|  | //===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // A intra-procedural analysis for thread safety (e.g. deadlocks and race | 
|  | // conditions), based off of an annotation system. | 
|  | // | 
|  | // See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html | 
|  | // for more information. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "clang/Analysis/Analyses/ThreadSafety.h" | 
|  | #include "clang/AST/Attr.h" | 
|  | #include "clang/AST/DeclCXX.h" | 
|  | #include "clang/AST/ExprCXX.h" | 
|  | #include "clang/AST/StmtCXX.h" | 
|  | #include "clang/AST/StmtVisitor.h" | 
|  | #include "clang/Analysis/Analyses/PostOrderCFGView.h" | 
|  | #include "clang/Analysis/Analyses/ThreadSafetyCommon.h" | 
|  | #include "clang/Analysis/Analyses/ThreadSafetyLogical.h" | 
|  | #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" | 
|  | #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h" | 
|  | #include "clang/Analysis/AnalysisDeclContext.h" | 
|  | #include "clang/Analysis/CFG.h" | 
|  | #include "clang/Analysis/CFGStmtMap.h" | 
|  | #include "clang/Basic/OperatorKinds.h" | 
|  | #include "clang/Basic/SourceLocation.h" | 
|  | #include "clang/Basic/SourceManager.h" | 
|  | #include "llvm/ADT/ImmutableMap.h" | 
|  | #include "llvm/ADT/PostOrderIterator.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <ostream> | 
|  | #include <sstream> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  | using namespace clang; | 
|  | using namespace threadSafety; | 
|  |  | 
|  | // Key method definition | 
|  | ThreadSafetyHandler::~ThreadSafetyHandler() {} | 
|  |  | 
|  | namespace { | 
|  | class TILPrinter : | 
|  | public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {}; | 
|  |  | 
|  |  | 
|  | /// Issue a warning about an invalid lock expression | 
|  | static void warnInvalidLock(ThreadSafetyHandler &Handler, | 
|  | const Expr *MutexExp, const NamedDecl *D, | 
|  | const Expr *DeclExp, StringRef Kind) { | 
|  | SourceLocation Loc; | 
|  | if (DeclExp) | 
|  | Loc = DeclExp->getExprLoc(); | 
|  |  | 
|  | // FIXME: add a note about the attribute location in MutexExp or D | 
|  | if (Loc.isValid()) | 
|  | Handler.handleInvalidLockExp(Kind, Loc); | 
|  | } | 
|  |  | 
|  | /// \brief A set of CapabilityInfo objects, which are compiled from the | 
|  | /// requires attributes on a function. | 
|  | class CapExprSet : public SmallVector<CapabilityExpr, 4> { | 
|  | public: | 
|  | /// \brief Push M onto list, but discard duplicates. | 
|  | void push_back_nodup(const CapabilityExpr &CapE) { | 
|  | iterator It = std::find_if(begin(), end(), | 
|  | [=](const CapabilityExpr &CapE2) { | 
|  | return CapE.equals(CapE2); | 
|  | }); | 
|  | if (It == end()) | 
|  | push_back(CapE); | 
|  | } | 
|  | }; | 
|  |  | 
|  | class FactManager; | 
|  | class FactSet; | 
|  |  | 
|  | /// \brief This is a helper class that stores a fact that is known at a | 
|  | /// particular point in program execution.  Currently, a fact is a capability, | 
|  | /// along with additional information, such as where it was acquired, whether | 
|  | /// it is exclusive or shared, etc. | 
|  | /// | 
|  | /// FIXME: this analysis does not currently support either re-entrant | 
|  | /// locking or lock "upgrading" and "downgrading" between exclusive and | 
|  | /// shared. | 
|  | class FactEntry : public CapabilityExpr { | 
|  | private: | 
|  | LockKind          LKind;            ///<  exclusive or shared | 
|  | SourceLocation    AcquireLoc;       ///<  where it was acquired. | 
|  | bool              Asserted;         ///<  true if the lock was asserted | 
|  | bool              Declared;         ///<  true if the lock was declared | 
|  |  | 
|  | public: | 
|  | FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc, | 
|  | bool Asrt, bool Declrd = false) | 
|  | : CapabilityExpr(CE), LKind(LK), AcquireLoc(Loc), Asserted(Asrt), | 
|  | Declared(Declrd) {} | 
|  |  | 
|  | virtual ~FactEntry() {} | 
|  |  | 
|  | LockKind          kind()       const { return LKind;      } | 
|  | SourceLocation    loc()        const { return AcquireLoc; } | 
|  | bool              asserted()   const { return Asserted; } | 
|  | bool              declared()   const { return Declared; } | 
|  |  | 
|  | void setDeclared(bool D) { Declared = D; } | 
|  |  | 
|  | virtual void | 
|  | handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, | 
|  | SourceLocation JoinLoc, LockErrorKind LEK, | 
|  | ThreadSafetyHandler &Handler) const = 0; | 
|  | virtual void handleUnlock(FactSet &FSet, FactManager &FactMan, | 
|  | const CapabilityExpr &Cp, SourceLocation UnlockLoc, | 
|  | bool FullyRemove, ThreadSafetyHandler &Handler, | 
|  | StringRef DiagKind) const = 0; | 
|  |  | 
|  | // Return true if LKind >= LK, where exclusive > shared | 
|  | bool isAtLeast(LockKind LK) { | 
|  | return  (LKind == LK_Exclusive) || (LK == LK_Shared); | 
|  | } | 
|  | }; | 
|  |  | 
|  |  | 
|  | typedef unsigned short FactID; | 
|  |  | 
|  | /// \brief FactManager manages the memory for all facts that are created during | 
|  | /// the analysis of a single routine. | 
|  | class FactManager { | 
|  | private: | 
|  | std::vector<std::unique_ptr<FactEntry>> Facts; | 
|  |  | 
|  | public: | 
|  | FactID newFact(std::unique_ptr<FactEntry> Entry) { | 
|  | Facts.push_back(std::move(Entry)); | 
|  | return static_cast<unsigned short>(Facts.size() - 1); | 
|  | } | 
|  |  | 
|  | const FactEntry &operator[](FactID F) const { return *Facts[F]; } | 
|  | FactEntry &operator[](FactID F) { return *Facts[F]; } | 
|  | }; | 
|  |  | 
|  |  | 
|  | /// \brief A FactSet is the set of facts that are known to be true at a | 
|  | /// particular program point.  FactSets must be small, because they are | 
|  | /// frequently copied, and are thus implemented as a set of indices into a | 
|  | /// table maintained by a FactManager.  A typical FactSet only holds 1 or 2 | 
|  | /// locks, so we can get away with doing a linear search for lookup.  Note | 
|  | /// that a hashtable or map is inappropriate in this case, because lookups | 
|  | /// may involve partial pattern matches, rather than exact matches. | 
|  | class FactSet { | 
|  | private: | 
|  | typedef SmallVector<FactID, 4> FactVec; | 
|  |  | 
|  | FactVec FactIDs; | 
|  |  | 
|  | public: | 
|  | typedef FactVec::iterator       iterator; | 
|  | typedef FactVec::const_iterator const_iterator; | 
|  |  | 
|  | iterator       begin()       { return FactIDs.begin(); } | 
|  | const_iterator begin() const { return FactIDs.begin(); } | 
|  |  | 
|  | iterator       end()       { return FactIDs.end(); } | 
|  | const_iterator end() const { return FactIDs.end(); } | 
|  |  | 
|  | bool isEmpty() const { return FactIDs.size() == 0; } | 
|  |  | 
|  | // Return true if the set contains only negative facts | 
|  | bool isEmpty(FactManager &FactMan) const { | 
|  | for (FactID FID : *this) { | 
|  | if (!FactMan[FID].negative()) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void addLockByID(FactID ID) { FactIDs.push_back(ID); } | 
|  |  | 
|  | FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) { | 
|  | FactID F = FM.newFact(std::move(Entry)); | 
|  | FactIDs.push_back(F); | 
|  | return F; | 
|  | } | 
|  |  | 
|  | bool removeLock(FactManager& FM, const CapabilityExpr &CapE) { | 
|  | unsigned n = FactIDs.size(); | 
|  | if (n == 0) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 0; i < n-1; ++i) { | 
|  | if (FM[FactIDs[i]].matches(CapE)) { | 
|  | FactIDs[i] = FactIDs[n-1]; | 
|  | FactIDs.pop_back(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | if (FM[FactIDs[n-1]].matches(CapE)) { | 
|  | FactIDs.pop_back(); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) { | 
|  | return std::find_if(begin(), end(), [&](FactID ID) { | 
|  | return FM[ID].matches(CapE); | 
|  | }); | 
|  | } | 
|  |  | 
|  | FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const { | 
|  | auto I = std::find_if(begin(), end(), [&](FactID ID) { | 
|  | return FM[ID].matches(CapE); | 
|  | }); | 
|  | return I != end() ? &FM[*I] : nullptr; | 
|  | } | 
|  |  | 
|  | FactEntry *findLockUniv(FactManager &FM, const CapabilityExpr &CapE) const { | 
|  | auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { | 
|  | return FM[ID].matchesUniv(CapE); | 
|  | }); | 
|  | return I != end() ? &FM[*I] : nullptr; | 
|  | } | 
|  |  | 
|  | FactEntry *findPartialMatch(FactManager &FM, | 
|  | const CapabilityExpr &CapE) const { | 
|  | auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { | 
|  | return FM[ID].partiallyMatches(CapE); | 
|  | }); | 
|  | return I != end() ? &FM[*I] : nullptr; | 
|  | } | 
|  |  | 
|  | bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const { | 
|  | auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { | 
|  | return FM[ID].valueDecl() == Vd; | 
|  | }); | 
|  | return I != end(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | class ThreadSafetyAnalyzer; | 
|  | } // namespace | 
|  |  | 
|  | namespace clang { | 
|  | namespace threadSafety { | 
|  | class BeforeSet { | 
|  | private: | 
|  | typedef SmallVector<const ValueDecl*, 4>  BeforeVect; | 
|  |  | 
|  | struct BeforeInfo { | 
|  | BeforeInfo() : Visited(0) {} | 
|  | BeforeInfo(BeforeInfo &&) = default; | 
|  |  | 
|  | BeforeVect Vect; | 
|  | int Visited; | 
|  | }; | 
|  |  | 
|  | typedef llvm::DenseMap<const ValueDecl *, std::unique_ptr<BeforeInfo>> | 
|  | BeforeMap; | 
|  | typedef llvm::DenseMap<const ValueDecl*, bool>        CycleMap; | 
|  |  | 
|  | public: | 
|  | BeforeSet() { } | 
|  |  | 
|  | BeforeInfo* insertAttrExprs(const ValueDecl* Vd, | 
|  | ThreadSafetyAnalyzer& Analyzer); | 
|  |  | 
|  | BeforeInfo *getBeforeInfoForDecl(const ValueDecl *Vd, | 
|  | ThreadSafetyAnalyzer &Analyzer); | 
|  |  | 
|  | void checkBeforeAfter(const ValueDecl* Vd, | 
|  | const FactSet& FSet, | 
|  | ThreadSafetyAnalyzer& Analyzer, | 
|  | SourceLocation Loc, StringRef CapKind); | 
|  |  | 
|  | private: | 
|  | BeforeMap BMap; | 
|  | CycleMap  CycMap; | 
|  | }; | 
|  | } // end namespace threadSafety | 
|  | } // end namespace clang | 
|  |  | 
|  | namespace { | 
|  | typedef llvm::ImmutableMap<const NamedDecl*, unsigned> LocalVarContext; | 
|  | class LocalVariableMap; | 
|  |  | 
|  | /// A side (entry or exit) of a CFG node. | 
|  | enum CFGBlockSide { CBS_Entry, CBS_Exit }; | 
|  |  | 
|  | /// CFGBlockInfo is a struct which contains all the information that is | 
|  | /// maintained for each block in the CFG.  See LocalVariableMap for more | 
|  | /// information about the contexts. | 
|  | struct CFGBlockInfo { | 
|  | FactSet EntrySet;             // Lockset held at entry to block | 
|  | FactSet ExitSet;              // Lockset held at exit from block | 
|  | LocalVarContext EntryContext; // Context held at entry to block | 
|  | LocalVarContext ExitContext;  // Context held at exit from block | 
|  | SourceLocation EntryLoc;      // Location of first statement in block | 
|  | SourceLocation ExitLoc;       // Location of last statement in block. | 
|  | unsigned EntryIndex;          // Used to replay contexts later | 
|  | bool Reachable;               // Is this block reachable? | 
|  |  | 
|  | const FactSet &getSet(CFGBlockSide Side) const { | 
|  | return Side == CBS_Entry ? EntrySet : ExitSet; | 
|  | } | 
|  | SourceLocation getLocation(CFGBlockSide Side) const { | 
|  | return Side == CBS_Entry ? EntryLoc : ExitLoc; | 
|  | } | 
|  |  | 
|  | private: | 
|  | CFGBlockInfo(LocalVarContext EmptyCtx) | 
