
APInt caseValue = intLit->getValue();
APInt offset = caseValue - index;
if (offsetValid) {
if (offset != commonOffset)
return nullptr;
} else {
commonOffset = offset;
offsetValid = true;
}
}
// Ask the enum implementation strategy to extract the enum tag as an integer
// value.
Explosion enumValue = IGF.getLoweredExplosion(inst->getEnumOperand());
llvm::Value *result = EIS.emitExtractDiscriminator(IGF, enumValue);
if (!result) {
(void)enumValue.claimAll();
return nullptr;
}
// Cast to the result type.
result = IGF.Builder.CreateIntCast(result, resultType, false);
if (commonOffset != 0) {
// The offset, if any.
auto *offsetConst = llvm::ConstantInt::get(resultType, commonOffset);
result = IGF.Builder.CreateAdd(result, offsetConst);
}
return result;
}
template <class C, class T>
static LoweredValue
getLoweredValueForSelect(IRGenSILFunction &IGF,
Explosion &result, SelectInstBase<C, T> *inst) {
if (inst->getType().isAddress())
// FIXME: Loses potentially better alignment info we might have.
return LoweredValue(Address(result.claimNext(),
IGF.getTypeInfo(inst->getType()).getBestKnownAlignment()));
return LoweredValue(result);
}
static void emitSingleEnumMemberSelectResult(IRGenSILFunction &IGF,
SelectEnumInstBase *inst,
llvm::Value *isTrue,
Explosion &result) {
assert((inst->getNumCases() == 1 && inst->hasDefault()) ||
(inst->getNumCases() == 2 && !inst->hasDefault()));
// Extract the true values.
auto trueValue = inst->getCase(0).second;
SmallVector<llvm::Value*, 4> TrueValues;
if (trueValue->getType().isAddress()) {
TrueValues.push_back(IGF.getLoweredAddress(trueValue).getAddress());
} else {
Explosion ex = IGF.getLoweredExplosion(trueValue);
while (!ex.empty())
TrueValues.push_back(ex.claimNext());
}
// Extract the false values.
auto falseValue =
inst->hasDefault() ? inst->getDefaultResult() : inst->getCase(1).second;
SmallVector<llvm::Value*, 4> FalseValues;
if (falseValue->getType().isAddress()) {
FalseValues.push_back(IGF.getLoweredAddress(falseValue).getAddress());
} else {
Explosion ex = IGF.getLoweredExplosion(falseValue);
while (!ex.empty())
FalseValues.push_back(ex.claimNext());
}
assert(TrueValues.size() == FalseValues.size() &&
"explosions didn't produce same element count?");
for (unsigned i = 0, e = FalseValues.size(); i != e; ++i) {
auto *TV = TrueValues[i], *FV = FalseValues[i];
// It is pretty common to select between zero and 1 as the result of the
// select. Instead of emitting an obviously dumb select, emit nothing or
// a zext.
if (auto *TC = dyn_cast<llvm::ConstantInt>(TV))
if (auto *FC = dyn_cast<llvm::ConstantInt>(FV))
if (TC->isOne() && FC->isZero()) {
result.add(IGF.Builder.CreateZExtOrBitCast(isTrue, TV->getType()));
continue;
}
result.add(IGF.Builder.CreateSelect(isTrue, TV, FalseValues[i]));
}
}
void IRGenSILFunction::visitSelectEnumInst(SelectEnumInst *inst) {
auto &EIS = getEnumImplStrategy(IGM, inst->getEnumOperand()->getType());
Explosion result;
if (llvm::Value *R = mapTriviallyToInt(*this, EIS, inst)) {
result.add(R);
} else if ((inst->getNumCases() == 1 && inst->hasDefault()) ||
(inst->getNumCases() == 2 && !inst->hasDefault())) {
// If this is testing for one case, do simpler codegen. This is
// particularly common when testing optionals.
Explosion value = getLoweredExplosion(inst->getEnumOperand());
auto isTrue = EIS.emitValueCaseTest(*this, value, inst->getCase(0).first);
emitSingleEnumMemberSelectResult(*this, inst, isTrue, result);
} else {
Explosion value = getLoweredExplosion(inst->getEnumOperand());
// Map the SIL dest bbs to their LLVM bbs.
SmallVector<std::pair<EnumElementDecl*, llvm::BasicBlock*>, 4> dests;
llvm::BasicBlock *defaultDest;
llvm::BasicBlock *contBB
= emitBBMapForSelect(*this, result, dests, defaultDest, inst);
// Emit the dispatch.
EIS.emitValueSwitch(*this, value, dests, defaultDest);
// emitBBMapForSelectEnum set up a continuation block and phi nodes to
// receive the result.
Builder.SetInsertPoint(contBB);
}
setLoweredValue(inst,
getLoweredValueForSelect(*this, result, inst));
}
void IRGenSILFunction::visitSelectEnumAddrInst(SelectEnumAddrInst *inst) {
Address value = getLoweredAddress(inst->getEnumOperand());
Explosion result;
if ((inst->getNumCases() == 1 && inst->hasDefault()) ||
(inst->getNumCases() == 2 && !inst->hasDefault())) {
auto &EIS = getEnumImplStrategy(IGM, inst->getEnumOperand()->getType());
// If this is testing for one case, do simpler codegen. This is
// particularly common when testing optionals.
auto isTrue = EIS.emitIndirectCaseTest(*this,
inst->getEnumOperand()->getType(),
value, inst->getCase(0).first);
emitSingleEnumMemberSelectResult(*this, inst, isTrue, result);
} else {
// Map the SIL dest bbs to their LLVM bbs.
SmallVector<std::pair<EnumElementDecl*, llvm::BasicBlock*>, 4> dests;
llvm::BasicBlock *defaultDest;
llvm::BasicBlock *contBB
= emitBBMapForSelect(*this, result, dests, defaultDest, inst);
// Emit the dispatch.
emitSwitchAddressOnlyEnumDispatch(*this, inst->getEnumOperand()->getType(),
value, dests, defaultDest);
// emitBBMapForSelectEnum set up a phi node to receive the result.
Builder.SetInsertPoint(contBB);
}
setLoweredValue(inst,
getLoweredValueForSelect(*this, result, inst));
}
void IRGenSILFunction::visitSelectValueInst(SelectValueInst *inst) {
Explosion value = getLoweredExplosion(inst->getOperand());
// Map the SIL dest bbs to their LLVM bbs.
SmallVector<std::pair<SILValue, llvm::BasicBlock*>, 4> dests;
llvm::BasicBlock *defaultDest;
Explosion result;
auto *contBB = emitBBMapForSelect(*this, result, dests, defaultDest, inst);
// Emit the dispatch.
emitSwitchValueDispatch(*this, inst->getOperand()->getType(), value, dests,
defaultDest);
// emitBBMapForSelectEnum set up a continuation block and phi nodes to
// receive the result.
Builder.SetInsertPoint(contBB);
setLoweredValue(inst,
getLoweredValueForSelect(*this, result, inst));
}
void IRGenSILFunction::visitDynamicMethodBranchInst(DynamicMethodBranchInst *i){
LoweredBB &hasMethodBB = getLoweredBB(i->getHasMethodBB());
LoweredBB &noMethodBB = getLoweredBB(i->getNoMethodBB());
// Emit the respondsToSelector: call.
StringRef selector;
llvm::SmallString<64> selectorBuffer;
if (auto fnDecl = dyn_cast<FuncDecl>(i->getMember().getDecl()))
selector = fnDecl->getObjCSelector().getString(selectorBuffer);
else if (auto var = dyn_cast<AbstractStorageDecl>(i->getMember().getDecl()))
selector = var->getObjCGetterSelector().getString(selectorBuffer);
else
llvm_unreachable("Unhandled dynamic method branch query");
llvm::Value *object = getLoweredExplosion(i->getOperand()).claimNext();
if (object->getType() != IGM.ObjCPtrTy)
object = Builder.CreateBitCast(object, IGM.ObjCPtrTy);
llvm::Value *loadSel = emitObjCSelectorRefLoad(selector);
llvm::Value *respondsToSelector
= emitObjCSelectorRefLoad("respondsToSelector:");
llvm::Constant *messenger = IGM.getObjCMsgSendFn();
llvm::Type *argTys[] = {
IGM.ObjCPtrTy,
IGM.Int8PtrTy,
IGM.Int8PtrTy,
};
auto respondsToSelectorTy = llvm::FunctionType::get(IGM.Int1Ty,
argTys,
/*isVarArg*/ false)
->getPointerTo();
messenger = llvm::ConstantExpr::getBitCast(messenger,
respondsToSelectorTy);
llvm::CallInst *call = Builder.CreateCall(messenger,
{object, respondsToSelector, loadSel});
call->setDoesNotThrow();
// FIXME: Assume (probably safely) that the hasMethodBB has only us as a
// predecessor, and cannibalize its bb argument so we can represent is as an
// ObjCMethod lowered value. This is hella gross but saves us having to
// implement ObjCMethod-to-Explosion lowering and creating a thunk we don't
// want.
assert(std::next(i->getHasMethodBB()->pred_begin())
== i->getHasMethodBB()->pred_end()
&& "lowering dynamic_method_br with multiple preds for destination "
"not implemented");
// Kill the existing lowered value for the bb arg and its phi nodes.
SILValue methodArg = i->getHasMethodBB()->args_begin()[0];
Explosion formerLLArg = getLoweredExplosion(methodArg);
for (llvm::Value *val : formerLLArg.claimAll()) {
auto phi = cast<llvm::PHINode>(val);
assert(phi->getNumIncomingValues() == 0 && "phi already used");
phi->removeFromParent();
delete phi;
}
LoweredValues.erase(methodArg);
// Replace the lowered value with an ObjCMethod lowering.
setLoweredObjCMethod(methodArg, i->getMember());
// Create the branch.
