blob: 393a019acb70dec71885c48d461ea90b35277cac [file] [log] [blame]
//===-- sanitizer_allocator_primary64.h -------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Part of the Sanitizer Allocator.
//
//===----------------------------------------------------------------------===//
#ifndef SANITIZER_ALLOCATOR_H
#error This file must be included inside sanitizer_allocator.h
#endif
// SizeClassAllocator64 -- allocator for 64-bit address space.
//
// Space: a portion of address space of kSpaceSize bytes starting at SpaceBeg.
// If kSpaceBeg is ~0 then SpaceBeg is chosen dynamically my mmap.
// Otherwise SpaceBeg=kSpaceBeg (fixed address).
// kSpaceSize is a power of two.
// At the beginning the entire space is mprotect-ed, then small parts of it
// are mapped on demand.
//
// Region: a part of Space dedicated to a single size class.
// There are kNumClasses Regions of equal size.
//
// UserChunk: a piece of memory returned to user.
// MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk.
//
// A Region looks like this:
// UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1
template <const uptr kSpaceBeg, const uptr kSpaceSize,
const uptr kMetadataSize, class SizeClassMap,
class MapUnmapCallback = NoOpMapUnmapCallback>
class SizeClassAllocator64 {
public:
struct TransferBatch {
static const uptr kMaxNumCached = SizeClassMap::kMaxNumCachedHint - 4;
void SetFromRange(uptr region_beg, uptr beg_offset, uptr step, uptr count) {
count_ = count;
CHECK_LE(count_, kMaxNumCached);
region_beg_ = region_beg;
for (uptr i = 0; i < count; i++)
batch_[i] = static_cast<u32>((beg_offset + i * step) >> 4);
}
void SetFromArray(uptr region_beg, void *batch[], uptr count) {
count_ = count;
CHECK_LE(count_, kMaxNumCached);
region_beg_ = region_beg;
for (uptr i = 0; i < count; i++)
batch_[i] = static_cast<u32>(
((reinterpret_cast<uptr>(batch[i])) - region_beg) >> 4);
}
void CopyToArray(void *to_batch[]) {
for (uptr i = 0, n = Count(); i < n; i++)
to_batch[i] = reinterpret_cast<void*>(Get(i));
}
uptr Count() const { return count_; }
// How much memory do we need for a batch containing n elements.
static uptr AllocationSizeRequiredForNElements(uptr n) {
return sizeof(uptr) * 2 + sizeof(u32) * n;
}
static uptr MaxCached(uptr class_id) {
return Min(kMaxNumCached, SizeClassMap::MaxCachedHint(class_id));
}
TransferBatch *next;
private:
uptr Get(uptr i) {
return region_beg_ + (static_cast<uptr>(batch_[i]) << 4);
}
// Instead of storing 64-bit pointers we store 32-bit offsets from the
// region start divided by 4. This imposes two limitations:
// * all allocations are 16-aligned,
// * regions are not larger than 2^36.
uptr region_beg_ : SANITIZER_WORDSIZE - 10; // Region-beg is 4096-aligned.
uptr count_ : 10;
u32 batch_[kMaxNumCached];
};
static const uptr kBatchSize = sizeof(TransferBatch);
COMPILER_CHECK((kBatchSize & (kBatchSize - 1)) == 0);
COMPILER_CHECK(sizeof(TransferBatch) ==
SizeClassMap::kMaxNumCachedHint * sizeof(u32));
COMPILER_CHECK(TransferBatch::kMaxNumCached < 1024); // count_ uses 10 bits.