|  | : EntryContext(EmptyCtx), ExitContext(EmptyCtx), Reachable(false) | 
|  | { } | 
|  |  | 
|  | public: | 
|  | static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M); | 
|  | }; | 
|  |  | 
|  |  | 
|  |  | 
|  | // A LocalVariableMap maintains a map from local variables to their currently | 
|  | // valid definitions.  It provides SSA-like functionality when traversing the | 
|  | // CFG.  Like SSA, each definition or assignment to a variable is assigned a | 
|  | // unique name (an integer), which acts as the SSA name for that definition. | 
|  | // The total set of names is shared among all CFG basic blocks. | 
|  | // Unlike SSA, we do not rewrite expressions to replace local variables declrefs | 
|  | // with their SSA-names.  Instead, we compute a Context for each point in the | 
|  | // code, which maps local variables to the appropriate SSA-name.  This map | 
|  | // changes with each assignment. | 
|  | // | 
|  | // The map is computed in a single pass over the CFG.  Subsequent analyses can | 
|  | // then query the map to find the appropriate Context for a statement, and use | 
|  | // that Context to look up the definitions of variables. | 
|  | class LocalVariableMap { | 
|  | public: | 
|  | typedef LocalVarContext Context; | 
|  |  | 
|  | /// A VarDefinition consists of an expression, representing the value of the | 
|  | /// variable, along with the context in which that expression should be | 
|  | /// interpreted.  A reference VarDefinition does not itself contain this | 
|  | /// information, but instead contains a pointer to a previous VarDefinition. | 
|  | struct VarDefinition { | 
|  | public: | 
|  | friend class LocalVariableMap; | 
|  |  | 
|  | const NamedDecl *Dec;  // The original declaration for this variable. | 
|  | const Expr *Exp;       // The expression for this variable, OR | 
|  | unsigned Ref;          // Reference to another VarDefinition | 
|  | Context Ctx;           // The map with which Exp should be interpreted. | 
|  |  | 
|  | bool isReference() { return !Exp; } | 
|  |  | 
|  | private: | 
|  | // Create ordinary variable definition | 
|  | VarDefinition(const NamedDecl *D, const Expr *E, Context C) | 
|  | : Dec(D), Exp(E), Ref(0), Ctx(C) | 
|  | { } | 
|  |  | 
|  | // Create reference to previous definition | 
|  | VarDefinition(const NamedDecl *D, unsigned R, Context C) | 
|  | : Dec(D), Exp(nullptr), Ref(R), Ctx(C) | 
|  | { } | 
|  | }; | 
|  |  | 
|  | private: | 
|  | Context::Factory ContextFactory; | 
|  | std::vector<VarDefinition> VarDefinitions; | 
|  | std::vector<unsigned> CtxIndices; | 
|  | std::vector<std::pair<Stmt*, Context> > SavedContexts; | 
|  |  | 
|  | public: | 
|  | LocalVariableMap() { | 
|  | // index 0 is a placeholder for undefined variables (aka phi-nodes). | 
|  | VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext())); | 
|  | } | 
|  |  | 
|  | /// Look up a definition, within the given context. | 
|  | const VarDefinition* lookup(const NamedDecl *D, Context Ctx) { | 
|  | const unsigned *i = Ctx.lookup(D); | 
|  | if (!i) | 
|  | return nullptr; | 
|  | assert(*i < VarDefinitions.size()); | 
|  | return &VarDefinitions[*i]; | 
|  | } | 
|  |  | 
|  | /// Look up the definition for D within the given context.  Returns | 
|  | /// NULL if the expression is not statically known.  If successful, also | 
|  | /// modifies Ctx to hold the context of the return Expr. | 
|  | const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) { | 
|  | const unsigned *P = Ctx.lookup(D); | 
|  | if (!P) | 
|  | return nullptr; | 
|  |  | 
|  | unsigned i = *P; | 
|  | while (i > 0) { | 
|  | if (VarDefinitions[i].Exp) { | 
|  | Ctx = VarDefinitions[i].Ctx; | 
|  | return VarDefinitions[i].Exp; | 
|  | } | 
|  | i = VarDefinitions[i].Ref; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Context getEmptyContext() { return ContextFactory.getEmptyMap(); } | 
|  |  | 
|  | /// Return the next context after processing S.  This function is used by | 
|  | /// clients of the class to get the appropriate context when traversing the | 
|  | /// CFG.  It must be called for every assignment or DeclStmt. | 
|  | Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) { | 
|  | if (SavedContexts[CtxIndex+1].first == S) { | 
|  | CtxIndex++; | 
|  | Context Result = SavedContexts[CtxIndex].second; | 
|  | return Result; | 
|  | } | 
|  | return C; | 
|  | } | 
|  |  | 
|  | void dumpVarDefinitionName(unsigned i) { | 
|  | if (i == 0) { | 
|  | llvm::errs() << "Undefined"; | 
|  | return; | 
|  | } | 
|  | const NamedDecl *Dec = VarDefinitions[i].Dec; | 
|  | if (!Dec) { | 
|  | llvm::errs() << "<<NULL>>"; | 
|  | return; | 
|  | } | 
|  | Dec->printName(llvm::errs()); | 
|  | llvm::errs() << "." << i << " " << ((const void*) Dec); | 
|  | } | 
|  |  | 
|  | /// Dumps an ASCII representation of the variable map to llvm::errs() | 
|  | void dump() { | 
|  | for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) { | 
|  | const Expr *Exp = VarDefinitions[i].Exp; | 
|  | unsigned Ref = VarDefinitions[i].Ref; | 
|  |  | 
|  | dumpVarDefinitionName(i); | 
|  | llvm::errs() << " = "; | 
|  | if (Exp) Exp->dump(); | 
|  | else { | 
|  | dumpVarDefinitionName(Ref); | 
|  | llvm::errs() << "\n"; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Dumps an ASCII representation of a Context to llvm::errs() | 
|  | void dumpContext(Context C) { | 
|  | for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) { | 
|  | const NamedDecl *D = I.getKey(); | 
|  | D->printName(llvm::errs()); | 
|  | const unsigned *i = C.lookup(D); | 
|  | llvm::errs() << " -> "; | 
|  | dumpVarDefinitionName(*i); | 
|  | llvm::errs() << "\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Builds the variable map. | 
|  | void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph, | 
|  | std::vector<CFGBlockInfo> &BlockInfo); | 
|  |  | 
|  | protected: | 
|  | // Get the current context index | 
|  | unsigned getContextIndex() { return SavedContexts.size()-1; } | 
|  |  | 
|  | // Save the current context for later replay | 
|  | void saveContext(Stmt *S, Context C) { | 
|  | SavedContexts.push_back(std::make_pair(S,C)); | 
|  | } | 
|  |  | 
|  | // Adds a new definition to the given context, and returns a new context. | 
|  | // This method should be called when declaring a new variable. | 
|  | Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) { | 
|  | assert(!Ctx.contains(D)); | 
|  | unsigned newID = VarDefinitions.size(); | 
|  | Context NewCtx = ContextFactory.add(Ctx, D, newID); | 
|  | VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); | 
|  | return NewCtx; | 
|  | } | 
|  |  | 
|  | // Add a new reference to an existing definition. | 
|  | Context addReference(const NamedDecl *D, unsigned i, Context Ctx) { | 
|  | unsigned newID = VarDefinitions.size(); | 
|  | Context NewCtx = ContextFactory.add(Ctx, D, newID); | 
|  | VarDefinitions.push_back(VarDefinition(D, i, Ctx)); | 
|  | return NewCtx; | 
|  | } | 
|  |  | 
|  | // Updates a definition only if that definition is already in the map. | 
|  | // This method should be called when assigning to an existing variable. | 
|  | Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) { | 
|  | if (Ctx.contains(D)) { | 
|  | unsigned newID = VarDefinitions.size(); | 
|  | Context NewCtx = ContextFactory.remove(Ctx, D); | 
|  | NewCtx = ContextFactory.add(NewCtx, D, newID); | 
|  | VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); | 
|  | return NewCtx; | 
|  | } | 
|  | return Ctx; | 
|  | } | 
|  |  | 
|  | // Removes a definition from the context, but keeps the variable name | 
|  | // as a valid variable.  The index 0 is a placeholder for cleared definitions. | 
|  | Context clearDefinition(const NamedDecl *D, Context Ctx) { | 
|  | Context NewCtx = Ctx; | 
|  | if (NewCtx.contains(D)) { | 
|  | NewCtx = ContextFactory.remove(NewCtx, D); | 
|  | NewCtx = ContextFactory.add(NewCtx, D, 0); | 
|  | } | 
|  | return NewCtx; | 
|  | } | 
|  |  | 
|  | // Remove a definition entirely frmo the context. | 
|  | Context removeDefinition(const NamedDecl *D, Context Ctx) { | 
|  | Context NewCtx = Ctx; | 
|  | if (NewCtx.contains(D)) { | 
|  | NewCtx = ContextFactory.remove(NewCtx, D); | 
|  | } | 
|  | return NewCtx; | 
|  | } | 
|  |  | 
|  | Context intersectContexts(Context C1, Context C2); | 
|  | Context createReferenceContext(Context C); | 
|  | void intersectBackEdge(Context C1, Context C2); | 
|  |  | 
|  | friend class VarMapBuilder; | 
|  | }; | 
|  |  | 
|  |  | 
|  | // This has to be defined after LocalVariableMap. | 
|  | CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) { | 
|  | return CFGBlockInfo(M.getEmptyContext()); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// Visitor which builds a LocalVariableMap | 
|  | class VarMapBuilder : public StmtVisitor<VarMapBuilder> { | 
|  | public: | 
|  | LocalVariableMap* VMap; | 
|  | LocalVariableMap::Context Ctx; | 
|  |  | 
|  | VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C) | 
|  | : VMap(VM), Ctx(C) {} | 
|  |  | 
|  | void VisitDeclStmt(DeclStmt *S); | 
|  | void VisitBinaryOperator(BinaryOperator *BO); | 
|  | }; | 
|  |  | 
|  |  | 
|  | // Add new local variables to the variable map | 
|  | void VarMapBuilder::VisitDeclStmt(DeclStmt *S) { | 
|  | bool modifiedCtx = false; | 
|  | DeclGroupRef DGrp = S->getDeclGroup(); | 
|  | for (const auto *D : DGrp) { | 
|  | if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) { | 
|  | const Expr *E = VD->getInit(); | 
|  |  | 
|  | // Add local variables with trivial type to the variable map | 
|  | QualType T = VD->getType(); | 
|  | if (T.isTrivialType(VD->getASTContext())) { | 
|  | Ctx = VMap->addDefinition(VD, E, Ctx); | 
|  | modifiedCtx = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (modifiedCtx) | 
|  | VMap->saveContext(S, Ctx); | 
|  | } | 
|  |  | 
|  | // Update local variable definitions in variable map | 
|  | void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) { | 
|  | if (!BO->isAssignmentOp()) | 
|  | return; | 
|  |  | 
|  | Expr *LHSExp = BO->getLHS()->IgnoreParenCasts(); | 
|  |  | 
|  | // Update the variable map and current context. | 
|  | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHSExp)) { | 
|  | ValueDecl *VDec = DRE->getDecl(); | 
|  | if (Ctx.lookup(VDec)) { | 
|  | if (BO->getOpcode() == BO_Assign) | 
|  | Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx); | 
|  | else | 
|  | // FIXME -- handle compound assignment operators | 
|  | Ctx = VMap->clearDefinition(VDec, Ctx); | 
|  | VMap->saveContext(BO, Ctx); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Computes the intersection of two contexts.  The intersection is the | 
|  | // set of variables which have the same definition in both contexts; | 
|  | // variables with different definitions are discarded. | 
|  | LocalVariableMap::Context | 
|  | LocalVariableMap::intersectContexts(Context C1, Context C2) { | 
|  | Context Result = C1; | 
|  | for (const auto &P : C1) { | 
|  | const NamedDecl *Dec = P.first; | 
|  | const unsigned *i2 = C2.lookup(Dec); | 
|  | if (!i2)             // variable doesn't exist on second path | 
|  | Result = removeDefinition(Dec, Result); | 
|  | else if (*i2 != P.second)  // variable exists, but has different definition | 
|  | Result = clearDefinition(Dec, Result); | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // For every variable in C, create a new variable that refers to the | 
|  | // definition in C.  Return a new context that contains these new variables. | 
