blob: cf3d009ae2f1ca5945b645d3145be99004014b15 [file] [log] [blame]
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
public func ==(lhs: IndexSet.Index, rhs: IndexSet.Index) -> Bool {
return lhs.value == rhs.value && rhs.rangeIndex == rhs.rangeIndex
}
public func <(lhs: IndexSet.Index, rhs: IndexSet.Index) -> Bool {
return lhs.value < rhs.value && rhs.rangeIndex <= rhs.rangeIndex
}
public func <=(lhs: IndexSet.Index, rhs: IndexSet.Index) -> Bool {
return lhs.value <= rhs.value && rhs.rangeIndex <= rhs.rangeIndex
}
public func >(lhs: IndexSet.Index, rhs: IndexSet.Index) -> Bool {
return lhs.value > rhs.value && rhs.rangeIndex >= rhs.rangeIndex
}
public func >=(lhs: IndexSet.Index, rhs: IndexSet.Index) -> Bool {
return lhs.value >= rhs.value && rhs.rangeIndex >= rhs.rangeIndex
}
public func ==(lhs: IndexSet.RangeView, rhs: IndexSet.RangeView) -> Bool {
return lhs.startIndex == rhs.startIndex && lhs.endIndex == rhs.endIndex && lhs.indexSet == rhs.indexSet
}
// We currently cannot use this mechanism because NSIndexSet is not abstract; it has its own ivars and therefore subclassing it using the same trick as NSData, etc. does not work.
/*
private final class _SwiftNSIndexSet : _SwiftNativeNSIndexSet, _SwiftNativeFoundationType {
public typealias ImmutableType = NSIndexSet
public typealias MutableType = NSMutableIndexSet
var __wrapped : _MutableUnmanagedWrapper<ImmutableType, MutableType>
init(immutableObject: AnyObject) {
// Take ownership.
__wrapped = .Immutable(
Unmanaged.passRetained(
_unsafeReferenceCast(immutableObject, to: ImmutableType.self)))
super.init()
}
init(mutableObject: AnyObject) {
// Take ownership.
__wrapped = .Mutable(
Unmanaged.passRetained(
_unsafeReferenceCast(mutableObject, to: MutableType.self)))
super.init()
}
public required init(unmanagedImmutableObject: Unmanaged<ImmutableType>) {
// Take ownership.
__wrapped = .Immutable(unmanagedImmutableObject)
super.init()
}
public required init(unmanagedMutableObject: Unmanaged<MutableType>) {
// Take ownership.
__wrapped = .Mutable(unmanagedMutableObject)
super.init()
}
deinit {
releaseWrappedObject()
}
}
*/
/// Manages a `Set` of integer values, which are commonly used as an index type in Cocoa API.
///
/// The range of valid integer values is 0..<INT_MAX-1. Anything outside this range is an error.
public struct IndexSet : ReferenceConvertible, Equatable, BidirectionalCollection, SetAlgebra {
/// An view of the contents of an IndexSet, organized by range.
///
/// For example, if an IndexSet is composed of:
/// `[1..<5]` and `[7..<10]` and `[13]`
/// then calling `next()` on this view's iterator will produce 3 ranges before returning nil.
public struct RangeView : Equatable, BidirectionalCollection {
public typealias Index = Int
public let startIndex : Index
public let endIndex : Index
fileprivate var indexSet : IndexSet
// Range of element values
private var intersectingRange : Range<IndexSet.Element>?
