blob: 576649cea3597a9e8249116defdb513b63885c76 [file] [log] [blame]
//===-- sanitizer_common_test.cc ------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer/AddressSanitizer runtime.
//
//===----------------------------------------------------------------------===//
#include <algorithm>
#include "sanitizer_common/sanitizer_allocator_internal.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_file.h"
#include "sanitizer_common/sanitizer_flags.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "sanitizer_common/sanitizer_platform.h"
#include "sanitizer_pthread_wrappers.h"
#include "gtest/gtest.h"
namespace __sanitizer {
static bool IsSorted(const uptr *array, uptr n) {
for (uptr i = 1; i < n; i++) {
if (array[i] < array[i - 1]) return false;
}
return true;
}
TEST(SanitizerCommon, SortTest) {
uptr array[100];
uptr n = 100;
// Already sorted.
for (uptr i = 0; i < n; i++) {
array[i] = i;
}
SortArray(array, n);
EXPECT_TRUE(IsSorted(array, n));
// Reverse order.
for (uptr i = 0; i < n; i++) {
array[i] = n - 1 - i;
}
SortArray(array, n);
EXPECT_TRUE(IsSorted(array, n));
// Mixed order.
for (uptr i = 0; i < n; i++) {
array[i] = (i % 2 == 0) ? i : n - 1 - i;
}
SortArray(array, n);
EXPECT_TRUE(IsSorted(array, n));
// All equal.
for (uptr i = 0; i < n; i++) {
array[i] = 42;
}
SortArray(array, n);
EXPECT_TRUE(IsSorted(array, n));
// All but one sorted.
for (uptr i = 0; i < n - 1; i++) {
array[i] = i;
}
array[n - 1] = 42;
SortArray(array, n);
EXPECT_TRUE(IsSorted(array, n));
// Minimal case - sort three elements.
array[0] = 1;
array[1] = 0;
SortArray(array, 2);
EXPECT_TRUE(IsSorted(array, 2));
}
TEST(SanitizerCommon, MmapAlignedOrDieOnFatalError) {
uptr PageSize = GetPageSizeCached();
for (uptr size = 1; size <= 32; size *= 2) {
for (uptr alignment = 1; alignment <= 32; alignment *= 2) {
for (int iter = 0; iter < 100; iter++) {
uptr res = (uptr)MmapAlignedOrDieOnFatalError(
size * PageSize, alignment * PageSize, "MmapAlignedOrDieTest");
EXPECT_EQ(0U, res % (alignment * PageSize));
internal_memset((void*)res, 1, size * PageSize);
UnmapOrDie((void*)res, size * PageSize);
}
}
}
}
#if SANITIZER_LINUX
TEST(SanitizerCommon, SanitizerSetThreadName) {
const char *names[] = {
"0123456789012",
"01234567890123",
"012345678901234", // Larger names will be truncated on linux.
};
for (size_t i = 0; i < ARRAY_SIZE(names); i++) {
EXPECT_TRUE(SanitizerSetThreadName(names[i]));
char buff[100];
EXPECT_TRUE(SanitizerGetThreadName(buff, sizeof(buff) - 1));
EXPECT_EQ(0, internal_strcmp(buff, names[i]));
}
}
#endif
TEST(SanitizerCommon, InternalMmapVector) {
InternalMmapVector<uptr> vector(1);
for (uptr i = 0; i < 100; i++) {
EXPECT_EQ(i, vector.size());
vector.push_back(i);
}
for (uptr i = 0; i < 100; i++) {
EXPECT_EQ(i, vector[i]);
}
for (int i = 99; i >= 0; i--) {
EXPECT_EQ((uptr)i, vector.back());
vector.pop_back();
EXPECT_EQ((uptr)i, vector.size());
}
InternalMmapVector<uptr> empty_vector(0);
CHECK_GT(empty_vector.capacity(), 0U);
CHECK_EQ(0U, empty_vector.size());
}
void TestThreadInfo(bool main) {
uptr stk_addr = 0;
uptr stk_size = 0;
uptr tls_addr = 0;
uptr tls_size = 0;
GetThreadStackAndTls(main, &stk_addr, &stk_size, &tls_addr, &tls_size);
int stack_var;
EXPECT_NE(stk_addr, (uptr)0);
EXPECT_NE(stk_size, (uptr)0);
EXPECT_GT((uptr)&stack_var, stk_addr);
EXPECT_LT((uptr)&stack_var, stk_addr + stk_size);
#if SANITIZER_LINUX && defined(__x86_64__)
static __thread int thread_var;
EXPECT_NE(tls_addr, (uptr)0);
EXPECT_NE(tls_size, (uptr)0);
EXPECT_GT((uptr)&thread_var, tls_addr);
EXPECT_LT((uptr)&thread_var, tls_addr + tls_size);
// Ensure that tls and stack do not intersect.