static uptr ClassIdToSize(uptr class_id) {
return class_id == SizeClassMap::kBatchClassID
? sizeof(TransferBatch)
: SizeClassMap::Size(class_id);
}
typedef SizeClassAllocator64<kSpaceBeg, kSpaceSize, kMetadataSize,
SizeClassMap, MapUnmapCallback> ThisT;
typedef SizeClassAllocatorLocalCache<ThisT> AllocatorCache;
void Init() {
uptr TotalSpaceSize = kSpaceSize + AdditionalSize();
if (kUsingConstantSpaceBeg) {
CHECK_EQ(kSpaceBeg, reinterpret_cast<uptr>(
MmapFixedNoAccess(kSpaceBeg, TotalSpaceSize)));
} else {
NonConstSpaceBeg =
reinterpret_cast<uptr>(MmapNoAccess(TotalSpaceSize));
CHECK_NE(NonConstSpaceBeg, ~(uptr)0);
}
MapWithCallback(SpaceEnd(), AdditionalSize());
}
void MapWithCallback(uptr beg, uptr size) {
CHECK_EQ(beg, reinterpret_cast<uptr>(MmapFixedOrDie(beg, size)));
MapUnmapCallback().OnMap(beg, size);
}
void UnmapWithCallback(uptr beg, uptr size) {
MapUnmapCallback().OnUnmap(beg, size);
UnmapOrDie(reinterpret_cast<void *>(beg), size);
}
static bool CanAllocate(uptr size, uptr alignment) {
return size <= SizeClassMap::kMaxSize &&
alignment <= SizeClassMap::kMaxSize;
}
NOINLINE TransferBatch *AllocateBatch(AllocatorStats *stat, AllocatorCache *c,
uptr class_id) {
CHECK_LT(class_id, kNumClasses);
RegionInfo *region = GetRegionInfo(class_id);
TransferBatch *b = region->free_list.Pop();
if (!b)
b = PopulateFreeList(stat, c, class_id, region);
region->n_allocated += b->Count();
return b;
}
NOINLINE void DeallocateBatch(AllocatorStats *stat, uptr class_id,
TransferBatch *b) {
RegionInfo *region = GetRegionInfo(class_id);
CHECK_GT(b->Count(), 0);
region->free_list.Push(b);
region->n_freed += b->Count();
}
bool PointerIsMine(const void *p) {
uptr P = reinterpret_cast<uptr>(p);
if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
return P / kSpaceSize == kSpaceBeg / kSpaceSize;
return P >= SpaceBeg() && P < SpaceEnd();
}
uptr GetRegionBegin(const void *p) {
if (kUsingConstantSpaceBeg)
return reinterpret_cast<uptr>(p) & ~(kRegionSize - 1);
uptr space_beg = SpaceBeg();
return ((reinterpret_cast<uptr>(p) - space_beg) & ~(kRegionSize - 1)) +
space_beg;
}
uptr GetRegionBeginBySizeClass(uptr class_id) {
return SpaceBeg() + kRegionSize * class_id;
}
uptr GetSizeClass(const void *p) {
if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
return ((reinterpret_cast<uptr>(p)) / kRegionSize) % kNumClassesRounded;
return ((reinterpret_cast<uptr>(p) - SpaceBeg()) / kRegionSize) %
kNumClassesRounded;
}
void *GetBlockBegin(const void *p) {
uptr class_id = GetSizeClass(p);
uptr size = ClassIdToSize(class_id);
if (!size) return nullptr;
uptr chunk_idx = GetChunkIdx((uptr)p, size);
uptr reg_beg = GetRegionBegin(p);
uptr beg = chunk_idx * size;
uptr next_beg = beg + size;
if (class_id >= kNumClasses) return nullptr;
RegionInfo *region = GetRegionInfo(class_id);
if (region->mapped_user >= next_beg)
return reinterpret_cast<void*>(reg_beg + beg);
return nullptr;
}
uptr GetActuallyAllocatedSize(void *p) {
CHECK(PointerIsMine(p));
return ClassIdToSize(GetSizeClass(p));
}
uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
void *GetMetaData(const void *p) {
uptr class_id = GetSizeClass(p);
uptr size = ClassIdToSize(class_id);
uptr chunk_idx = GetChunkIdx(reinterpret_cast<uptr>(p), size);
return reinterpret_cast<void *>(SpaceBeg() +
(kRegionSize * (class_id + 1)) -
(1 + chunk_idx) * kMetadataSize);
}
uptr TotalMemoryUsed() {
uptr res = 0;
for (uptr i = 0; i < kNumClasses; i++)
res += GetRegionInfo(i)->allocated_user;
return res;
}
// Test-only.