|  | // (We use this for a naive implementation of SSA on loop back-edges.) | 
|  | LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) { | 
|  | Context Result = getEmptyContext(); | 
|  | for (const auto &P : C) | 
|  | Result = addReference(P.first, P.second, Result); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | // This routine also takes the intersection of C1 and C2, but it does so by | 
|  | // altering the VarDefinitions.  C1 must be the result of an earlier call to | 
|  | // createReferenceContext. | 
|  | void LocalVariableMap::intersectBackEdge(Context C1, Context C2) { | 
|  | for (const auto &P : C1) { | 
|  | unsigned i1 = P.second; | 
|  | VarDefinition *VDef = &VarDefinitions[i1]; | 
|  | assert(VDef->isReference()); | 
|  |  | 
|  | const unsigned *i2 = C2.lookup(P.first); | 
|  | if (!i2 || (*i2 != i1)) | 
|  | VDef->Ref = 0;    // Mark this variable as undefined | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Traverse the CFG in topological order, so all predecessors of a block | 
|  | // (excluding back-edges) are visited before the block itself.  At | 
|  | // each point in the code, we calculate a Context, which holds the set of | 
|  | // variable definitions which are visible at that point in execution. | 
|  | // Visible variables are mapped to their definitions using an array that | 
|  | // contains all definitions. | 
|  | // | 
|  | // At join points in the CFG, the set is computed as the intersection of | 
|  | // the incoming sets along each edge, E.g. | 
|  | // | 
|  | //                       { Context                 | VarDefinitions } | 
|  | //   int x = 0;          { x -> x1                 | x1 = 0 } | 
|  | //   int y = 0;          { x -> x1, y -> y1        | y1 = 0, x1 = 0 } | 
|  | //   if (b) x = 1;       { x -> x2, y -> y1        | x2 = 1, y1 = 0, ... } | 
|  | //   else   x = 2;       { x -> x3, y -> y1        | x3 = 2, x2 = 1, ... } | 
|  | //   ...                 { y -> y1  (x is unknown) | x3 = 2, x2 = 1, ... } | 
|  | // | 
|  | // This is essentially a simpler and more naive version of the standard SSA | 
|  | // algorithm.  Those definitions that remain in the intersection are from blocks | 
|  | // that strictly dominate the current block.  We do not bother to insert proper | 
|  | // phi nodes, because they are not used in our analysis; instead, wherever | 
|  | // a phi node would be required, we simply remove that definition from the | 
|  | // context (E.g. x above). | 
|  | // | 
|  | // The initial traversal does not capture back-edges, so those need to be | 
|  | // handled on a separate pass.  Whenever the first pass encounters an | 
|  | // incoming back edge, it duplicates the context, creating new definitions | 
|  | // that refer back to the originals.  (These correspond to places where SSA | 
|  | // might have to insert a phi node.)  On the second pass, these definitions are | 
|  | // set to NULL if the variable has changed on the back-edge (i.e. a phi | 
|  | // node was actually required.)  E.g. | 
|  | // | 
|  | //                       { Context           | VarDefinitions } | 
|  | //   int x = 0, y = 0;   { x -> x1, y -> y1  | y1 = 0, x1 = 0 } | 
|  | //   while (b)           { x -> x2, y -> y1  | [1st:] x2=x1; [2nd:] x2=NULL; } | 
|  | //     x = x+1;          { x -> x3, y -> y1  | x3 = x2 + 1, ... } | 
|  | //   ...                 { y -> y1           | x3 = 2, x2 = 1, ... } | 
|  | // | 
|  | void LocalVariableMap::traverseCFG(CFG *CFGraph, | 
|  | const PostOrderCFGView *SortedGraph, | 
|  | std::vector<CFGBlockInfo> &BlockInfo) { | 
|  | PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); | 
|  |  | 
|  | CtxIndices.resize(CFGraph->getNumBlockIDs()); | 
|  |  | 
|  | for (const auto *CurrBlock : *SortedGraph) { | 
|  | int CurrBlockID = CurrBlock->getBlockID(); | 
|  | CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; | 
|  |  | 
|  | VisitedBlocks.insert(CurrBlock); | 
|  |  | 
|  | // Calculate the entry context for the current block | 
|  | bool HasBackEdges = false; | 
|  | bool CtxInit = true; | 
|  | for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), | 
|  | PE  = CurrBlock->pred_end(); PI != PE; ++PI) { | 
|  | // if *PI -> CurrBlock is a back edge, so skip it | 
|  | if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) { | 
|  | HasBackEdges = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | int PrevBlockID = (*PI)->getBlockID(); | 
|  | CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; | 
|  |  | 
|  | if (CtxInit) { | 
|  | CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext; | 
|  | CtxInit = false; | 
|  | } | 
|  | else { | 
|  | CurrBlockInfo->EntryContext = | 
|  | intersectContexts(CurrBlockInfo->EntryContext, | 
|  | PrevBlockInfo->ExitContext); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Duplicate the context if we have back-edges, so we can call | 
|  | // intersectBackEdges later. | 
|  | if (HasBackEdges) | 
|  | CurrBlockInfo->EntryContext = | 
|  | createReferenceContext(CurrBlockInfo->EntryContext); | 
|  |  | 
|  | // Create a starting context index for the current block | 
|  | saveContext(nullptr, CurrBlockInfo->EntryContext); | 
|  | CurrBlockInfo->EntryIndex = getContextIndex(); | 
|  |  | 
|  | // Visit all the statements in the basic block. | 
|  | VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext); | 
|  | for (CFGBlock::const_iterator BI = CurrBlock->begin(), | 
|  | BE = CurrBlock->end(); BI != BE; ++BI) { | 
|  | switch (BI->getKind()) { | 
|  | case CFGElement::Statement: { | 
|  | CFGStmt CS = BI->castAs<CFGStmt>(); | 
|  | VMapBuilder.Visit(const_cast<Stmt*>(CS.getStmt())); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | CurrBlockInfo->ExitContext = VMapBuilder.Ctx; | 
|  |  | 
|  | // Mark variables on back edges as "unknown" if they've been changed. | 
|  | for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), | 
|  | SE  = CurrBlock->succ_end(); SI != SE; ++SI) { | 
|  | // if CurrBlock -> *SI is *not* a back edge | 
|  | if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) | 
|  | continue; | 
|  |  | 
|  | CFGBlock *FirstLoopBlock = *SI; | 
|  | Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext; | 
|  | Context LoopEnd   = CurrBlockInfo->ExitContext; | 
|  | intersectBackEdge(LoopBegin, LoopEnd); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Put an extra entry at the end of the indexed context array | 
|  | unsigned exitID = CFGraph->getExit().getBlockID(); | 
|  | saveContext(nullptr, BlockInfo[exitID].ExitContext); | 
|  | } | 
|  |  | 
|  | /// Find the appropriate source locations to use when producing diagnostics for | 
|  | /// each block in the CFG. | 
|  | static void findBlockLocations(CFG *CFGraph, | 
|  | const PostOrderCFGView *SortedGraph, | 
|  | std::vector<CFGBlockInfo> &BlockInfo) { | 
|  | for (const auto *CurrBlock : *SortedGraph) { | 
|  | CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()]; | 
|  |  | 
|  | // Find the source location of the last statement in the block, if the | 
|  | // block is not empty. | 
|  | if (const Stmt *S = CurrBlock->getTerminator()) { | 
|  | CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart(); | 
|  | } else { | 
|  | for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(), | 
|  | BE = CurrBlock->rend(); BI != BE; ++BI) { | 
|  | // FIXME: Handle other CFGElement kinds. | 
|  | if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) { | 
|  | CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CurrBlockInfo->ExitLoc.isValid()) { | 
|  | // This block contains at least one statement. Find the source location | 
|  | // of the first statement in the block. | 
|  | for (CFGBlock::const_iterator BI = CurrBlock->begin(), | 
|  | BE = CurrBlock->end(); BI != BE; ++BI) { | 
|  | // FIXME: Handle other CFGElement kinds. | 
|  | if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) { | 
|  | CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() && | 
|  | CurrBlock != &CFGraph->getExit()) { | 
|  | // The block is empty, and has a single predecessor. Use its exit | 
|  | // location. | 
|  | CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = | 
|  | BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | class LockableFactEntry : public FactEntry { | 
|  | private: | 
|  | bool Managed; ///<  managed by ScopedLockable object | 
|  |  | 
|  | public: | 
|  | LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc, | 
|  | bool Mng = false, bool Asrt = false) | 
|  | : FactEntry(CE, LK, Loc, Asrt), Managed(Mng) {} | 
|  |  | 
|  | void | 
|  | handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, | 
|  | SourceLocation JoinLoc, LockErrorKind LEK, | 
|  | ThreadSafetyHandler &Handler) const override { | 
|  | if (!Managed && !asserted() && !negative() && !isUniversal()) { | 
|  | Handler.handleMutexHeldEndOfScope("mutex", toString(), loc(), JoinLoc, | 
|  | LEK); | 
|  | } | 
|  | } | 
|  |  | 
|  | void handleUnlock(FactSet &FSet, FactManager &FactMan, | 
|  | const CapabilityExpr &Cp, SourceLocation UnlockLoc, | 
|  | bool FullyRemove, ThreadSafetyHandler &Handler, | 
|  | StringRef DiagKind) const override { | 
|  | FSet.removeLock(FactMan, Cp); | 
|  | if (!Cp.negative()) { | 
|  | FSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>( | 
|  | !Cp, LK_Exclusive, UnlockLoc)); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | class ScopedLockableFactEntry : public FactEntry { | 
|  | private: | 
|  | SmallVector<const til::SExpr *, 4> UnderlyingMutexes; | 
|  |  | 
|  | public: | 
|  | ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc, | 
|  | const CapExprSet &Excl, const CapExprSet &Shrd) | 
|  | : FactEntry(CE, LK_Exclusive, Loc, false) { | 
|  | for (const auto &M : Excl) | 
|  | UnderlyingMutexes.push_back(M.sexpr()); | 
|  | for (const auto &M : Shrd) | 
|  | UnderlyingMutexes.push_back(M.sexpr()); | 
|  | } | 
|  |  | 
|  | void | 
|  | handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan, | 
|  | SourceLocation JoinLoc, LockErrorKind LEK, | 
|  | ThreadSafetyHandler &Handler) const override { | 
|  | for (const til::SExpr *UnderlyingMutex : UnderlyingMutexes) { | 
|  | if (FSet.findLock(FactMan, CapabilityExpr(UnderlyingMutex, false))) { | 
|  | // If this scoped lock manages another mutex, and if the underlying | 
|  | // mutex is still held, then warn about the underlying mutex. | 
|  | Handler.handleMutexHeldEndOfScope( | 
|  | "mutex", sx::toString(UnderlyingMutex), loc(), JoinLoc, LEK); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void handleUnlock(FactSet &FSet, FactManager &FactMan, | 
|  | const CapabilityExpr &Cp, SourceLocation UnlockLoc, | 
|  | bool FullyRemove, ThreadSafetyHandler &Handler, | 
|  | StringRef DiagKind) const override { | 
|  | assert(!Cp.negative() && "Managing object cannot be negative."); | 
|  | for (const til::SExpr *UnderlyingMutex : UnderlyingMutexes) { | 
|  | CapabilityExpr UnderCp(UnderlyingMutex, false); | 
|  | auto UnderEntry = llvm::make_unique<LockableFactEntry>( | 
|  | !UnderCp, LK_Exclusive, UnlockLoc); | 
|  |  | 
|  | if (FullyRemove) { | 
|  | // We're destroying the managing object. | 
|  | // Remove the underlying mutex if it exists; but don't warn. | 
|  | if (FSet.findLock(FactMan, UnderCp)) { | 
|  | FSet.removeLock(FactMan, UnderCp); | 
|  | FSet.addLock(FactMan, std::move(UnderEntry)); | 
|  | } | 
|  | } else { | 
|  | // We're releasing the underlying mutex, but not destroying the | 
|  | // managing object.  Warn on dual release. | 