uptr tls_end = tls_addr + tls_size;
EXPECT_TRUE(tls_addr < stk_addr || tls_addr >= stk_addr + stk_size);
EXPECT_TRUE(tls_end < stk_addr || tls_end >= stk_addr + stk_size);
EXPECT_TRUE((tls_addr < stk_addr) == (tls_end < stk_addr));
#endif
}
static void *WorkerThread(void *arg) {
TestThreadInfo(false);
return 0;
}
TEST(SanitizerCommon, ThreadStackTlsMain) {
InitTlsSize();
TestThreadInfo(true);
}
TEST(SanitizerCommon, ThreadStackTlsWorker) {
InitTlsSize();
pthread_t t;
PTHREAD_CREATE(&t, 0, WorkerThread, 0);
PTHREAD_JOIN(t, 0);
}
bool UptrLess(uptr a, uptr b) {
return a < b;
}
TEST(SanitizerCommon, InternalLowerBound) {
static const uptr kSize = 5;
int arr[kSize];
arr[0] = 1;
arr[1] = 3;
arr[2] = 5;
arr[3] = 7;
arr[4] = 11;
EXPECT_EQ(0u, InternalLowerBound(arr, 0, kSize, 0, UptrLess));
EXPECT_EQ(0u, InternalLowerBound(arr, 0, kSize, 1, UptrLess));
EXPECT_EQ(1u, InternalLowerBound(arr, 0, kSize, 2, UptrLess));
EXPECT_EQ(1u, InternalLowerBound(arr, 0, kSize, 3, UptrLess));
EXPECT_EQ(2u, InternalLowerBound(arr, 0, kSize, 4, UptrLess));
EXPECT_EQ(2u, InternalLowerBound(arr, 0, kSize, 5, UptrLess));
EXPECT_EQ(3u, InternalLowerBound(arr, 0, kSize, 6, UptrLess));
EXPECT_EQ(3u, InternalLowerBound(arr, 0, kSize, 7, UptrLess));
EXPECT_EQ(4u, InternalLowerBound(arr, 0, kSize, 8, UptrLess));
EXPECT_EQ(4u, InternalLowerBound(arr, 0, kSize, 9, UptrLess));
EXPECT_EQ(4u, InternalLowerBound(arr, 0, kSize, 10, UptrLess));
EXPECT_EQ(4u, InternalLowerBound(arr, 0, kSize, 11, UptrLess));
EXPECT_EQ(5u, InternalLowerBound(arr, 0, kSize, 12, UptrLess));
}
TEST(SanitizerCommon, InternalLowerBoundVsStdLowerBound) {
std::vector<int> data;
auto create_item = [] (size_t i, size_t j) {
auto v = i * 10000 + j;
return ((v << 6) + (v >> 6) + 0x9e3779b9) % 100;
};
for (size_t i = 0; i < 1000; ++i) {
data.resize(i);
for (size_t j = 0; j < i; ++j) {
data[j] = create_item(i, j);
}
std::sort(data.begin(), data.end());
for (size_t j = 0; j < i; ++j) {
int val = create_item(i, j);
for (auto to_find : {val - 1, val, val + 1}) {
uptr expected =
std::lower_bound(data.begin(), data.end(), to_find) - data.begin();
EXPECT_EQ(expected, InternalLowerBound(data.data(), 0, data.size(),
to_find, std::less<int>()));
}
}
}
}
#if SANITIZER_LINUX && !SANITIZER_ANDROID
TEST(SanitizerCommon, FindPathToBinary) {
char *true_path = FindPathToBinary("true");
EXPECT_NE((char*)0, internal_strstr(true_path, "/bin/true"));
InternalFree(true_path);
EXPECT_EQ(0, FindPathToBinary("unexisting_binary.ergjeorj"));
}
#elif SANITIZER_WINDOWS
TEST(SanitizerCommon, FindPathToBinary) {
// ntdll.dll should be on PATH in all supported test environments on all
// supported Windows versions.