Builder.CreateCondBr(call, hasMethodBB.bb, noMethodBB.bb);
}
void IRGenSILFunction::visitBranchInst(swift::BranchInst *i) {
LoweredBB &lbb = getLoweredBB(i->getDestBB());
addIncomingSILArgumentsToPHINodes(*this, lbb, i->getArgs());
Builder.CreateBr(lbb.bb);
}
void IRGenSILFunction::visitCondBranchInst(swift::CondBranchInst *i) {
LoweredBB &trueBB = getLoweredBB(i->getTrueBB());
LoweredBB &falseBB = getLoweredBB(i->getFalseBB());
llvm::Value *condValue =
getLoweredExplosion(i->getCondition()).claimNext();
addIncomingSILArgumentsToPHINodes(*this, trueBB, i->getTrueArgs());
addIncomingSILArgumentsToPHINodes(*this, falseBB, i->getFalseArgs());
Builder.CreateCondBr(condValue, trueBB.bb, falseBB.bb);
}
void IRGenSILFunction::visitRetainValueInst(swift::RetainValueInst *i) {
Explosion in = getLoweredExplosion(i->getOperand());
Explosion out;
cast<LoadableTypeInfo>(getTypeInfo(i->getOperand()->getType()))
.copy(*this, in, out, i->isAtomic() ? irgen::Atomicity::Atomic
: irgen::Atomicity::NonAtomic);
(void)out.claimAll();
}
void IRGenSILFunction::visitCopyValueInst(swift::CopyValueInst *i) {
Explosion in = getLoweredExplosion(i->getOperand());
Explosion out;
cast<LoadableTypeInfo>(getTypeInfo(i->getOperand()->getType()))
.copy(*this, in, out, getDefaultAtomicity());
setLoweredExplosion(i, out);
}
// TODO: Implement this more generally for arbitrary values. Currently the
// SIL verifier restricts it to single-refcounted-pointer types.
void IRGenSILFunction::visitAutoreleaseValueInst(swift::AutoreleaseValueInst *i)
{
Explosion in = getLoweredExplosion(i->getOperand());
auto val = in.claimNext();
emitObjCAutoreleaseCall(val);
}
void IRGenSILFunction::visitSetDeallocatingInst(SetDeallocatingInst *i) {
auto *ARI = dyn_cast<AllocRefInst>(i->getOperand());
if (ARI && StackAllocs.count(ARI)) {
// A small peep-hole optimization: If the operand is allocated on stack and
// there is no "significant" code between the set_deallocating and the final
// dealloc_ref, the set_deallocating is not required.
// %0 = alloc_ref [stack]
// ...
// set_deallocating %0 // not needed
// // code which does not depend on the RC_DEALLOCATING_FLAG flag.
// dealloc_ref %0 // not needed (stems from the inlined deallocator)
// ...
// dealloc_ref [stack] %0
SILBasicBlock::iterator Iter(i);
SILBasicBlock::iterator End = i->getParent()->end();
for (++Iter; Iter != End; ++Iter) {
SILInstruction *I = &*Iter;
if (auto *DRI = dyn_cast<DeallocRefInst>(I)) {
if (DRI->getOperand() == ARI) {
// The set_deallocating is followed by a dealloc_ref -> we can ignore
// it.
return;
}
}
// Assume that any instruction with side-effects may depend on the
// RC_DEALLOCATING_FLAG flag.
if (I->mayHaveSideEffects())
break;
}
}
Explosion lowered = getLoweredExplosion(i->getOperand());
emitNativeSetDeallocating(lowered.claimNext());
}
void IRGenSILFunction::visitReleaseValueInst(swift::ReleaseValueInst *i) {
Explosion in = getLoweredExplosion(i->getOperand());
cast<LoadableTypeInfo>(getTypeInfo(i->getOperand()->getType()))
.consume(*this, in, i->isAtomic() ? irgen::Atomicity::Atomic
: irgen::Atomicity::NonAtomic);
}
void IRGenSILFunction::visitDestroyValueInst(swift::DestroyValueInst *i) {
Explosion in = getLoweredExplosion(i->getOperand());
cast<LoadableTypeInfo>(getTypeInfo(i->getOperand()->getType()))
.consume(*this, in, getDefaultAtomicity());
}
void IRGenSILFunction::visitStructInst(swift::StructInst *i) {
Explosion out;
for (SILValue elt : i->getElements())
out.add(getLoweredExplosion(elt).claimAll());
setLoweredExplosion(i, out);
}
void IRGenSILFunction::visitTupleInst(swift::TupleInst *i) {
Explosion out;
for (SILValue elt : i->getElements())
out.add(getLoweredExplosion(elt).claimAll());
setLoweredExplosion(i, out);
}
void IRGenSILFunction::visitEnumInst(swift::EnumInst *i) {
Explosion data = (i->hasOperand())
? getLoweredExplosion(i->getOperand())
: Explosion();
Explosion out;
emitInjectLoadableEnum(*this, i->getType(), i->getElement(), data, out);
setLoweredExplosion(i, out);
}
void IRGenSILFunction::visitInitEnumDataAddrInst(swift::InitEnumDataAddrInst *i) {
Address enumAddr = getLoweredAddress(i->getOperand());
Address dataAddr = emitProjectEnumAddressForStore(*this,
i->getOperand()->getType(),
enumAddr,
i->getElement());
setLoweredAddress(i, dataAddr);
}
void IRGenSILFunction::visitUncheckedEnumDataInst(swift::UncheckedEnumDataInst *i) {
Explosion enumVal = getLoweredExplosion(i->getOperand());
Explosion data;
emitProjectLoadableEnum(*this, i->getOperand()->getType(),
enumVal, i->getElement(), data);
setLoweredExplosion(i, data);
}
void IRGenSILFunction::visitUncheckedTakeEnumDataAddrInst(swift::UncheckedTakeEnumDataAddrInst *i) {
Address enumAddr = getLoweredAddress(i->getOperand());
Address dataAddr = emitDestructiveProjectEnumAddressForLoad(*this,
i->getOperand()->getType(),
enumAddr,
i->getElement());
setLoweredAddress(i, dataAddr);
}
void IRGenSILFunction::visitInjectEnumAddrInst(swift::InjectEnumAddrInst *i) {
Address enumAddr = getLoweredAddress(i->getOperand());
emitStoreEnumTagToAddress(*this, i->getOperand()->getType(),
enumAddr, i->getElement());
}
void IRGenSILFunction::visitTupleExtractInst(swift::TupleExtractInst *i) {
Explosion fullTuple = getLoweredExplosion(i->getOperand());
Explosion output;
SILType baseType = i->getOperand()->getType();
projectTupleElementFromExplosion(*this,
baseType,
fullTuple,
i->getFieldNo(),
output);
(void)fullTuple.claimAll();
setLoweredExplosion(i, output);
}
void IRGenSILFunction::visitTupleElementAddrInst(swift::TupleElementAddrInst *i)
{
Address base = getLoweredAddress(i->getOperand());
SILType baseType = i->getOperand()->getType();
Address field = projectTupleElementAddress(*this, base, baseType,
i->getFieldNo());
setLoweredAddress(i, field);
}
void IRGenSILFunction::visitStructExtractInst(swift::StructExtractInst *i) {
Explosion operand = getLoweredExplosion(i->getOperand());
Explosion lowered;
SILType baseType = i->getOperand()->getType();
projectPhysicalStructMemberFromExplosion(*this,
baseType,
operand,
i->getField(),
lowered);
(void)operand.claimAll();
setLoweredExplosion(i, lowered);
}
void IRGenSILFunction::visitStructElementAddrInst(
swift::StructElementAddrInst *i) {
Address base = getLoweredAddress(i->getOperand());
SILType baseType = i->getOperand()->getType();
Address field = projectPhysicalStructMemberAddress(*this, base, baseType,
i->getField());
setLoweredAddress(i, field);
}
void IRGenSILFunction::visitRefElementAddrInst(swift::RefElementAddrInst *i) {
Explosion base = getLoweredExplosion(i->getOperand());
llvm::Value *value = base.claimNext();
SILType baseTy = i->getOperand()->getType();
Address field = projectPhysicalClassMemberAddress(*this,
value,
baseTy,
i->getType(),
i->getField())
.getAddress();
setLoweredAddress(i, field);
}
void IRGenSILFunction::visitRefTailAddrInst(RefTailAddrInst *i) {
SILValue Ref = i->getOperand();
llvm::Value *RefValue = getLoweredExplosion(Ref).claimNext();
Address TailAddr = emitTailProjection(*this, RefValue, Ref->getType(),
i->getTailType());
setLoweredAddress(i, TailAddr);
}
void IRGenSILFunction::visitLoadInst(swift::LoadInst *i) {
Explosion lowered;
Address source = getLoweredAddress(i->getOperand());
SILType objType = i->getType().getObjectType();
const auto &typeInfo = cast<LoadableTypeInfo>(getTypeInfo(objType));
switch (i->getOwnershipQualifier()) {
case LoadOwnershipQualifier::Unqualified:
case LoadOwnershipQualifier::Trivial:
case LoadOwnershipQualifier::Take:
typeInfo.loadAsTake(*this, source, lowered);
break;
case LoadOwnershipQualifier::Copy:
typeInfo.loadAsCopy(*this, source, lowered);
break;
}
setLoweredExplosion(i, lowered);
}
void IRGenSILFunction::visitStoreInst(swift::StoreInst *i) {
Explosion source = getLoweredExplosion(i->getSrc());
Address dest = getLoweredAddress(i->getDest());
SILType objType = i->getSrc()->getType().getObjectType();
const auto &typeInfo = cast<LoadableTypeInfo>(getTypeInfo(objType));
switch (i->getOwnershipQualifier()) {
case StoreOwnershipQualifier::Unqualified:
case StoreOwnershipQualifier::Init:
case StoreOwnershipQualifier::Trivial:
typeInfo.initialize(*this, source, dest);
break;
case StoreOwnershipQualifier::Assign:
typeInfo.assign(*this, source, dest);
break;
}
}
/// Emit the artificial error result argument.
void IRGenSILFunction::emitErrorResultVar(SILResultInfo ErrorInfo,
DebugValueInst *DbgValue) {
// We don't need a shadow error variable for debugging on ABI's that return
// swifterror in a register.
if (IGM.IsSwiftErrorInRegister)
return;
auto ErrorResultSlot = getErrorResultSlot(IGM.silConv.getSILType(ErrorInfo));
SILDebugVariable Var = DbgValue->getVarInfo();
auto Storage = emitShadowCopy(ErrorResultSlot.getAddress(), getDebugScope(),
Var.Name, Var.ArgNo);
DebugTypeInfo DTI(nullptr, ErrorInfo.getType(), ErrorResultSlot->getType(),
IGM.getPointerSize(), IGM.getPointerAlignment());
IGM.DebugInfo->emitVariableDeclaration(Builder, Storage, DTI, getDebugScope(),
nullptr, Var.Name, Var.ArgNo,
IndirectValue, ArtificialValue);
}
void IRGenSILFunction::visitDebugValueInst(DebugValueInst *i) {
if (!IGM.DebugInfo)
return;
auto SILVal = i->getOperand();
if (isa<SILUndef>(SILVal)) {
// We cannot track the location of inlined error arguments because it has no
// representation in SIL.
if (!i->getDebugScope()->InlinedCallSite &&
i->getVarInfo().Name == "$error") {
auto funcTy = CurSILFn->getLoweredFunctionType();
emitErrorResultVar(funcTy->getErrorResult(), i);
}
return;
}
StringRef Name = getVarName(i);
DebugTypeInfo DbgTy;
SILType SILTy = SILVal->getType();
auto RealTy = SILVal->getType().getSwiftRValueType();
if (VarDecl *Decl = i->getDecl()) {
DbgTy = DebugTypeInfo::getLocalVariable(
CurSILFn->getDeclContext(), Decl, RealTy,
getTypeInfo(SILVal->getType()), /*Unwrap=*/false);
} else if (i->getFunction()->isBare() &&
!SILTy.hasArchetype() && !Name.empty()) {
// Preliminary support for .sil debug information.