|  | if (!FSet.findLock(FactMan, UnderCp)) { | 
|  | Handler.handleUnmatchedUnlock(DiagKind, UnderCp.toString(), | 
|  | UnlockLoc); | 
|  | } | 
|  | FSet.removeLock(FactMan, UnderCp); | 
|  | FSet.addLock(FactMan, std::move(UnderEntry)); | 
|  | } | 
|  | } | 
|  | if (FullyRemove) | 
|  | FSet.removeLock(FactMan, Cp); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// \brief Class which implements the core thread safety analysis routines. | 
|  | class ThreadSafetyAnalyzer { | 
|  | friend class BuildLockset; | 
|  | friend class threadSafety::BeforeSet; | 
|  |  | 
|  | llvm::BumpPtrAllocator Bpa; | 
|  | threadSafety::til::MemRegionRef Arena; | 
|  | threadSafety::SExprBuilder SxBuilder; | 
|  |  | 
|  | ThreadSafetyHandler       &Handler; | 
|  | const CXXMethodDecl       *CurrentMethod; | 
|  | LocalVariableMap          LocalVarMap; | 
|  | FactManager               FactMan; | 
|  | std::vector<CFGBlockInfo> BlockInfo; | 
|  |  | 
|  | BeforeSet* GlobalBeforeSet; | 
|  |  | 
|  | public: | 
|  | ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset) | 
|  | : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {} | 
|  |  | 
|  | bool inCurrentScope(const CapabilityExpr &CapE); | 
|  |  | 
|  | void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry, | 
|  | StringRef DiagKind, bool ReqAttr = false); | 
|  | void removeLock(FactSet &FSet, const CapabilityExpr &CapE, | 
|  | SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind, | 
|  | StringRef DiagKind); | 
|  |  | 
|  | template <typename AttrType> | 
|  | void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, Expr *Exp, | 
|  | const NamedDecl *D, VarDecl *SelfDecl = nullptr); | 
|  |  | 
|  | template <class AttrType> | 
|  | void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, Expr *Exp, | 
|  | const NamedDecl *D, | 
|  | const CFGBlock *PredBlock, const CFGBlock *CurrBlock, | 
|  | Expr *BrE, bool Neg); | 
|  |  | 
|  | const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C, | 
|  | bool &Negate); | 
|  |  | 
|  | void getEdgeLockset(FactSet &Result, const FactSet &ExitSet, | 
|  | const CFGBlock* PredBlock, | 
|  | const CFGBlock *CurrBlock); | 
|  |  | 
|  | void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2, | 
|  | SourceLocation JoinLoc, | 
|  | LockErrorKind LEK1, LockErrorKind LEK2, | 
|  | bool Modify=true); | 
|  |  | 
|  | void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2, | 
|  | SourceLocation JoinLoc, LockErrorKind LEK1, | 
|  | bool Modify=true) { | 
|  | intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify); | 
|  | } | 
|  |  | 
|  | void runAnalysis(AnalysisDeclContext &AC); | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | /// Process acquired_before and acquired_after attributes on Vd. | 
|  | BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd, | 
|  | ThreadSafetyAnalyzer& Analyzer) { | 
|  | // Create a new entry for Vd. | 
|  | BeforeInfo *Info = nullptr; | 
|  | { | 
|  | // Keep InfoPtr in its own scope in case BMap is modified later and the | 
|  | // reference becomes invalid. | 
|  | std::unique_ptr<BeforeInfo> &InfoPtr = BMap[Vd]; | 
|  | if (!InfoPtr) | 
|  | InfoPtr.reset(new BeforeInfo()); | 
|  | Info = InfoPtr.get(); | 
|  | } | 
|  |  | 
|  | for (Attr* At : Vd->attrs()) { | 
|  | switch (At->getKind()) { | 
|  | case attr::AcquiredBefore: { | 
|  | auto *A = cast<AcquiredBeforeAttr>(At); | 
|  |  | 
|  | // Read exprs from the attribute, and add them to BeforeVect. | 
|  | for (const auto *Arg : A->args()) { | 
|  | CapabilityExpr Cp = | 
|  | Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr); | 
|  | if (const ValueDecl *Cpvd = Cp.valueDecl()) { | 
|  | Info->Vect.push_back(Cpvd); | 
|  | auto It = BMap.find(Cpvd); | 
|  | if (It == BMap.end()) | 
|  | insertAttrExprs(Cpvd, Analyzer); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case attr::AcquiredAfter: { | 
|  | auto *A = cast<AcquiredAfterAttr>(At); | 
|  |  | 
|  | // Read exprs from the attribute, and add them to BeforeVect. | 
|  | for (const auto *Arg : A->args()) { | 
|  | CapabilityExpr Cp = | 
|  | Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr); | 
|  | if (const ValueDecl *ArgVd = Cp.valueDecl()) { | 
|  | // Get entry for mutex listed in attribute | 
|  | BeforeInfo *ArgInfo = getBeforeInfoForDecl(ArgVd, Analyzer); | 
|  | ArgInfo->Vect.push_back(Vd); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Info; | 
|  | } | 
|  |  | 
|  | BeforeSet::BeforeInfo * | 
|  | BeforeSet::getBeforeInfoForDecl(const ValueDecl *Vd, | 
|  | ThreadSafetyAnalyzer &Analyzer) { | 
|  | auto It = BMap.find(Vd); | 
|  | BeforeInfo *Info = nullptr; | 
|  | if (It == BMap.end()) | 
|  | Info = insertAttrExprs(Vd, Analyzer); | 
|  | else | 
|  | Info = It->second.get(); | 
|  | assert(Info && "BMap contained nullptr?"); | 
|  | return Info; | 
|  | } | 
|  |  | 
|  | /// Return true if any mutexes in FSet are in the acquired_before set of Vd. | 
|  | void BeforeSet::checkBeforeAfter(const ValueDecl* StartVd, | 
|  | const FactSet& FSet, | 
|  | ThreadSafetyAnalyzer& Analyzer, | 
|  | SourceLocation Loc, StringRef CapKind) { | 
|  | SmallVector<BeforeInfo*, 8> InfoVect; | 
|  |  | 
|  | // Do a depth-first traversal of Vd. | 
|  | // Return true if there are cycles. | 
|  | std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) { | 
|  | if (!Vd) | 
|  | return false; | 
|  |  | 
|  | BeforeSet::BeforeInfo *Info = getBeforeInfoForDecl(Vd, Analyzer); | 
|  |  | 
|  | if (Info->Visited == 1) | 
|  | return true; | 
|  |  | 
|  | if (Info->Visited == 2) | 
|  | return false; | 
|  |  | 
|  | if (Info->Vect.empty()) | 
|  | return false; | 
|  |  | 
|  | InfoVect.push_back(Info); | 
|  | Info->Visited = 1; | 
|  | for (auto *Vdb : Info->Vect) { | 
|  | // Exclude mutexes in our immediate before set. | 
|  | if (FSet.containsMutexDecl(Analyzer.FactMan, Vdb)) { | 
|  | StringRef L1 = StartVd->getName(); | 
|  | StringRef L2 = Vdb->getName(); | 
|  | Analyzer.Handler.handleLockAcquiredBefore(CapKind, L1, L2, Loc); | 
|  | } | 
|  | // Transitively search other before sets, and warn on cycles. | 
|  | if (traverse(Vdb)) { | 
|  | if (CycMap.find(Vd) == CycMap.end()) { | 
|  | CycMap.insert(std::make_pair(Vd, true)); | 
|  | StringRef L1 = Vd->getName(); | 
|  | Analyzer.Handler.handleBeforeAfterCycle(L1, Vd->getLocation()); | 
|  | } | 
|  | } | 
|  | } | 
|  | Info->Visited = 2; | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | traverse(StartVd); | 
|  |  | 
|  | for (auto* Info : InfoVect) | 
|  | Info->Visited = 0; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs. | 
|  | static const ValueDecl *getValueDecl(const Expr *Exp) { | 
|  | if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp)) | 
|  | return getValueDecl(CE->getSubExpr()); | 
|  |  | 
|  | if (const auto *DR = dyn_cast<DeclRefExpr>(Exp)) | 
|  | return DR->getDecl(); | 
|  |  | 
|  | if (const auto *ME = dyn_cast<MemberExpr>(Exp)) | 
|  | return ME->getMemberDecl(); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | template <typename Ty> | 
|  | class has_arg_iterator_range { | 
|  | typedef char yes[1]; | 
|  | typedef char no[2]; | 
|  |  | 
|  | template <typename Inner> | 
|  | static yes& test(Inner *I, decltype(I->args()) * = nullptr); | 
|  |  | 
|  | template <typename> | 
|  | static no& test(...); | 
|  |  | 
|  | public: | 
|  | static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes); | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | static StringRef ClassifyDiagnostic(const CapabilityAttr *A) { | 
|  | return A->getName(); | 
|  | } | 
|  |  | 
|  | static StringRef ClassifyDiagnostic(QualType VDT) { | 
|  | // We need to look at the declaration of the type of the value to determine | 
|  | // which it is. The type should either be a record or a typedef, or a pointer | 
|  | // or reference thereof. | 
|  | if (const auto *RT = VDT->getAs<RecordType>()) { | 
|  | if (const auto *RD = RT->getDecl()) | 
|  | if (const auto *CA = RD->getAttr<CapabilityAttr>()) | 
|  | return ClassifyDiagnostic(CA); | 
|  | } else if (const auto *TT = VDT->getAs<TypedefType>()) { | 
|  | if (const auto *TD = TT->getDecl()) | 
|  | if (const auto *CA = TD->getAttr<CapabilityAttr>()) | 
|  | return ClassifyDiagnostic(CA); | 
|  | } else if (VDT->isPointerType() || VDT->isReferenceType()) | 
|  | return ClassifyDiagnostic(VDT->getPointeeType()); | 
|  |  | 
|  | return "mutex"; | 
|  | } | 
|  |  | 
|  | static StringRef ClassifyDiagnostic(const ValueDecl *VD) { | 
|  | assert(VD && "No ValueDecl passed"); | 
|  |  | 
|  | // The ValueDecl is the declaration of a mutex or role (hopefully). | 
|  | return ClassifyDiagnostic(VD->getType()); | 
|  | } | 
|  |  | 
|  | template <typename AttrTy> | 
|  | static typename std::enable_if<!has_arg_iterator_range<AttrTy>::value, | 
|  | StringRef>::type | 
|  | ClassifyDiagnostic(const AttrTy *A) { | 
|  | if (const ValueDecl *VD = getValueDecl(A->getArg())) | 
|  | return ClassifyDiagnostic(VD); | 
|  | return "mutex"; | 
|  | } | 
|  |  | 
|  | template <typename AttrTy> | 
|  | static typename std::enable_if<has_arg_iterator_range<AttrTy>::value, | 
|  | StringRef>::type | 
|  | ClassifyDiagnostic(const AttrTy *A) { | 
|  | for (const auto *Arg : A->args()) { | 
|  | if (const ValueDecl *VD = getValueDecl(Arg)) | 
|  | return ClassifyDiagnostic(VD); | 
|  | } | 
|  | return "mutex"; | 
|  | } | 
|  |  | 
|  |  | 
|  | inline bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) { | 
|  | if (!CurrentMethod) | 
|  | return false; | 
|  | if (auto *P = dyn_cast_or_null<til::Project>(CapE.sexpr())) { | 
|  | auto *VD = P->clangDecl(); | 
|  | if (VD) | 
|  | return VD->getDeclContext() == CurrentMethod->getDeclContext(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// \brief Add a new lock to the lockset, warning if the lock is already there. | 
|  | /// \param ReqAttr -- true if this is part of an initial Requires attribute. | 
|  | void ThreadSafetyAnalyzer::addLock(FactSet &FSet, | 
|  | std::unique_ptr<FactEntry> Entry, | 
|  | StringRef DiagKind, bool ReqAttr) { | 
|  | if (Entry->shouldIgnore()) | 
|  | return; | 
|  |  | 
|  | if (!ReqAttr && !Entry->negative()) { | 
|  | // look for the negative capability, and remove it from the fact set. | 
|  | CapabilityExpr NegC = !*Entry; | 
|  | FactEntry *Nen = FSet.findLock(FactMan, NegC); | 
|  | if (Nen) { | 
|  | FSet.removeLock(FactMan, NegC); | 
|  | } | 
|  | else { | 
|  | if (inCurrentScope(*Entry) && !Entry->asserted()) | 
|  | Handler.handleNegativeNotHeld(DiagKind, Entry->toString(), | 
|  | NegC.toString(), Entry->loc()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check before/after constraints | 
|  | if (Handler.issueBetaWarnings() && | 
|  | !Entry->asserted() && !Entry->declared()) { | 
|  | GlobalBeforeSet->checkBeforeAfter(Entry->valueDecl(), FSet, *this, | 
|  | Entry->loc(), DiagKind); | 
|  | } | 
|  |  | 
|  | // FIXME: Don't always warn when we have support for reentrant locks. | 
|  | if (FSet.findLock(FactMan, *Entry)) { | 
|  | if (!Entry->asserted()) | 
|  | Handler.handleDoubleLock(DiagKind, Entry->toString(), Entry->loc()); | 
|  | } else { | 
|  | FSet.addLock(FactMan, std::move(Entry)); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// \brief Remove a lock from the lockset, warning if the lock is not there. | 
|  | /// \param UnlockLoc The source location of the unlock (only used in error msg) | 
|  | void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp, | 
|  | SourceLocation UnlockLoc, | 