void TestOnlyUnmap() {
UnmapWithCallback(SpaceBeg(), kSpaceSize + AdditionalSize());
}
static void FillMemoryProfile(uptr start, uptr rss, bool file, uptr *stats,
uptr stats_size) {
for (uptr class_id = 0; class_id < stats_size; class_id++)
if (stats[class_id] == start)
stats[class_id] = rss;
}
void PrintStats() {
uptr total_mapped = 0;
uptr n_allocated = 0;
uptr n_freed = 0;
for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
RegionInfo *region = GetRegionInfo(class_id);
total_mapped += region->mapped_user;
n_allocated += region->n_allocated;
n_freed += region->n_freed;
}
Printf("Stats: SizeClassAllocator64: %zdM mapped in %zd allocations; "
"remains %zd\n",
total_mapped >> 20, n_allocated, n_allocated - n_freed);
uptr rss_stats[kNumClasses];
for (uptr class_id = 0; class_id < kNumClasses; class_id++)
rss_stats[class_id] = SpaceBeg() + kRegionSize * class_id;
GetMemoryProfile(FillMemoryProfile, rss_stats, kNumClasses);
for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
RegionInfo *region = GetRegionInfo(class_id);
if (region->mapped_user == 0) continue;
uptr in_use = region->n_allocated - region->n_freed;
uptr avail_chunks = region->allocated_user / ClassIdToSize(class_id);
Printf(" %02zd (%zd): mapped: %zdK allocs: %zd frees: %zd inuse: %zd"
" avail: %zd rss: %zdK\n",
class_id,
ClassIdToSize(class_id),
region->mapped_user >> 10,
region->n_allocated,
region->n_freed,
in_use, avail_chunks,
rss_stats[class_id] >> 10);
}
}
// ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
// introspection API.
void ForceLock() {
for (uptr i = 0; i < kNumClasses; i++) {
GetRegionInfo(i)->mutex.Lock();
}
}
void ForceUnlock() {
for (int i = (int)kNumClasses - 1; i >= 0; i--) {
GetRegionInfo(i)->mutex.Unlock();
}
}
// Iterate over all existing chunks.
// The allocator must be locked when calling this function.
void ForEachChunk(ForEachChunkCallback callback, void *arg) {
for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
RegionInfo *region = GetRegionInfo(class_id);
uptr chunk_size = ClassIdToSize(class_id);
uptr region_beg = SpaceBeg() + class_id * kRegionSize;
for (uptr chunk = region_beg;
chunk < region_beg + region->allocated_user;
chunk += chunk_size) {
// Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
callback(chunk, arg);
}
}
}
static uptr AdditionalSize() {
return RoundUpTo(sizeof(RegionInfo) * kNumClassesRounded,
GetPageSizeCached());
}
typedef SizeClassMap SizeClassMapT;
static const uptr kNumClasses = SizeClassMap::kNumClasses;
static const uptr kNumClassesRounded = SizeClassMap::kNumClassesRounded;
private:
static const uptr kRegionSize = kSpaceSize / kNumClassesRounded;
static const bool kUsingConstantSpaceBeg = kSpaceBeg != ~(uptr)0;
uptr NonConstSpaceBeg;
uptr SpaceBeg() const {
return kUsingConstantSpaceBeg ? kSpaceBeg : NonConstSpaceBeg;
}
uptr SpaceEnd() const { return SpaceBeg() + kSpaceSize; }
// kRegionSize must be >= 2^32.
COMPILER_CHECK((kRegionSize) >= (1ULL << (SANITIZER_WORDSIZE / 2)));
// kRegionSize must be <= 2^36, see TransferBatch.
