blob: 0278c9433685dd2f1aa197b6f9b996cf0f5a0204 [file] [log] [blame]
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#if DEPLOYMENT_RUNTIME_SWIFT
#if !canImport(Darwin)
@inlinable // This is @inlinable as trivially computable.
internal func malloc_good_size(_ size: Int) -> Int {
return size
}
#endif
import CoreFoundation
internal func __NSDataInvokeDeallocatorUnmap(_ mem: UnsafeMutableRawPointer, _ length: Int) {
#if os(Windows)
UnmapViewOfFile(mem)
#else
munmap(mem, length)
#endif
}
internal func __NSDataInvokeDeallocatorFree(_ mem: UnsafeMutableRawPointer, _ length: Int) {
free(mem)
}
internal func __NSDataIsCompact(_ data: NSData) -> Bool {
return data._isCompact()
}
#else
@_exported import Foundation // Clang module
import _SwiftFoundationOverlayShims
import _SwiftCoreFoundationOverlayShims
internal func __NSDataIsCompact(_ data: NSData) -> Bool {
if #available(OSX 10.10, iOS 8.0, tvOS 9.0, watchOS 2.0, *) {
return data._isCompact()
} else {
var compact = true
let len = data.length
data.enumerateBytes { (_, byteRange, stop) in
if byteRange.length != len {
compact = false
}
stop.pointee = true
}
return compact
}
}
#endif
#if os(Windows)
@usableFromInline @discardableResult
internal func __withStackOrHeapBuffer(_ size: Int, _ block: (UnsafeMutablePointer<_ConditionalAllocationBuffer>) -> Void) -> Bool {
return _withStackOrHeapBuffer(size, block)
}
#else
@inlinable @inline(__always) @discardableResult
internal func __withStackOrHeapBuffer(_ size: Int, _ block: (UnsafeMutablePointer<_ConditionalAllocationBuffer>) -> Void) -> Bool {
return _withStackOrHeapBuffer(size, block)
}
#endif
// Underlying storage representation for medium and large data.
// Inlinability strategy: methods from here should not inline into InlineSlice or LargeSlice unless trivial.
// NOTE: older overlays called this class _DataStorage. The two must
// coexist without a conflicting ObjC class name, so it was renamed.
// The old name must not be used in the new runtime.
@usableFromInline
internal final class __DataStorage {
@usableFromInline static let maxSize = Int.max >> 1
@usableFromInline static let vmOpsThreshold = NSPageSize() * 4
@inlinable // This is @inlinable as trivially forwarding, and does not escape the _DataStorage boundary layer.
static func allocate(_ size: Int, _ clear: Bool) -> UnsafeMutableRawPointer? {
if clear {
return calloc(1, size)
} else {
return malloc(size)
}
}
@usableFromInline // This is not @inlinable as it is a non-trivial, non-generic function.
static func move(_ dest_: UnsafeMutableRawPointer, _ source_: UnsafeRawPointer?, _ num_: Int) {
var dest = dest_
var source = source_
var num = num_
if __DataStorage.vmOpsThreshold <= num && ((unsafeBitCast(source, to: Int.self) | Int(bitPattern: dest)) & (NSPageSize() - 1)) == 0 {
let pages = NSRoundDownToMultipleOfPageSize(num)
NSCopyMemoryPages(source!, dest, pages)
source = source!.advanced(by: pages)
dest = dest.advanced(by: pages)
num -= pages
}
if num > 0 {
memmove(dest, source!, num)
}
}
@inlinable // This is @inlinable as trivially forwarding, and does not escape the _DataStorage boundary layer.
static func shouldAllocateCleared(_ size: Int) -> Bool {
return (size > (128 * 1024))
}
@usableFromInline var _bytes: UnsafeMutableRawPointer?
@usableFromInline var _length: Int
@usableFromInline var _capacity: Int
@usableFromInline var _needToZero: Bool
@usableFromInline var _deallocator: ((UnsafeMutableRawPointer, Int) -> Void)?
@usableFromInline var _offset: Int
@inlinable // This is @inlinable as trivially computable.
var bytes: UnsafeRawPointer? {
return UnsafeRawPointer(_bytes)?.advanced(by: -_offset)
}
@inlinable // This is @inlinable despite escaping the _DataStorage boundary layer because it is generic and trivially forwarding.
@discardableResult
func withUnsafeBytes<Result>(in range: Range<Int>, apply: (UnsafeRawBufferPointer) throws -> Result) rethrows -> Result {
return try apply(UnsafeRawBufferPointer(start: _bytes?.advanced(by: range.lowerBound - _offset), count: Swift.min(range.upperBound - range.lowerBound, _length)))
}
@inlinable // This is @inlinable despite escaping the _DataStorage boundary layer because it is generic and trivially forwarding.
@discardableResult
func withUnsafeMutableBytes<Result>(in range: Range<Int>, apply: (UnsafeMutableRawBufferPointer) throws -> Result) rethrows -> Result {
return try apply(UnsafeMutableRawBufferPointer(start: _bytes!.advanced(by:range.lowerBound - _offset), count: Swift.min(range.upperBound - range.lowerBound, _length)))
}
@inlinable // This is @inlinable as trivially computable.
var mutableBytes: UnsafeMutableRawPointer? {
return _bytes?.advanced(by: -_offset)
}
@inlinable // This is @inlinable as trivially computable.
var capacity: Int {
return _capacity
}
@inlinable // This is @inlinable as trivially computable.
var length: Int {
get {
return _length
}
set {
setLength(newValue)
}
}
@inlinable // This is inlinable as trivially computable.
var isExternallyOwned: Bool {
// all __DataStorages will have some sort of capacity, because empty cases hit the .empty enum _Representation
// anything with 0 capacity means that we have not allocated this pointer and consequently mutation is not ours to make.
return _capacity == 0
}
@usableFromInline // This is not @inlinable as it is a non-trivial, non-generic function.
func ensureUniqueBufferReference(growingTo newLength: Int = 0, clear: Bool = false) {
guard isExternallyOwned || newLength > _capacity else { return }
if newLength == 0 {
if isExternallyOwned {
let newCapacity = malloc_good_size(_length)
let newBytes = __DataStorage.allocate(newCapacity, false)
__DataStorage.move(newBytes!, _bytes!, _length)
_freeBytes()
_bytes = newBytes
_capacity = newCapacity
_needToZero = false
}
} else if isExternallyOwned {
let newCapacity = malloc_good_size(newLength)
let newBytes = __DataStorage.allocate(newCapacity, clear)
if let bytes = _bytes {
__DataStorage.move(newBytes!, bytes, _length)
}
_freeBytes()
_bytes = newBytes
_capacity = newCapacity
_length = newLength
_needToZero = true
} else {
let cap = _capacity
var additionalCapacity = (newLength >> (__DataStorage.vmOpsThreshold <= newLength ? 2 : 1))
if Int.max - additionalCapacity < newLength {
additionalCapacity = 0
}
var newCapacity = malloc_good_size(Swift.max(cap, newLength + additionalCapacity))
let origLength = _length
var allocateCleared = clear && __DataStorage.shouldAllocateCleared(newCapacity)
var newBytes: UnsafeMutableRawPointer? = nil
if _bytes == nil {
newBytes = __DataStorage.allocate(newCapacity, allocateCleared)
if newBytes == nil {
/* Try again with minimum length */
allocateCleared = clear && __DataStorage.shouldAllocateCleared(newLength)
newBytes = __DataStorage.allocate(newLength, allocateCleared)
}
} else {
let tryCalloc = (origLength == 0 || (newLength / origLength) >= 4)
if allocateCleared && tryCalloc {
newBytes = __DataStorage.allocate(newCapacity, true)
if let newBytes = newBytes {
__DataStorage.move(newBytes, _bytes!, origLength)
_freeBytes()
}
}
/* Where calloc/memmove/free fails, realloc might succeed */
if newBytes == nil {
allocateCleared = false
if _deallocator != nil {
newBytes = __DataStorage.allocate(newCapacity, true)
if let newBytes = newBytes {
__DataStorage.move(newBytes, _bytes!, origLength)
_freeBytes()
}
} else {
newBytes = realloc(_bytes!, newCapacity)
}
}
/* Try again with minimum length */
if newBytes == nil {
newCapacity = malloc_good_size(newLength)
allocateCleared = clear && __DataStorage.shouldAllocateCleared(newCapacity)
if allocateCleared && tryCalloc {
newBytes = __DataStorage.allocate(newCapacity, true)
if let newBytes = newBytes {
__DataStorage.move(newBytes, _bytes!, origLength)
_freeBytes()
}
}
if newBytes == nil {
allocateCleared = false
newBytes = realloc(_bytes!, newCapacity)
}
}
}
if newBytes == nil {
/* Could not allocate bytes */
// At this point if the allocation cannot occur the process is likely out of memory
// and Bad-Thingsâ„¢ are going to happen anyhow
fatalError("unable to allocate memory for length (\(newLength))")
}
if origLength < newLength && clear && !allocateCleared {
memset(newBytes!.advanced(by: origLength), 0, newLength - origLength)
}
/* _length set by caller */
_bytes = newBytes
_capacity = newCapacity
/* Realloc/memset doesn't zero out the entire capacity, so we must be safe and clear next time we grow the length */
_needToZero = !allocateCleared
}
}
@inlinable // This is @inlinable as it does not escape the _DataStorage boundary layer.
func _freeBytes() {
if let bytes = _bytes {
if let dealloc = _deallocator {
dealloc(bytes, length)
} else {
free(bytes)
}
}
_deallocator = nil
}
@inlinable // This is @inlinable despite escaping the _DataStorage boundary layer because it is trivially computed.
func enumerateBytes(in range: Range<Int>, _ block: (_ buffer: UnsafeBufferPointer<UInt8>, _ byteIndex: Data.Index, _ stop: inout Bool) -> Void) {
var stopv: Bool = false
block(UnsafeBufferPointer<UInt8>(start: _bytes?.advanced(by: range.lowerBound - _offset).assumingMemoryBound(to: UInt8.self), count: Swift.min(range.upperBound - range.lowerBound, _length)), 0, &stopv)
}
@inlinable // This is @inlinable as it does not escape the _DataStorage boundary layer.
func setLength(_ length: Int) {
let origLength = _length
let newLength = length
if _capacity < newLength || _bytes == nil {
ensureUniqueBufferReference(growingTo: newLength, clear: true)
} else if origLength < newLength && _needToZero {
memset(_bytes! + origLength, 0, newLength - origLength)
} else if newLength < origLength {
_needToZero = true
}
_length = newLength
}
@inlinable // This is @inlinable as it does not escape the _DataStorage boundary layer.
func append(_ bytes: UnsafeRawPointer, length: Int) {
precondition(length >= 0, "Length of appending bytes must not be negative")
let origLength = _length
let newLength = origLength + length
if _capacity < newLength || _bytes == nil {
ensureUniqueBufferReference(growingTo: newLength, clear: false)
}
_length = newLength
__DataStorage.move(_bytes!.advanced(by: origLength), bytes, length)
}
@inlinable // This is @inlinable despite escaping the __DataStorage boundary layer because it is trivially computed.
func get(_ index: Int) -> UInt8 {
return _bytes!.advanced(by: index - _offset).assumingMemoryBound(to: UInt8.self).pointee
}
@inlinable // This is @inlinable despite escaping the _DataStorage boundary layer because it is trivially computed.
func set(_ index: Int, to value: UInt8) {
ensureUniqueBufferReference()
_bytes!.advanced(by: index - _offset).assumingMemoryBound(to: UInt8.self).pointee = value
}
@inlinable // This is @inlinable despite escaping the _DataStorage boundary layer because it is trivially computed.
func copyBytes(to pointer: UnsafeMutableRawPointer, from range: Range<Int>) {
let offsetPointer = UnsafeRawBufferPointer(start: _bytes?.advanced(by: range.lowerBound - _offset), count: Swift.min(range.upperBound - range.lowerBound, _length))
UnsafeMutableRawBufferPointer(start: pointer, count: range.upperBound - range.lowerBound).copyMemory(from: offsetPointer)
}
@usableFromInline // This is not @inlinable as it is a non-trivial, non-generic function.
func replaceBytes(in range_: NSRange, with replacementBytes: UnsafeRawPointer?, length replacementLength: Int) {
let range = NSRange(location: range_.location - _offset, length: range_.length)
let currentLength = _length
let resultingLength = currentLength - range.length + replacementLength
let shift = resultingLength - currentLength
let mutableBytes: UnsafeMutableRawPointer
if resultingLength > currentLength {
ensureUniqueBufferReference(growingTo: resultingLength)
_length = resultingLength
} else {
ensureUniqueBufferReference()
}
mutableBytes = _bytes!