|  | bool FullyRemove, LockKind ReceivedKind, | 
|  | StringRef DiagKind) { | 
|  | if (Cp.shouldIgnore()) | 
|  | return; | 
|  |  | 
|  | const FactEntry *LDat = FSet.findLock(FactMan, Cp); | 
|  | if (!LDat) { | 
|  | Handler.handleUnmatchedUnlock(DiagKind, Cp.toString(), UnlockLoc); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Generic lock removal doesn't care about lock kind mismatches, but | 
|  | // otherwise diagnose when the lock kinds are mismatched. | 
|  | if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) { | 
|  | Handler.handleIncorrectUnlockKind(DiagKind, Cp.toString(), | 
|  | LDat->kind(), ReceivedKind, UnlockLoc); | 
|  | } | 
|  |  | 
|  | LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler, | 
|  | DiagKind); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// \brief Extract the list of mutexIDs from the attribute on an expression, | 
|  | /// and push them onto Mtxs, discarding any duplicates. | 
|  | template <typename AttrType> | 
|  | void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, | 
|  | Expr *Exp, const NamedDecl *D, | 
|  | VarDecl *SelfDecl) { | 
|  | if (Attr->args_size() == 0) { | 
|  | // The mutex held is the "this" object. | 
|  | CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, SelfDecl); | 
|  | if (Cp.isInvalid()) { | 
|  | warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr)); | 
|  | return; | 
|  | } | 
|  | //else | 
|  | if (!Cp.shouldIgnore()) | 
|  | Mtxs.push_back_nodup(Cp); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (const auto *Arg : Attr->args()) { | 
|  | CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, SelfDecl); | 
|  | if (Cp.isInvalid()) { | 
|  | warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr)); | 
|  | continue; | 
|  | } | 
|  | //else | 
|  | if (!Cp.shouldIgnore()) | 
|  | Mtxs.push_back_nodup(Cp); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// \brief Extract the list of mutexIDs from a trylock attribute.  If the | 
|  | /// trylock applies to the given edge, then push them onto Mtxs, discarding | 
|  | /// any duplicates. | 
|  | template <class AttrType> | 
|  | void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, | 
|  | Expr *Exp, const NamedDecl *D, | 
|  | const CFGBlock *PredBlock, | 
|  | const CFGBlock *CurrBlock, | 
|  | Expr *BrE, bool Neg) { | 
|  | // Find out which branch has the lock | 
|  | bool branch = false; | 
|  | if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE)) | 
|  | branch = BLE->getValue(); | 
|  | else if (IntegerLiteral *ILE = dyn_cast_or_null<IntegerLiteral>(BrE)) | 
|  | branch = ILE->getValue().getBoolValue(); | 
|  |  | 
|  | int branchnum = branch ? 0 : 1; | 
|  | if (Neg) | 
|  | branchnum = !branchnum; | 
|  |  | 
|  | // If we've taken the trylock branch, then add the lock | 
|  | int i = 0; | 
|  | for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(), | 
|  | SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) { | 
|  | if (*SI == CurrBlock && i == branchnum) | 
|  | getMutexIDs(Mtxs, Attr, Exp, D); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool getStaticBooleanValue(Expr *E, bool &TCond) { | 
|  | if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) { | 
|  | TCond = false; | 
|  | return true; | 
|  | } else if (CXXBoolLiteralExpr *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) { | 
|  | TCond = BLE->getValue(); | 
|  | return true; | 
|  | } else if (IntegerLiteral *ILE = dyn_cast<IntegerLiteral>(E)) { | 
|  | TCond = ILE->getValue().getBoolValue(); | 
|  | return true; | 
|  | } else if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) { | 
|  | return getStaticBooleanValue(CE->getSubExpr(), TCond); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | // If Cond can be traced back to a function call, return the call expression. | 
|  | // The negate variable should be called with false, and will be set to true | 
|  | // if the function call is negated, e.g. if (!mu.tryLock(...)) | 
|  | const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond, | 
|  | LocalVarContext C, | 
|  | bool &Negate) { | 
|  | if (!Cond) | 
|  | return nullptr; | 
|  |  | 
|  | if (const CallExpr *CallExp = dyn_cast<CallExpr>(Cond)) { | 
|  | return CallExp; | 
|  | } | 
|  | else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond)) { | 
|  | return getTrylockCallExpr(PE->getSubExpr(), C, Negate); | 
|  | } | 
|  | else if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Cond)) { | 
|  | return getTrylockCallExpr(CE->getSubExpr(), C, Negate); | 
|  | } | 
|  | else if (const ExprWithCleanups* EWC = dyn_cast<ExprWithCleanups>(Cond)) { | 
|  | return getTrylockCallExpr(EWC->getSubExpr(), C, Negate); | 
|  | } | 
|  | else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Cond)) { | 
|  | const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C); | 
|  | return getTrylockCallExpr(E, C, Negate); | 
|  | } | 
|  | else if (const UnaryOperator *UOP = dyn_cast<UnaryOperator>(Cond)) { | 
|  | if (UOP->getOpcode() == UO_LNot) { | 
|  | Negate = !Negate; | 
|  | return getTrylockCallExpr(UOP->getSubExpr(), C, Negate); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  | else if (const BinaryOperator *BOP = dyn_cast<BinaryOperator>(Cond)) { | 
|  | if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) { | 
|  | if (BOP->getOpcode() == BO_NE) | 
|  | Negate = !Negate; | 
|  |  | 
|  | bool TCond = false; | 
|  | if (getStaticBooleanValue(BOP->getRHS(), TCond)) { | 
|  | if (!TCond) Negate = !Negate; | 
|  | return getTrylockCallExpr(BOP->getLHS(), C, Negate); | 
|  | } | 
|  | TCond = false; | 
|  | if (getStaticBooleanValue(BOP->getLHS(), TCond)) { | 
|  | if (!TCond) Negate = !Negate; | 
|  | return getTrylockCallExpr(BOP->getRHS(), C, Negate); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  | if (BOP->getOpcode() == BO_LAnd) { | 
|  | // LHS must have been evaluated in a different block. | 
|  | return getTrylockCallExpr(BOP->getRHS(), C, Negate); | 
|  | } | 
|  | if (BOP->getOpcode() == BO_LOr) { | 
|  | return getTrylockCallExpr(BOP->getRHS(), C, Negate); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// \brief Find the lockset that holds on the edge between PredBlock | 
|  | /// and CurrBlock.  The edge set is the exit set of PredBlock (passed | 
|  | /// as the ExitSet parameter) plus any trylocks, which are conditionally held. | 
|  | void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result, | 
|  | const FactSet &ExitSet, | 
|  | const CFGBlock *PredBlock, | 
|  | const CFGBlock *CurrBlock) { | 
|  | Result = ExitSet; | 
|  |  | 
|  | const Stmt *Cond = PredBlock->getTerminatorCondition(); | 
|  | if (!Cond) | 
|  | return; | 
|  |  | 
|  | bool Negate = false; | 
|  | const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()]; | 
|  | const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext; | 
|  | StringRef CapDiagKind = "mutex"; | 
|  |  | 
|  | CallExpr *Exp = | 
|  | const_cast<CallExpr*>(getTrylockCallExpr(Cond, LVarCtx, Negate)); | 
|  | if (!Exp) | 
|  | return; | 
|  |  | 
|  | NamedDecl *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); | 
|  | if(!FunDecl || !FunDecl->hasAttrs()) | 
|  | return; | 
|  |  | 
|  | CapExprSet ExclusiveLocksToAdd; | 
|  | CapExprSet SharedLocksToAdd; | 
|  |  | 
|  | // If the condition is a call to a Trylock function, then grab the attributes | 
|  | for (auto *Attr : FunDecl->attrs()) { | 
|  | switch (Attr->getKind()) { | 
|  | case attr::ExclusiveTrylockFunction: { | 
|  | ExclusiveTrylockFunctionAttr *A = | 
|  | cast<ExclusiveTrylockFunctionAttr>(Attr); | 
|  | getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl, | 
|  | PredBlock, CurrBlock, A->getSuccessValue(), Negate); | 
|  | CapDiagKind = ClassifyDiagnostic(A); | 
|  | break; | 
|  | } | 
|  | case attr::SharedTrylockFunction: { | 
|  | SharedTrylockFunctionAttr *A = | 
|  | cast<SharedTrylockFunctionAttr>(Attr); | 
|  | getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl, | 
|  | PredBlock, CurrBlock, A->getSuccessValue(), Negate); | 
|  | CapDiagKind = ClassifyDiagnostic(A); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add and remove locks. | 
|  | SourceLocation Loc = Exp->getExprLoc(); | 
|  | for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd) | 
|  | addLock(Result, llvm::make_unique<LockableFactEntry>(ExclusiveLockToAdd, | 
|  | LK_Exclusive, Loc), | 
|  | CapDiagKind); | 
|  | for (const auto &SharedLockToAdd : SharedLocksToAdd) | 
|  | addLock(Result, llvm::make_unique<LockableFactEntry>(SharedLockToAdd, | 
|  | LK_Shared, Loc), | 
|  | CapDiagKind); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// \brief We use this class to visit different types of expressions in | 
|  | /// CFGBlocks, and build up the lockset. | 
|  | /// An expression may cause us to add or remove locks from the lockset, or else | 
|  | /// output error messages related to missing locks. | 
|  | /// FIXME: In future, we may be able to not inherit from a visitor. | 
|  | class BuildLockset : public StmtVisitor<BuildLockset> { | 
|  | friend class ThreadSafetyAnalyzer; | 
|  |  | 
|  | ThreadSafetyAnalyzer *Analyzer; | 
|  | FactSet FSet; | 
|  | LocalVariableMap::Context LVarCtx; | 
|  | unsigned CtxIndex; | 
|  |  | 
|  | // helper functions | 
|  | void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK, | 
|  | Expr *MutexExp, ProtectedOperationKind POK, | 
|  | StringRef DiagKind, SourceLocation Loc); | 
|  | void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp, | 
|  | StringRef DiagKind); | 
|  |  | 
|  | void checkAccess(const Expr *Exp, AccessKind AK, | 
|  | ProtectedOperationKind POK = POK_VarAccess); | 
|  | void checkPtAccess(const Expr *Exp, AccessKind AK, | 
|  | ProtectedOperationKind POK = POK_VarAccess); | 
|  |  | 
|  | void handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD = nullptr); | 
|  |  | 
|  | public: | 
|  | BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info) | 
|  | : StmtVisitor<BuildLockset>(), | 
|  | Analyzer(Anlzr), | 
|  | FSet(Info.EntrySet), | 
|  | LVarCtx(Info.EntryContext), | 
|  | CtxIndex(Info.EntryIndex) | 
|  | {} | 
|  |  | 
|  | void VisitUnaryOperator(UnaryOperator *UO); | 
|  | void VisitBinaryOperator(BinaryOperator *BO); | 
|  | void VisitCastExpr(CastExpr *CE); | 
|  | void VisitCallExpr(CallExpr *Exp); | 
|  | void VisitCXXConstructExpr(CXXConstructExpr *Exp); | 
|  | void VisitDeclStmt(DeclStmt *S); | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | /// \brief Warn if the LSet does not contain a lock sufficient to protect access | 
|  | /// of at least the passed in AccessKind. | 
|  | void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, | 
|  | AccessKind AK, Expr *MutexExp, | 
|  | ProtectedOperationKind POK, | 
|  | StringRef DiagKind, SourceLocation Loc) { | 
|  | LockKind LK = getLockKindFromAccessKind(AK); | 
|  |  | 
|  | CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp); | 
|  | if (Cp.isInvalid()) { | 
|  | warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind); | 
|  | return; | 
|  | } else if (Cp.shouldIgnore()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Cp.negative()) { | 
|  | // Negative capabilities act like locks excluded | 
|  | FactEntry *LDat = FSet.findLock(Analyzer->FactMan, !Cp); | 
|  | if (LDat) { | 
|  | Analyzer->Handler.handleFunExcludesLock( | 
|  | DiagKind, D->getNameAsString(), (!Cp).toString(), Loc); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If this does not refer to a negative capability in the same class, | 
|  | // then stop here. | 