DbgTy = DebugTypeInfo::getFromTypeInfo(CurSILFn->getDeclContext(), RealTy,
getTypeInfo(SILTy));
} else
return;
// Put the value into a stack slot at -Onone.
llvm::SmallVector<llvm::Value *, 8> Copy;
Explosion e = getLoweredExplosion(SILVal);
unsigned ArgNo = i->getVarInfo().ArgNo;
emitShadowCopy(e.claimAll(), i->getDebugScope(), Name, ArgNo, Copy);
emitDebugVariableDeclaration(Copy, DbgTy, SILTy, i->getDebugScope(),
i->getDecl(), Name, ArgNo);
}
void IRGenSILFunction::visitDebugValueAddrInst(DebugValueAddrInst *i) {
if (!IGM.DebugInfo)
return;
VarDecl *Decl = i->getDecl();
if (!Decl)
return;
auto SILVal = i->getOperand();
if (isa<SILUndef>(SILVal))
return;
StringRef Name = getVarName(i);
auto Addr = getLoweredAddress(SILVal).getAddress();
SILType SILTy = SILVal->getType();
auto RealType = SILTy.getSwiftRValueType();
if (SILTy.isAddress())
RealType = CanInOutType::get(RealType);
// Unwrap implicitly indirect types and types that are passed by
// reference only at the SIL level and below.
//
// FIXME: Should this check if the lowered SILType is address only
// instead? Otherwise optionals of archetypes etc will still have
// 'Unwrap' set to false.
bool Unwrap =
i->getVarInfo().Constant ||
SILTy.is<ArchetypeType>();
auto DbgTy = DebugTypeInfo::getLocalVariable(
CurSILFn->getDeclContext(), Decl, RealType,
getTypeInfo(SILVal->getType()), Unwrap);
// Put the value's address into a stack slot at -Onone and emit a debug
// intrinsic.
unsigned ArgNo = i->getVarInfo().ArgNo;
emitDebugVariableDeclaration(
emitShadowCopy(Addr, i->getDebugScope(), Name, ArgNo), DbgTy,
i->getType(), i->getDebugScope(), Decl, Name, ArgNo,
DbgTy.isImplicitlyIndirect() ? DirectValue : IndirectValue);
}
void IRGenSILFunction::visitLoadWeakInst(swift::LoadWeakInst *i) {
Address source = getLoweredAddress(i->getOperand());
auto &weakTI = cast<WeakTypeInfo>(getTypeInfo(i->getOperand()->getType()));
Explosion result;
if (i->isTake()) {
weakTI.weakTakeStrong(*this, source, result);
} else {
weakTI.weakLoadStrong(*this, source, result);
}
setLoweredExplosion(i, result);
}
void IRGenSILFunction::visitStoreWeakInst(swift::StoreWeakInst *i) {
Explosion source = getLoweredExplosion(i->getSrc());
Address dest = getLoweredAddress(i->getDest());
auto &weakTI = cast<WeakTypeInfo>(getTypeInfo(i->getDest()->getType()));
if (i->isInitializationOfDest()) {
weakTI.weakInit(*this, source, dest);
} else {
weakTI.weakAssign(*this, source, dest);
}
}
void IRGenSILFunction::visitFixLifetimeInst(swift::FixLifetimeInst *i) {
if (i->getOperand()->getType().isAddress()) {
// Just pass in the address to fix lifetime if we have one. We will not do
// anything to it so nothing bad should happen.
emitFixLifetime(getLoweredAddress(i->getOperand()).getAddress());
return;
}
// Handle objects.
Explosion in = getLoweredExplosion(i->getOperand());
cast<LoadableTypeInfo>(getTypeInfo(i->getOperand()->getType()))
.fixLifetime(*this, in);
}
void IRGenSILFunction::visitMarkDependenceInst(swift::MarkDependenceInst *i) {
// Dependency-marking is purely for SIL. Just forward the input as
// the result.
SILValue value = i->getValue();
if (value->getType().isAddress()) {
setLoweredAddress(i, getLoweredAddress(value));
} else {
Explosion temp = getLoweredExplosion(value);
setLoweredExplosion(i, temp);
}
}
void IRGenSILFunction::visitCopyBlockInst(CopyBlockInst *i) {
Explosion lowered = getLoweredExplosion(i->getOperand());
llvm::Value *copied = emitBlockCopyCall(lowered.claimNext());
Explosion result;
result.add(copied);
setLoweredExplosion(i, result);
}
void IRGenSILFunction::visitStrongPinInst(swift::StrongPinInst *i) {
Explosion lowered = getLoweredExplosion(i->getOperand());
llvm::Value *object = lowered.claimNext();
llvm::Value *pinHandle =
emitNativeTryPin(object, i->isAtomic() ? irgen::Atomicity::Atomic
: irgen::Atomicity::NonAtomic);
Explosion result;
result.add(pinHandle);
setLoweredExplosion(i, result);
}
void IRGenSILFunction::visitStrongUnpinInst(swift::StrongUnpinInst *i) {
Explosion lowered = getLoweredExplosion(i->getOperand());
llvm::Value *pinHandle = lowered.claimNext();
emitNativeUnpin(pinHandle, i->isAtomic() ? irgen::Atomicity::Atomic
: irgen::Atomicity::NonAtomic);
}
void IRGenSILFunction::visitStrongRetainInst(swift::StrongRetainInst *i) {
Explosion lowered = getLoweredExplosion(i->getOperand());
auto &ti = cast<ReferenceTypeInfo>(getTypeInfo(i->getOperand()->getType()));
ti.strongRetain(*this, lowered, i->isAtomic() ? irgen::Atomicity::Atomic
: irgen::Atomicity::NonAtomic);
}
void IRGenSILFunction::visitStrongReleaseInst(swift::StrongReleaseInst *i) {
Explosion lowered = getLoweredExplosion(i->getOperand());
auto &ti = cast<ReferenceTypeInfo>(getTypeInfo(i->getOperand()->getType()));
ti.strongRelease(*this, lowered, i->isAtomic() ? irgen::Atomicity::Atomic
: irgen::Atomicity::NonAtomic);
}
/// Given a SILType which is a ReferenceStorageType, return the type
/// info for the underlying reference type.
static const ReferenceTypeInfo &getReferentTypeInfo(IRGenFunction &IGF,
SILType silType) {
auto type = silType.castTo<ReferenceStorageType>().getReferentType();
return cast<ReferenceTypeInfo>(IGF.getTypeInfoForLowered(type));
}
void IRGenSILFunction::
visitStrongRetainUnownedInst(swift::StrongRetainUnownedInst *i) {
Explosion lowered = getLoweredExplosion(i->getOperand());
auto &ti = getReferentTypeInfo(*this, i->getOperand()->getType());
ti.strongRetainUnowned(*this, lowered, i->isAtomic() ? irgen::Atomicity::Atomic
: irgen::Atomicity::NonAtomic);
}
void IRGenSILFunction::visitUnownedRetainInst(swift::UnownedRetainInst *i) {
Explosion lowered = getLoweredExplosion(i->getOperand());
auto &ti = getReferentTypeInfo(*this, i->getOperand()->getType());
ti.unownedRetain(*this, lowered, i->isAtomic() ? irgen::Atomicity::Atomic
: irgen::Atomicity::NonAtomic);
}
void IRGenSILFunction::visitUnownedReleaseInst(swift::UnownedReleaseInst *i) {
Explosion lowered = getLoweredExplosion(i->getOperand());
auto &ti = getReferentTypeInfo(*this, i->getOperand()->getType());
ti.unownedRelease(*this, lowered, i->isAtomic() ? irgen::Atomicity::Atomic
: irgen::Atomicity::NonAtomic);
}
void IRGenSILFunction::visitLoadUnownedInst(swift::LoadUnownedInst *i) {
Address source = getLoweredAddress(i->getOperand());
auto &ti = getReferentTypeInfo(*this, i->getOperand()->getType());
Explosion result;
if (i->isTake()) {
ti.unownedTakeStrong(*this, source, result);
} else {
ti.unownedLoadStrong(*this, source, result);
}
setLoweredExplosion(i, result);
}
void IRGenSILFunction::visitStoreUnownedInst(swift::StoreUnownedInst *i) {
Explosion source = getLoweredExplosion(i->getSrc());
Address dest = getLoweredAddress(i->getDest());
auto &ti = getReferentTypeInfo(*this, i->getDest()->getType());
if (i->isInitializationOfDest()) {
ti.unownedInit(*this, source, dest);
} else {
ti.unownedAssign(*this, source, dest);
}
}
static bool hasReferenceSemantics(IRGenSILFunction &IGF,
SILType silType) {
auto operType = silType.getSwiftRValueType();
auto valueType = operType->getAnyOptionalObjectType();
auto objType = valueType ? valueType : operType;
return (objType->mayHaveSuperclass()
|| objType->isClassExistentialType()
|| objType->is<BuiltinNativeObjectType>()
|| objType->is<BuiltinBridgeObjectType>()
|| objType->is<BuiltinUnknownObjectType>());
}
static llvm::Value *emitIsUnique(IRGenSILFunction &IGF, SILValue operand,
SourceLoc loc, bool checkPinned) {
if (!hasReferenceSemantics(IGF, operand->getType())) {
llvm::Function *trapIntrinsic = llvm::Intrinsic::getDeclaration(
&IGF.IGM.Module, llvm::Intrinsic::ID::trap);
IGF.Builder.CreateCall(trapIntrinsic, {});
return llvm::UndefValue::get(IGF.IGM.Int1Ty);
}
auto &operTI = cast<LoadableTypeInfo>(IGF.getTypeInfo(operand->getType()));
LoadedRef ref =
operTI.loadRefcountedPtr(IGF, loc, IGF.getLoweredAddress(operand));
return
IGF.emitIsUniqueCall(ref.getValue(), loc, ref.isNonNull(), checkPinned);
}
void IRGenSILFunction::visitIsUniqueInst(swift::IsUniqueInst *i) {
llvm::Value *result = emitIsUnique(*this, i->getOperand(),
i->getLoc().getSourceLoc(), false);
Explosion out;
out.add(result);
setLoweredExplosion(i, out);
}
void IRGenSILFunction::
visitIsUniqueOrPinnedInst(swift::IsUniqueOrPinnedInst *i) {
llvm::Value *result = emitIsUnique(*this, i->getOperand(),
i->getLoc().getSourceLoc(), true);
Explosion out;
out.add(result);
setLoweredExplosion(i, out);
}
static bool tryDeferFixedSizeBufferInitialization(IRGenSILFunction &IGF,
SILInstruction *allocInst,
const TypeInfo &ti,
Address fixedSizeBuffer,
const llvm::Twine &name) {
// There's no point in doing this for fixed-sized types, since we'll allocate
// an appropriately-sized buffer for them statically.