/* shift the trailing bytes */
let start = range.location
let length = range.length
if shift != 0 {
memmove(mutableBytes + start + replacementLength, mutableBytes + start + length, currentLength - start - length)
}
if replacementLength != 0 {
if let replacementBytes = replacementBytes {
memmove(mutableBytes + start, replacementBytes, replacementLength)
} else {
memset(mutableBytes + start, 0, replacementLength)
}
}
if resultingLength < currentLength {
setLength(resultingLength)
}
}
@usableFromInline // This is not @inlinable as it is a non-trivial, non-generic function.
func resetBytes(in range_: Range<Int>) {
let range = NSRange(location: range_.lowerBound - _offset, length: range_.upperBound - range_.lowerBound)
if range.length == 0 { return }
if _length < range.location + range.length {
let newLength = range.location + range.length
if _capacity <= newLength {
ensureUniqueBufferReference(growingTo: newLength, clear: false)
}
_length = newLength
} else {
ensureUniqueBufferReference()
}
memset(_bytes!.advanced(by: range.location), 0, range.length)
}
@usableFromInline // This is not @inlinable as a non-trivial, non-convenience initializer.
init(length: Int) {
precondition(length < __DataStorage.maxSize)
var capacity = (length < 1024 * 1024 * 1024) ? length + (length >> 2) : length
if __DataStorage.vmOpsThreshold <= capacity {
capacity = NSRoundUpToMultipleOfPageSize(capacity)
}
let clear = __DataStorage.shouldAllocateCleared(length)
_bytes = __DataStorage.allocate(capacity, clear)!
_capacity = capacity
_needToZero = !clear
_length = 0
_offset = 0
setLength(length)
}
@usableFromInline // This is not @inlinable as a non-convenience initializer.
init(capacity capacity_: Int = 0) {
var capacity = capacity_
precondition(capacity < __DataStorage.maxSize)
if __DataStorage.vmOpsThreshold <= capacity {
capacity = NSRoundUpToMultipleOfPageSize(capacity)
}
_length = 0
_bytes = __DataStorage.allocate(capacity, false)!
_capacity = capacity
_needToZero = true
_offset = 0
}
@usableFromInline // This is not @inlinable as a non-convenience initializer.
init(bytes: UnsafeRawPointer?, length: Int) {
precondition(length < __DataStorage.maxSize)
_offset = 0
if length == 0 {
_capacity = 0
_length = 0
_needToZero = false
_bytes = nil
} else if __DataStorage.vmOpsThreshold <= length {
_capacity = length
_length = length
_needToZero = true
_bytes = __DataStorage.allocate(length, false)!
__DataStorage.move(_bytes!, bytes, length)
} else {
var capacity = length
if __DataStorage.vmOpsThreshold <= capacity {
capacity = NSRoundUpToMultipleOfPageSize(capacity)
}
_length = length
_bytes = __DataStorage.allocate(capacity, false)!
_capacity = capacity
_needToZero = true
__DataStorage.move(_bytes!, bytes, length)
}
}
@usableFromInline // This is not @inlinable as a non-convenience initializer.
init(bytes: UnsafeMutableRawPointer?, length: Int, copy: Bool, deallocator: ((UnsafeMutableRawPointer, Int) -> Void)?, offset: Int) {
precondition(length < __DataStorage.maxSize)
_offset = offset
if length == 0 {
_capacity = 0
_length = 0
_needToZero = false
_bytes = nil
if let dealloc = deallocator,
let bytes_ = bytes {
dealloc(bytes_, length)
}
} else if !copy {
_capacity = length
_length = length
_needToZero = false
_bytes = bytes
_deallocator = deallocator
} else if __DataStorage.vmOpsThreshold <= length {
_capacity = length
_length = length
_needToZero = true
_bytes = __DataStorage.allocate(length, false)!
__DataStorage.move(_bytes!, bytes, length)
if let dealloc = deallocator {
dealloc(bytes!, length)
}
} else {
var capacity = length
if __DataStorage.vmOpsThreshold <= capacity {
capacity = NSRoundUpToMultipleOfPageSize(capacity)
}
_length = length
_bytes = __DataStorage.allocate(capacity, false)!
_capacity = capacity
_needToZero = true
__DataStorage.move(_bytes!, bytes, length)
if let dealloc = deallocator {
dealloc(bytes!, length)
}
}
}
@usableFromInline // This is not @inlinable as a non-convenience initializer.
init(immutableReference: NSData, offset: Int) {
_offset = offset
_bytes = UnsafeMutableRawPointer(mutating: immutableReference.bytes)
_capacity = 0
_needToZero = false
_length = immutableReference.length
_deallocator = { _, _ in
_fixLifetime(immutableReference)
}
}
@usableFromInline // This is not @inlinable as a non-convenience initializer.
init(mutableReference: NSMutableData, offset: Int) {
_offset = offset
_bytes = mutableReference.mutableBytes
_capacity = 0
_needToZero = false
_length = mutableReference.length
_deallocator = { _, _ in
_fixLifetime(mutableReference)
}
}
@usableFromInline // This is not @inlinable as a non-convenience initializer.
init(customReference: NSData, offset: Int) {
_offset = offset
_bytes = UnsafeMutableRawPointer(mutating: customReference.bytes)
_capacity = 0
_needToZero = false
_length = customReference.length
_deallocator = { _, _ in
_fixLifetime(customReference)
}
}
@usableFromInline // This is not @inlinable as a non-convenience initializer.
init(customMutableReference: NSMutableData, offset: Int) {
_offset = offset
_bytes = customMutableReference.mutableBytes
_capacity = 0
_needToZero = false
_length = customMutableReference.length
_deallocator = { _, _ in
_fixLifetime(customMutableReference)
}
}
deinit {
_freeBytes()
}
@inlinable // This is @inlinable despite escaping the __DataStorage boundary layer because it is trivially computed.
func mutableCopy(_ range: Range<Int>) -> __DataStorage {
return __DataStorage(bytes: _bytes?.advanced(by: range.lowerBound - _offset), length: range.upperBound - range.lowerBound, copy: true, deallocator: nil, offset: range.lowerBound)
}
@inlinable // This is @inlinable despite escaping the _DataStorage boundary layer because it is generic and trivially computed.
func withInteriorPointerReference<T>(_ range: Range<Int>, _ work: (NSData) throws -> T) rethrows -> T {
if range.isEmpty {
return try work(NSData()) // zero length data can be optimized as a singleton
}
return try work(NSData(bytesNoCopy: _bytes!.advanced(by: range.lowerBound - _offset), length: range.upperBound - range.lowerBound, freeWhenDone: false))
}
@inline(never) // This is not @inlinable to avoid emission of the private `__NSSwiftData` class name into clients.
@usableFromInline
func bridgedReference(_ range: Range<Int>) -> NSData {
if range.isEmpty {
return NSData() // zero length data can be optimized as a singleton
}
return __NSSwiftData(backing: self, range: range)
}
}
// NOTE: older overlays called this _NSSwiftData. The two must
// coexist, so it was renamed. The old name must not be used in the new
// runtime.
internal class __NSSwiftData : NSData {
var _backing: __DataStorage!
var _range: Range<Data.Index>!
override var classForCoder: AnyClass {
return NSData.self
}
override init() {
fatalError()
}
private init(_correctly: Void) {
super.init()
}
convenience init(backing: __DataStorage, range: Range<Data.Index>) {
self.init(_correctly: ())
_backing = backing
_range = range
}
public required init?(coder aDecoder: NSCoder) {
fatalError("This should have been encoded as NSData.")
}
override func encode(with aCoder: NSCoder) {
// This should encode this object just like NSData does, and .classForCoder should do the rest.
super.encode(with: aCoder)
}
override var length: Int {
return _range.upperBound - _range.lowerBound
}
override var bytes: UnsafeRawPointer {
// NSData's byte pointer methods are not annotated for nullability correctly
// (but assume non-null by the wrapping macro guards). This placeholder value
// is to work-around this bug. Any indirection to the underlying bytes of an NSData
// with a length of zero would have been a programmer error anyhow so the actual
// return value here is not needed to be an allocated value. This is specifically
// needed to live like this to be source compatible with Swift3. Beyond that point
// this API may be subject to correction.
guard let bytes = _backing.bytes else {
return UnsafeRawPointer(bitPattern: 0xBAD0)!
}
return bytes.advanced(by: _range.lowerBound)
}
override func copy(with zone: NSZone? = nil) -> Any {
return self
}
override func mutableCopy(with zone: NSZone? = nil) -> Any {
return NSMutableData(bytes: bytes, length: length)
}
#if !DEPLOYMENT_RUNTIME_SWIFT
@objc override
func _isCompact() -> Bool {
return true
}
#endif
#if DEPLOYMENT_RUNTIME_SWIFT
override func _providesConcreteBacking() -> Bool {
return true
}
#else
@objc(_providesConcreteBacking)
func _providesConcreteBacking() -> Bool {
return true
}
#endif
}
@frozen
public struct Data : ReferenceConvertible, Equatable, Hashable, RandomAccessCollection, MutableCollection, RangeReplaceableCollection, MutableDataProtocol, ContiguousBytes {
public typealias ReferenceType = NSData
public typealias ReadingOptions = NSData.ReadingOptions
public typealias WritingOptions = NSData.WritingOptions
public typealias SearchOptions = NSData.SearchOptions
public typealias Base64EncodingOptions = NSData.Base64EncodingOptions
public typealias Base64DecodingOptions = NSData.Base64DecodingOptions
public typealias Index = Int
public typealias Indices = Range<Int>
// A small inline buffer of bytes suitable for stack-allocation of small data.
// Inlinability strategy: everything here should be inlined for direct operation on the stack wherever possible.
@usableFromInline
@frozen
internal struct InlineData {
#if arch(x86_64) || arch(arm64) || arch(s390x) || arch(powerpc64) || arch(powerpc64le)
@usableFromInline typealias Buffer = (UInt8, UInt8, UInt8, UInt8, UInt8, UInt8, UInt8, UInt8,
UInt8, UInt8, UInt8, UInt8, UInt8, UInt8) //len //enum
@usableFromInline var bytes: Buffer
#elseif arch(i386) || arch(arm)
@usableFromInline typealias Buffer = (UInt8, UInt8, UInt8, UInt8,
UInt8, UInt8) //len //enum
@usableFromInline var bytes: Buffer
#else
#error("This architecture isn't known. Add it to the 32-bit or 64-bit line.")
#endif
@usableFromInline var length: UInt8
@inlinable // This is @inlinable as trivially computable.
static func canStore(count: Int) -> Bool {
return count <= MemoryLayout<Buffer>.size
}
@inlinable // This is @inlinable as a convenience initializer.
init(_ srcBuffer: UnsafeRawBufferPointer) {
self.init(count: srcBuffer.count)
if srcBuffer.count > 0 {
Swift.withUnsafeMutableBytes(of: &bytes) { dstBuffer in
dstBuffer.baseAddress?.copyMemory(from: srcBuffer.baseAddress!, byteCount: srcBuffer.count)
}
}
}
@inlinable // This is @inlinable as a trivial initializer.
init(count: Int = 0) {
assert(count <= MemoryLayout<Buffer>.size)
#if arch(x86_64) || arch(arm64) || arch(s390x) || arch(powerpc64) || arch(powerpc64le)
bytes = (UInt8(0), UInt8(0), UInt8(0), UInt8(0), UInt8(0), UInt8(0), UInt8(0), UInt8(0), UInt8(0), UInt8(0), UInt8(0), UInt8(0), UInt8(0), UInt8(0))
#elseif arch(i386) || arch(arm)
bytes = (UInt8(0), UInt8(0), UInt8(0), UInt8(0), UInt8(0), UInt8(0))
#else
#error("This architecture isn't known. Add it to the 32-bit or 64-bit line.")
#endif
length = UInt8(count)
}
@inlinable // This is @inlinable as a convenience initializer.
init(_ slice: InlineSlice, count: Int) {
self.init(count: count)
Swift.withUnsafeMutableBytes(of: &bytes) { dstBuffer in
slice.withUnsafeBytes { srcBuffer in
dstBuffer.copyMemory(from: UnsafeRawBufferPointer(start: srcBuffer.baseAddress, count: count))
}
}
}
@inlinable // This is @inlinable as a convenience initializer.
init(_ slice: LargeSlice, count: Int) {
self.init(count: count)
Swift.withUnsafeMutableBytes(of: &bytes) { dstBuffer in
slice.withUnsafeBytes { srcBuffer in
dstBuffer.copyMemory(from: UnsafeRawBufferPointer(start: srcBuffer.baseAddress, count: count))
}
}
}
@inlinable // This is @inlinable as trivially computable.
var capacity: Int {
return MemoryLayout<Buffer>.size
}
@inlinable // This is @inlinable as trivially computable.
var count: Int {
get {
return Int(length)
}
set(newValue) {
assert(newValue <= MemoryLayout<Buffer>.size)
length = UInt8(newValue)
}
}
@inlinable // This is @inlinable as trivially computable.
var startIndex: Int {
return 0
}
@inlinable // This is @inlinable as trivially computable.
var endIndex: Int {
return count
}
@inlinable // This is @inlinable as a generic, trivially forwarding function.
func withUnsafeBytes<Result>(_ apply: (UnsafeRawBufferPointer) throws -> Result) rethrows -> Result {
let count = Int(length)
return try Swift.withUnsafeBytes(of: bytes) { (rawBuffer) throws -> Result in
return try apply(UnsafeRawBufferPointer(start: rawBuffer.baseAddress, count: count))
}
}
@inlinable // This is @inlinable as a generic, trivially forwarding function.
mutating func withUnsafeMutableBytes<Result>(_ apply: (UnsafeMutableRawBufferPointer) throws -> Result) rethrows -> Result {
let count = Int(length)
return try Swift.withUnsafeMutableBytes(of: &bytes) { (rawBuffer) throws -> Result in
return try apply(UnsafeMutableRawBufferPointer(start: rawBuffer.baseAddress, count: count))
}
}
@inlinable // This is @inlinable as tribially computable.