|  | if (!Analyzer->inCurrentScope(Cp)) | 
|  | return; | 
|  |  | 
|  | // Otherwise the negative requirement must be propagated to the caller. | 
|  | LDat = FSet.findLock(Analyzer->FactMan, Cp); | 
|  | if (!LDat) { | 
|  | Analyzer->Handler.handleMutexNotHeld("", D, POK, Cp.toString(), | 
|  | LK_Shared, Loc); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | FactEntry* LDat = FSet.findLockUniv(Analyzer->FactMan, Cp); | 
|  | bool NoError = true; | 
|  | if (!LDat) { | 
|  | // No exact match found.  Look for a partial match. | 
|  | LDat = FSet.findPartialMatch(Analyzer->FactMan, Cp); | 
|  | if (LDat) { | 
|  | // Warn that there's no precise match. | 
|  | std::string PartMatchStr = LDat->toString(); | 
|  | StringRef   PartMatchName(PartMatchStr); | 
|  | Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), | 
|  | LK, Loc, &PartMatchName); | 
|  | } else { | 
|  | // Warn that there's no match at all. | 
|  | Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), | 
|  | LK, Loc); | 
|  | } | 
|  | NoError = false; | 
|  | } | 
|  | // Make sure the mutex we found is the right kind. | 
|  | if (NoError && LDat && !LDat->isAtLeast(LK)) { | 
|  | Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(), | 
|  | LK, Loc); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Warn if the LSet contains the given lock. | 
|  | void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, | 
|  | Expr *MutexExp, StringRef DiagKind) { | 
|  | CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp); | 
|  | if (Cp.isInvalid()) { | 
|  | warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind); | 
|  | return; | 
|  | } else if (Cp.shouldIgnore()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | FactEntry* LDat = FSet.findLock(Analyzer->FactMan, Cp); | 
|  | if (LDat) { | 
|  | Analyzer->Handler.handleFunExcludesLock( | 
|  | DiagKind, D->getNameAsString(), Cp.toString(), Exp->getExprLoc()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Checks guarded_by and pt_guarded_by attributes. | 
|  | /// Whenever we identify an access (read or write) to a DeclRefExpr that is | 
|  | /// marked with guarded_by, we must ensure the appropriate mutexes are held. | 
|  | /// Similarly, we check if the access is to an expression that dereferences | 
|  | /// a pointer marked with pt_guarded_by. | 
|  | void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK, | 
|  | ProtectedOperationKind POK) { | 
|  | Exp = Exp->IgnoreImplicit()->IgnoreParenCasts(); | 
|  |  | 
|  | SourceLocation Loc = Exp->getExprLoc(); | 
|  |  | 
|  | // Local variables of reference type cannot be re-assigned; | 
|  | // map them to their initializer. | 
|  | while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) { | 
|  | const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl()); | 
|  | if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) { | 
|  | if (const auto *E = VD->getInit()) { | 
|  | Exp = E; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Exp)) { | 
|  | // For dereferences | 
|  | if (UO->getOpcode() == clang::UO_Deref) | 
|  | checkPtAccess(UO->getSubExpr(), AK, POK); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (const ArraySubscriptExpr *AE = dyn_cast<ArraySubscriptExpr>(Exp)) { | 
|  | checkPtAccess(AE->getLHS(), AK, POK); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (const MemberExpr *ME = dyn_cast<MemberExpr>(Exp)) { | 
|  | if (ME->isArrow()) | 
|  | checkPtAccess(ME->getBase(), AK, POK); | 
|  | else | 
|  | checkAccess(ME->getBase(), AK, POK); | 
|  | } | 
|  |  | 
|  | const ValueDecl *D = getValueDecl(Exp); | 
|  | if (!D || !D->hasAttrs()) | 
|  | return; | 
|  |  | 
|  | if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) { | 
|  | Analyzer->Handler.handleNoMutexHeld("mutex", D, POK, AK, Loc); | 
|  | } | 
|  |  | 
|  | for (const auto *I : D->specific_attrs<GuardedByAttr>()) | 
|  | warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK, | 
|  | ClassifyDiagnostic(I), Loc); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// \brief Checks pt_guarded_by and pt_guarded_var attributes. | 
|  | /// POK is the same  operationKind that was passed to checkAccess. | 
|  | void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK, | 
|  | ProtectedOperationKind POK) { | 
|  | while (true) { | 
|  | if (const ParenExpr *PE = dyn_cast<ParenExpr>(Exp)) { | 
|  | Exp = PE->getSubExpr(); | 
|  | continue; | 
|  | } | 
|  | if (const CastExpr *CE = dyn_cast<CastExpr>(Exp)) { | 
|  | if (CE->getCastKind() == CK_ArrayToPointerDecay) { | 
|  | // If it's an actual array, and not a pointer, then it's elements | 
|  | // are protected by GUARDED_BY, not PT_GUARDED_BY; | 
|  | checkAccess(CE->getSubExpr(), AK, POK); | 
|  | return; | 
|  | } | 
|  | Exp = CE->getSubExpr(); | 
|  | continue; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Pass by reference warnings are under a different flag. | 
|  | ProtectedOperationKind PtPOK = POK_VarDereference; | 
|  | if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef; | 
|  |  | 
|  | const ValueDecl *D = getValueDecl(Exp); | 
|  | if (!D || !D->hasAttrs()) | 
|  | return; | 
|  |  | 
|  | if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) | 
|  | Analyzer->Handler.handleNoMutexHeld("mutex", D, PtPOK, AK, | 
|  | Exp->getExprLoc()); | 
|  |  | 
|  | for (auto const *I : D->specific_attrs<PtGuardedByAttr>()) | 
|  | warnIfMutexNotHeld(D, Exp, AK, I->getArg(), PtPOK, | 
|  | ClassifyDiagnostic(I), Exp->getExprLoc()); | 
|  | } | 
|  |  | 
|  | /// \brief Process a function call, method call, constructor call, | 
|  | /// or destructor call.  This involves looking at the attributes on the | 
|  | /// corresponding function/method/constructor/destructor, issuing warnings, | 
|  | /// and updating the locksets accordingly. | 
|  | /// | 
|  | /// FIXME: For classes annotated with one of the guarded annotations, we need | 
|  | /// to treat const method calls as reads and non-const method calls as writes, | 
|  | /// and check that the appropriate locks are held. Non-const method calls with | 
|  | /// the same signature as const method calls can be also treated as reads. | 
|  | /// | 
|  | void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) { | 
|  | SourceLocation Loc = Exp->getExprLoc(); | 
|  | CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd; | 
|  | CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove; | 
|  | CapExprSet ScopedExclusiveReqs, ScopedSharedReqs; | 
|  | StringRef CapDiagKind = "mutex"; | 
|  |  | 
|  | // Figure out if we're calling the constructor of scoped lockable class | 
|  | bool isScopedVar = false; | 
|  | if (VD) { | 
|  | if (const CXXConstructorDecl *CD = dyn_cast<const CXXConstructorDecl>(D)) { | 
|  | const CXXRecordDecl* PD = CD->getParent(); | 
|  | if (PD && PD->hasAttr<ScopedLockableAttr>()) | 
|  | isScopedVar = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | for(Attr *Atconst : D->attrs()) { | 
|  | Attr* At = const_cast<Attr*>(Atconst); | 
|  | switch (At->getKind()) { | 
|  | // When we encounter a lock function, we need to add the lock to our | 
|  | // lockset. | 
|  | case attr::AcquireCapability: { | 
|  | auto *A = cast<AcquireCapabilityAttr>(At); | 
|  | Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd | 
|  | : ExclusiveLocksToAdd, | 
|  | A, Exp, D, VD); | 
|  |  | 
|  | CapDiagKind = ClassifyDiagnostic(A); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // An assert will add a lock to the lockset, but will not generate | 
|  | // a warning if it is already there, and will not generate a warning | 
|  | // if it is not removed. | 
|  | case attr::AssertExclusiveLock: { | 
|  | AssertExclusiveLockAttr *A = cast<AssertExclusiveLockAttr>(At); | 
|  |  | 
|  | CapExprSet AssertLocks; | 
|  | Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); | 
|  | for (const auto &AssertLock : AssertLocks) | 
|  | Analyzer->addLock(FSet, | 
|  | llvm::make_unique<LockableFactEntry>( | 
|  | AssertLock, LK_Exclusive, Loc, false, true), | 
|  | ClassifyDiagnostic(A)); | 
|  | break; | 
|  | } | 
|  | case attr::AssertSharedLock: { | 
|  | AssertSharedLockAttr *A = cast<AssertSharedLockAttr>(At); | 
|  |  | 
|  | CapExprSet AssertLocks; | 
|  | Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); | 
|  | for (const auto &AssertLock : AssertLocks) | 
|  | Analyzer->addLock(FSet, | 
|  | llvm::make_unique<LockableFactEntry>( | 
|  | AssertLock, LK_Shared, Loc, false, true), | 
|  | ClassifyDiagnostic(A)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case attr::AssertCapability: { | 
|  | AssertCapabilityAttr *A = cast<AssertCapabilityAttr>(At); | 
|  | CapExprSet AssertLocks; | 
|  | Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); | 
|  | for (const auto &AssertLock : AssertLocks) | 
|  | Analyzer->addLock(FSet, | 
|  | llvm::make_unique<LockableFactEntry>( | 
|  | AssertLock, | 
|  | A->isShared() ? LK_Shared : LK_Exclusive, Loc, | 
|  | false, true), | 
|  | ClassifyDiagnostic(A)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // When we encounter an unlock function, we need to remove unlocked | 
|  | // mutexes from the lockset, and flag a warning if they are not there. | 
|  | case attr::ReleaseCapability: { | 
|  | auto *A = cast<ReleaseCapabilityAttr>(At); | 
|  | if (A->isGeneric()) | 
|  | Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, VD); | 
|  | else if (A->isShared()) | 
|  | Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, VD); | 
|  | else | 
|  | Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, VD); | 
|  |  | 
|  | CapDiagKind = ClassifyDiagnostic(A); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case attr::RequiresCapability: { | 
|  | RequiresCapabilityAttr *A = cast<RequiresCapabilityAttr>(At); | 
|  | for (auto *Arg : A->args()) { | 
|  | warnIfMutexNotHeld(D, Exp, A->isShared() ? AK_Read : AK_Written, Arg, | 
|  | POK_FunctionCall, ClassifyDiagnostic(A), | 
|  | Exp->getExprLoc()); | 
|  | // use for adopting a lock | 
|  | if (isScopedVar) { | 
|  | Analyzer->getMutexIDs(A->isShared() ? ScopedSharedReqs | 
|  | : ScopedExclusiveReqs, | 
|  | A, Exp, D, VD); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case attr::LocksExcluded: { | 
|  | LocksExcludedAttr *A = cast<LocksExcludedAttr>(At); | 
|  | for (auto *Arg : A->args()) | 
|  | warnIfMutexHeld(D, Exp, Arg, ClassifyDiagnostic(A)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Ignore attributes unrelated to thread-safety | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add locks. | 
|  | for (const auto &M : ExclusiveLocksToAdd) | 
|  | Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>( | 
|  | M, LK_Exclusive, Loc, isScopedVar), | 
|  | CapDiagKind); | 
|  | for (const auto &M : SharedLocksToAdd) | 
|  | Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>( | 
|  | M, LK_Shared, Loc, isScopedVar), | 
|  | CapDiagKind); | 
|  |  | 
|  | if (isScopedVar) { | 
|  | // Add the managing object as a dummy mutex, mapped to the underlying mutex. | 
|  | SourceLocation MLoc = VD->getLocation(); | 
|  | DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation()); | 
|  | // FIXME: does this store a pointer to DRE? | 
|  | CapabilityExpr Scp = Analyzer->SxBuilder.translateAttrExpr(&DRE, nullptr); | 
|  |  | 
|  | std::copy(ScopedExclusiveReqs.begin(), ScopedExclusiveReqs.end(), | 
|  | std::back_inserter(ExclusiveLocksToAdd)); | 
|  | std::copy(ScopedSharedReqs.begin(), ScopedSharedReqs.end(), | 
|  | std::back_inserter(SharedLocksToAdd)); | 
|  | Analyzer->addLock(FSet, | 