if (ti.isFixedSize())
return false;
// TODO: More interesting dominance analysis could be done here to see
// if the alloc_stack is dominated by copy_addrs into it on all paths.
// For now, check only that the copy_addr is the first use within the same
// block.
for (auto ii = std::next(allocInst->getIterator()),
ie = std::prev(allocInst->getParent()->end());
ii != ie; ++ii) {
auto *inst = &*ii;
// Does this instruction use the allocation? If not, continue.
auto Ops = inst->getAllOperands();
if (std::none_of(Ops.begin(), Ops.end(),
[allocInst](const Operand &Op) {
return Op.get() == allocInst;
}))
continue;
// Is this a copy?
auto *copy = dyn_cast<swift::CopyAddrInst>(inst);
if (!copy)
return false;
// Destination must be the allocation.
if (copy->getDest() != SILValue(allocInst))
return false;
// Copy must be an initialization.
if (!copy->isInitializationOfDest())
return false;
// We can defer to this initialization. Allocate the fixed-size buffer
// now, but don't allocate the value inside it.
if (!fixedSizeBuffer.getAddress()) {
fixedSizeBuffer = IGF.createFixedSizeBufferAlloca(name);
IGF.Builder.CreateLifetimeStart(fixedSizeBuffer,
getFixedBufferSize(IGF.IGM));
}
IGF.setContainerOfUnallocatedAddress(allocInst, fixedSizeBuffer);
return true;
}
return false;
}
void IRGenSILFunction::emitDebugInfoForAllocStack(AllocStackInst *i,
const TypeInfo &type,
llvm::Value *addr) {
VarDecl *Decl = i->getDecl();
if (IGM.DebugInfo && Decl) {
// Ignore compiler-generated patterns but not optional bindings.
if (auto *Pattern = Decl->getParentPattern())
if (Pattern->isImplicit() &&
Pattern->getKind() != PatternKind::OptionalSome)
return;
SILType SILTy = i->getType();
auto RealType = SILTy.getSwiftRValueType();
auto DbgTy = DebugTypeInfo::getLocalVariable(CurSILFn->getDeclContext(),
Decl, RealType, type, false);
StringRef Name = getVarName(i);
if (auto DS = i->getDebugScope())
emitDebugVariableDeclaration(addr, DbgTy, SILTy, DS, Decl, Name,
i->getVarInfo().ArgNo);
}
}
void IRGenSILFunction::visitAllocStackInst(swift::AllocStackInst *i) {
const TypeInfo &type = getTypeInfo(i->getElementType());
// Derive name from SIL location.
VarDecl *Decl = i->getDecl();
StringRef dbgname;
# ifndef NDEBUG
// If this is a DEBUG build, use pretty names for the LLVM IR.
dbgname = getVarName(i);
# endif
(void) Decl;
bool isEntryBlock =
i->getParentBlock() == i->getFunction()->getEntryBlock();
auto addr =
type.allocateStack(*this, i->getElementType(), isEntryBlock, dbgname);
emitDebugInfoForAllocStack(i, type, addr.getAddress().getAddress());
setLoweredStackAddress(i, addr);
}
static void
buildTailArrays(IRGenSILFunction &IGF,
SmallVectorImpl<std::pair<SILType, llvm::Value *>> &TailArrays,
AllocRefInstBase *ARI) {
auto Types = ARI->getTailAllocatedTypes();
auto Counts = ARI->getTailAllocatedCounts();
for (unsigned Idx = 0, NumTypes = Types.size(); Idx < NumTypes; ++Idx) {
Explosion ElemCount = IGF.getLoweredExplosion(Counts[Idx].get());
TailArrays.push_back({Types[Idx], ElemCount.claimNext()});
}
}
void IRGenSILFunction::visitAllocRefInst(swift::AllocRefInst *i) {
int StackAllocSize = -1;
if (i->canAllocOnStack()) {
estimateStackSize();
// Is there enough space for stack allocation?
StackAllocSize = IGM.IRGen.Opts.StackPromotionSizeLimit - EstimatedStackSize;
}
SmallVector<std::pair<SILType, llvm::Value *>, 4> TailArrays;
buildTailArrays(*this, TailArrays, i);
llvm::Value *alloced = emitClassAllocation(*this, i->getType(), i->isObjC(),
StackAllocSize, TailArrays);
if (StackAllocSize >= 0) {
// Remember that this alloc_ref allocates the object on the stack.
StackAllocs.insert(i);
EstimatedStackSize += StackAllocSize;
}
Explosion e;
e.add(alloced);
setLoweredExplosion(i, e);
}
void IRGenSILFunction::visitAllocRefDynamicInst(swift::AllocRefDynamicInst *i) {
SmallVector<std::pair<SILType, llvm::Value *>, 4> TailArrays;
buildTailArrays(*this, TailArrays, i);
Explosion metadata = getLoweredExplosion(i->getMetatypeOperand());
auto metadataValue = metadata.claimNext();
llvm::Value *alloced = emitClassAllocationDynamic(*this, metadataValue,
i->getType(), i->isObjC(),
TailArrays);
Explosion e;
e.add(alloced);
setLoweredExplosion(i, e);
}
void IRGenSILFunction::visitDeallocStackInst(swift::DeallocStackInst *i) {
auto allocatedType = i->getOperand()->getType();
const TypeInfo &allocatedTI = getTypeInfo(allocatedType);
StackAddress stackAddr = getLoweredStackAddress(i->getOperand());
allocatedTI.deallocateStack(*this, stackAddr, allocatedType);
}
void IRGenSILFunction::visitDeallocRefInst(swift::DeallocRefInst *i) {
// Lower the operand.
Explosion self = getLoweredExplosion(i->getOperand());
auto selfValue = self.claimNext();
auto *ARI = dyn_cast<AllocRefInst>(i->getOperand());
if (!i->canAllocOnStack()) {
if (ARI && StackAllocs.count(ARI)) {
// We can ignore dealloc_refs (without [stack]) for stack allocated
// objects.
//
// %0 = alloc_ref [stack]
// ...
// dealloc_ref %0 // not needed (stems from the inlined deallocator)
// ...
// dealloc_ref [stack] %0
return;
}
auto classType = i->getOperand()->getType();
emitClassDeallocation(*this, classType, selfValue);
return;
}
// It's a dealloc_ref [stack]. Even if the alloc_ref did not allocate the
// object on the stack, we don't have to deallocate it, because it is
// deallocated in the final release.
assert(ARI->canAllocOnStack());
if (StackAllocs.count(ARI)) {
if (IGM.IRGen.Opts.EmitStackPromotionChecks) {
selfValue = Builder.CreateBitCast(selfValue, IGM.RefCountedPtrTy);
emitVerifyEndOfLifetimeCall(selfValue);
} else {
// This has two purposes:
// 1. Tell LLVM the lifetime of the allocated stack memory.
// 2. Avoid tail-call optimization which may convert the call to the final
// release to a jump, which is done after the stack frame is
// destructed.
Builder.CreateLifetimeEnd(selfValue);
}
}
}
void IRGenSILFunction::visitDeallocPartialRefInst(swift::DeallocPartialRefInst *i) {
Explosion self = getLoweredExplosion(i->getInstance());
auto selfValue = self.claimNext();
Explosion metadata = getLoweredExplosion(i->getMetatype());
auto metadataValue = metadata.claimNext();
auto classType = i->getInstance()->getType();
emitPartialClassDeallocation(*this, classType, selfValue, metadataValue);
}
void IRGenSILFunction::visitDeallocBoxInst(swift::DeallocBoxInst *i) {
Explosion owner = getLoweredExplosion(i->getOperand());
llvm::Value *ownerPtr = owner.claimNext();
auto boxTy = i->getOperand()->getType().castTo<SILBoxType>();
emitDeallocateBox(*this, ownerPtr, boxTy);
}
void IRGenSILFunction::visitAllocBoxInst(swift::AllocBoxInst *i) {
assert(i->getBoxType()->getLayout()->getFields().size() == 1
&& "multi field boxes not implemented yet");
const TypeInfo &type = getTypeInfo(i->getBoxType()
->getFieldType(IGM.getSILModule(), 0));
// Derive name from SIL location.
VarDecl *Decl = i->getDecl();
StringRef Name = getVarName(i);
StringRef DbgName =
# ifndef NDEBUG
// If this is a DEBUG build, use pretty names for the LLVM IR.