mutating func append(byte: UInt8) {
let count = self.count
assert(count + 1 <= MemoryLayout<Buffer>.size)
Swift.withUnsafeMutableBytes(of: &bytes) { $0[count] = byte }
self.length += 1
}
@inlinable // This is @inlinable as trivially computable.
mutating func append(contentsOf buffer: UnsafeRawBufferPointer) {
guard buffer.count > 0 else { return }
assert(count + buffer.count <= MemoryLayout<Buffer>.size)
let cnt = count
_ = Swift.withUnsafeMutableBytes(of: &bytes) { rawBuffer in
rawBuffer.baseAddress?.advanced(by: cnt).copyMemory(from: buffer.baseAddress!, byteCount: buffer.count)
}
length += UInt8(buffer.count)
}
@inlinable // This is @inlinable as trivially computable.
subscript(index: Index) -> UInt8 {
get {
assert(index <= MemoryLayout<Buffer>.size)
precondition(index < length, "index \(index) is out of bounds of 0..<\(length)")
return Swift.withUnsafeBytes(of: bytes) { rawBuffer -> UInt8 in
return rawBuffer[index]
}
}
set(newValue) {
assert(index <= MemoryLayout<Buffer>.size)
precondition(index < length, "index \(index) is out of bounds of 0..<\(length)")
Swift.withUnsafeMutableBytes(of: &bytes) { rawBuffer in
rawBuffer[index] = newValue
}
}
}
@inlinable // This is @inlinable as trivially computable.
mutating func resetBytes(in range: Range<Index>) {
assert(range.lowerBound <= MemoryLayout<Buffer>.size)
assert(range.upperBound <= MemoryLayout<Buffer>.size)
precondition(range.lowerBound <= length, "index \(range.lowerBound) is out of bounds of 0..<\(length)")
if count < range.upperBound {
count = range.upperBound
}
let _ = Swift.withUnsafeMutableBytes(of: &bytes) { rawBuffer in
memset(rawBuffer.baseAddress!.advanced(by: range.lowerBound), 0, range.upperBound - range.lowerBound)
}
}
@usableFromInline // This is not @inlinable as it is a non-trivial, non-generic function.
mutating func replaceSubrange(_ subrange: Range<Index>, with replacementBytes: UnsafeRawPointer?, count replacementLength: Int) {
assert(subrange.lowerBound <= MemoryLayout<Buffer>.size)
assert(subrange.upperBound <= MemoryLayout<Buffer>.size)
assert(count - (subrange.upperBound - subrange.lowerBound) + replacementLength <= MemoryLayout<Buffer>.size)
precondition(subrange.lowerBound <= length, "index \(subrange.lowerBound) is out of bounds of 0..<\(length)")
precondition(subrange.upperBound <= length, "index \(subrange.upperBound) is out of bounds of 0..<\(length)")
let currentLength = count
let resultingLength = currentLength - (subrange.upperBound - subrange.lowerBound) + replacementLength
let shift = resultingLength - currentLength
Swift.withUnsafeMutableBytes(of: &bytes) { mutableBytes in
/* shift the trailing bytes */
let start = subrange.lowerBound
let length = subrange.upperBound - subrange.lowerBound
if shift != 0 {
memmove(mutableBytes.baseAddress!.advanced(by: start + replacementLength), mutableBytes.baseAddress!.advanced(by: start + length), currentLength - start - length)
}
if replacementLength != 0 {
memmove(mutableBytes.baseAddress!.advanced(by: start), replacementBytes!, replacementLength)
}
}
count = resultingLength
}
@inlinable // This is @inlinable as trivially computable.
func copyBytes(to pointer: UnsafeMutableRawPointer, from range: Range<Int>) {
precondition(startIndex <= range.lowerBound, "index \(range.lowerBound) is out of bounds of \(startIndex)..<\(endIndex)")
precondition(range.lowerBound <= endIndex, "index \(range.lowerBound) is out of bounds of \(startIndex)..<\(endIndex)")
precondition(startIndex <= range.upperBound, "index \(range.upperBound) is out of bounds of \(startIndex)..<\(endIndex)")
precondition(range.upperBound <= endIndex, "index \(range.upperBound) is out of bounds of \(startIndex)..<\(endIndex)")
Swift.withUnsafeBytes(of: bytes) {
let cnt = Swift.min($0.count, range.upperBound - range.lowerBound)
guard cnt > 0 else { return }
pointer.copyMemory(from: $0.baseAddress!.advanced(by: range.lowerBound), byteCount: cnt)
}
}
@inline(__always) // This should always be inlined into _Representation.hash(into:).
func hash(into hasher: inout Hasher) {
// **NOTE**: this uses `count` (an Int) and NOT `length` (a UInt8)
// Despite having the same value, they hash differently. InlineSlice and LargeSlice both use `count` (an Int); if you combine the same bytes but with `length` over `count`, you can get a different hash.
//
// This affects slices, which are InlineSlice and not InlineData:
//
// let d = Data([0xFF, 0xFF]) // InlineData
// let s = Data([0, 0xFF, 0xFF]).dropFirst() // InlineSlice
// assert(s == d)
// assert(s.hashValue == d.hashValue)
hasher.combine(count)
Swift.withUnsafeBytes(of: bytes) {
// We have access to the full byte buffer here, but not all of it is meaningfully used (bytes past self.length may be garbage).
let bytes = UnsafeRawBufferPointer(start: $0.baseAddress, count: self.count)
hasher.combine(bytes: bytes)
}
}
}
#if arch(x86_64) || arch(arm64) || arch(s390x) || arch(powerpc64) || arch(powerpc64le)
@usableFromInline internal typealias HalfInt = Int32
#elseif arch(i386) || arch(arm)
@usableFromInline internal typealias HalfInt = Int16
#else
#error("This architecture isn't known. Add it to the 32-bit or 64-bit line.")
#endif
// A buffer of bytes too large to fit in an InlineData, but still small enough to fit a storage pointer + range in two words.
// Inlinability strategy: everything here should be easily inlinable as large _DataStorage methods should not inline into here.
@usableFromInline
@frozen
internal struct InlineSlice {
// ***WARNING***
// These ivars are specifically laid out so that they cause the enum _Representation to be 16 bytes on 64 bit platforms. This means we _MUST_ have the class type thing last
@usableFromInline var slice: Range<HalfInt>
@usableFromInline var storage: __DataStorage
@inlinable // This is @inlinable as trivially computable.
static func canStore(count: Int) -> Bool {
return count < HalfInt.max
}
@inlinable // This is @inlinable as a convenience initializer.
init(_ buffer: UnsafeRawBufferPointer) {
assert(buffer.count < HalfInt.max)
self.init(__DataStorage(bytes: buffer.baseAddress, length: buffer.count), count: buffer.count)
}
@inlinable // This is @inlinable as a convenience initializer.
init(capacity: Int) {
assert(capacity < HalfInt.max)
self.init(__DataStorage(capacity: capacity), count: 0)
}
@inlinable // This is @inlinable as a convenience initializer.
init(count: Int) {
assert(count < HalfInt.max)
self.init(__DataStorage(length: count), count: count)
}
@inlinable // This is @inlinable as a convenience initializer.
init(_ inline: InlineData) {
assert(inline.count < HalfInt.max)
self.init(inline.withUnsafeBytes { return __DataStorage(bytes: $0.baseAddress, length: $0.count) }, count: inline.count)
}
@inlinable // This is @inlinable as a convenience initializer.
init(_ inline: InlineData, range: Range<Int>) {
assert(range.lowerBound < HalfInt.max)
assert(range.upperBound < HalfInt.max)
self.init(inline.withUnsafeBytes { return __DataStorage(bytes: $0.baseAddress, length: $0.count) }, range: range)
}
@inlinable // This is @inlinable as a convenience initializer.
init(_ large: LargeSlice) {
assert(large.range.lowerBound < HalfInt.max)
assert(large.range.upperBound < HalfInt.max)
self.init(large.storage, range: large.range)
}
@inlinable // This is @inlinable as a convenience initializer.
init(_ large: LargeSlice, range: Range<Int>) {
assert(range.lowerBound < HalfInt.max)
assert(range.upperBound < HalfInt.max)
self.init(large.storage, range: range)
}
@inlinable // This is @inlinable as a trivial initializer.
init(_ storage: __DataStorage, count: Int) {
assert(count < HalfInt.max)
self.storage = storage
slice = 0..<HalfInt(count)
}
@inlinable // This is @inlinable as a trivial initializer.
init(_ storage: __DataStorage, range: Range<Int>) {
assert(range.lowerBound < HalfInt.max)
assert(range.upperBound < HalfInt.max)
self.storage = storage
slice = HalfInt(range.lowerBound)..<HalfInt(range.upperBound)
}
@inlinable // This is @inlinable as trivially computable (and inlining may help avoid retain-release traffic).
mutating func ensureUniqueReference() {
if !isKnownUniquelyReferenced(&storage) {
storage = storage.mutableCopy(self.range)
}
}
@inlinable // This is @inlinable as trivially computable.
var startIndex: Int {
return Int(slice.lowerBound)
}
@inlinable // This is @inlinable as trivially computable.
var endIndex: Int {
return Int(slice.upperBound)
}
@inlinable // This is @inlinable as trivially computable.
var capacity: Int {
return storage.capacity
}
@inlinable // This is @inlinable as trivially computable (and inlining may help avoid retain-release traffic).
mutating func reserveCapacity(_ minimumCapacity: Int) {
ensureUniqueReference()
// the current capacity can be zero (representing externally owned buffer), and count can be greater than the capacity
storage.ensureUniqueBufferReference(growingTo: Swift.max(minimumCapacity, count))
}
@inlinable // This is @inlinable as trivially computable.
var count: Int {
get {
return Int(slice.upperBound - slice.lowerBound)
}
set(newValue) {
assert(newValue < HalfInt.max)
ensureUniqueReference()
storage.length = newValue
slice = slice.lowerBound..<(slice.lowerBound + HalfInt(newValue))
}
}
@inlinable // This is @inlinable as trivially computable.
var range: Range<Int> {
get {
return Int(slice.lowerBound)..<Int(slice.upperBound)
}
set(newValue) {
assert(newValue.lowerBound < HalfInt.max)
assert(newValue.upperBound < HalfInt.max)
slice = HalfInt(newValue.lowerBound)..<HalfInt(newValue.upperBound)
}
}
@inlinable // This is @inlinable as a generic, trivially forwarding function.
func withUnsafeBytes<Result>(_ apply: (UnsafeRawBufferPointer) throws -> Result) rethrows -> Result {
return try storage.withUnsafeBytes(in: range, apply: apply)
}
@inlinable // This is @inlinable as a generic, trivially forwarding function.
mutating func withUnsafeMutableBytes<Result>(_ apply: (UnsafeMutableRawBufferPointer) throws -> Result) rethrows -> Result {
ensureUniqueReference()
return try storage.withUnsafeMutableBytes(in: range, apply: apply)
}
@inlinable // This is @inlinable as reasonably small.
mutating func append(contentsOf buffer: UnsafeRawBufferPointer) {
assert(endIndex + buffer.count < HalfInt.max)
ensureUniqueReference()
storage.replaceBytes(in: NSRange(location: range.upperBound, length: storage.length - (range.upperBound - storage._offset)), with: buffer.baseAddress, length: buffer.count)
slice = slice.lowerBound..<HalfInt(Int(slice.upperBound) + buffer.count)
}
@inlinable // This is @inlinable as reasonably small.
subscript(index: Index) -> UInt8 {
get {
assert(index < HalfInt.max)
precondition(startIndex <= index, "index \(index) is out of bounds of \(startIndex)..<\(endIndex)")
precondition(index < endIndex, "index \(index) is out of bounds of \(startIndex)..<\(endIndex)")
return storage.get(index)
}
set(newValue) {
assert(index < HalfInt.max)
precondition(startIndex <= index, "index \(index) is out of bounds of \(startIndex)..<\(endIndex)")
precondition(index < endIndex, "index \(index) is out of bounds of \(startIndex)..<\(endIndex)")
ensureUniqueReference()
storage.set(index, to: newValue)
}
}
@inlinable // This is @inlinable as trivially forwarding.
func bridgedReference() -> NSData {
return storage.bridgedReference(self.range)
}
@inlinable // This is @inlinable as reasonably small.
mutating func resetBytes(in range: Range<Index>) {
assert(range.lowerBound < HalfInt.max)
assert(range.upperBound < HalfInt.max)
precondition(range.lowerBound <= endIndex, "index \(range.lowerBound) is out of bounds of \(startIndex)..<\(endIndex)")
ensureUniqueReference()
storage.resetBytes(in: range)
if slice.upperBound < range.upperBound {
slice = slice.lowerBound..<HalfInt(range.upperBound)
}
}
@inlinable // This is @inlinable as reasonably small.
mutating func replaceSubrange(_ subrange: Range<Index>, with bytes: UnsafeRawPointer?, count cnt: Int) {
precondition(startIndex <= subrange.lowerBound, "index \(subrange.lowerBound) is out of bounds of \(startIndex)..<\(endIndex)")
precondition(subrange.lowerBound <= endIndex, "index \(subrange.lowerBound) is out of bounds of \(startIndex)..<\(endIndex)")
precondition(startIndex <= subrange.upperBound, "index \(subrange.upperBound) is out of bounds of \(startIndex)..<\(endIndex)")
precondition(subrange.upperBound <= endIndex, "index \(subrange.upperBound) is out of bounds of \(startIndex)..<\(endIndex)")
let nsRange = NSRange(location: subrange.lowerBound, length: subrange.upperBound - subrange.lowerBound)
ensureUniqueReference()
let upper = range.upperBound
storage.replaceBytes(in: nsRange, with: bytes, length: cnt)
let resultingUpper = upper - nsRange.length + cnt
slice = slice.lowerBound..<HalfInt(resultingUpper)
}
@inlinable // This is @inlinable as reasonably small.
func copyBytes(to pointer: UnsafeMutableRawPointer, from range: Range<Int>) {
precondition(startIndex <= range.lowerBound, "index \(range.lowerBound) is out of bounds of \(startIndex)..<\(endIndex)")
precondition(range.lowerBound <= endIndex, "index \(range.lowerBound) is out of bounds of \(startIndex)..<\(endIndex)")
precondition(startIndex <= range.upperBound, "index \(range.upperBound) is out of bounds of \(startIndex)..<\(endIndex)")
precondition(range.upperBound <= endIndex, "index \(range.upperBound) is out of bounds of \(startIndex)..<\(endIndex)")
storage.copyBytes(to: pointer, from: range)
}
@inline(__always) // This should always be inlined into _Representation.hash(into:).
func hash(into hasher: inout Hasher) {
hasher.combine(count)
// At most, hash the first 80 bytes of this data.
let range = startIndex ..< Swift.min(startIndex + 80, endIndex)
storage.withUnsafeBytes(in: range) {
hasher.combine(bytes: $0)
}
}
}
// A reference wrapper around a Range<Int> for when the range of a data buffer is too large to whole in a single word.