fileprivate init(indexSet : IndexSet, intersecting range : Range<IndexSet.Element>?) {
self.indexSet = indexSet
self.intersectingRange = range
if let r = range {
if r.lowerBound == r.upperBound {
startIndex = 0
endIndex = 0
} else {
let minIndex = indexSet._indexOfRange(containing: r.lowerBound)
let maxIndex = indexSet._indexOfRange(containing: r.upperBound)
switch (minIndex, maxIndex) {
case (nil, nil):
startIndex = 0
endIndex = 0
case (nil, .some(let max)):
// Start is before our first range
startIndex = 0
endIndex = max + 1
case (.some(let min), nil):
// End is after our last range
startIndex = min
endIndex = indexSet._rangeCount
case (.some(let min), .some(let max)):
startIndex = min
endIndex = max + 1
}
}
} else {
startIndex = 0
endIndex = indexSet._rangeCount
}
}
public func makeIterator() -> IndexingIterator<RangeView> {
return IndexingIterator(_elements: self)
}
public subscript(index : Index) -> CountableRange<IndexSet.Element> {
let indexSetRange = indexSet._range(at: index)
if let intersectingRange = intersectingRange {
return Swift.max(intersectingRange.lowerBound, indexSetRange.lowerBound)..<Swift.min(intersectingRange.upperBound, indexSetRange.upperBound)
} else {
return indexSetRange.lowerBound..<indexSetRange.upperBound
}
}
public subscript(bounds: Range<Index>) -> BidirectionalSlice<RangeView> {
return BidirectionalSlice(base: self, bounds: bounds)
}
public func index(after i: Index) -> Index {
return i + 1
}
public func index(before i: Index) -> Index {
return i - 1
}
}
/// The mechanism for getting to the integers stored in an IndexSet.
public struct Index : CustomStringConvertible, Comparable {
fileprivate let indexSet : IndexSet
fileprivate var value : IndexSet.Element
fileprivate var extent : Range<IndexSet.Element>
fileprivate var rangeIndex : Int
fileprivate let rangeCount : Int
fileprivate init(firstIn indexSet : IndexSet) {
self.indexSet = indexSet
self.rangeCount = indexSet._rangeCount
self.rangeIndex = 0
self.extent = indexSet._range(at: 0)
self.value = extent.lowerBound
}
fileprivate init(lastIn indexSet : IndexSet) {
self.indexSet = indexSet
let rangeCount = indexSet._rangeCount
self.rangeIndex = rangeCount - 1
if rangeCount > 0 {
self.extent = indexSet._range(at: rangeCount - 1)
self.value = extent.upperBound // "1 past the end" position is the last range, 1 + the end of that range's extent
} else {
self.extent = 0..<0
self.value = 0
}
self.rangeCount = rangeCount
}
fileprivate init(indexSet: IndexSet, index: Int) {
self.indexSet = indexSet
self.rangeCount = self.indexSet._rangeCount
self.value = index
if let rangeIndex = self.indexSet._indexOfRange(containing: index) {
self.extent = self.indexSet._range(at: rangeIndex)
self.rangeIndex = rangeIndex
} else {
self.extent = 0..<0
self.rangeIndex = 0
}
}
// First or last value in a specified range
fileprivate init(indexSet: IndexSet, rangeIndex: Int, rangeCount: Int, first : Bool) {
self.indexSet = indexSet
let extent = indexSet._range(at: rangeIndex)
if first {
self.value = extent.lowerBound
} else {
self.value = extent.upperBound-1
}
self.extent = extent
self.rangeCount = rangeCount
self.rangeIndex = rangeIndex
}
fileprivate init(indexSet: IndexSet, value: Int, extent: Range<Int>, rangeIndex: Int, rangeCount: Int) {
self.indexSet = indexSet
self.value = value
self.extent = extent
self.rangeCount = rangeCount
self.rangeIndex = rangeIndex
}
fileprivate func successor() -> Index {
if value + 1 == extent.upperBound {
// Move to the next range
if rangeIndex + 1 == rangeCount {
// We have no more to go; return a 'past the end' index
return Index(indexSet: indexSet, value: value + 1, extent: extent, rangeIndex: rangeIndex, rangeCount: rangeCount)
} else {
return Index(indexSet: indexSet, rangeIndex: rangeIndex + 1, rangeCount: rangeCount, first: true)
}
} else {
// Move to the next value in this range
return Index(indexSet: indexSet, value: value + 1, extent: extent, rangeIndex: rangeIndex, rangeCount: rangeCount)
}
}
fileprivate mutating func _successorInPlace() {