char *ntdll_path = FindPathToBinary("ntdll.dll");
EXPECT_NE((char*)0, internal_strstr(ntdll_path, "ntdll.dll"));
InternalFree(ntdll_path);
EXPECT_EQ(0, FindPathToBinary("unexisting_binary.ergjeorj"));
}
#endif
TEST(SanitizerCommon, StripPathPrefix) {
EXPECT_EQ(0, StripPathPrefix(0, "prefix"));
EXPECT_STREQ("foo", StripPathPrefix("foo", 0));
EXPECT_STREQ("dir/file.cc",
StripPathPrefix("/usr/lib/dir/file.cc", "/usr/lib/"));
EXPECT_STREQ("/file.cc", StripPathPrefix("/usr/myroot/file.cc", "/myroot"));
EXPECT_STREQ("file.h", StripPathPrefix("/usr/lib/./file.h", "/usr/lib/"));
}
TEST(SanitizerCommon, RemoveANSIEscapeSequencesFromString) {
RemoveANSIEscapeSequencesFromString(nullptr);
const char *buffs[22] = {
"Default", "Default",
"\033[95mLight magenta", "Light magenta",
"\033[30mBlack\033[32mGreen\033[90mGray", "BlackGreenGray",
"\033[106mLight cyan \033[107mWhite ", "Light cyan White ",
"\033[31mHello\033[0m World", "Hello World",
"\033[38;5;82mHello \033[38;5;198mWorld", "Hello World",
"123[653456789012", "123[653456789012",
"Normal \033[5mBlink \033[25mNormal", "Normal Blink Normal",
"\033[106m\033[107m", "",
"", "",
" ", " ",
};
for (size_t i = 0; i < ARRAY_SIZE(buffs); i+=2) {
char *buffer_copy = internal_strdup(buffs[i]);
RemoveANSIEscapeSequencesFromString(buffer_copy);
EXPECT_STREQ(buffer_copy, buffs[i+1]);
InternalFree(buffer_copy);
}
}
TEST(SanitizerCommon, InternalScopedString) {
InternalScopedString str(10);
EXPECT_EQ(0U, str.length());
EXPECT_STREQ("", str.data());
str.append("foo");
EXPECT_EQ(3U, str.length());
EXPECT_STREQ("foo", str.data());
int x = 1234;
str.append("%d", x);
EXPECT_EQ(7U, str.length());
EXPECT_STREQ("foo1234", str.data());
str.append("%d", x);
EXPECT_EQ(9U, str.length());
EXPECT_STREQ("foo123412", str.data());
str.clear();
EXPECT_EQ(0U, str.length());
EXPECT_STREQ("", str.data());
str.append("0123456789");
EXPECT_EQ(9U, str.length());
EXPECT_STREQ("012345678", str.data());
}
#if SANITIZER_LINUX
TEST(SanitizerCommon, GetRandom) {
u8 buffer_1[32], buffer_2[32];
for (bool blocking : { false, true }) {
EXPECT_FALSE(GetRandom(nullptr, 32, blocking));
EXPECT_FALSE(GetRandom(buffer_1, 0, blocking));
EXPECT_FALSE(GetRandom(buffer_1, 512, blocking));
EXPECT_EQ(ARRAY_SIZE(buffer_1), ARRAY_SIZE(buffer_2));
for (uptr size = 4; size <= ARRAY_SIZE(buffer_1); size += 4) {
for (uptr i = 0; i < 100; i++) {
EXPECT_TRUE(GetRandom(buffer_1, size, blocking));
EXPECT_TRUE(GetRandom(buffer_2, size, blocking));
EXPECT_NE(internal_memcmp(buffer_1, buffer_2, size), 0);
}
}
}
}
#endif
TEST(SanitizerCommon, ReservedAddressRangeInit) {
uptr init_size = 0xffff;
ReservedAddressRange address_range;
uptr res = address_range.Init(init_size);
CHECK_NE(res, (void*)-1);
UnmapOrDie((void*)res, init_size);
// Should be able to map into the same space now.
ReservedAddressRange address_range2;
uptr res2 = address_range2.Init(init_size, nullptr, res);
CHECK_EQ(res, res2);
// TODO(flowerhack): Once this is switched to the "real" implementation
// (rather than passing through to MmapNoAccess*), enforce and test "no
// double initializations allowed"
}
TEST(SanitizerCommon, ReservedAddressRangeMap) {
constexpr uptr init_size = 0xffff;
ReservedAddressRange address_range;
uptr res = address_range.Init(init_size);
CHECK_NE(res, (void*) -1);
// Valid mappings should succeed.
CHECK_EQ(res, address_range.Map(res, init_size));
// Valid mappings should be readable.
unsigned char buffer[init_size];
memcpy(buffer, reinterpret_cast<void *>(res), init_size);
// TODO(flowerhack): Once this is switched to the "real" implementation, make
// sure you can only mmap into offsets in the Init range.
}
TEST(SanitizerCommon, ReservedAddressRangeUnmap) {
uptr PageSize = GetPageSizeCached();
uptr init_size = PageSize * 8;
ReservedAddressRange address_range;
uptr base_addr = address_range.Init(init_size);
CHECK_NE(base_addr, (void*)-1);
CHECK_EQ(base_addr, address_range.Map(base_addr, init_size));
// Unmapping the entire range should succeed.
address_range.Unmap(base_addr, init_size);
// Map a new range.
base_addr = address_range.Init(init_size);
CHECK_EQ(base_addr, address_range.Map(base_addr, init_size));
// Windows doesn't allow partial unmappings.
#if !SANITIZER_WINDOWS
// Unmapping at the beginning should succeed.
address_range.Unmap(base_addr, PageSize);
// Unmapping at the end should succeed.
uptr new_start = reinterpret_cast<uptr>(address_range.base()) +
address_range.size() - PageSize;
address_range.Unmap(new_start, PageSize);
#endif
// Unmapping in the middle of the ReservedAddressRange should fail.
EXPECT_DEATH(address_range.Unmap(base_addr + (PageSize * 2), PageSize), ".*");
}
} // namespace __sanitizer