// Inlinability strategy: everything should be inlinable as trivial.
@usableFromInline
internal final class RangeReference {
@usableFromInline var range: Range<Int>
@inlinable @inline(__always) // This is @inlinable as trivially forwarding.
var lowerBound: Int {
return range.lowerBound
}
@inlinable @inline(__always) // This is @inlinable as trivially forwarding.
var upperBound: Int {
return range.upperBound
}
@inlinable @inline(__always) // This is @inlinable as trivially computable.
var count: Int {
return range.upperBound - range.lowerBound
}
@inlinable @inline(__always) // This is @inlinable as a trivial initializer.
init(_ range: Range<Int>) {
self.range = range
}
}
// A buffer of bytes whose range is too large to fit in a signle word. Used alongside a RangeReference to make it fit into _Representation's two-word size.
// Inlinability strategy: everything here should be easily inlinable as large _DataStorage methods should not inline into here.
@usableFromInline
@frozen
internal struct LargeSlice {
// ***WARNING***
// These ivars are specifically laid out so that they cause the enum _Representation to be 16 bytes on 64 bit platforms. This means we _MUST_ have the class type thing last
@usableFromInline var slice: RangeReference
@usableFromInline var storage: __DataStorage
@inlinable // This is @inlinable as a convenience initializer.
init(_ buffer: UnsafeRawBufferPointer) {
self.init(__DataStorage(bytes: buffer.baseAddress, length: buffer.count), count: buffer.count)
}
@inlinable // This is @inlinable as a convenience initializer.
init(capacity: Int) {
self.init(__DataStorage(capacity: capacity), count: 0)
}
@inlinable // This is @inlinable as a convenience initializer.
init(count: Int) {
self.init(__DataStorage(length: count), count: count)
}
@inlinable // This is @inlinable as a convenience initializer.
init(_ inline: InlineData) {
let storage = inline.withUnsafeBytes { return __DataStorage(bytes: $0.baseAddress, length: $0.count) }
self.init(storage, count: inline.count)
}
@inlinable // This is @inlinable as a trivial initializer.
init(_ slice: InlineSlice) {
self.storage = slice.storage
self.slice = RangeReference(slice.range)
}
@inlinable // This is @inlinable as a trivial initializer.
init(_ storage: __DataStorage, count: Int) {
self.storage = storage
self.slice = RangeReference(0..<count)
}
@inlinable // This is @inlinable as trivially computable (and inlining may help avoid retain-release traffic).
mutating func ensureUniqueReference() {
if !isKnownUniquelyReferenced(&storage) {
storage = storage.mutableCopy(range)
}
if !isKnownUniquelyReferenced(&slice) {
slice = RangeReference(range)
}
}
@inlinable // This is @inlinable as trivially forwarding.
var startIndex: Int {
return slice.range.lowerBound
}
@inlinable // This is @inlinable as trivially forwarding.
var endIndex: Int {
return slice.range.upperBound
}
@inlinable // This is @inlinable as trivially forwarding.
var capacity: Int {
return storage.capacity
}
@inlinable // This is @inlinable as trivially computable.
mutating func reserveCapacity(_ minimumCapacity: Int) {
ensureUniqueReference()
// the current capacity can be zero (representing externally owned buffer), and count can be greater than the capacity
storage.ensureUniqueBufferReference(growingTo: Swift.max(minimumCapacity, count))
}
@inlinable // This is @inlinable as trivially computable.
var count: Int {
get {
return slice.count
}
set(newValue) {
ensureUniqueReference()
storage.length = newValue
slice.range = slice.range.lowerBound..<(slice.range.lowerBound + newValue)
}
}
@inlinable // This is @inlinable as it is trivially forwarding.
var range: Range<Int> {
return slice.range
}
@inlinable // This is @inlinable as a generic, trivially forwarding function.
func withUnsafeBytes<Result>(_ apply: (UnsafeRawBufferPointer) throws -> Result) rethrows -> Result {
return try storage.withUnsafeBytes(in: range, apply: apply)
}
@inlinable // This is @inlinable as a generic, trivially forwarding function.
mutating func withUnsafeMutableBytes<Result>(_ apply: (UnsafeMutableRawBufferPointer) throws -> Result) rethrows -> Result {
ensureUniqueReference()
return try storage.withUnsafeMutableBytes(in: range, apply: apply)
}
@inlinable // This is @inlinable as reasonably small.
mutating func append(contentsOf buffer: UnsafeRawBufferPointer) {
ensureUniqueReference()
storage.replaceBytes(in: NSRange(location: range.upperBound, length: storage.length - (range.upperBound - storage._offset)), with: buffer.baseAddress, length: buffer.count)
slice.range = slice.range.lowerBound..<slice.range.upperBound + buffer.count
}
@inlinable // This is @inlinable as trivially computable.
subscript(index: Index) -> UInt8 {
get {
precondition(startIndex <= index, "index \(index) is out of bounds of \(startIndex)..<\(endIndex)")
precondition(index < endIndex, "index \(index) is out of bounds of \(startIndex)..<\(endIndex)")
return storage.get(index)
}
set(newValue) {
precondition(startIndex <= index, "index \(index) is out of bounds of \(startIndex)..<\(endIndex)")
precondition(index < endIndex, "index \(index) is out of bounds of \(startIndex)..<\(endIndex)")
ensureUniqueReference()
storage.set(index, to: newValue)
}
}
@inlinable // This is @inlinable as trivially forwarding.
func bridgedReference() -> NSData {
return storage.bridgedReference(self.range)
}
@inlinable // This is @inlinable as reasonably small.
mutating func resetBytes(in range: Range<Int>) {
precondition(range.lowerBound <= endIndex, "index \(range.lowerBound) is out of bounds of \(startIndex)..<\(endIndex)")
ensureUniqueReference()
storage.resetBytes(in: range)
if slice.range.upperBound < range.upperBound {
slice.range = slice.range.lowerBound..<range.upperBound
}
}
@inlinable // This is @inlinable as reasonably small.
mutating func replaceSubrange(_ subrange: Range<Index>, with bytes: UnsafeRawPointer?, count cnt: Int) {
precondition(startIndex <= subrange.lowerBound, "index \(subrange.lowerBound) is out of bounds of \(startIndex)..<\(endIndex)")
precondition(subrange.lowerBound <= endIndex, "index \(subrange.lowerBound) is out of bounds of \(startIndex)..<\(endIndex)")
precondition(startIndex <= subrange.upperBound, "index \(subrange.upperBound) is out of bounds of \(startIndex)..<\(endIndex)")
precondition(subrange.upperBound <= endIndex, "index \(subrange.upperBound) is out of bounds of \(startIndex)..<\(endIndex)")
let nsRange = NSRange(location: subrange.lowerBound, length: subrange.upperBound - subrange.lowerBound)
ensureUniqueReference()
let upper = range.upperBound
storage.replaceBytes(in: nsRange, with: bytes, length: cnt)
let resultingUpper = upper - nsRange.length + cnt
slice.range = slice.range.lowerBound..<resultingUpper
}
@inlinable // This is @inlinable as reasonably small.
func copyBytes(to pointer: UnsafeMutableRawPointer, from range: Range<Int>) {
precondition(startIndex <= range.lowerBound, "index \(range.lowerBound) is out of bounds of \(startIndex)..<\(endIndex)")
precondition(range.lowerBound <= endIndex, "index \(range.lowerBound) is out of bounds of \(startIndex)..<\(endIndex)")
precondition(startIndex <= range.upperBound, "index \(range.upperBound) is out of bounds of \(startIndex)..<\(endIndex)")
precondition(range.upperBound <= endIndex, "index \(range.upperBound) is out of bounds of \(startIndex)..<\(endIndex)")
storage.copyBytes(to: pointer, from: range)
}
@inline(__always) // This should always be inlined into _Representation.hash(into:).
func hash(into hasher: inout Hasher) {
hasher.combine(count)
// Hash at most the first 80 bytes of this data.
let range = startIndex ..< Swift.min(startIndex + 80, endIndex)
storage.withUnsafeBytes(in: range) {
hasher.combine(bytes: $0)
}
}
}
// The actual storage for Data's various representations.
// Inlinability strategy: almost everything should be inlinable as forwarding the underlying implementations. (Inlining can also help avoid retain-release traffic around pulling values out of enums.)
@usableFromInline
@frozen
internal enum _Representation {
case empty
case inline(InlineData)
case slice(InlineSlice)
case large(LargeSlice)
@inlinable // This is @inlinable as a trivial initializer.
init(_ buffer: UnsafeRawBufferPointer) {
if buffer.count == 0 {
self = .empty
} else if InlineData.canStore(count: buffer.count) {
self = .inline(InlineData(buffer))
} else if InlineSlice.canStore(count: buffer.count) {
self = .slice(InlineSlice(buffer))
} else {
self = .large(LargeSlice(buffer))
}
}
@inlinable // This is @inlinable as a trivial initializer.
init(_ buffer: UnsafeRawBufferPointer, owner: AnyObject) {
if buffer.count == 0 {
self = .empty
} else if InlineData.canStore(count: buffer.count) {
self = .inline(InlineData(buffer))
} else {
let count = buffer.count
let storage = __DataStorage(bytes: UnsafeMutableRawPointer(mutating: buffer.baseAddress), length: count, copy: false, deallocator: { _, _ in
_fixLifetime(owner)
}, offset: 0)
if InlineSlice.canStore(count: count) {
self = .slice(InlineSlice(storage, count: count))
} else {
self = .large(LargeSlice(storage, count: count))
}
}
}
@inlinable // This is @inlinable as a trivial initializer.
init(capacity: Int) {
if capacity == 0 {
self = .empty
} else if InlineData.canStore(count: capacity) {
self = .inline(InlineData())
} else if InlineSlice.canStore(count: capacity) {
self = .slice(InlineSlice(capacity: capacity))
} else {
self = .large(LargeSlice(capacity: capacity))
}
}
@inlinable // This is @inlinable as a trivial initializer.
init(count: Int) {
if count == 0 {
self = .empty
} else if InlineData.canStore(count: count) {
self = .inline(InlineData(count: count))
} else if InlineSlice.canStore(count: count) {
self = .slice(InlineSlice(count: count))
} else {
self = .large(LargeSlice(count: count))
}
}
@inlinable // This is @inlinable as a trivial initializer.
init(_ storage: __DataStorage, count: Int) {
if count == 0 {
self = .empty
} else if InlineData.canStore(count: count) {
self = .inline(storage.withUnsafeBytes(in: 0..<count) { InlineData($0) })
} else if InlineSlice.canStore(count: count) {
self = .slice(InlineSlice(storage, count: count))
} else {
self = .large(LargeSlice(storage, count: count))
}
}
@usableFromInline // This is not @inlinable as it is a non-trivial, non-generic function.
mutating func reserveCapacity(_ minimumCapacity: Int) {
guard minimumCapacity > 0 else { return }
switch self {
case .empty:
if InlineData.canStore(count: minimumCapacity) {
self = .inline(InlineData())
} else if InlineSlice.canStore(count: minimumCapacity) {
self = .slice(InlineSlice(capacity: minimumCapacity))
} else {
self = .large(LargeSlice(capacity: minimumCapacity))
}
case .inline(let inline):
guard minimumCapacity > inline.capacity else { return }
// we know we are going to be heap promoted
if InlineSlice.canStore(count: minimumCapacity) {
var slice = InlineSlice(inline)
slice.reserveCapacity(minimumCapacity)
self = .slice(slice)
} else {
var slice = LargeSlice(inline)
slice.reserveCapacity(minimumCapacity)
self = .large(slice)
}
case .slice(var slice):
guard minimumCapacity > slice.capacity else { return }
if InlineSlice.canStore(count: minimumCapacity) {
self = .empty
slice.reserveCapacity(minimumCapacity)
self = .slice(slice)
} else {
var large = LargeSlice(slice)
large.reserveCapacity(minimumCapacity)
self = .large(large)
}
case .large(var slice):
guard minimumCapacity > slice.capacity else { return }
self = .empty
slice.reserveCapacity(minimumCapacity)
self = .large(slice)
}
}
@inlinable // This is @inlinable as reasonably small.
var count: Int {
get {
switch self {
case .empty: return 0
case .inline(let inline): return inline.count
case .slice(let slice): return slice.count
case .large(let slice): return slice.count
}
}
set(newValue) {
// HACK: The definition of this inline function takes an inout reference to self, giving the optimizer a unique referencing guarantee.