|  | llvm::make_unique<ScopedLockableFactEntry>( | 
|  | Scp, MLoc, ExclusiveLocksToAdd, SharedLocksToAdd), | 
|  | CapDiagKind); | 
|  | } | 
|  |  | 
|  | // Remove locks. | 
|  | // FIXME -- should only fully remove if the attribute refers to 'this'. | 
|  | bool Dtor = isa<CXXDestructorDecl>(D); | 
|  | for (const auto &M : ExclusiveLocksToRemove) | 
|  | Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive, CapDiagKind); | 
|  | for (const auto &M : SharedLocksToRemove) | 
|  | Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared, CapDiagKind); | 
|  | for (const auto &M : GenericLocksToRemove) | 
|  | Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic, CapDiagKind); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// \brief For unary operations which read and write a variable, we need to | 
|  | /// check whether we hold any required mutexes. Reads are checked in | 
|  | /// VisitCastExpr. | 
|  | void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) { | 
|  | switch (UO->getOpcode()) { | 
|  | case clang::UO_PostDec: | 
|  | case clang::UO_PostInc: | 
|  | case clang::UO_PreDec: | 
|  | case clang::UO_PreInc: { | 
|  | checkAccess(UO->getSubExpr(), AK_Written); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// For binary operations which assign to a variable (writes), we need to check | 
|  | /// whether we hold any required mutexes. | 
|  | /// FIXME: Deal with non-primitive types. | 
|  | void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) { | 
|  | if (!BO->isAssignmentOp()) | 
|  | return; | 
|  |  | 
|  | // adjust the context | 
|  | LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx); | 
|  |  | 
|  | checkAccess(BO->getLHS(), AK_Written); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// Whenever we do an LValue to Rvalue cast, we are reading a variable and | 
|  | /// need to ensure we hold any required mutexes. | 
|  | /// FIXME: Deal with non-primitive types. | 
|  | void BuildLockset::VisitCastExpr(CastExpr *CE) { | 
|  | if (CE->getCastKind() != CK_LValueToRValue) | 
|  | return; | 
|  | checkAccess(CE->getSubExpr(), AK_Read); | 
|  | } | 
|  |  | 
|  |  | 
|  | void BuildLockset::VisitCallExpr(CallExpr *Exp) { | 
|  | bool ExamineArgs = true; | 
|  | bool OperatorFun = false; | 
|  |  | 
|  | if (CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Exp)) { | 
|  | MemberExpr *ME = dyn_cast<MemberExpr>(CE->getCallee()); | 
|  | // ME can be null when calling a method pointer | 
|  | CXXMethodDecl *MD = CE->getMethodDecl(); | 
|  |  | 
|  | if (ME && MD) { | 
|  | if (ME->isArrow()) { | 
|  | if (MD->isConst()) { | 
|  | checkPtAccess(CE->getImplicitObjectArgument(), AK_Read); | 
|  | } else {  // FIXME -- should be AK_Written | 
|  | checkPtAccess(CE->getImplicitObjectArgument(), AK_Read); | 
|  | } | 
|  | } else { | 
|  | if (MD->isConst()) | 
|  | checkAccess(CE->getImplicitObjectArgument(), AK_Read); | 
|  | else     // FIXME -- should be AK_Written | 
|  | checkAccess(CE->getImplicitObjectArgument(), AK_Read); | 
|  | } | 
|  | } | 
|  | } else if (CXXOperatorCallExpr *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) { | 
|  | OperatorFun = true; | 
|  |  | 
|  | auto OEop = OE->getOperator(); | 
|  | switch (OEop) { | 
|  | case OO_Equal: { | 
|  | ExamineArgs = false; | 
|  | const Expr *Target = OE->getArg(0); | 
|  | const Expr *Source = OE->getArg(1); | 
|  | checkAccess(Target, AK_Written); | 
|  | checkAccess(Source, AK_Read); | 
|  | break; | 
|  | } | 
|  | case OO_Star: | 
|  | case OO_Arrow: | 
|  | case OO_Subscript: { | 
|  | const Expr *Obj = OE->getArg(0); | 
|  | checkAccess(Obj, AK_Read); | 
|  | if (!(OEop == OO_Star && OE->getNumArgs() > 1)) { | 
|  | // Grrr.  operator* can be multiplication... | 
|  | checkPtAccess(Obj, AK_Read); | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: { | 
|  | // TODO: get rid of this, and rely on pass-by-ref instead. | 
|  | const Expr *Obj = OE->getArg(0); | 
|  | checkAccess(Obj, AK_Read); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ExamineArgs) { | 
|  | if (FunctionDecl *FD = Exp->getDirectCallee()) { | 
|  |  | 
|  | // NO_THREAD_SAFETY_ANALYSIS does double duty here.  Normally it | 
|  | // only turns off checking within the body of a function, but we also | 
|  | // use it to turn off checking in arguments to the function.  This | 
|  | // could result in some false negatives, but the alternative is to | 
|  | // create yet another attribute. | 
|  | // | 
|  | if (!FD->hasAttr<NoThreadSafetyAnalysisAttr>()) { | 
|  | unsigned Fn = FD->getNumParams(); | 
|  | unsigned Cn = Exp->getNumArgs(); | 
|  | unsigned Skip = 0; | 
|  |  | 
|  | unsigned i = 0; | 
|  | if (OperatorFun) { | 
|  | if (isa<CXXMethodDecl>(FD)) { | 
|  | // First arg in operator call is implicit self argument, | 
|  | // and doesn't appear in the FunctionDecl. | 
|  | Skip = 1; | 
|  | Cn--; | 
|  | } else { | 
|  | // Ignore the first argument of operators; it's been checked above. | 
|  | i = 1; | 
|  | } | 
|  | } | 
|  | // Ignore default arguments | 
|  | unsigned n = (Fn < Cn) ? Fn : Cn; | 
|  |  | 
|  | for (; i < n; ++i) { | 
|  | ParmVarDecl* Pvd = FD->getParamDecl(i); | 
|  | Expr* Arg = Exp->getArg(i+Skip); | 
|  | QualType Qt = Pvd->getType(); | 
|  | if (Qt->isReferenceType()) | 
|  | checkAccess(Arg, AK_Read, POK_PassByRef); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | NamedDecl *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl()); | 
|  | if(!D || !D->hasAttrs()) | 
|  | return; | 
|  | handleCall(Exp, D); | 
|  | } | 
|  |  | 
|  | void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) { | 
|  | const CXXConstructorDecl *D = Exp->getConstructor(); | 
|  | if (D && D->isCopyConstructor()) { | 
|  | const Expr* Source = Exp->getArg(0); | 
|  | checkAccess(Source, AK_Read); | 
|  | } | 
|  | // FIXME -- only handles constructors in DeclStmt below. | 
|  | } | 
|  |  | 
|  | void BuildLockset::VisitDeclStmt(DeclStmt *S) { | 
|  | // adjust the context | 
|  | LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx); | 
|  |  | 
|  | for (auto *D : S->getDeclGroup()) { | 
|  | if (VarDecl *VD = dyn_cast_or_null<VarDecl>(D)) { | 
|  | Expr *E = VD->getInit(); | 
|  | // handle constructors that involve temporaries | 
|  | if (ExprWithCleanups *EWC = dyn_cast_or_null<ExprWithCleanups>(E)) | 
|  | E = EWC->getSubExpr(); | 
|  |  | 
|  | if (CXXConstructExpr *CE = dyn_cast_or_null<CXXConstructExpr>(E)) { | 
|  | NamedDecl *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor()); | 
|  | if (!CtorD || !CtorD->hasAttrs()) | 
|  | return; | 
|  | handleCall(CE, CtorD, VD); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /// \brief Compute the intersection of two locksets and issue warnings for any | 
|  | /// locks in the symmetric difference. | 
|  | /// | 
|  | /// This function is used at a merge point in the CFG when comparing the lockset | 
|  | /// of each branch being merged. For example, given the following sequence: | 
|  | /// A; if () then B; else C; D; we need to check that the lockset after B and C | 
|  | /// are the same. In the event of a difference, we use the intersection of these | 
|  | /// two locksets at the start of D. | 
|  | /// | 
|  | /// \param FSet1 The first lockset. | 
|  | /// \param FSet2 The second lockset. | 
|  | /// \param JoinLoc The location of the join point for error reporting | 
|  | /// \param LEK1 The error message to report if a mutex is missing from LSet1 | 
|  | /// \param LEK2 The error message to report if a mutex is missing from Lset2 | 
|  | void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1, | 
|  | const FactSet &FSet2, | 
|  | SourceLocation JoinLoc, | 
|  | LockErrorKind LEK1, | 
|  | LockErrorKind LEK2, | 
|  | bool Modify) { | 
|  | FactSet FSet1Orig = FSet1; | 
|  |  | 
|  | // Find locks in FSet2 that conflict or are not in FSet1, and warn. | 
|  | for (const auto &Fact : FSet2) { | 
|  | const FactEntry *LDat1 = nullptr; | 
|  | const FactEntry *LDat2 = &FactMan[Fact]; | 
|  | FactSet::iterator Iter1  = FSet1.findLockIter(FactMan, *LDat2); | 
|  | if (Iter1 != FSet1.end()) LDat1 = &FactMan[*Iter1]; | 
|  |  | 
|  | if (LDat1) { | 
|  | if (LDat1->kind() != LDat2->kind()) { | 
|  | Handler.handleExclusiveAndShared("mutex", LDat2->toString(), | 
|  | LDat2->loc(), LDat1->loc()); | 
|  | if (Modify && LDat1->kind() != LK_Exclusive) { | 
|  | // Take the exclusive lock, which is the one in FSet2. | 
|  | *Iter1 = Fact; | 
|  | } | 
|  | } | 
|  | else if (Modify && LDat1->asserted() && !LDat2->asserted()) { | 
|  | // The non-asserted lock in FSet2 is the one we want to track. | 
|  | *Iter1 = Fact; | 
|  | } | 
|  | } else { | 
|  | LDat2->handleRemovalFromIntersection(FSet2, FactMan, JoinLoc, LEK1, | 
|  | Handler); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Find locks in FSet1 that are not in FSet2, and remove them. | 
|  | for (const auto &Fact : FSet1Orig) { | 
|  | const FactEntry *LDat1 = &FactMan[Fact]; | 
|  | const FactEntry *LDat2 = FSet2.findLock(FactMan, *LDat1); | 
|  |  | 
|  | if (!LDat2) { | 
|  | LDat1->handleRemovalFromIntersection(FSet1Orig, FactMan, JoinLoc, LEK2, | 
|  | Handler); | 
|  | if (Modify) | 
|  | FSet1.removeLock(FactMan, *LDat1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Return true if block B never continues to its successors. | 
|  | static bool neverReturns(const CFGBlock *B) { | 
|  | if (B->hasNoReturnElement()) | 
|  | return true; | 
|  | if (B->empty()) | 
|  | return false; | 
|  |  | 
|  | CFGElement Last = B->back(); | 
|  | if (Optional<CFGStmt> S = Last.getAs<CFGStmt>()) { | 
|  | if (isa<CXXThrowExpr>(S->getStmt())) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// \brief Check a function's CFG for thread-safety violations. | 
|  | /// | 
|  | /// We traverse the blocks in the CFG, compute the set of mutexes that are held | 
|  | /// at the end of each block, and issue warnings for thread safety violations. | 
|  | /// Each block in the CFG is traversed exactly once. | 
|  | void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) { | 
|  | // TODO: this whole function needs be rewritten as a visitor for CFGWalker. | 
|  | // For now, we just use the walker to set things up. | 
|  | threadSafety::CFGWalker walker; | 
|  | if (!walker.init(AC)) | 
|  | return; | 
|  |  | 
|  | // AC.dumpCFG(true); | 
|  | // threadSafety::printSCFG(walker); | 
|  |  | 
|  | CFG *CFGraph = walker.getGraph(); | 
|  | const NamedDecl *D = walker.getDecl(); | 
|  | const FunctionDecl *CurrentFunction = dyn_cast<FunctionDecl>(D); | 
|  | CurrentMethod = dyn_cast<CXXMethodDecl>(D); | 
|  |  | 
|  | if (D->hasAttr<NoThreadSafetyAnalysisAttr>()) | 
|  | return; | 
|  |  | 
|  | // FIXME: Do something a bit more intelligent inside constructor and | 
|  | // destructor code.  Constructors and destructors must assume unique access | 
|  | // to 'this', so checks on member variable access is disabled, but we should | 
|  | // still enable checks on other objects. | 
|  | if (isa<CXXConstructorDecl>(D)) | 
|  | return;  // Don't check inside constructors. | 
|  | if (isa<CXXDestructorDecl>(D)) | 
|  | return;  // Don't check inside destructors. | 
|  |  | 
|  | Handler.enterFunction(CurrentFunction); | 
|  |  | 
|  | BlockInfo.resize(CFGraph->getNumBlockIDs(), | 
|  | CFGBlockInfo::getEmptyBlockInfo(LocalVarMap)); | 
|  |  | 
|  | // We need to explore the CFG via a "topological" ordering. | 
|  | // That way, we will be guaranteed to have information about required | 