Name;
# else
"";
# endif
auto boxTy = i->getType().castTo<SILBoxType>();
OwnedAddress boxWithAddr = emitAllocateBox(*this, boxTy,
CurSILFn->getGenericEnvironment(),
DbgName);
setLoweredBox(i, boxWithAddr);
if (IGM.DebugInfo && Decl) {
// FIXME: This is a workaround to not produce local variables for
// capture list arguments like "[weak self]". The better solution
// would be to require all variables to be described with a
// SILDebugValue(Addr) and then not describe capture list
// arguments.
if (Name == IGM.Context.Id_self.str())
return;
assert(i->getBoxType()->getLayout()->getFields().size() == 1
&& "box for a local variable should only have one field");
auto SILTy = i->getBoxType()->getFieldType(IGM.getSILModule(), 0);
auto RealType = SILTy.getSwiftRValueType();
if (SILTy.isAddress())
RealType = CanInOutType::get(RealType);
auto DbgTy = DebugTypeInfo::getLocalVariable(
CurSILFn->getDeclContext(), Decl,
RealType, type, /*Unwrap=*/false);
if (isInlinedGeneric(Decl, i->getDebugScope()))
return;
IGM.DebugInfo->emitVariableDeclaration(
Builder,
emitShadowCopy(boxWithAddr.getAddress(), i->getDebugScope(), Name, 0),
DbgTy, i->getDebugScope(), Decl, Name, 0,
DbgTy.isImplicitlyIndirect() ? DirectValue : IndirectValue);
}
}
void IRGenSILFunction::visitProjectBoxInst(swift::ProjectBoxInst *i) {
auto boxTy = i->getOperand()->getType().castTo<SILBoxType>();
const LoweredValue &val = getLoweredValue(i->getOperand());
if (val.isBoxWithAddress()) {
// The operand is an alloc_box. We can directly reuse the address.
setLoweredAddress(i, val.getAddressOfBox());
} else {
// The slow-path: we have to emit code to get from the box to it's
// value address.
Explosion box = val.getExplosion(*this);
auto addr = emitProjectBox(*this, box.claimNext(), boxTy);
setLoweredAddress(i, addr);
}
}
void IRGenSILFunction::visitConvertFunctionInst(swift::ConvertFunctionInst *i) {
// This instruction is specified to be a no-op.
Explosion temp = getLoweredExplosion(i->getOperand());
setLoweredExplosion(i, temp);
}
void IRGenSILFunction::visitThinFunctionToPointerInst(
swift::ThinFunctionToPointerInst *i) {
Explosion in = getLoweredExplosion(i->getOperand());
llvm::Value *fn = in.claimNext();
fn = Builder.CreateBitCast(fn, IGM.Int8PtrTy);
Explosion out;
out.add(fn);
setLoweredExplosion(i, out);
}
void IRGenSILFunction::visitPointerToThinFunctionInst(
swift::PointerToThinFunctionInst *i) {
Explosion in = getLoweredExplosion(i->getOperand());
llvm::Value *fn = in.claimNext();
fn = Builder.CreateBitCast(fn, IGM.FunctionPtrTy);
Explosion out;
out.add(fn);
setLoweredExplosion(i, out);
}
void IRGenSILFunction::visitAddressToPointerInst(swift::AddressToPointerInst *i)
{
Explosion to;
llvm::Value *addrValue = getLoweredAddress(i->getOperand()).getAddress();
if (addrValue->getType() != IGM.Int8PtrTy)
addrValue = Builder.CreateBitCast(addrValue, IGM.Int8PtrTy);
to.add(addrValue);
setLoweredExplosion(i, to);
}
// Ignores the isStrict flag because Swift TBAA is not lowered into LLVM IR.
void IRGenSILFunction::visitPointerToAddressInst(swift::PointerToAddressInst *i)
{
Explosion from = getLoweredExplosion(i->getOperand());
llvm::Value *ptrValue = from.claimNext();
auto &ti = getTypeInfo(i->getType());
llvm::Type *destType = ti.getStorageType()->getPointerTo();
ptrValue = Builder.CreateBitCast(ptrValue, destType);
setLoweredAddress(i,
ti.getAddressForPointer(ptrValue));
}
static void emitPointerCastInst(IRGenSILFunction &IGF,
SILValue src,
SILValue dest,
const TypeInfo &ti) {
Explosion from = IGF.getLoweredExplosion(src);
llvm::Value *ptrValue = from.claimNext();
// The input may have witness tables or other additional data, but the class
// reference is always first.
(void)from.claimAll();
auto schema = ti.getSchema();
assert(schema.size() == 1
&& schema[0].isScalar()
&& "pointer schema is not a single scalar?!");
auto castToType = schema[0].getScalarType();
// A retainable pointer representation may be wrapped in an optional, so we
// need to provide inttoptr/ptrtoint in addition to bitcast.
ptrValue = IGF.Builder.CreateBitOrPointerCast(ptrValue, castToType);
Explosion to;
to.add(ptrValue);
IGF.setLoweredExplosion(dest, to);
}
void IRGenSILFunction::visitUncheckedRefCastInst(
swift::UncheckedRefCastInst *i) {
auto &ti = getTypeInfo(i->getType());
emitPointerCastInst(*this, i->getOperand(), i, ti);
}
// TODO: Although runtime checks are not required, we get them anyway when
// asking the runtime to perform this cast. If this is a performance impact, we
// can add a CheckedCastMode::Unchecked.
void IRGenSILFunction::
visitUncheckedRefCastAddrInst(swift::UncheckedRefCastAddrInst *i) {
Address dest = getLoweredAddress(i->getDest());
Address src = getLoweredAddress(i->getSrc());
emitCheckedCast(*this, src, i->getSourceType(), dest, i->getTargetType(),
i->getConsumptionKind(), CheckedCastMode::Unconditional);
}
void IRGenSILFunction::visitUncheckedAddrCastInst(
swift::UncheckedAddrCastInst *i) {
auto addr = getLoweredAddress(i->getOperand());
auto &ti = getTypeInfo(i->getType());
auto result = Builder.CreateBitCast(addr,ti.getStorageType()->getPointerTo());
setLoweredAddress(i, result);
}
static bool isStructurallySame(const llvm::Type *T1, const llvm::Type *T2) {
if (T1 == T2) return true;
if (auto *S1 = dyn_cast<llvm::StructType>(T1))
if (auto *S2 = dyn_cast<llvm::StructType>(T2))
return S1->isLayoutIdentical(const_cast<llvm::StructType*>(S2));
return false;
}
// Emit a trap in the event a type does not match expected layout constraints.
//
// We can hit this case in specialized functions even for correct user code.
// If the user dynamically checks for correct type sizes in the generic
// function, a specialized function can contain the (not executed) bitcast
// with mismatching fixed sizes.
// Usually llvm can eliminate this code again because the user's safety
// check should be constant foldable on llvm level.
static void emitTrapAndUndefValue(IRGenSILFunction &IGF,
Explosion &in,
Explosion &out,
const LoadableTypeInfo &outTI) {
llvm::BasicBlock *failBB =
llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
IGF.Builder.CreateBr(failBB);
IGF.FailBBs.push_back(failBB);
IGF.Builder.emitBlock(failBB);
llvm::Function *trapIntrinsic = llvm::Intrinsic::getDeclaration(
&IGF.IGM.Module, llvm::Intrinsic::ID::trap);
IGF.Builder.CreateCall(trapIntrinsic, {});
IGF.Builder.CreateUnreachable();
llvm::BasicBlock *contBB = llvm::BasicBlock::Create(IGF.IGM.getLLVMContext());
IGF.Builder.emitBlock(contBB);
(void)in.claimAll();
for (auto schema : outTI.getSchema())
out.add(llvm::UndefValue::get(schema.getScalarType()));
}
static void emitUncheckedValueBitCast(IRGenSILFunction &IGF,
SourceLoc loc,
Explosion &in,
const LoadableTypeInfo &inTI,
Explosion &out,
const LoadableTypeInfo &outTI) {
// If the transfer is doable bitwise, and if the elements of the explosion are
// the same type, then just transfer the elements.
if (inTI.isBitwiseTakable(ResilienceExpansion::Maximal) &&
outTI.isBitwiseTakable(ResilienceExpansion::Maximal) &&
isStructurallySame(inTI.getStorageType(), outTI.getStorageType())) {
in.transferInto(out, in.size());
return;
}
// TODO: We could do bitcasts entirely in the value domain in some cases, but
// for simplicity, let's just always go through the stack for now.
// Create the allocation.
auto inStorage = IGF.createAlloca(inTI.getStorageType(),
std::max(inTI.getFixedAlignment(),
outTI.getFixedAlignment()),
"bitcast");
auto maxSize = std::max(inTI.getFixedSize(), outTI.getFixedSize());
IGF.Builder.CreateLifetimeStart(inStorage, maxSize);
// Store the 'in' value.
inTI.initialize(IGF, in, inStorage);
// Load the 'out' value as the destination type.
auto outStorage = IGF.Builder.CreateBitCast(inStorage,
outTI.getStorageType()->getPointerTo());
outTI.loadAsTake(IGF, outStorage, out);
IGF.Builder.CreateLifetimeEnd(inStorage, maxSize);
return;
}
static void emitValueBitwiseCast(IRGenSILFunction &IGF,
SourceLoc loc,
Explosion &in,
const LoadableTypeInfo &inTI,
Explosion &out,
const LoadableTypeInfo &outTI) {
// Unfortunately, we can't check this invariant until we get to IRGen, since
// the AST and SIL don't know anything about type layout.
if (inTI.getFixedSize() < outTI.getFixedSize()) {
emitTrapAndUndefValue(IGF, in, out, outTI);
return;
}
emitUncheckedValueBitCast(IGF, loc, in, inTI, out, outTI);
}
void IRGenSILFunction::visitUncheckedTrivialBitCastInst(
swift::UncheckedTrivialBitCastInst *i) {
Explosion in = getLoweredExplosion(i->getOperand());
Explosion out;
emitValueBitwiseCast(*this, i->getLoc().getSourceLoc(),
in, cast<LoadableTypeInfo>(getTypeInfo(i->getOperand()->getType())),
out, cast<LoadableTypeInfo>(getTypeInfo(i->getType())));
setLoweredExplosion(i, out);
}
void IRGenSILFunction::
visitUncheckedBitwiseCastInst(swift::UncheckedBitwiseCastInst *i) {
Explosion in = getLoweredExplosion(i->getOperand());
Explosion out;
emitValueBitwiseCast(*this, i->getLoc().getSourceLoc(),
in, cast<LoadableTypeInfo>(getTypeInfo(i->getOperand()->getType())),
out, cast<LoadableTypeInfo>(getTypeInfo(i->getType())));
setLoweredExplosion(i, out);
}
void IRGenSILFunction::visitRefToRawPointerInst(
swift::RefToRawPointerInst *i) {
auto &ti = getTypeInfo(i->getType());
emitPointerCastInst(*this, i->getOperand(), i, ti);
}
void IRGenSILFunction::visitRawPointerToRefInst(swift::RawPointerToRefInst *i) {
auto &ti = getTypeInfo(i->getType());
emitPointerCastInst(*this, i->getOperand(), i, ti);
}
// SIL scalar conversions which never change the IR type.