// This allows us to avoid excessive retain-release traffic around modifying enum values, and inlining the function then avoids the additional frame.
@inline(__always)
func apply(_ representation: inout _Representation, _ newValue: Int) -> _Representation? {
switch representation {
case .empty:
if newValue == 0 {
return nil
} else if InlineData.canStore(count: newValue) {
return .inline(InlineData())
} else if InlineSlice.canStore(count: newValue) {
return .slice(InlineSlice(count: newValue))
} else {
return .large(LargeSlice(count: newValue))
}
case .inline(var inline):
if newValue == 0 {
return .empty
} else if InlineData.canStore(count: newValue) {
guard inline.count != newValue else { return nil }
inline.count = newValue
return .inline(inline)
} else if InlineSlice.canStore(count: newValue) {
var slice = InlineSlice(inline)
slice.count = newValue
return .slice(slice)
} else {
var slice = LargeSlice(inline)
slice.count = newValue
return .large(slice)
}
case .slice(var slice):
if newValue == 0 && slice.startIndex == 0 {
return .empty
} else if slice.startIndex == 0 && InlineData.canStore(count: newValue) {
return .inline(InlineData(slice, count: newValue))
} else if InlineSlice.canStore(count: newValue + slice.startIndex) {
guard slice.count != newValue else { return nil }
representation = .empty // TODO: remove this when mgottesman lands optimizations
slice.count = newValue
return .slice(slice)
} else {
var newSlice = LargeSlice(slice)
newSlice.count = newValue
return .large(newSlice)
}
case .large(var slice):
if newValue == 0 && slice.startIndex == 0 {
return .empty
} else if slice.startIndex == 0 && InlineData.canStore(count: newValue) {
return .inline(InlineData(slice, count: newValue))
} else {
guard slice.count != newValue else { return nil}
representation = .empty // TODO: remove this when mgottesman lands optimizations
slice.count = newValue
return .large(slice)
}
}
}
if let rep = apply(&self, newValue) {
self = rep
}
}
}
@inlinable // This is @inlinable as a generic, trivially forwarding function.
func withUnsafeBytes<Result>(_ apply: (UnsafeRawBufferPointer) throws -> Result) rethrows -> Result {
switch self {
case .empty:
let empty = InlineData()
return try empty.withUnsafeBytes(apply)
case .inline(let inline):
return try inline.withUnsafeBytes(apply)
case .slice(let slice):
return try slice.withUnsafeBytes(apply)
case .large(let slice):
return try slice.withUnsafeBytes(apply)
}
}
@inlinable // This is @inlinable as a generic, trivially forwarding function.
mutating func withUnsafeMutableBytes<Result>(_ apply: (UnsafeMutableRawBufferPointer) throws -> Result) rethrows -> Result {
switch self {
case .empty:
var empty = InlineData()
return try empty.withUnsafeMutableBytes(apply)
case .inline(var inline):
defer { self = .inline(inline) }
return try inline.withUnsafeMutableBytes(apply)
case .slice(var slice):
self = .empty
defer { self = .slice(slice) }
return try slice.withUnsafeMutableBytes(apply)
case .large(var slice):
self = .empty
defer { self = .large(slice) }
return try slice.withUnsafeMutableBytes(apply)
}
}
@inlinable // This is @inlinable as a generic, trivially forwarding function.
func withInteriorPointerReference<T>(_ work: (NSData) throws -> T) rethrows -> T {
switch self {
case .empty:
return try work(NSData())
case .inline(let inline):
return try inline.withUnsafeBytes {
return try work(NSData(bytesNoCopy: UnsafeMutableRawPointer(mutating: $0.baseAddress ?? UnsafeRawPointer(bitPattern: 0xBAD0)!), length: $0.count, freeWhenDone: false))
}
case .slice(let slice):
return try slice.storage.withInteriorPointerReference(slice.range, work)
case .large(let slice):
return try slice.storage.withInteriorPointerReference(slice.range, work)
}
}
@usableFromInline // This is not @inlinable as it is a non-trivial, non-generic function.
func enumerateBytes(_ block: (_ buffer: UnsafeBufferPointer<UInt8>, _ byteIndex: Index, _ stop: inout Bool) -> Void) {
switch self {
case .empty:
var stop = false
block(UnsafeBufferPointer<UInt8>(start: nil, count: 0), 0, &stop)
case .inline(let inline):
inline.withUnsafeBytes {
var stop = false
block(UnsafeBufferPointer<UInt8>(start: $0.baseAddress?.assumingMemoryBound(to: UInt8.self), count: $0.count), 0, &stop)
}
case .slice(let slice):
slice.storage.enumerateBytes(in: slice.range, block)
case .large(let slice):
slice.storage.enumerateBytes(in: slice.range, block)
}
}
@inlinable // This is @inlinable as reasonably small.
mutating func append(contentsOf buffer: UnsafeRawBufferPointer) {
switch self {
case .empty:
self = _Representation(buffer)
case .inline(var inline):
if InlineData.canStore(count: inline.count + buffer.count) {
inline.append(contentsOf: buffer)
self = .inline(inline)
} else if InlineSlice.canStore(count: inline.count + buffer.count) {
var newSlice = InlineSlice(inline)
newSlice.append(contentsOf: buffer)
self = .slice(newSlice)
} else {
var newSlice = LargeSlice(inline)
newSlice.append(contentsOf: buffer)
self = .large(newSlice)
}
case .slice(var slice):
if InlineSlice.canStore(count: slice.range.upperBound + buffer.count) {
self = .empty
defer { self = .slice(slice) }
slice.append(contentsOf: buffer)
} else {
self = .empty
var newSlice = LargeSlice(slice)
newSlice.append(contentsOf: buffer)
self = .large(newSlice)
}
case .large(var slice):
self = .empty
defer { self = .large(slice) }
slice.append(contentsOf: buffer)
}
}
@inlinable // This is @inlinable as reasonably small.
mutating func resetBytes(in range: Range<Index>) {
switch self {
case .empty:
if range.upperBound == 0 {
self = .empty
} else if InlineData.canStore(count: range.upperBound) {
precondition(range.lowerBound <= endIndex, "index \(range.lowerBound) is out of bounds of \(startIndex)..<\(endIndex)")
self = .inline(InlineData(count: range.upperBound))
} else if InlineSlice.canStore(count: range.upperBound) {
precondition(range.lowerBound <= endIndex, "index \(range.lowerBound) is out of bounds of \(startIndex)..<\(endIndex)")
self = .slice(InlineSlice(count: range.upperBound))
} else {
precondition(range.lowerBound <= endIndex, "index \(range.lowerBound) is out of bounds of \(startIndex)..<\(endIndex)")
self = .large(LargeSlice(count: range.upperBound))
}
case .inline(var inline):
if inline.count < range.upperBound {
if InlineSlice.canStore(count: range.upperBound) {
var slice = InlineSlice(inline)
slice.resetBytes(in: range)
self = .slice(slice)
} else {
var slice = LargeSlice(inline)
slice.resetBytes(in: range)
self = .large(slice)
}
} else {
inline.resetBytes(in: range)
self = .inline(inline)
}
case .slice(var slice):
if InlineSlice.canStore(count: range.upperBound) {
self = .empty
slice.resetBytes(in: range)
self = .slice(slice)
} else {
self = .empty
var newSlice = LargeSlice(slice)
newSlice.resetBytes(in: range)
self = .large(newSlice)
}
case .large(var slice):
self = .empty
slice.resetBytes(in: range)
self = .large(slice)
}
}
@usableFromInline // This is not @inlinable as it is a non-trivial, non-generic function.
mutating func replaceSubrange(_ subrange: Range<Index>, with bytes: UnsafeRawPointer?, count cnt: Int) {
switch self {
case .empty:
precondition(subrange.lowerBound == 0 && subrange.upperBound == 0, "range \(subrange) out of bounds of 0..<0")
if cnt == 0 {
return
} else if InlineData.canStore(count: cnt) {
self = .inline(InlineData(UnsafeRawBufferPointer(start: bytes, count: cnt)))
} else if InlineSlice.canStore(count: cnt) {
self = .slice(InlineSlice(UnsafeRawBufferPointer(start: bytes, count: cnt)))
} else {
self = .large(LargeSlice(UnsafeRawBufferPointer(start: bytes, count: cnt)))
}
case .inline(var inline):
let resultingCount = inline.count + cnt - (subrange.upperBound - subrange.lowerBound)
if resultingCount == 0 {
self = .empty
} else if InlineData.canStore(count: resultingCount) {
inline.replaceSubrange(subrange, with: bytes, count: cnt)
self = .inline(inline)
} else if InlineSlice.canStore(count: resultingCount) {
var slice = InlineSlice(inline)
slice.replaceSubrange(subrange, with: bytes, count: cnt)
self = .slice(slice)
} else {
var slice = LargeSlice(inline)
slice.replaceSubrange(subrange, with: bytes, count: cnt)
self = .large(slice)
}
case .slice(var slice):
let resultingUpper = slice.endIndex + cnt - (subrange.upperBound - subrange.lowerBound)
if slice.startIndex == 0 && resultingUpper == 0 {
self = .empty
} else if slice.startIndex == 0 && InlineData.canStore(count: resultingUpper) {
self = .empty
slice.replaceSubrange(subrange, with: bytes, count: cnt)
self = .inline(InlineData(slice, count: slice.count))
} else if InlineSlice.canStore(count: resultingUpper) {
self = .empty
slice.replaceSubrange(subrange, with: bytes, count: cnt)
self = .slice(slice)
} else {
self = .empty
var newSlice = LargeSlice(slice)
newSlice.replaceSubrange(subrange, with: bytes, count: cnt)
self = .large(newSlice)
}
case .large(var slice):
let resultingUpper = slice.endIndex + cnt - (subrange.upperBound - subrange.lowerBound)
if slice.startIndex == 0 && resultingUpper == 0 {
self = .empty
} else if slice.startIndex == 0 && InlineData.canStore(count: resultingUpper) {
var inline = InlineData(count: resultingUpper)
inline.withUnsafeMutableBytes { inlineBuffer in
if cnt > 0 {
inlineBuffer.baseAddress?.advanced(by: subrange.lowerBound).copyMemory(from: bytes!, byteCount: cnt)
}
slice.withUnsafeBytes { buffer in
if subrange.lowerBound > 0 {
inlineBuffer.baseAddress?.copyMemory(from: buffer.baseAddress!, byteCount: subrange.lowerBound)
}
if subrange.upperBound < resultingUpper {
inlineBuffer.baseAddress?.advanced(by: subrange.upperBound).copyMemory(from: buffer.baseAddress!.advanced(by: subrange.upperBound), byteCount: resultingUpper - subrange.upperBound)
}
}
}
self = .inline(inline)
} else if InlineSlice.canStore(count: slice.startIndex) && InlineSlice.canStore(count: resultingUpper) {
self = .empty
var newSlice = InlineSlice(slice)
newSlice.replaceSubrange(subrange, with: bytes, count: cnt)
self = .slice(newSlice)
} else {
self = .empty
slice.replaceSubrange(subrange, with: bytes, count: cnt)
self = .large(slice)
}
}
}
@inlinable // This is @inlinable as trivially forwarding.
subscript(index: Index) -> UInt8 {
get {
switch self {
case .empty: preconditionFailure("index \(index) out of range of 0")
case .inline(let inline): return inline[index]
case .slice(let slice): return slice[index]
case .large(let slice): return slice[index]
}
}
set(newValue) {
switch self {
case .empty: preconditionFailure("index \(index) out of range of 0")
case .inline(var inline):
inline[index] = newValue
self = .inline(inline)
case .slice(var slice):
self = .empty
slice[index] = newValue
self = .slice(slice)
case .large(var slice):
self = .empty
slice[index] = newValue
self = .large(slice)
}
}
}
@inlinable // This is @inlinable as reasonably small.