COMPILER_CHECK((kRegionSize) <= (1ULL << (SANITIZER_WORDSIZE / 2 + 4)));
// Call mmap for user memory with at least this size.
static const uptr kUserMapSize = 1 << 16;
// Call mmap for metadata memory with at least this size.
static const uptr kMetaMapSize = 1 << 16;
struct RegionInfo {
BlockingMutex mutex;
LFStack<TransferBatch> free_list;
uptr allocated_user; // Bytes allocated for user memory.
uptr allocated_meta; // Bytes allocated for metadata.
uptr mapped_user; // Bytes mapped for user memory.
uptr mapped_meta; // Bytes mapped for metadata.
uptr n_allocated, n_freed; // Just stats.
};
COMPILER_CHECK(sizeof(RegionInfo) >= kCacheLineSize);
RegionInfo *GetRegionInfo(uptr class_id) {
CHECK_LT(class_id, kNumClasses);
RegionInfo *regions =
reinterpret_cast<RegionInfo *>(SpaceBeg() + kSpaceSize);
return &regions[class_id];
}
uptr GetChunkIdx(uptr chunk, uptr size) {
if (!kUsingConstantSpaceBeg)
chunk -= SpaceBeg();
uptr offset = chunk % kRegionSize;
// Here we divide by a non-constant. This is costly.
// size always fits into 32-bits. If the offset fits too, use 32-bit div.
if (offset >> (SANITIZER_WORDSIZE / 2))
return offset / size;
return (u32)offset / (u32)size;
}
NOINLINE TransferBatch *PopulateFreeList(AllocatorStats *stat,
AllocatorCache *c, uptr class_id,
RegionInfo *region) {
BlockingMutexLock l(&region->mutex);
TransferBatch *b = region->free_list.Pop();
if (b)
return b;
uptr size = ClassIdToSize(class_id);
uptr count = TransferBatch::MaxCached(class_id);
uptr beg_idx = region->allocated_user;
uptr end_idx = beg_idx + count * size;
uptr region_beg = SpaceBeg() + kRegionSize * class_id;
if (end_idx + size > region->mapped_user) {
// Do the mmap for the user memory.
uptr map_size = kUserMapSize;
while (end_idx + size > region->mapped_user + map_size)
map_size += kUserMapSize;
CHECK_GE(region->mapped_user + map_size, end_idx);
MapWithCallback(region_beg + region->mapped_user, map_size);
stat->Add(AllocatorStatMapped, map_size);
region->mapped_user += map_size;
}
uptr total_count = (region->mapped_user - beg_idx - size)
/ size / count * count;
region->allocated_meta += total_count * kMetadataSize;
if (region->allocated_meta > region->mapped_meta) {
uptr map_size = kMetaMapSize;
while (region->allocated_meta > region->mapped_meta + map_size)
map_size += kMetaMapSize;
// Do the mmap for the metadata.
CHECK_GE(region->mapped_meta + map_size, region->allocated_meta);
MapWithCallback(region_beg + kRegionSize -
region->mapped_meta - map_size, map_size);
region->mapped_meta += map_size;
}
CHECK_LE(region->allocated_meta, region->mapped_meta);
if (region->mapped_user + region->mapped_meta > kRegionSize) {
Printf("%s: Out of memory. Dying. ", SanitizerToolName);
Printf("The process has exhausted %zuMB for size class %zu.\n",
kRegionSize / 1024 / 1024, size);
Die();
}
for (;;) {
b = c->CreateBatch(class_id, this,
(TransferBatch *)(region_beg + beg_idx));
b->SetFromRange(region_beg, beg_idx, size, count);
region->allocated_user += count * size;
CHECK_LE(region->allocated_user, region->mapped_user);
beg_idx += count * size;
if (beg_idx + count * size + size > region->mapped_user)
break;
CHECK_GT(b->Count(), 0);
region->free_list.Push(b);
}
return b;
}
};