// FIXME: Except for optionals, which get bit-packed into an integer.
static void trivialRefConversion(IRGenSILFunction &IGF,
SILValue input,
SILValue result) {
Explosion temp = IGF.getLoweredExplosion(input);
auto &inputTI = IGF.getTypeInfo(input->getType());
auto &resultTI = IGF.getTypeInfo(result->getType());
// If the types are the same, forward the existing value.
if (inputTI.getStorageType() == resultTI.getStorageType()) {
IGF.setLoweredExplosion(result, temp);
return;
}
auto schema = resultTI.getSchema();
Explosion out;
for (auto schemaElt : schema) {
auto resultTy = schemaElt.getScalarType();
llvm::Value *value = temp.claimNext();
if (value->getType() == resultTy) {
// Nothing to do. This happens with the unowned conversions.
} else if (resultTy->isPointerTy()) {
value = IGF.Builder.CreateIntToPtr(value, resultTy);
} else {
value = IGF.Builder.CreatePtrToInt(value, resultTy);
}
out.add(value);
}
IGF.setLoweredExplosion(result, out);
}
// SIL scalar conversions which never change the IR type.
// FIXME: Except for optionals, which get bit-packed into an integer.
#define NOOP_CONVERSION(KIND) \
void IRGenSILFunction::visit##KIND##Inst(swift::KIND##Inst *i) { \
::trivialRefConversion(*this, i->getOperand(), i); \
}
NOOP_CONVERSION(UnownedToRef)
NOOP_CONVERSION(RefToUnowned)
NOOP_CONVERSION(UnmanagedToRef)
NOOP_CONVERSION(RefToUnmanaged)
#undef NOOP_CONVERSION
void IRGenSILFunction::visitThinToThickFunctionInst(
swift::ThinToThickFunctionInst *i) {
// Take the incoming function pointer and add a null context pointer to it.
Explosion from = getLoweredExplosion(i->getOperand());
Explosion to;
to.add(from.claimNext());
to.add(IGM.RefCountedNull);
setLoweredExplosion(i, to);
}
void IRGenSILFunction::visitThickToObjCMetatypeInst(ThickToObjCMetatypeInst *i){
Explosion from = getLoweredExplosion(i->getOperand());
llvm::Value *swiftMeta = from.claimNext();
CanType instanceType(i->getType().castTo<AnyMetatypeType>().getInstanceType());
Explosion to;
llvm::Value *classPtr =
emitClassHeapMetadataRefForMetatype(*this, swiftMeta, instanceType);
to.add(Builder.CreateBitCast(classPtr, IGM.ObjCClassPtrTy));
setLoweredExplosion(i, to);
}
void IRGenSILFunction::visitObjCToThickMetatypeInst(
ObjCToThickMetatypeInst *i) {
Explosion from = getLoweredExplosion(i->getOperand());
llvm::Value *classPtr = from.claimNext();
// Fetch the metadata for that class.
Explosion to;
auto metadata = emitObjCMetadataRefForMetadata(*this, classPtr);
to.add(metadata);
setLoweredExplosion(i, to);
}
void IRGenSILFunction::visitUnconditionalCheckedCastInst(
swift::UnconditionalCheckedCastInst *i) {
Explosion value = getLoweredExplosion(i->getOperand());
Explosion ex;
emitScalarCheckedCast(*this, value, i->getOperand()->getType(), i->getType(),
CheckedCastMode::Unconditional, ex);
setLoweredExplosion(i, ex);
}
void IRGenSILFunction::visitObjCMetatypeToObjectInst(
ObjCMetatypeToObjectInst *i){
// Bitcast the @objc metatype reference, which is already an ObjC object, to
// the destination type.
Explosion from = getLoweredExplosion(i->getOperand());
llvm::Value *value = from.claimNext();
value = Builder.CreateBitCast(value, IGM.UnknownRefCountedPtrTy);
Explosion to;
to.add(value);
setLoweredExplosion(i, to);
}
void IRGenSILFunction::visitObjCExistentialMetatypeToObjectInst(
ObjCExistentialMetatypeToObjectInst *i){
// Bitcast the @objc metatype reference, which is already an ObjC object, to
// the destination type. The metatype may carry additional witness tables we
// can drop.
Explosion from = getLoweredExplosion(i->getOperand());
llvm::Value *value = from.claimNext();
(void)from.claimAll();
value = Builder.CreateBitCast(value, IGM.UnknownRefCountedPtrTy);
Explosion to;
to.add(value);
setLoweredExplosion(i, to);
}
void IRGenSILFunction::visitObjCProtocolInst(ObjCProtocolInst *i) {
// Get the protocol reference.
llvm::Value *protoRef = emitReferenceToObjCProtocol(*this, i->getProtocol());
// Bitcast it to the class reference type.
protoRef = Builder.CreateBitCast(protoRef,
getTypeInfo(i->getType()).getStorageType());
Explosion ex;
ex.add(protoRef);
setLoweredExplosion(i, ex);
}
void IRGenSILFunction::visitRefToBridgeObjectInst(
swift::RefToBridgeObjectInst *i) {
Explosion refEx = getLoweredExplosion(i->getConverted());
llvm::Value *ref = refEx.claimNext();
Explosion bitsEx = getLoweredExplosion(i->getBitsOperand());
llvm::Value *bits = bitsEx.claimNext();
// Mask the bits into the pointer representation.
llvm::Value *val = Builder.CreatePtrToInt(ref, IGM.SizeTy);
val = Builder.CreateOr(val, bits);
val = Builder.CreateIntToPtr(val, IGM.BridgeObjectPtrTy);
Explosion resultEx;
resultEx.add(val);
setLoweredExplosion(i, resultEx);
}
void IRGenSILFunction::visitBridgeObjectToRefInst(
swift::BridgeObjectToRefInst *i) {
Explosion boEx = getLoweredExplosion(i->getConverted());
llvm::Value *bo = boEx.claimNext();
Explosion resultEx;
auto &refTI = getTypeInfo(i->getType());
llvm::Type *refType = refTI.getSchema()[0].getScalarType();
// If the value is an ObjC tagged pointer, pass it through verbatim.
llvm::BasicBlock *taggedCont = nullptr,
*tagged = nullptr,
*notTagged = nullptr;
llvm::Value *taggedRef = nullptr;
llvm::Value *boBits = nullptr;
ClassDecl *Cl = i->getType().getClassOrBoundGenericClass();
if (IGM.TargetInfo.hasObjCTaggedPointers() &&
(!Cl || !isKnownNotTaggedPointer(IGM, Cl))) {
boBits = Builder.CreatePtrToInt(bo, IGM.SizeTy);
APInt maskValue = IGM.TargetInfo.ObjCPointerReservedBits.asAPInt();
llvm::Value *mask = llvm::ConstantInt::get(IGM.getLLVMContext(), maskValue);
llvm::Value *reserved = Builder.CreateAnd(boBits, mask);
llvm::Value *cond = Builder.CreateICmpEQ(reserved,
llvm::ConstantInt::get(IGM.SizeTy, 0));
tagged = createBasicBlock("tagged-pointer"),
notTagged = createBasicBlock("not-tagged-pointer");
taggedCont = createBasicBlock("tagged-cont");
Builder.CreateCondBr(cond, notTagged, tagged);
Builder.emitBlock(tagged);
taggedRef = Builder.CreateBitCast(bo, refType);
Builder.CreateBr(taggedCont);
// If it's not a tagged pointer, mask off the spare bits.
Builder.emitBlock(notTagged);
}
// Mask off the spare bits (if they exist).
auto &spareBits = IGM.getHeapObjectSpareBits();
llvm::Value *result;
if (spareBits.any()) {
APInt maskValue = ~spareBits.asAPInt();
if (!boBits)
boBits = Builder.CreatePtrToInt(bo, IGM.SizeTy);
llvm::Value *mask = llvm::ConstantInt::get(IGM.getLLVMContext(), maskValue);
llvm::Value *masked = Builder.CreateAnd(boBits, mask);
result = Builder.CreateIntToPtr(masked, refType);
} else {
result = Builder.CreateBitCast(bo, refType);
}
if (taggedCont) {
Builder.CreateBr(taggedCont);
Builder.emitBlock(taggedCont);
auto phi = Builder.CreatePHI(refType, 2);
phi->addIncoming(taggedRef, tagged);
phi->addIncoming(result, notTagged);
result = phi;
}
resultEx.add(result);
setLoweredExplosion(i, resultEx);
}
void IRGenSILFunction::visitBridgeObjectToWordInst(
swift::BridgeObjectToWordInst *i) {
Explosion boEx = getLoweredExplosion(i->getConverted());
llvm::Value *val = boEx.claimNext();
val = Builder.CreatePtrToInt(val, IGM.SizeTy);
Explosion wordEx;
wordEx.add(val);
setLoweredExplosion(i, wordEx);
}
void IRGenSILFunction::visitUnconditionalCheckedCastAddrInst(
swift::UnconditionalCheckedCastAddrInst *i) {
Address dest = getLoweredAddress(i->getDest());
Address src = getLoweredAddress(i->getSrc());
emitCheckedCast(*this, src, i->getSourceType(), dest, i->getTargetType(),
i->getConsumptionKind(), CheckedCastMode::Unconditional);
}
void IRGenSILFunction::visitUnconditionalCheckedCastOpaqueInst(
swift::UnconditionalCheckedCastOpaqueInst *i) {
llvm_unreachable("unsupported instruction during IRGen");
}
void IRGenSILFunction::visitCheckedCastBranchInst(
swift::CheckedCastBranchInst *i) {
SILType destTy = i->getCastType();
FailableCastResult castResult;
Explosion ex;
if (i->isExact()) {
auto operand = i->getOperand();
Explosion source = getLoweredExplosion(operand);
castResult = emitClassIdenticalCast(*this, source.claimNext(),
operand->getType(), destTy);
} else {
Explosion value = getLoweredExplosion(i->getOperand());
emitScalarCheckedCast(*this, value, i->getOperand()->getType(),
i->getCastType(), CheckedCastMode::Conditional, ex);
auto val = ex.claimNext();
castResult.casted = val;
llvm::Value *nil =
llvm::ConstantPointerNull::get(cast<llvm::PointerType>(val->getType()));
castResult.succeeded = Builder.CreateICmpNE(val, nil);
}
// Branch on the success of the cast.