subscript(bounds: Range<Index>) -> Data {
get {
switch self {
case .empty:
precondition(bounds.lowerBound == 0 && (bounds.upperBound - bounds.lowerBound) == 0, "Range \(bounds) out of bounds 0..<0")
return Data()
case .inline(let inline):
precondition(bounds.upperBound <= inline.count, "Range \(bounds) out of bounds 0..<\(inline.count)")
if bounds.lowerBound == 0 {
var newInline = inline
newInline.count = bounds.upperBound
return Data(representation: .inline(newInline))
} else {
return Data(representation: .slice(InlineSlice(inline, range: bounds)))
}
case .slice(let slice):
precondition(slice.startIndex <= bounds.lowerBound, "Range \(bounds) out of bounds \(slice.range)")
precondition(bounds.lowerBound <= slice.endIndex, "Range \(bounds) out of bounds \(slice.range)")
precondition(slice.startIndex <= bounds.upperBound, "Range \(bounds) out of bounds \(slice.range)")
precondition(bounds.upperBound <= slice.endIndex, "Range \(bounds) out of bounds \(slice.range)")
if bounds.lowerBound == 0 && bounds.upperBound == 0 {
return Data()
} else if bounds.lowerBound == 0 && InlineData.canStore(count: bounds.count) {
return Data(representation: .inline(InlineData(slice, count: bounds.count)))
} else {
var newSlice = slice
newSlice.range = bounds
return Data(representation: .slice(newSlice))
}
case .large(let slice):
precondition(slice.startIndex <= bounds.lowerBound, "Range \(bounds) out of bounds \(slice.range)")
precondition(bounds.lowerBound <= slice.endIndex, "Range \(bounds) out of bounds \(slice.range)")
precondition(slice.startIndex <= bounds.upperBound, "Range \(bounds) out of bounds \(slice.range)")
precondition(bounds.upperBound <= slice.endIndex, "Range \(bounds) out of bounds \(slice.range)")
if bounds.lowerBound == 0 && bounds.upperBound == 0 {
return Data()
} else if bounds.lowerBound == 0 && InlineData.canStore(count: bounds.upperBound) {
return Data(representation: .inline(InlineData(slice, count: bounds.upperBound)))
} else if InlineSlice.canStore(count: bounds.lowerBound) && InlineSlice.canStore(count: bounds.upperBound) {
return Data(representation: .slice(InlineSlice(slice, range: bounds)))
} else {
var newSlice = slice
newSlice.slice = RangeReference(bounds)
return Data(representation: .large(newSlice))
}
}
}
}
@inlinable // This is @inlinable as trivially forwarding.
var startIndex: Int {
switch self {
case .empty: return 0
case .inline: return 0
case .slice(let slice): return slice.startIndex
case .large(let slice): return slice.startIndex
}
}
@inlinable // This is @inlinable as trivially forwarding.
var endIndex: Int {
switch self {
case .empty: return 0
case .inline(let inline): return inline.count
case .slice(let slice): return slice.endIndex
case .large(let slice): return slice.endIndex
}
}
@inlinable // This is @inlinable as trivially forwarding.
func bridgedReference() -> NSData {
switch self {
case .empty: return NSData()
case .inline(let inline):
return inline.withUnsafeBytes {
return NSData(bytes: $0.baseAddress, length: $0.count)
}
case .slice(let slice):
return slice.bridgedReference()
case .large(let slice):
return slice.bridgedReference()
}
}
@inlinable // This is @inlinable as trivially forwarding.
func copyBytes(to pointer: UnsafeMutableRawPointer, from range: Range<Int>) {
switch self {
case .empty:
precondition(range.lowerBound == 0 && range.upperBound == 0, "Range \(range) out of bounds 0..<0")
return
case .inline(let inline):
inline.copyBytes(to: pointer, from: range)
case .slice(let slice):
slice.copyBytes(to: pointer, from: range)
case .large(let slice):
slice.copyBytes(to: pointer, from: range)
}
}
@inline(__always) // This should always be inlined into Data.hash(into:).
func hash(into hasher: inout Hasher) {
switch self {
case .empty:
hasher.combine(0)
case .inline(let inline):
inline.hash(into: &hasher)
case .slice(let slice):
slice.hash(into: &hasher)
case .large(let large):
large.hash(into: &hasher)
}
}
}
@usableFromInline internal var _representation: _Representation
// A standard or custom deallocator for `Data`.
///
/// When creating a `Data` with the no-copy initializer, you may specify a `Data.Deallocator` to customize the behavior of how the backing store is deallocated.
public enum Deallocator {
/// Use a virtual memory deallocator.
#if !DEPLOYMENT_RUNTIME_SWIFT
case virtualMemory
#endif
/// Use `munmap`.
case unmap
/// Use `free`.
case free
/// Do nothing upon deallocation.
case none
/// A custom deallocator.
case custom((UnsafeMutableRawPointer, Int) -> Void)
@usableFromInline internal var _deallocator : ((UnsafeMutableRawPointer, Int) -> Void) {
#if DEPLOYMENT_RUNTIME_SWIFT
switch self {
case .unmap:
return { __NSDataInvokeDeallocatorUnmap($0, $1) }
case .free:
return { __NSDataInvokeDeallocatorFree($0, $1) }
case .none:
return { _, _ in }
case .custom(let b):
return b
}
#else
switch self {
case .virtualMemory:
return { NSDataDeallocatorVM($0, $1) }
case .unmap:
return { NSDataDeallocatorUnmap($0, $1) }
case .free:
return { NSDataDeallocatorFree($0, $1) }
case .none:
return { _, _ in }
case .custom(let b):
return b
}
#endif
}
}
// MARK: -
// MARK: Init methods
/// Initialize a `Data` with copied memory content.
///
/// - parameter bytes: A pointer to the memory. It will be copied.
/// - parameter count: The number of bytes to copy.
@inlinable // This is @inlinable as a trivial initializer.
public init(bytes: UnsafeRawPointer, count: Int) {
_representation = _Representation(UnsafeRawBufferPointer(start: bytes, count: count))
}
/// Initialize a `Data` with copied memory content.
///
/// - parameter buffer: A buffer pointer to copy. The size is calculated from `SourceType` and `buffer.count`.
@inlinable // This is @inlinable as a trivial, generic initializer.
public init<SourceType>(buffer: UnsafeBufferPointer<SourceType>) {
_representation = _Representation(UnsafeRawBufferPointer(buffer))
}
/// Initialize a `Data` with copied memory content.
///
/// - parameter buffer: A buffer pointer to copy. The size is calculated from `SourceType` and `buffer.count`.
@inlinable // This is @inlinable as a trivial, generic initializer.
public init<SourceType>(buffer: UnsafeMutableBufferPointer<SourceType>) {
_representation = _Representation(UnsafeRawBufferPointer(buffer))
}
/// Initialize a `Data` with a repeating byte pattern
///
/// - parameter repeatedValue: A byte to initialize the pattern
/// - parameter count: The number of bytes the data initially contains initialized to the repeatedValue
@inlinable // This is @inlinable as a convenience initializer.
public init(repeating repeatedValue: UInt8, count: Int) {
self.init(count: count)
if count > 0 {
withUnsafeMutableBytes { (buffer: UnsafeMutableRawBufferPointer) -> Void in
memset(buffer.baseAddress!, Int32(repeatedValue), buffer.count)
}
}
}
/// Initialize a `Data` with the specified size.
///
/// This initializer doesn't necessarily allocate the requested memory right away. `Data` allocates additional memory as needed, so `capacity` simply establishes the initial capacity. When it does allocate the initial memory, though, it allocates the specified amount.
///
/// This method sets the `count` of the data to 0.
///
/// If the capacity specified in `capacity` is greater than four memory pages in size, this may round the amount of requested memory up to the nearest full page.
///
/// - parameter capacity: The size of the data.
@inlinable // This is @inlinable as a trivial initializer.
public init(capacity: Int) {
_representation = _Representation(capacity: capacity)
}
/// Initialize a `Data` with the specified count of zeroed bytes.
///
/// - parameter count: The number of bytes the data initially contains.
@inlinable // This is @inlinable as a trivial initializer.
public init(count: Int) {
_representation = _Representation(count: count)
}
/// Initialize an empty `Data`.
@inlinable // This is @inlinable as a trivial initializer.
public init() {
_representation = .empty
}
/// Initialize a `Data` without copying the bytes.
///
/// If the result is mutated and is not a unique reference, then the `Data` will still follow copy-on-write semantics. In this case, the copy will use its own deallocator. Therefore, it is usually best to only use this initializer when you either enforce immutability with `let` or ensure that no other references to the underlying data are formed.
/// - parameter bytes: A pointer to the bytes.
/// - parameter count: The size of the bytes.
/// - parameter deallocator: Specifies the mechanism to free the indicated buffer, or `.none`.
@inlinable // This is @inlinable as a trivial initializer.
public init(bytesNoCopy bytes: UnsafeMutableRawPointer, count: Int, deallocator: Deallocator) {
let whichDeallocator = deallocator._deallocator
if count == 0 {
deallocator._deallocator(bytes, count)
_representation = .empty
} else {
_representation = _Representation(__DataStorage(bytes: bytes, length: count, copy: false, deallocator: whichDeallocator, offset: 0), count: count)
}
}
/// Initialize a `Data` with the contents of a `URL`.
///
/// - parameter url: The `URL` to read.
/// - parameter options: Options for the read operation. Default value is `[]`.
/// - throws: An error in the Cocoa domain, if `url` cannot be read.
@inlinable // This is @inlinable as a convenience initializer.
public init(contentsOf url: __shared URL, options: Data.ReadingOptions = []) throws {
let d = try NSData(contentsOf: url, options: ReadingOptions(rawValue: options.rawValue))
self.init(bytes: d.bytes, count: d.length)
}
/// Initialize a `Data` from a Base-64 encoded String using the given options.
///
/// Returns nil when the input is not recognized as valid Base-64.
/// - parameter base64String: The string to parse.
/// - parameter options: Encoding options. Default value is `[]`.
@inlinable // This is @inlinable as a convenience initializer.
public init?(base64Encoded base64String: __shared String, options: Data.Base64DecodingOptions = []) {
if let d = NSData(base64Encoded: base64String, options: Base64DecodingOptions(rawValue: options.rawValue)) {
self.init(bytes: d.bytes, count: d.length)
} else {
return nil
}
}
/// Initialize a `Data` from a Base-64, UTF-8 encoded `Data`.
///
/// Returns nil when the input is not recognized as valid Base-64.
///
/// - parameter base64Data: Base-64, UTF-8 encoded input data.
/// - parameter options: Decoding options. Default value is `[]`.
@inlinable // This is @inlinable as a convenience initializer.
public init?(base64Encoded base64Data: __shared Data, options: Data.Base64DecodingOptions = []) {
if let d = NSData(base64Encoded: base64Data, options: Base64DecodingOptions(rawValue: options.rawValue)) {
self.init(bytes: d.bytes, count: d.length)
} else {
return nil
}
}
/// Initialize a `Data` by adopting a reference type.
///
/// You can use this initializer to create a `struct Data` that wraps a `class NSData`. `struct Data` will use the `class NSData` for all operations. Other initializers (including casting using `as Data`) may choose to hold a reference or not, based on a what is the most efficient representation.
///
/// If the resulting value is mutated, then `Data` will invoke the `mutableCopy()` function on the reference to copy the contents. You may customize the behavior of that function if you wish to return a specialized mutable subclass.
///
/// - parameter reference: The instance of `NSData` that you wish to wrap. This instance will be copied by `struct Data`.
public init(referencing reference: __shared NSData) {
// This is not marked as inline because _providesConcreteBacking would need to be marked as usable from inline however that is a dynamic lookup in objc contexts.
let length = reference.length
if length == 0 {
_representation = .empty
} else {
#if DEPLOYMENT_RUNTIME_SWIFT
let providesConcreteBacking = reference._providesConcreteBacking()
#else
let providesConcreteBacking = (reference as AnyObject)._providesConcreteBacking?() ?? false
#endif
if providesConcreteBacking {
_representation = _Representation(__DataStorage(immutableReference: reference.copy() as! NSData, offset: 0), count: length)
} else {
_representation = _Representation(__DataStorage(customReference: reference.copy() as! NSData, offset: 0), count: length)
}
}
}
// slightly faster paths for common sequences
@inlinable // This is @inlinable as an important generic funnel point, despite being a non-trivial initializer.
public init<S: Sequence>(_ elements: S) where S.Element == UInt8 {
// If the sequence is already contiguous, access the underlying raw memory directly.
if let contiguous = elements as? ContiguousBytes {
_representation = contiguous.withUnsafeBytes { return _Representation($0) }
return
}
// The sequence might still be able to provide direct access to typed memory.
// NOTE: It's safe to do this because we're already guarding on S's element as `UInt8`. This would not be safe on arbitrary sequences.
let representation = elements.withContiguousStorageIfAvailable {
return _Representation(UnsafeRawBufferPointer($0))
}
if let representation = representation {
_representation = representation
} else {
// Dummy assignment so we can capture below.
_representation = _Representation(capacity: 0)
// Copy as much as we can in one shot from the sequence.
let underestimatedCount = Swift.max(elements.underestimatedCount, 1)
__withStackOrHeapBuffer(underestimatedCount) { (buffer) in
// In order to copy from the sequence, we have to bind the buffer to UInt8.
// This is safe since we'll copy out of this buffer as raw memory later.
let capacity = buffer.pointee.capacity
let base = buffer.pointee.memory.bindMemory(to: UInt8.self, capacity: capacity)
var (iter, endIndex) = elements._copyContents(initializing: UnsafeMutableBufferPointer(start: base, count: capacity))
// Copy the contents of buffer...
_representation = _Representation(UnsafeRawBufferPointer(start: base, count: endIndex))
// ... and append the rest byte-wise, buffering through an InlineData.
var buffer = InlineData()
while let element = iter.next() {
buffer.append(byte: element)
if buffer.count == buffer.capacity {
buffer.withUnsafeBytes { _representation.append(contentsOf: $0) }
buffer.count = 0
}
}
// If we've still got bytes left in the buffer (i.e. the loop ended before we filled up the buffer and cleared it out), append them.
if buffer.count > 0 {
buffer.withUnsafeBytes { _representation.append(contentsOf: $0) }
buffer.count = 0
}
}
}
}
@available(swift, introduced: 4.2)
@available(swift, deprecated: 5, renamed: "init(_:)")
public init<S: Sequence>(bytes elements: S) where S.Iterator.Element == UInt8 {
self.init(elements)
}
@available(swift, obsoleted: 4.2)
public init(bytes: Array<UInt8>) {
self.init(bytes)
}
@available(swift, obsoleted: 4.2)
public init(bytes: ArraySlice<UInt8>) {
self.init(bytes)
}
@inlinable // This is @inlinable as a trivial initializer.
internal init(representation: _Representation) {
_representation = representation
}
// -----------------------------------
// MARK: - Properties and Functions
@inlinable // This is @inlinable as trivially forwarding.
public mutating func reserveCapacity(_ minimumCapacity: Int) {
_representation.reserveCapacity(minimumCapacity)
}
/// The number of bytes in the data.