if value + 1 == extent.upperBound {
// Move to the next range
if rangeIndex + 1 == rangeCount {
// We have no more to go; return a 'past the end' index
value += 1
} else {
rangeIndex += 1
extent = indexSet._range(at: rangeIndex)
value = extent.lowerBound
}
} else {
// Move to the next value in this range
value += 1
}
}
fileprivate func predecessor() -> Index {
if value == extent.lowerBound {
// Move to the next range
if rangeIndex == 0 {
// We have no more to go
return Index(indexSet: indexSet, value: value, extent: extent, rangeIndex: rangeIndex, rangeCount: rangeCount)
} else {
return Index(indexSet: indexSet, rangeIndex: rangeIndex - 1, rangeCount: rangeCount, first: false)
}
} else {
// Move to the previous value in this range
return Index(indexSet: indexSet, value: value - 1, extent: extent, rangeIndex: rangeIndex, rangeCount: rangeCount)
}
}
public var description: String {
return "index \(value) in a range of \(extent) [range #\(rangeIndex + 1)/\(rangeCount)]"
}
fileprivate mutating func _predecessorInPlace() {
if value == extent.lowerBound {
// Move to the next range
if rangeIndex == 0 {
// We have no more to go
} else {
rangeIndex -= 1
extent = indexSet._range(at: rangeIndex)
value = extent.upperBound - 1
}
} else {
// Move to the previous value in this range
value -= 1
}
}
}
public typealias ReferenceType = NSIndexSet
public typealias Element = Int
fileprivate var _handle: _MutablePairHandle<NSIndexSet, NSMutableIndexSet>
internal init(indexesIn range: NSRange) {
_handle = _MutablePairHandle(NSIndexSet(indexesIn: range), copying: false)
}
/// Initialize an `IndexSet` with a range of integers.
public init(integersIn range: Range<Element>) {
_handle = _MutablePairHandle(NSIndexSet(indexesIn: _toNSRange(range)), copying: false)
}
/// Initialize an `IndexSet` with a single integer.
public init(integer: Element) {
_handle = _MutablePairHandle(NSIndexSet(index: integer), copying: false)
}
/// Initialize an empty `IndexSet`.
public init() {
_handle = _MutablePairHandle(NSIndexSet(), copying: false)
}
public var hashValue : Int {
return _handle.map { $0.hash }
}
/// Returns the number of integers in `self`.
public var count: Int {
return _handle.map { $0.count }
}
public func makeIterator() -> IndexingIterator<IndexSet> {
return IndexingIterator(_elements: self)
}
/// Returns a `Range`-based view of `self`.
///
/// - parameter range: A subrange of `self` to view. The default value is `nil`, which means that the entire `IndexSet` is used.
public func rangeView(of range : Range<Element>? = nil) -> RangeView {
return RangeView(indexSet: self, intersecting: range)
}
private func _indexOfRange(containing integer : Element) -> RangeView.Index? {
let result = _handle.map {
__NSIndexSetIndexOfRangeContainingIndex($0, UInt(integer))
}
if result == UInt(NSNotFound) {
return nil
} else {
return Int(result)
}
}
private func _range(at index: RangeView.Index) -> Range<Element> {
return _handle.map {
var location : UInt = 0
var length : UInt = 0
if __NSIndexSetRangeCount($0) == 0 {
return 0..<0
}
__NSIndexSetRangeAtIndex($0, UInt(index), &location, &length)
return Int(location)..<Int(location)+Int(length)
}
}
private var _rangeCount : Int {
return _handle.map {
Int(__NSIndexSetRangeCount($0))
}
}
public var startIndex: Index {
// TODO: We should cache this result
// If this winds up being NSNotFound, that's ok because then endIndex is also NSNotFound, and empty collections have startIndex == endIndex
return Index(firstIn: self)
}
public var endIndex: Index {
// TODO: We should cache this result
return Index(lastIn: self)
}
public subscript(index : Index) -> Element {
return index.value
}
public subscript(bounds: Range<Index>) -> BidirectionalSlice<IndexSet> {
return BidirectionalSlice(base: self, bounds: bounds)
}
// We adopt the default implementation of subscript(range: Range<Index>) from MutableCollection
private func _toOptional(_ x : Int) -> Int? {
if x == NSNotFound { return nil } else { return x }
}
/// Returns the first integer in `self`, or nil if `self` is empty.