// All cast operations currently return null on failure.
auto &successBB = getLoweredBB(i->getSuccessBB());
llvm::Type *toTy = IGM.getTypeInfo(destTy).getStorageType();
if (toTy->isPointerTy())
castResult.casted = Builder.CreateBitCast(castResult.casted, toTy);
Builder.CreateCondBr(castResult.succeeded,
successBB.bb,
getLoweredBB(i->getFailureBB()).bb);
// Feed the cast result into the nonnull branch.
unsigned phiIndex = 0;
Explosion ex2;
ex2.add(castResult.casted);
ex2.add(ex.claimAll());
addIncomingExplosionToPHINodes(*this, successBB, phiIndex, ex2);
}
void IRGenSILFunction::visitCheckedCastAddrBranchInst(
swift::CheckedCastAddrBranchInst *i) {
Address dest = getLoweredAddress(i->getDest());
Address src = getLoweredAddress(i->getSrc());
llvm::Value *castSucceeded =
emitCheckedCast(*this, src, i->getSourceType(), dest, i->getTargetType(),
i->getConsumptionKind(), CheckedCastMode::Conditional);
Builder.CreateCondBr(castSucceeded,
getLoweredBB(i->getSuccessBB()).bb,
getLoweredBB(i->getFailureBB()).bb);
}
void IRGenSILFunction::visitIsNonnullInst(swift::IsNonnullInst *i) {
// Get the value we're testing, which may be a function, an address or an
// instance pointer.
llvm::Value *val;
const LoweredValue &lv = getLoweredValue(i->getOperand());
if (i->getOperand()->getType().is<SILFunctionType>()) {
Explosion values = lv.getExplosion(*this);
val = values.claimNext(); // Function pointer.
values.claimNext(); // Ignore the data pointer.
} else if (lv.isAddress()) {
val = lv.getAddress().getAddress();
} else {
Explosion values = lv.getExplosion(*this);
val = values.claimNext();
}
// Check that the result isn't null.
auto *valTy = cast<llvm::PointerType>(val->getType());
llvm::Value *result = Builder.CreateICmp(llvm::CmpInst::ICMP_NE,
val, llvm::ConstantPointerNull::get(valTy));
Explosion out;
out.add(result);
setLoweredExplosion(i, out);
}
void IRGenSILFunction::visitUpcastInst(swift::UpcastInst *i) {
auto toTy = getTypeInfo(i->getType()).getSchema()[0].getScalarType();
// If we have an address, just bitcast, don't explode.
if (i->getOperand()->getType().isAddress()) {
Address fromAddr = getLoweredAddress(i->getOperand());
llvm::Value *toValue = Builder.CreateBitCast(
fromAddr.getAddress(), toTy->getPointerTo());
Address Addr(toValue, fromAddr.getAlignment());
setLoweredAddress(i, Addr);
return;
}
Explosion from = getLoweredExplosion(i->getOperand());
Explosion to;
assert(from.size() == 1 && "class should explode to single value");
llvm::Value *fromValue = from.claimNext();
to.add(Builder.CreateBitCast(fromValue, toTy));
setLoweredExplosion(i, to);
}
void IRGenSILFunction::visitIndexAddrInst(swift::IndexAddrInst *i) {
Address base = getLoweredAddress(i->getBase());
Explosion indexValues = getLoweredExplosion(i->getIndex());
llvm::Value *index = indexValues.claimNext();
auto baseTy = i->getBase()->getType();
auto &ti = getTypeInfo(baseTy);
Address dest = ti.indexArray(*this, base, index, baseTy);
setLoweredAddress(i, dest);
}
void IRGenSILFunction::visitTailAddrInst(swift::TailAddrInst *i) {
Address base = getLoweredAddress(i->getBase());
Explosion indexValues = getLoweredExplosion(i->getIndex());
llvm::Value *index = indexValues.claimNext();
SILType baseTy = i->getBase()->getType();
const TypeInfo &baseTI = getTypeInfo(baseTy);
Address dest = baseTI.indexArray(*this, base, index, baseTy);
const TypeInfo &TailTI = getTypeInfo(i->getTailType());
dest = TailTI.roundUpToTypeAlignment(*this, dest, i->getTailType());
llvm::Type *destType = TailTI.getStorageType()->getPointerTo();
dest = Builder.CreateBitCast(dest, destType);
setLoweredAddress(i, dest);
}
void IRGenSILFunction::visitIndexRawPointerInst(swift::IndexRawPointerInst *i) {
Explosion baseValues = getLoweredExplosion(i->getBase());
llvm::Value *base = baseValues.claimNext();
Explosion indexValues = getLoweredExplosion(i->getIndex());
llvm::Value *index = indexValues.claimNext();
// We don't expose a non-inbounds GEP operation.
llvm::Value *destValue = Builder.CreateInBoundsGEP(base, index);
Explosion result;
result.add(destValue);
setLoweredExplosion(i, result);
}
void IRGenSILFunction::visitAllocValueBufferInst(
swift::AllocValueBufferInst *i) {
Address buffer = getLoweredAddress(i->getOperand());
auto valueType = i->getValueType();
Address value =
getTypeInfo(valueType).allocateBuffer(*this, buffer, valueType);
setLoweredAddress(i, value);
}
void IRGenSILFunction::visitProjectValueBufferInst(
swift::ProjectValueBufferInst *i) {
Address buffer = getLoweredAddress(i->getOperand());
auto valueType = i->getValueType();
Address value =
getTypeInfo(valueType).projectBuffer(*this, buffer, valueType);
setLoweredAddress(i, value);
}
void IRGenSILFunction::visitDeallocValueBufferInst(
swift::DeallocValueBufferInst *i) {
Address buffer = getLoweredAddress(i->getOperand());
auto valueType = i->getValueType();
getTypeInfo(valueType).deallocateBuffer(*this, buffer, valueType);
}
void IRGenSILFunction::visitInitExistentialAddrInst(swift::InitExistentialAddrInst *i) {
Address container = getLoweredAddress(i->getOperand());
SILType destType = i->getOperand()->getType();
Address buffer = emitOpaqueExistentialContainerInit(*this,
container,
destType,
i->getFormalConcreteType(),
i->getLoweredConcreteType(),
i->getConformances());
auto &srcTI = getTypeInfo(i->getLoweredConcreteType());
// See if we can defer initialization of the buffer to a copy_addr into it.
if (tryDeferFixedSizeBufferInitialization(*this, i, srcTI, buffer, ""))
return;
// Allocate in the destination fixed-size buffer.
Address address =
srcTI.allocateBuffer(*this, buffer, i->getLoweredConcreteType());
setLoweredAddress(i, address);
}
void IRGenSILFunction::visitInitExistentialOpaqueInst(
swift::InitExistentialOpaqueInst *i) {
llvm_unreachable("unsupported instruction during IRGen");
}
void IRGenSILFunction::visitInitExistentialMetatypeInst(
InitExistentialMetatypeInst *i) {
Explosion metatype = getLoweredExplosion(i->getOperand());
Explosion result;
emitExistentialMetatypeContainer(*this,
result, i->getType(),
metatype.claimNext(),
i->getOperand()->getType(),
i->getConformances());
setLoweredExplosion(i, result);
}
void IRGenSILFunction::visitInitExistentialRefInst(InitExistentialRefInst *i) {
Explosion instance = getLoweredExplosion(i->getOperand());
Explosion result;
emitClassExistentialContainer(*this,
result, i->getType(),
instance.claimNext(),
i->getFormalConcreteType(),
i->getOperand()->getType(),
i->getConformances());
setLoweredExplosion(i, result);
}
void IRGenSILFunction::visitDeinitExistentialAddrInst(
swift::DeinitExistentialAddrInst *i) {
Address container = getLoweredAddress(i->getOperand());
emitOpaqueExistentialContainerDeinit(*this, container,
i->getOperand()->getType());
}
void IRGenSILFunction::visitDeinitExistentialOpaqueInst(
swift::DeinitExistentialOpaqueInst *i) {
llvm_unreachable("unsupported instruction during IRGen");
}
void IRGenSILFunction::visitOpenExistentialAddrInst(OpenExistentialAddrInst *i) {
SILType baseTy = i->getOperand()->getType();
Address base = getLoweredAddress(i->getOperand());
auto openedArchetype = cast<ArchetypeType>(
i->getType().getSwiftRValueType());
Address object = emitOpaqueExistentialProjection(*this, base, baseTy,
openedArchetype);
setLoweredAddress(i, object);
}
void IRGenSILFunction::visitOpenExistentialRefInst(OpenExistentialRefInst *i) {
SILType baseTy = i->getOperand()->getType();
Explosion base = getLoweredExplosion(i->getOperand());
auto openedArchetype = cast<ArchetypeType>(
i->getType().getSwiftRValueType());
Explosion result;
llvm::Value *instance
= emitClassExistentialProjection(*this, base, baseTy,
openedArchetype);
result.add(instance);
setLoweredExplosion(i, result);
}
void IRGenSILFunction::visitOpenExistentialMetatypeInst(
OpenExistentialMetatypeInst *i) {
SILType baseTy = i->getOperand()->getType();
Explosion base = getLoweredExplosion(i->getOperand());
auto openedTy = i->getType().getSwiftRValueType();
llvm::Value *metatype =
emitExistentialMetatypeProjection(*this, base, baseTy, openedTy);
Explosion result;
result.add(metatype);
setLoweredExplosion(i, result);
}
void IRGenSILFunction::visitOpenExistentialOpaqueInst(
OpenExistentialOpaqueInst *i) {
llvm_unreachable("unsupported instruction during IRGen");
}
void IRGenSILFunction::visitProjectBlockStorageInst(ProjectBlockStorageInst *i){
// TODO
Address block = getLoweredAddress(i->getOperand());
Address capture = projectBlockStorageCapture(*this, block,
i->getOperand()->getType().castTo<SILBlockStorageType>());
setLoweredAddress(i, capture);
}
void IRGenSILFunction::visitInitBlockStorageHeaderInst(
InitBlockStorageHeaderInst *i) {
auto addr = getLoweredAddress(i->getBlockStorage());
// We currently only support static invoke functions.