@inlinable // This is @inlinable as trivially forwarding.
public var count: Int {
get {
return _representation.count
}
set(newValue) {
precondition(newValue >= 0, "count must not be negative")
_representation.count = newValue
}
}
@inlinable // This is @inlinable as trivially computable.
public var regions: CollectionOfOne<Data> {
return CollectionOfOne(self)
}
/// Access the bytes in the data.
///
/// - warning: The byte pointer argument should not be stored and used outside of the lifetime of the call to the closure.
@available(swift, deprecated: 5, message: "use `withUnsafeBytes<R>(_: (UnsafeRawBufferPointer) throws -> R) rethrows -> R` instead")
public func withUnsafeBytes<ResultType, ContentType>(_ body: (UnsafePointer<ContentType>) throws -> ResultType) rethrows -> ResultType {
return try _representation.withUnsafeBytes {
return try body($0.baseAddress?.assumingMemoryBound(to: ContentType.self) ?? UnsafePointer<ContentType>(bitPattern: 0xBAD0)!)
}
}
@inlinable // This is @inlinable as a generic, trivially forwarding function.
public func withUnsafeBytes<ResultType>(_ body: (UnsafeRawBufferPointer) throws -> ResultType) rethrows -> ResultType {
return try _representation.withUnsafeBytes(body)
}
/// Mutate the bytes in the data.
///
/// This function assumes that you are mutating the contents.
/// - warning: The byte pointer argument should not be stored and used outside of the lifetime of the call to the closure.
@available(swift, deprecated: 5, message: "use `withUnsafeMutableBytes<R>(_: (UnsafeMutableRawBufferPointer) throws -> R) rethrows -> R` instead")
public mutating func withUnsafeMutableBytes<ResultType, ContentType>(_ body: (UnsafeMutablePointer<ContentType>) throws -> ResultType) rethrows -> ResultType {
return try _representation.withUnsafeMutableBytes {
return try body($0.baseAddress?.assumingMemoryBound(to: ContentType.self) ?? UnsafeMutablePointer<ContentType>(bitPattern: 0xBAD0)!)
}
}
@inlinable // This is @inlinable as a generic, trivially forwarding function.
public mutating func withUnsafeMutableBytes<ResultType>(_ body: (UnsafeMutableRawBufferPointer) throws -> ResultType) rethrows -> ResultType {
return try _representation.withUnsafeMutableBytes(body)
}
// MARK: -
// MARK: Copy Bytes
/// Copy the contents of the data to a pointer.
///
/// - parameter pointer: A pointer to the buffer you wish to copy the bytes into.
/// - parameter count: The number of bytes to copy.
/// - warning: This method does not verify that the contents at pointer have enough space to hold `count` bytes.
@inlinable // This is @inlinable as trivially forwarding.
public func copyBytes(to pointer: UnsafeMutablePointer<UInt8>, count: Int) {
precondition(count >= 0, "count of bytes to copy must not be negative")
if count == 0 { return }
_copyBytesHelper(to: UnsafeMutableRawPointer(pointer), from: startIndex..<(startIndex + count))
}
@inlinable // This is @inlinable as trivially forwarding.
internal func _copyBytesHelper(to pointer: UnsafeMutableRawPointer, from range: Range<Int>) {
if range.isEmpty { return }
_representation.copyBytes(to: pointer, from: range)
}
/// Copy a subset of the contents of the data to a pointer.
///
/// - parameter pointer: A pointer to the buffer you wish to copy the bytes into.
/// - parameter range: The range in the `Data` to copy.
/// - warning: This method does not verify that the contents at pointer have enough space to hold the required number of bytes.
@inlinable // This is @inlinable as trivially forwarding.
public func copyBytes(to pointer: UnsafeMutablePointer<UInt8>, from range: Range<Index>) {
_copyBytesHelper(to: pointer, from: range)
}
// Copy the contents of the data into a buffer.
///
/// This function copies the bytes in `range` from the data into the buffer. If the count of the `range` is greater than `MemoryLayout<DestinationType>.stride * buffer.count` then the first N bytes will be copied into the buffer.
/// - precondition: The range must be within the bounds of the data. Otherwise `fatalError` is called.
/// - parameter buffer: A buffer to copy the data into.
/// - parameter range: A range in the data to copy into the buffer. If the range is empty, this function will return 0 without copying anything. If the range is nil, as much data as will fit into `buffer` is copied.
/// - returns: Number of bytes copied into the destination buffer.
@inlinable // This is @inlinable as generic and reasonably small.
public func copyBytes<DestinationType>(to buffer: UnsafeMutableBufferPointer<DestinationType>, from range: Range<Index>? = nil) -> Int {
let cnt = count
guard cnt > 0 else { return 0 }
let copyRange : Range<Index>
if let r = range {
guard !r.isEmpty else { return 0 }
copyRange = r.lowerBound..<(r.lowerBound + Swift.min(buffer.count * MemoryLayout<DestinationType>.stride, r.upperBound - r.lowerBound))
} else {
copyRange = 0..<Swift.min(buffer.count * MemoryLayout<DestinationType>.stride, cnt)
}
guard !copyRange.isEmpty else { return 0 }
_copyBytesHelper(to: buffer.baseAddress!, from: copyRange)
return copyRange.upperBound - copyRange.lowerBound
}
// MARK: -
#if !DEPLOYMENT_RUNTIME_SWIFT
private func _shouldUseNonAtomicWriteReimplementation(options: Data.WritingOptions = []) -> Bool {
// Avoid a crash that happens on OS X 10.11.x and iOS 9.x or before when writing a bridged Data non-atomically with Foundation's standard write() implementation.
if !options.contains(.atomic) {
#if os(macOS)
return NSFoundationVersionNumber <= Double(NSFoundationVersionNumber10_11_Max)
#else
return NSFoundationVersionNumber <= Double(NSFoundationVersionNumber_iOS_9_x_Max)
#endif
} else {
return false
}
}
#endif
/// Write the contents of the `Data` to a location.
///
/// - parameter url: The location to write the data into.
/// - parameter options: Options for writing the data. Default value is `[]`.
/// - throws: An error in the Cocoa domain, if there is an error writing to the `URL`.
public func write(to url: URL, options: Data.WritingOptions = []) throws {
// this should not be marked as inline since in objc contexts we correct atomicity via _shouldUseNonAtomicWriteReimplementation
try _representation.withInteriorPointerReference {
#if DEPLOYMENT_RUNTIME_SWIFT
try $0.write(to: url, options: WritingOptions(rawValue: options.rawValue))
#else
if _shouldUseNonAtomicWriteReimplementation(options: options) {
var error: NSError? = nil
guard __NSDataWriteToURL($0, url, options, &error) else { throw error! }
} else {
try $0.write(to: url, options: options)
}
#endif
}
}
// MARK: -
/// Find the given `Data` in the content of this `Data`.
///
/// - parameter dataToFind: The data to be searched for.
/// - parameter options: Options for the search. Default value is `[]`.
/// - parameter range: The range of this data in which to perform the search. Default value is `nil`, which means the entire content of this data.
/// - returns: A `Range` specifying the location of the found data, or nil if a match could not be found.
/// - precondition: `range` must be in the bounds of the Data.
public func range(of dataToFind: Data, options: Data.SearchOptions = [], in range: Range<Index>? = nil) -> Range<Index>? {
let nsRange : NSRange
if let r = range {
nsRange = NSRange(location: r.lowerBound - startIndex, length: r.upperBound - r.lowerBound)
} else {
nsRange = NSRange(location: 0, length: count)
}
let result = _representation.withInteriorPointerReference {
$0.range(of: dataToFind, options: options, in: nsRange)
}
if result.location == NSNotFound {
return nil
}
return (result.location + startIndex)..<((result.location + startIndex) + result.length)
}
/// Enumerate the contents of the data.
///
/// In some cases, (for example, a `Data` backed by a `dispatch_data_t`, the bytes may be stored discontiguously. In those cases, this function invokes the closure for each contiguous region of bytes.
/// - parameter block: The closure to invoke for each region of data. You may stop the enumeration by setting the `stop` parameter to `true`.
@available(swift, deprecated: 5, message: "use `regions` or `for-in` instead")
public func enumerateBytes(_ block: (_ buffer: UnsafeBufferPointer<UInt8>, _ byteIndex: Index, _ stop: inout Bool) -> Void) {
_representation.enumerateBytes(block)
}
@inlinable // This is @inlinable as a generic, trivially forwarding function.
internal mutating func _append<SourceType>(_ buffer : UnsafeBufferPointer<SourceType>) {
if buffer.isEmpty { return }
_representation.append(contentsOf: UnsafeRawBufferPointer(buffer))
}
@inlinable // This is @inlinable as a generic, trivially forwarding function.
public mutating func append(_ bytes: UnsafePointer<UInt8>, count: Int) {
if count == 0 { return }
_append(UnsafeBufferPointer(start: bytes, count: count))
}
public mutating func append(_ other: Data) {
guard other.count > 0 else { return }
other.withUnsafeBytes { (buffer: UnsafeRawBufferPointer) in
_representation.append(contentsOf: buffer)
}
}
/// Append a buffer of bytes to the data.
///
/// - parameter buffer: The buffer of bytes to append. The size is calculated from `SourceType` and `buffer.count`.
@inlinable // This is @inlinable as a generic, trivially forwarding function.
public mutating func append<SourceType>(_ buffer : UnsafeBufferPointer<SourceType>) {
_append(buffer)
}
@inlinable // This is @inlinable as trivially forwarding.
public mutating func append(contentsOf bytes: [UInt8]) {
bytes.withUnsafeBufferPointer { (buffer: UnsafeBufferPointer<UInt8>) -> Void in
_append(buffer)
}
}
@inlinable // This is @inlinable as an important generic funnel point, despite being non-trivial.
public mutating func append<S: Sequence>(contentsOf elements: S) where S.Element == Element {
// If the sequence is already contiguous, access the underlying raw memory directly.
if let contiguous = elements as? ContiguousBytes {
contiguous.withUnsafeBytes {
_representation.append(contentsOf: $0)
}
return
}
// The sequence might still be able to provide direct access to typed memory.
// NOTE: It's safe to do this because we're already guarding on S's element as `UInt8`. This would not be safe on arbitrary sequences.
var appended = false
elements.withContiguousStorageIfAvailable {
_representation.append(contentsOf: UnsafeRawBufferPointer($0))
appended = true
}
guard !appended else { return }
// The sequence is really not contiguous.
// Copy as much as we can in one shot.
let underestimatedCount = Swift.max(elements.underestimatedCount, 1)
__withStackOrHeapBuffer(underestimatedCount) { (buffer) in
// In order to copy from the sequence, we have to bind the temporary buffer to `UInt8`.
// This is safe since we're the only owners of the buffer and we copy out as raw memory below anyway.
let capacity = buffer.pointee.capacity
let base = buffer.pointee.memory.bindMemory(to: UInt8.self, capacity: capacity)
var (iter, endIndex) = elements._copyContents(initializing: UnsafeMutableBufferPointer(start: base, count: capacity))
// Copy the contents of the buffer...
_representation.append(contentsOf: UnsafeRawBufferPointer(start: base, count: endIndex))
// ... and append the rest byte-wise, buffering through an InlineData.
var buffer = InlineData()
while let element = iter.next() {
buffer.append(byte: element)
if buffer.count == buffer.capacity {
buffer.withUnsafeBytes { _representation.append(contentsOf: $0) }
buffer.count = 0
}
}
// If we've still got bytes left in the buffer (i.e. the loop ended before we filled up the buffer and cleared it out), append them.
if buffer.count > 0 {
buffer.withUnsafeBytes { _representation.append(contentsOf: $0) }
buffer.count = 0
}
}
}
// MARK: -
/// Set a region of the data to `0`.
///
/// If `range` exceeds the bounds of the data, then the data is resized to fit.
/// - parameter range: The range in the data to set to `0`.
@inlinable // This is @inlinable as trivially forwarding.
public mutating func resetBytes(in range: Range<Index>) {
// it is worth noting that the range here may be out of bounds of the Data itself (which triggers a growth)
precondition(range.lowerBound >= 0, "Ranges must not be negative bounds")
precondition(range.upperBound >= 0, "Ranges must not be negative bounds")
_representation.resetBytes(in: range)
}
/// Replace a region of bytes in the data with new data.
///
/// This will resize the data if required, to fit the entire contents of `data`.
///
/// - precondition: The bounds of `subrange` must be valid indices of the collection.
/// - parameter subrange: The range in the data to replace. If `subrange.lowerBound == data.count && subrange.count == 0` then this operation is an append.
/// - parameter data: The replacement data.