public var first: Element? {
return _handle.map { _toOptional($0.firstIndex) }
}
/// Returns the last integer in `self`, or nil if `self` is empty.
public var last: Element? {
return _handle.map { _toOptional($0.lastIndex) }
}
/// Returns an integer contained in `self` which is greater than `integer`.
public func integerGreaterThan(_ integer: Element) -> Element {
return _handle.map { $0.indexGreaterThanIndex(integer) }
}
/// Returns an integer contained in `self` which is less than `integer`.
public func integerLessThan(_ integer: Element) -> Element {
return _handle.map { $0.indexLessThanIndex(integer) }
}
/// Returns an integer contained in `self` which is greater than or equal to `integer`.
public func integerGreaterThanOrEqualTo(_ integer: Element) -> Element {
return _handle.map { $0.indexGreaterThanOrEqual(to: integer) }
}
/// Returns an integer contained in `self` which is less than or equal to `integer`.
public func integerLessThanOrEqualTo(_ integer: Element) -> Element {
return _handle.map { $0.indexLessThanOrEqual(to: integer) }
}
/// Return a `Range<IndexSet.Index>` which can be used to subscript the index set.
///
/// The resulting range is the range of the intersection of the integers in `range` with the index set.
///
/// - parameter range: The range of integers to include.
public func indexRange(in range: Range<Element>) -> Range<Index> {
if isEmpty || range.isEmpty {
let i = Index(indexSet: self, index: 0)
return i..<i
}
if range.lowerBound > last! || (range.upperBound - 1) < first! {
let i = Index(indexSet: self, index: 0)
return i..<i
}
let resultFirst = Index(indexSet: self, index: integerGreaterThanOrEqualTo(range.lowerBound))
let resultLast = Index(indexSet: self, index: integerLessThanOrEqualTo(range.upperBound - 1))
return resultFirst..<resultLast.successor()
}
/// Returns the count of integers in `self` that intersect `range`.
public func count(in range: Range<Element>) -> Int {
return _handle.map { $0.countOfIndexes(in: _toNSRange(range)) }
}
/// Returns `true` if `self` contains `integer`.
public func contains(_ integer: Element) -> Bool {
return _handle.map { $0.contains(integer) }
}
/// Returns `true` if `self` contains all of the integers in `range`.
public func contains(integersIn range: Range<Element>) -> Bool {
return _handle.map { $0.contains(in: _toNSRange(range)) }
}
/// Returns `true` if `self` contains all of the integers in `indexSet`.
public func contains(integersIn indexSet: IndexSet) -> Bool {
return _handle.map { $0.contains(indexSet) }
}
/// Returns `true` if `self` intersects any of the integers in `range`.
public func intersects(integersIn range: Range<Element>) -> Bool {
return _handle.map { $0.intersects(in: _toNSRange(range)) }
}
// MARK: -
// Indexable
public func index(after i: Index) -> Index {
return i.successor()
}
public func formIndex(after i: inout Index) {
i._successorInPlace()
}
public func index(before i: Index) -> Index {
return i.predecessor()
}
public func formIndex(before i: inout Index) {
i._predecessorInPlace()
}
// MARK: -
// MARK: SetAlgebra
/// Union the `IndexSet` with `other`.
public mutating func formUnion(_ other: IndexSet) {
self = self.union(other)
}
/// Union the `IndexSet` with `other`.
public func union(_ other: IndexSet) -> IndexSet {
// This algorithm is naïve but it works. We could avoid calling insert in some cases.