auto &invokeVal = getLoweredValue(i->getInvokeFunction());
llvm::Function *invokeFn = nullptr;
ForeignFunctionInfo foreignInfo;
if (invokeVal.kind != LoweredValue::Kind::StaticFunction) {
IGM.unimplemented(i->getLoc().getSourceLoc(),
"non-static block invoke function");
} else {
invokeFn = invokeVal.getStaticFunction().getFunction();
foreignInfo = invokeVal.getStaticFunction().getForeignInfo();
}
assert(foreignInfo.ClangInfo && "no clang info for block function?");
// Initialize the header.
emitBlockHeader(*this, addr,
i->getBlockStorage()->getType().castTo<SILBlockStorageType>(),
invokeFn, i->getInvokeFunction()->getType().castTo<SILFunctionType>(),
foreignInfo);
// Cast the storage to the block type to produce the result value.
llvm::Value *asBlock = Builder.CreateBitCast(addr.getAddress(),
IGM.ObjCBlockPtrTy);
Explosion e;
e.add(asBlock);
setLoweredExplosion(i, e);
}
void IRGenSILFunction::visitAllocExistentialBoxInst(AllocExistentialBoxInst *i){
OwnedAddress boxWithAddr =
emitBoxedExistentialContainerAllocation(*this, i->getExistentialType(),
i->getFormalConcreteType(),
i->getConformances());
setLoweredBox(i, boxWithAddr);
}
void IRGenSILFunction::visitDeallocExistentialBoxInst(
DeallocExistentialBoxInst *i) {
Explosion box = getLoweredExplosion(i->getOperand());
emitBoxedExistentialContainerDeallocation(*this, box,
i->getOperand()->getType(),
i->getConcreteType());
}
void IRGenSILFunction::visitOpenExistentialBoxInst(OpenExistentialBoxInst *i) {
Explosion box = getLoweredExplosion(i->getOperand());
auto openedArchetype = cast<ArchetypeType>(i->getType().getSwiftRValueType());
auto addr = emitOpenExistentialBox(*this, box, i->getOperand()->getType(),
openedArchetype);
setLoweredAddress(i, addr);
}
void
IRGenSILFunction::visitProjectExistentialBoxInst(ProjectExistentialBoxInst *i) {
const LoweredValue &val = getLoweredValue(i->getOperand());
if (val.isBoxWithAddress()) {
// The operand is an alloc_existential_box.
// We can directly reuse the address.
setLoweredAddress(i, val.getAddressOfBox());
} else {
Explosion box = getLoweredExplosion(i->getOperand());
auto caddr = emitBoxedExistentialProjection(*this, box,
i->getOperand()->getType(),
i->getType().getSwiftRValueType());
setLoweredAddress(i, caddr.getAddress());
}
}
void IRGenSILFunction::visitDynamicMethodInst(DynamicMethodInst *i) {
assert(i->getMember().isForeign && "dynamic_method requires [objc] method");
setLoweredObjCMethod(i, i->getMember());
return;
}
void IRGenSILFunction::visitWitnessMethodInst(swift::WitnessMethodInst *i) {
// For Objective-C classes we need to arrange for a msgSend
// to happen when the method is called.
if (i->getMember().isForeign) {
setLoweredObjCMethod(i, i->getMember());
return;
}
CanType baseTy = i->getLookupType();
ProtocolConformanceRef conformance = i->getConformance();
SILDeclRef member = i->getMember();
// It would be nice if this weren't discarded.
llvm::Value *baseMetadataCache = nullptr;
Explosion lowered;
emitWitnessMethodValue(*this, baseTy, &baseMetadataCache,
member, conformance, lowered);
setLoweredExplosion(i, lowered);
}
void IRGenSILFunction::setAllocatedAddressForBuffer(SILValue v,
const Address &allocedAddress) {
overwriteAllocatedAddress(v, allocedAddress);
// Emit the debug info for the variable if any.
if (auto allocStack = dyn_cast<AllocStackInst>(v)) {
emitDebugInfoForAllocStack(allocStack, getTypeInfo(v->getType()),
allocedAddress.getAddress());
}
}
void IRGenSILFunction::visitCopyAddrInst(swift::CopyAddrInst *i) {
SILType addrTy = i->getSrc()->getType();
const TypeInfo &addrTI = getTypeInfo(addrTy);
Address src = getLoweredAddress(i->getSrc());
// See whether we have a deferred fixed-size buffer initialization.
auto &loweredDest = getLoweredValue(i->getDest());
if (loweredDest.isUnallocatedAddressInBuffer()) {
assert(i->isInitializationOfDest()
&& "need to initialize an unallocated buffer");
Address cont = loweredDest.getContainerOfAddress();
if (i->isTakeOfSrc()) {
Address addr = addrTI.initializeBufferWithTake(*this, cont, src, addrTy);
setAllocatedAddressForBuffer(i->getDest(), addr);
} else {
Address addr = addrTI.initializeBufferWithCopy(*this, cont, src, addrTy);
setAllocatedAddressForBuffer(i->getDest(), addr);
}
} else {
Address dest = loweredDest.getAddress();
if (i->isInitializationOfDest()) {
if (i->isTakeOfSrc()) {
addrTI.initializeWithTake(*this, dest, src, addrTy);
} else {
addrTI.initializeWithCopy(*this, dest, src, addrTy);
}
} else {
if (i->isTakeOfSrc()) {
addrTI.assignWithTake(*this, dest, src, addrTy);
} else {
addrTI.assignWithCopy(*this, dest, src, addrTy);
}
}
}
}
// This is a no-op because we do not lower Swift TBAA info to LLVM IR, and it
// does not produce any values.
void IRGenSILFunction::visitBindMemoryInst(swift::BindMemoryInst *) {}
void IRGenSILFunction::visitDestroyAddrInst(swift::DestroyAddrInst *i) {
SILType addrTy = i->getOperand()->getType();
const TypeInfo &addrTI = getTypeInfo(addrTy);
// Otherwise, do the normal thing.
Address base = getLoweredAddress(i->getOperand());
addrTI.destroy(*this, base, addrTy);
}
void IRGenSILFunction::visitCondFailInst(swift::CondFailInst *i) {
Explosion e = getLoweredExplosion(i->getOperand());
llvm::Value *cond = e.claimNext();
// Emit individual fail blocks so that we can map the failure back to a source
// line.
llvm::BasicBlock *failBB = llvm::BasicBlock::Create(IGM.getLLVMContext());
llvm::BasicBlock *contBB = llvm::BasicBlock::Create(IGM.getLLVMContext());
Builder.CreateCondBr(cond, failBB, contBB);
Builder.emitBlock(failBB);
if (IGM.IRGen.Opts.Optimize) {
// Emit unique side-effecting inline asm calls in order to eliminate
// the possibility that an LLVM optimization or code generation pass
// will merge these blocks back together again. We emit an empty asm
// string with the side-effect flag set, and with a unique integer
// argument for each cond_fail we see in the function.
llvm::IntegerType *asmArgTy = IGM.Int32Ty;
llvm::Type *argTys = { asmArgTy };
llvm::FunctionType *asmFnTy =
llvm::FunctionType::get(IGM.VoidTy, argTys, false /* = isVarArg */);
llvm::InlineAsm *inlineAsm =
llvm::InlineAsm::get(asmFnTy, "", "n", true /* = SideEffects */);
Builder.CreateCall(inlineAsm,
llvm::ConstantInt::get(asmArgTy, NumCondFails++));
}
// Emit the trap instruction.
llvm::Function *trapIntrinsic =
llvm::Intrinsic::getDeclaration(&IGM.Module, llvm::Intrinsic::ID::trap);
Builder.CreateCall(trapIntrinsic, {});
Builder.CreateUnreachable();
Builder.emitBlock(contBB);
FailBBs.push_back(failBB);
}
void IRGenSILFunction::visitSuperMethodInst(swift::SuperMethodInst *i) {
if (i->getMember().isForeign) {
setLoweredObjCMethodBounded(i, i->getMember(),
i->getOperand()->getType(),
/*startAtSuper=*/true);
return;
}
auto base = getLoweredExplosion(i->getOperand());
auto baseType = i->getOperand()->getType();
llvm::Value *baseValue = base.claimNext();
auto method = i->getMember();
auto methodType = i->getType().castTo<SILFunctionType>();
llvm::Value *fnValue = emitVirtualMethodValue(*this, baseValue,
baseType,
method, methodType,
/*useSuperVTable*/ true);
fnValue = Builder.CreateBitCast(fnValue, IGM.Int8PtrTy);
Explosion e;
e.add(fnValue);
setLoweredExplosion(i, e);
}
void IRGenSILFunction::visitClassMethodInst(swift::ClassMethodInst *i) {
// For Objective-C classes we need to arrange for a msgSend
// to happen when the method is called.
if (i->getMember().isForeign) {
setLoweredObjCMethod(i, i->getMember());
return;
}
Explosion base = getLoweredExplosion(i->getOperand());
llvm::Value *baseValue = base.claimNext();
SILDeclRef method = i->getMember();
auto methodType = i->getType().castTo<SILFunctionType>();
// For Swift classes, get the method implementation from the vtable.
// FIXME: better explosion kind, map as static.
llvm::Value *fnValue = emitVirtualMethodValue(*this, baseValue,
i->getOperand()->getType(),
method, methodType,
/*useSuperVTable*/ false);
fnValue = Builder.CreateBitCast(fnValue, IGM.Int8PtrTy);
Explosion e;
e.add(fnValue);
setLoweredExplosion(i, e);
}
void IRGenModule::emitSILStaticInitializers() {
SmallVector<SILFunction *, 8> StaticInitializers;
for (SILGlobalVariable &Global : getSILModule().getSILGlobals()) {
if (!Global.getInitializer())
continue;
auto *IRGlobal =
Module.getGlobalVariable(Global.getName(), true /* = AllowLocal */);
// A check for multi-threaded compilation: Is this the llvm module where the
// global is defined and not only referenced (or not referenced at all).
if (!IRGlobal || !IRGlobal->hasInitializer())
continue;
auto *InitValue = Global.getValueOfStaticInitializer();
// Set the IR global's initializer to the constant for this SIL
// struct.
if (auto *SI = dyn_cast<StructInst>(InitValue)) {
IRGlobal->setInitializer(emitConstantStruct(*this, SI));
continue;
}
// Set the IR global's initializer to the constant for this SIL
// tuple.
auto *TI = cast<TupleInst>(InitValue);
IRGlobal->setInitializer(emitConstantTuple(*this, TI));
}
}