@inlinable // This is @inlinable as trivially forwarding.
public mutating func replaceSubrange(_ subrange: Range<Index>, with data: Data) {
data.withUnsafeBytes { (buffer: UnsafeRawBufferPointer) in
_representation.replaceSubrange(subrange, with: buffer.baseAddress, count: buffer.count)
}
}
/// Replace a region of bytes in the data with new bytes from a buffer.
///
/// This will resize the data if required, to fit the entire contents of `buffer`.
///
/// - precondition: The bounds of `subrange` must be valid indices of the collection.
/// - parameter subrange: The range in the data to replace.
/// - parameter buffer: The replacement bytes.
@inlinable // This is @inlinable as a generic, trivially forwarding function.
public mutating func replaceSubrange<SourceType>(_ subrange: Range<Index>, with buffer: UnsafeBufferPointer<SourceType>) {
guard !buffer.isEmpty else { return }
replaceSubrange(subrange, with: buffer.baseAddress!, count: buffer.count * MemoryLayout<SourceType>.stride)
}
/// Replace a region of bytes in the data with new bytes from a collection.
///
/// This will resize the data if required, to fit the entire contents of `newElements`.
///
/// - precondition: The bounds of `subrange` must be valid indices of the collection.
/// - parameter subrange: The range in the data to replace.
/// - parameter newElements: The replacement bytes.
@inlinable // This is @inlinable as generic and reasonably small.
public mutating func replaceSubrange<ByteCollection : Collection>(_ subrange: Range<Index>, with newElements: ByteCollection) where ByteCollection.Iterator.Element == Data.Iterator.Element {
let totalCount = Int(newElements.count)
__withStackOrHeapBuffer(totalCount) { conditionalBuffer in
let buffer = UnsafeMutableBufferPointer(start: conditionalBuffer.pointee.memory.assumingMemoryBound(to: UInt8.self), count: totalCount)
var (iterator, index) = newElements._copyContents(initializing: buffer)
while let byte = iterator.next() {
buffer[index] = byte
index = buffer.index(after: index)
}
replaceSubrange(subrange, with: conditionalBuffer.pointee.memory, count: totalCount)
}
}
@inlinable // This is @inlinable as trivially forwarding.
public mutating func replaceSubrange(_ subrange: Range<Index>, with bytes: UnsafeRawPointer, count cnt: Int) {
_representation.replaceSubrange(subrange, with: bytes, count: cnt)
}
/// Return a new copy of the data in a specified range.
///
/// - parameter range: The range to copy.
public func subdata(in range: Range<Index>) -> Data {
if isEmpty || range.upperBound - range.lowerBound == 0 {
return Data()
}
let slice = self[range]
return slice.withUnsafeBytes { (buffer: UnsafeRawBufferPointer) -> Data in
return Data(bytes: buffer.baseAddress!, count: buffer.count)
}
}
// MARK: -
//
/// Returns a Base-64 encoded string.
///
/// - parameter options: The options to use for the encoding. Default value is `[]`.
/// - returns: The Base-64 encoded string.
@inlinable // This is @inlinable as trivially forwarding.
public func base64EncodedString(options: Data.Base64EncodingOptions = []) -> String {
return _representation.withInteriorPointerReference {
return $0.base64EncodedString(options: options)
}
}
/// Returns a Base-64 encoded `Data`.
///
/// - parameter options: The options to use for the encoding. Default value is `[]`.
/// - returns: The Base-64 encoded data.
@inlinable // This is @inlinable as trivially forwarding.
public func base64EncodedData(options: Data.Base64EncodingOptions = []) -> Data {
return _representation.withInteriorPointerReference {
return $0.base64EncodedData(options: options)
}
}
// MARK: -
//
/// The hash value for the data.
@inline(never) // This is not inlinable as emission into clients could cause cross-module inconsistencies if they are not all recompiled together.
public func hash(into hasher: inout Hasher) {
_representation.hash(into: &hasher)
}
public func advanced(by amount: Int) -> Data {
let length = count - amount
precondition(length > 0)
return withUnsafeBytes { (ptr: UnsafeRawBufferPointer) -> Data in
return Data(bytes: ptr.baseAddress!.advanced(by: amount), count: length)
}
}
// MARK: -
// MARK: -
// MARK: Index and Subscript
/// Sets or returns the byte at the specified index.
@inlinable // This is @inlinable as trivially forwarding.
public subscript(index: Index) -> UInt8 {
get {
return _representation[index]
}
set(newValue) {
_representation[index] = newValue
}
}
@inlinable // This is @inlinable as trivially forwarding.
public subscript(bounds: Range<Index>) -> Data {
get {
return _representation[bounds]
}
set {
replaceSubrange(bounds, with: newValue)
}
}
@inlinable // This is @inlinable as a generic, trivially forwarding function.
public subscript<R: RangeExpression>(_ rangeExpression: R) -> Data
where R.Bound: FixedWidthInteger {
get {
let lower = R.Bound(startIndex)
let upper = R.Bound(endIndex)
let range = rangeExpression.relative(to: lower..<upper)
let start = Int(range.lowerBound)
let end = Int(range.upperBound)
let r: Range<Int> = start..<end
return _representation[r]
}
set {
let lower = R.Bound(startIndex)
let upper = R.Bound(endIndex)
let range = rangeExpression.relative(to: lower..<upper)
let start = Int(range.lowerBound)
let end = Int(range.upperBound)
let r: Range<Int> = start..<end
replaceSubrange(r, with: newValue)
}
}
/// The start `Index` in the data.
@inlinable // This is @inlinable as trivially forwarding.
public var startIndex: Index {
get {
return _representation.startIndex
}
}
/// The end `Index` into the data.
///
/// This is the "one-past-the-end" position, and will always be equal to the `count`.
@inlinable // This is @inlinable as trivially forwarding.
public var endIndex: Index {
get {
return _representation.endIndex
}
}
@inlinable // This is @inlinable as trivially computable.
public func index(before i: Index) -> Index {
return i - 1
}
@inlinable // This is @inlinable as trivially computable.
public func index(after i: Index) -> Index {
return i + 1
}
@inlinable // This is @inlinable as trivially computable.
public var indices: Range<Int> {
get {
return startIndex..<endIndex
}
}
@inlinable // This is @inlinable as a fast-path for emitting into generic Sequence usages.
public func _copyContents(initializing buffer: UnsafeMutableBufferPointer<UInt8>) -> (Iterator, UnsafeMutableBufferPointer<UInt8>.Index) {
guard !isEmpty else { return (makeIterator(), buffer.startIndex) }
let cnt = Swift.min(count, buffer.count)
if cnt > 0 {
withUnsafeBytes { (bytes: UnsafeRawBufferPointer) in
_ = memcpy(UnsafeMutableRawPointer(buffer.baseAddress!), bytes.baseAddress!, cnt)
}
}
return (Iterator(self, at: startIndex + cnt), buffer.index(buffer.startIndex, offsetBy: cnt))
}
/// An iterator over the contents of the data.
///
/// The iterator will increment byte-by-byte.
@inlinable // This is @inlinable as trivially computable.
public func makeIterator() -> Data.Iterator {
return Iterator(self, at: startIndex)
}
public struct Iterator : IteratorProtocol {
@usableFromInline
internal typealias Buffer = (
UInt8, UInt8, UInt8, UInt8, UInt8, UInt8, UInt8, UInt8,
UInt8, UInt8, UInt8, UInt8, UInt8, UInt8, UInt8, UInt8,
UInt8, UInt8, UInt8, UInt8, UInt8, UInt8, UInt8, UInt8,
UInt8, UInt8, UInt8, UInt8, UInt8, UInt8, UInt8, UInt8)
@usableFromInline internal let _data: Data
@usableFromInline internal var _buffer: Buffer
@usableFromInline internal var _idx: Data.Index
@usableFromInline internal let _endIdx: Data.Index
@usableFromInline // This is @usableFromInline as a non-trivial initializer.
internal init(_ data: Data, at loc: Data.Index) {
// The let vars prevent this from being marked as @inlinable
_data = data
_buffer = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
_idx = loc
_endIdx = data.endIndex
let bufferSize = MemoryLayout<Buffer>.size
Swift.withUnsafeMutableBytes(of: &_buffer) {
let ptr = $0.bindMemory(to: UInt8.self)
let bufferIdx = (loc - data.startIndex) % bufferSize
data.copyBytes(to: ptr, from: (loc - bufferIdx)..<(data.endIndex - (loc - bufferIdx) > bufferSize ? (loc - bufferIdx) + bufferSize : data.endIndex))
}
}
public mutating func next() -> UInt8? {
let idx = _idx
let bufferSize = MemoryLayout<Buffer>.size
guard idx < _endIdx else { return nil }
_idx += 1
let bufferIdx = (idx - _data.startIndex) % bufferSize
if bufferIdx == 0 {
var buffer = _buffer
Swift.withUnsafeMutableBytes(of: &buffer) {
let ptr = $0.bindMemory(to: UInt8.self)
// populate the buffer
_data.copyBytes(to: ptr, from: idx..<(_endIdx - idx > bufferSize ? idx + bufferSize : _endIdx))
}
_buffer = buffer
}
return Swift.withUnsafeMutableBytes(of: &_buffer) {
let ptr = $0.bindMemory(to: UInt8.self)
return ptr[bufferIdx]
}
}
}
// MARK: -
//
@available(*, unavailable, renamed: "count")
public var length: Int {
get { fatalError() }
set { fatalError() }
}
@available(*, unavailable, message: "use withUnsafeBytes instead")
public var bytes: UnsafeRawPointer { fatalError() }
@available(*, unavailable, message: "use withUnsafeMutableBytes instead")
public var mutableBytes: UnsafeMutableRawPointer { fatalError() }
/// Returns `true` if the two `Data` arguments are equal.
@inlinable // This is @inlinable as emission into clients is safe -- the concept of equality on Data will not change.
public static func ==(d1 : Data, d2 : Data) -> Bool {
let length1 = d1.count
if length1 != d2.count {
return false
}
if length1 > 0 {
return d1.withUnsafeBytes { (b1: UnsafeRawBufferPointer) in
return d2.withUnsafeBytes { (b2: UnsafeRawBufferPointer) in
return memcmp(b1.baseAddress!, b2.baseAddress!, b2.count) == 0
}
}
}
return true
}
}
extension Data : CustomStringConvertible, CustomDebugStringConvertible, CustomReflectable {
/// A human-readable description for the data.
public var description: String {
return "\(self.count) bytes"
}
/// A human-readable debug description for the data.
public var debugDescription: String {
return self.description
}
public var customMirror: Mirror {
let nBytes = self.count
var children: [(label: String?, value: Any)] = []
children.append((label: "count", value: nBytes))
self.withUnsafeBytes { (bytes : UnsafeRawBufferPointer) in
children.append((label: "pointer", value: bytes.baseAddress!))
}
// Minimal size data is output as an array
if nBytes < 64 {
children.append((label: "bytes", value: Array(self[startIndex..<Swift.min(nBytes + startIndex, endIndex)])))
}
let m = Mirror(self, children:children, displayStyle: Mirror.DisplayStyle.struct)
return m
}
}
extension Data {
@available(*, unavailable, renamed: "copyBytes(to:count:)")
public func getBytes<UnsafeMutablePointerVoid: _Pointer>(_ buffer: UnsafeMutablePointerVoid, length: Int) { }
@available(*, unavailable, renamed: "copyBytes(to:from:)")
public func getBytes<UnsafeMutablePointerVoid: _Pointer>(_ buffer: UnsafeMutablePointerVoid, range: NSRange) { }
}
/// Provides bridging functionality for struct Data to class NSData and vice-versa.
extension Data : _ObjectiveCBridgeable {
@_semantics("convertToObjectiveC")
public func _bridgeToObjectiveC() -> NSData {
return _representation.bridgedReference()
}
public static func _forceBridgeFromObjectiveC(_ input: NSData, result: inout Data?) {
// We must copy the input because it might be mutable; just like storing a value type in ObjC
result = Data(referencing: input)
}
public static func _conditionallyBridgeFromObjectiveC(_ input: NSData, result: inout Data?) -> Bool {
// We must copy the input because it might be mutable; just like storing a value type in ObjC
result = Data(referencing: input)
return true
}
// @_effects(readonly)
public static func _unconditionallyBridgeFromObjectiveC(_ source: NSData?) -> Data {
guard let src = source else { return Data() }
return Data(referencing: src)
}
}
extension NSData : _HasCustomAnyHashableRepresentation {
// Must be @nonobjc to avoid infinite recursion during bridging.
@nonobjc
public func _toCustomAnyHashable() -> AnyHashable? {
return AnyHashable(Data._unconditionallyBridgeFromObjectiveC(self))
}
}
extension Data : Codable {
public init(from decoder: Decoder) throws {
var container = try decoder.unkeyedContainer()
// It's more efficient to pre-allocate the buffer if we can.
if let count = container.count {
self.init(count: count)
// Loop only until count, not while !container.isAtEnd, in case count is underestimated (this is misbehavior) and we haven't allocated enough space.
// We don't want to write past the end of what we allocated.
for i in 0 ..< count {
let byte = try container.decode(UInt8.self)
self[i] = byte
}
} else {
self.init()
}
while !container.isAtEnd {
var byte = try container.decode(UInt8.self)
self.append(&byte, count: 1)
}
}
public func encode(to encoder: Encoder) throws {
var container = encoder.unkeyedContainer()
try withUnsafeBytes { (buffer: UnsafeRawBufferPointer) in
try container.encode(contentsOf: buffer)
}
}
}