var result = IndexSet()
for r in self.rangeView() {
result.insert(integersIn: Range(r))
}
for r in other.rangeView() {
result.insert(integersIn: Range(r))
}
return result
}
/// Exclusive or the `IndexSet` with `other`.
public func symmetricDifference(_ other: IndexSet) -> IndexSet {
var result = IndexSet()
var boundaryIterator = IndexSetBoundaryIterator(self, other)
var flag = false
var start = 0
while let i = boundaryIterator.next() {
if !flag {
// Start a range if one set contains but not the other.
if self.contains(i) != other.contains(i) {
flag = true
start = i
}
} else {
// End a range if both sets contain or both sets do not contain.
if self.contains(i) == other.contains(i) {
flag = false
result.insert(integersIn: start..<i)
}
}
// We never have to worry about having flag set to false after exiting this loop because the last boundary is guaranteed to be past the end of ranges in both index sets
}
return result
}
/// Exclusive or the `IndexSet` with `other`.
public mutating func formSymmetricDifference(_ other: IndexSet) {
self = self.symmetricDifference(other)
}
/// Intersect the `IndexSet` with `other`.
public func intersection(_ other: IndexSet) -> IndexSet {
var result = IndexSet()
var boundaryIterator = IndexSetBoundaryIterator(self, other)
var flag = false
var start = 0
while let i = boundaryIterator.next() {
if !flag {
// If both sets contain then start a range.
if self.contains(i) && other.contains(i) {
flag = true
start = i
}
} else {
// If both sets do not contain then end a range.
if !self.contains(i) || !other.contains(i) {
flag = false
result.insert(integersIn: start..<i)
}
}
}
return result
}
/// Intersect the `IndexSet` with `other`.
public mutating func formIntersection(_ other: IndexSet) {
self = self.intersection(other)
}
/// Insert an integer into the `IndexSet`.
@discardableResult
public mutating func insert(_ integer: Element) -> (inserted: Bool, memberAfterInsert: Element) {
_applyMutation { $0.add(integer) }
// TODO: figure out how to return the truth here
return (true, integer)
}
/// Insert an integer into the `IndexSet`.
@discardableResult
public mutating func update(with integer: Element) -> Element? {
_applyMutation { $0.add(integer) }
// TODO: figure out how to return the truth here
return integer
}
/// Remove an integer from the `IndexSet`.
@discardableResult
public mutating func remove(_ integer: Element) -> Element? {
// TODO: Add method to NSIndexSet to do this in one call
let result : Element? = contains(integer) ? integer : nil
_applyMutation { $0.remove(integer) }
return result
}
// MARK: -
/// Remove all values from the `IndexSet`.
public mutating func removeAll() {
_applyMutation { $0.removeAllIndexes() }
}
/// Insert a range of integers into the `IndexSet`.
public mutating func insert(integersIn range: Range<Element>) {
_applyMutation { $0.add(in: _toNSRange(range)) }
}
/// Remove a range of integers from the `IndexSet`.
public mutating func remove(integersIn range: Range<Element>) {
_applyMutation { $0.remove(in: _toNSRange(range)) }
}
/// Returns `true` if self contains no values.
public var isEmpty : Bool {
return self.count == 0
}
/// Returns an IndexSet filtered according to the result of `includeInteger`.
///
/// - parameter range: A range of integers. For each integer in the range that intersects the integers in the IndexSet, then the `includeInteger predicate will be invoked. Pass `nil` (the default) to use the entire range.
/// - parameter includeInteger: The predicate which decides if an integer will be included in the result or not.
public func filteredIndexSet(in range : Range<Element>? = nil, includeInteger: @noescape (Element) throws -> Bool) rethrows -> IndexSet {
let r : NSRange = range != nil ? _toNSRange(range!) : NSMakeRange(0, NSNotFound - 1)
return try _handle.map {
var error : Swift.Error? = nil
let result = $0.indexes(in: r, options: [], passingTest: { (i, stop) -> Bool in
do {
let include = try includeInteger(i)
return include
} catch let e {
error = e
stop.pointee = true
return false
}
}) as IndexSet
if let e = error {
throw e
} else {
return result
}
}
}
/// For a positive delta, shifts the indexes in [index, INT_MAX] to the right, thereby inserting an "empty space" [index, delta], for a negative delta, shifts the indexes in [index, INT_MAX] to the left, thereby deleting the indexes in the range [index - delta, delta].
public mutating func shift(startingAt integer: Element, by delta: IndexSet.IndexDistance) {
_applyMutation { $0.shiftIndexesStarting(at: integer, by: delta) }
}
public var description: String {
return _handle.map { $0.description }
}
public var debugDescription: String {
return _handle.map { $0.debugDescription }
}
// Temporary boxing function, until we can get a native Swift type for NSIndexSet
/// TODO: making this inline causes the compiler to crash horrifically.
// @inline(__always)
mutating func _applyMutation<ReturnType>(_ whatToDo : @noescape (NSMutableIndexSet) throws -> ReturnType) rethrows -> ReturnType {
switch _handle._pointer {
case .Default(let i):
// We need to become mutable; by creating a new box we also become unique
let copy = i.mutableCopy(with: nil) as! NSMutableIndexSet
// Be sure to set the _handle before calling out; otherwise references to the struct in the closure may be looking at the old _handle
_handle = _MutablePairHandle(copy, copying: false)
let result = try whatToDo(copy)
return result
case .Mutable(let m):
// Only create a new box if we are not uniquely referenced
if !isKnownUniquelyReferenced(&_handle) {
let copy = m.mutableCopy(with: nil) as! NSMutableIndexSet
_handle = _MutablePairHandle(copy, copying: false)
let result = try whatToDo(copy)
return result
} else {
return try whatToDo(m)
}
}
}
// MARK: - Bridging Support
fileprivate var reference: NSIndexSet {
return _handle.reference
}
fileprivate init(reference: NSIndexSet) {
_handle = _MutablePairHandle(reference)
}
}
/// Iterate two index sets on the boundaries of their ranges. This is where all of the interesting stuff happens for exclusive or, intersect, etc.
private struct IndexSetBoundaryIterator : IteratorProtocol {
fileprivate typealias Element = IndexSet.Element
private var i1 : IndexSet.RangeView.Iterator
private var i2 : IndexSet.RangeView.Iterator
private var i1Range : CountableRange<Element>?
private var i2Range : CountableRange<Element>?
private var i1UsedLower : Bool
private var i2UsedLower : Bool
fileprivate init(_ is1 : IndexSet, _ is2 : IndexSet) {
i1 = is1.rangeView().makeIterator()
i2 = is2.rangeView().makeIterator()
i1Range = i1.next()
i2Range = i2.next()
// A sort of cheap iterator on [i1Range.lowerBound, i1Range.upperBound]
i1UsedLower = false
i2UsedLower = false
}
fileprivate mutating func next() -> Element? {
if i1Range == nil && i2Range == nil {
return nil
}
let nextIn1 : Element
if let r = i1Range {
nextIn1 = i1UsedLower ? r.upperBound : r.lowerBound
} else {
nextIn1 = Int.max
}
let nextIn2 : Element
if let r = i2Range {
nextIn2 = i2UsedLower ? r.upperBound : r.lowerBound
} else {
nextIn2 = Int.max
}
var result : Element
if nextIn1 <= nextIn2 {
// 1 has the next element, or they are the same.
result = nextIn1
if i1UsedLower { i1Range = i1.next() }
// We need to iterate both the value from is1 and is2 in the == case.
if result == nextIn2 {
if i2UsedLower { i2Range = i2.next() }
i2UsedLower = !i2UsedLower
}
i1UsedLower = !i1UsedLower
} else {
// 2 has the next element
result = nextIn2
if i2UsedLower { i2Range = i2.next() }
i2UsedLower = !i2UsedLower
}
return result
}
}
public func ==(lhs: IndexSet, rhs: IndexSet) -> Bool {
return lhs._handle.map { $0.isEqual(to: rhs) }
}
private func _toNSRange(_ r : Range<IndexSet.Element>) -> NSRange {
return NSMakeRange(r.lowerBound, r.upperBound - r.lowerBound)
}
extension IndexSet {
public static func _isBridgedToObjectiveC() -> Bool {
return true
}
public static func _getObjectiveCType() -> Any.Type {
return NSIndexSet.self
}
@_semantics("convertToObjectiveC")
public func _bridgeToObjectiveC() -> NSIndexSet {
return reference
}
public static func _forceBridgeFromObjectiveC(_ x: NSIndexSet, result: inout IndexSet?) {
result = IndexSet(reference: x)
}
public static func _conditionallyBridgeFromObjectiveC(_ x: NSIndexSet, result: inout IndexSet?) -> Bool {
result = IndexSet(reference: x)
return true
}
public static func _unconditionallyBridgeFromObjectiveC(_ source: NSIndexSet?) -> IndexSet {
return IndexSet(reference: source!)
}
}
// MARK: Protocol
// TODO: This protocol should be replaced with a native Swift object like the other Foundation bridged types. However, NSIndexSet does not have an abstract zero-storage base class like NSCharacterSet, NSData, and NSAttributedString. Therefore the same trick of laying it out with Swift ref counting does not work.and
/// Holds either the immutable or mutable version of a Foundation type.
///
/// In many cases, the immutable type has optimizations which make it preferred when we know we do not need mutation.
private enum _MutablePair<ImmutableType, MutableType> {
case Default(ImmutableType)
case Mutable(MutableType)
}
/// A class type which acts as a handle (pointer-to-pointer) to a Foundation reference type which has both an immutable and mutable class (e.g., NSData, NSMutableData).
///
/// a.k.a. Box
private final class _MutablePairHandle<ImmutableType : NSObject, MutableType : NSObject where ImmutableType : NSMutableCopying, MutableType : NSMutableCopying> {
fileprivate var _pointer: _MutablePair<ImmutableType, MutableType>
/// Initialize with an immutable reference instance.
///
/// - parameter immutable: The thing to stash.
/// - parameter copying: Should be true unless you just created the instance (or called copy) and want to transfer ownership to this handle.
init(_ immutable : ImmutableType, copying : Bool = true) {
if copying {
self._pointer = _MutablePair.Default(immutable.copy() as! ImmutableType)
} else {
self._pointer = _MutablePair.Default(immutable)
}
}
/// Initialize with a mutable reference instance.
///
/// - parameter mutable: The thing to stash.
/// - parameter copying: Should be true unless you just created the instance (or called copy) and want to transfer ownership to this handle.
init(_ mutable : MutableType, copying : Bool = true) {
if copying {
self._pointer = _MutablePair.Mutable(mutable.mutableCopy() as! MutableType)
} else {
self._pointer = _MutablePair.Mutable(mutable)
}
}
/// Apply a closure to the reference type, regardless if it is mutable or immutable.
@inline(__always)
func map<ReturnType>(_ whatToDo : @noescape (ImmutableType) throws -> ReturnType) rethrows -> ReturnType {
switch _pointer {
case .Default(let i):
return try whatToDo(i)
case .Mutable(let m):
// TODO: It should be possible to reflect the constraint that MutableType is a subtype of ImmutableType in the generics for the class, but I haven't figured out how yet. For now, cheat and unsafe bit cast.
return try whatToDo(unsafeBitCast(m, to: ImmutableType.self))
}
}
var reference : ImmutableType {
switch _pointer {
case .Default(let i):
return i
case .Mutable(let m):
// TODO: It should be possible to reflect the constraint that MutableType is a subtype of ImmutableType in the generics for the class, but I haven't figured out how yet. For now, cheat and unsafe bit cast.
return unsafeBitCast(m, to: ImmutableType.self)
}
}
}