|  | // predecessor locksets when exploring a new block. | 
|  | const PostOrderCFGView *SortedGraph = walker.getSortedGraph(); | 
|  | PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); | 
|  |  | 
|  | // Mark entry block as reachable | 
|  | BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true; | 
|  |  | 
|  | // Compute SSA names for local variables | 
|  | LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo); | 
|  |  | 
|  | // Fill in source locations for all CFGBlocks. | 
|  | findBlockLocations(CFGraph, SortedGraph, BlockInfo); | 
|  |  | 
|  | CapExprSet ExclusiveLocksAcquired; | 
|  | CapExprSet SharedLocksAcquired; | 
|  | CapExprSet LocksReleased; | 
|  |  | 
|  | // Add locks from exclusive_locks_required and shared_locks_required | 
|  | // to initial lockset. Also turn off checking for lock and unlock functions. | 
|  | // FIXME: is there a more intelligent way to check lock/unlock functions? | 
|  | if (!SortedGraph->empty() && D->hasAttrs()) { | 
|  | const CFGBlock *FirstBlock = *SortedGraph->begin(); | 
|  | FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet; | 
|  |  | 
|  | CapExprSet ExclusiveLocksToAdd; | 
|  | CapExprSet SharedLocksToAdd; | 
|  | StringRef CapDiagKind = "mutex"; | 
|  |  | 
|  | SourceLocation Loc = D->getLocation(); | 
|  | for (const auto *Attr : D->attrs()) { | 
|  | Loc = Attr->getLocation(); | 
|  | if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) { | 
|  | getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, | 
|  | nullptr, D); | 
|  | CapDiagKind = ClassifyDiagnostic(A); | 
|  | } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) { | 
|  | // UNLOCK_FUNCTION() is used to hide the underlying lock implementation. | 
|  | // We must ignore such methods. | 
|  | if (A->args_size() == 0) | 
|  | return; | 
|  | // FIXME -- deal with exclusive vs. shared unlock functions? | 
|  | getMutexIDs(ExclusiveLocksToAdd, A, nullptr, D); | 
|  | getMutexIDs(LocksReleased, A, nullptr, D); | 
|  | CapDiagKind = ClassifyDiagnostic(A); | 
|  | } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) { | 
|  | if (A->args_size() == 0) | 
|  | return; | 
|  | getMutexIDs(A->isShared() ? SharedLocksAcquired | 
|  | : ExclusiveLocksAcquired, | 
|  | A, nullptr, D); | 
|  | CapDiagKind = ClassifyDiagnostic(A); | 
|  | } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) { | 
|  | // Don't try to check trylock functions for now | 
|  | return; | 
|  | } else if (isa<SharedTrylockFunctionAttr>(Attr)) { | 
|  | // Don't try to check trylock functions for now | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME -- Loc can be wrong here. | 
|  | for (const auto &Mu : ExclusiveLocksToAdd) { | 
|  | auto Entry = llvm::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc); | 
|  | Entry->setDeclared(true); | 
|  | addLock(InitialLockset, std::move(Entry), CapDiagKind, true); | 
|  | } | 
|  | for (const auto &Mu : SharedLocksToAdd) { | 
|  | auto Entry = llvm::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc); | 
|  | Entry->setDeclared(true); | 
|  | addLock(InitialLockset, std::move(Entry), CapDiagKind, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (const auto *CurrBlock : *SortedGraph) { | 
|  | int CurrBlockID = CurrBlock->getBlockID(); | 
|  | CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; | 
|  |  | 
|  | // Use the default initial lockset in case there are no predecessors. | 
|  | VisitedBlocks.insert(CurrBlock); | 
|  |  | 
|  | // Iterate through the predecessor blocks and warn if the lockset for all | 
|  | // predecessors is not the same. We take the entry lockset of the current | 
|  | // block to be the intersection of all previous locksets. | 
|  | // FIXME: By keeping the intersection, we may output more errors in future | 
|  | // for a lock which is not in the intersection, but was in the union. We | 
|  | // may want to also keep the union in future. As an example, let's say | 
|  | // the intersection contains Mutex L, and the union contains L and M. | 
|  | // Later we unlock M. At this point, we would output an error because we | 
|  | // never locked M; although the real error is probably that we forgot to | 
|  | // lock M on all code paths. Conversely, let's say that later we lock M. | 
|  | // In this case, we should compare against the intersection instead of the | 
|  | // union because the real error is probably that we forgot to unlock M on | 
|  | // all code paths. | 
|  | bool LocksetInitialized = false; | 
|  | SmallVector<CFGBlock *, 8> SpecialBlocks; | 
|  | for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), | 
|  | PE  = CurrBlock->pred_end(); PI != PE; ++PI) { | 
|  |  | 
|  | // if *PI -> CurrBlock is a back edge | 
|  | if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) | 
|  | continue; | 
|  |  | 
|  | int PrevBlockID = (*PI)->getBlockID(); | 
|  | CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; | 
|  |  | 
|  | // Ignore edges from blocks that can't return. | 
|  | if (neverReturns(*PI) || !PrevBlockInfo->Reachable) | 
|  | continue; | 
|  |  | 
|  | // Okay, we can reach this block from the entry. | 
|  | CurrBlockInfo->Reachable = true; | 
|  |  | 
|  | // If the previous block ended in a 'continue' or 'break' statement, then | 
|  | // a difference in locksets is probably due to a bug in that block, rather | 
|  | // than in some other predecessor. In that case, keep the other | 
|  | // predecessor's lockset. | 
|  | if (const Stmt *Terminator = (*PI)->getTerminator()) { | 
|  | if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) { | 
|  | SpecialBlocks.push_back(*PI); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | FactSet PrevLockset; | 
|  | getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock); | 
|  |  | 
|  | if (!LocksetInitialized) { | 
|  | CurrBlockInfo->EntrySet = PrevLockset; | 
|  | LocksetInitialized = true; | 
|  | } else { | 
|  | intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset, | 
|  | CurrBlockInfo->EntryLoc, | 
|  | LEK_LockedSomePredecessors); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Skip rest of block if it's not reachable. | 
|  | if (!CurrBlockInfo->Reachable) | 
|  | continue; | 
|  |  | 
|  | // Process continue and break blocks. Assume that the lockset for the | 
|  | // resulting block is unaffected by any discrepancies in them. | 
|  | for (const auto *PrevBlock : SpecialBlocks) { | 
|  | int PrevBlockID = PrevBlock->getBlockID(); | 
|  | CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; | 
|  |  | 
|  | if (!LocksetInitialized) { | 
|  | CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet; | 
|  | LocksetInitialized = true; | 
|  | } else { | 
|  | // Determine whether this edge is a loop terminator for diagnostic | 
|  | // purposes. FIXME: A 'break' statement might be a loop terminator, but | 
|  | // it might also be part of a switch. Also, a subsequent destructor | 
|  | // might add to the lockset, in which case the real issue might be a | 
|  | // double lock on the other path. | 
|  | const Stmt *Terminator = PrevBlock->getTerminator(); | 
|  | bool IsLoop = Terminator && isa<ContinueStmt>(Terminator); | 
|  |  | 
|  | FactSet PrevLockset; | 
|  | getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, | 
|  | PrevBlock, CurrBlock); | 
|  |  | 
|  | // Do not update EntrySet. | 
|  | intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset, | 
|  | PrevBlockInfo->ExitLoc, | 
|  | IsLoop ? LEK_LockedSomeLoopIterations | 
|  | : LEK_LockedSomePredecessors, | 
|  | false); | 
|  | } | 
|  | } | 
|  |  | 
|  | BuildLockset LocksetBuilder(this, *CurrBlockInfo); | 
|  |  | 
|  | // Visit all the statements in the basic block. | 
|  | for (CFGBlock::const_iterator BI = CurrBlock->begin(), | 
|  | BE = CurrBlock->end(); BI != BE; ++BI) { | 
|  | switch (BI->getKind()) { | 
|  | case CFGElement::Statement: { | 
|  | CFGStmt CS = BI->castAs<CFGStmt>(); | 
|  | LocksetBuilder.Visit(const_cast<Stmt*>(CS.getStmt())); | 
|  | break; | 
|  | } | 
|  | // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now. | 
|  | case CFGElement::AutomaticObjectDtor: { | 
|  | CFGAutomaticObjDtor AD = BI->castAs<CFGAutomaticObjDtor>(); | 
|  | CXXDestructorDecl *DD = const_cast<CXXDestructorDecl *>( | 
|  | AD.getDestructorDecl(AC.getASTContext())); | 
|  | if (!DD->hasAttrs()) | 
|  | break; | 
|  |  | 
|  | // Create a dummy expression, | 
|  | VarDecl *VD = const_cast<VarDecl*>(AD.getVarDecl()); | 
|  | DeclRefExpr DRE(VD, false, VD->getType().getNonReferenceType(), | 
|  | VK_LValue, AD.getTriggerStmt()->getLocEnd()); | 
|  | LocksetBuilder.handleCall(&DRE, DD); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | CurrBlockInfo->ExitSet = LocksetBuilder.FSet; | 
|  |  | 
|  | // For every back edge from CurrBlock (the end of the loop) to another block | 
|  | // (FirstLoopBlock) we need to check that the Lockset of Block is equal to | 
|  | // the one held at the beginning of FirstLoopBlock. We can look up the | 
|  | // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map. | 
|  | for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), | 
|  | SE  = CurrBlock->succ_end(); SI != SE; ++SI) { | 
|  |  | 
|  | // if CurrBlock -> *SI is *not* a back edge | 
|  | if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) | 
|  | continue; | 
|  |  | 
|  | CFGBlock *FirstLoopBlock = *SI; | 
|  | CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()]; | 
|  | CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID]; | 
|  | intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet, | 
|  | PreLoop->EntryLoc, | 
|  | LEK_LockedSomeLoopIterations, | 
|  | false); | 
|  | } | 
|  | } | 
|  |  | 
|  | CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()]; | 
|  | CFGBlockInfo *Final   = &BlockInfo[CFGraph->getExit().getBlockID()]; | 
|  |  | 
|  | // Skip the final check if the exit block is unreachable. | 
|  | if (!Final->Reachable) | 
|  | return; | 
|  |  | 
|  | // By default, we expect all locks held on entry to be held on exit. | 
|  | FactSet ExpectedExitSet = Initial->EntrySet; | 
|  |  | 
|  | // Adjust the expected exit set by adding or removing locks, as declared | 
|  | // by *-LOCK_FUNCTION and UNLOCK_FUNCTION.  The intersect below will then | 
|  | // issue the appropriate warning. | 
|  | // FIXME: the location here is not quite right. | 
|  | for (const auto &Lock : ExclusiveLocksAcquired) | 
|  | ExpectedExitSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>( | 
|  | Lock, LK_Exclusive, D->getLocation())); | 
|  | for (const auto &Lock : SharedLocksAcquired) | 
|  | ExpectedExitSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>( | 
|  | Lock, LK_Shared, D->getLocation())); | 
|  | for (const auto &Lock : LocksReleased) | 
|  | ExpectedExitSet.removeLock(FactMan, Lock); | 
|  |  | 
|  | // FIXME: Should we call this function for all blocks which exit the function? | 
|  | intersectAndWarn(ExpectedExitSet, Final->ExitSet, | 
|  | Final->ExitLoc, | 
|  | LEK_LockedAtEndOfFunction, | 
|  | LEK_NotLockedAtEndOfFunction, | 
|  | false); | 
|  |  | 
|  | Handler.leaveFunction(CurrentFunction); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// \brief Check a function's CFG for thread-safety violations. | 
|  | /// | 
|  | /// We traverse the blocks in the CFG, compute the set of mutexes that are held | 
|  | /// at the end of each block, and issue warnings for thread safety violations. | 
|  | /// Each block in the CFG is traversed exactly once. | 
|  | void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext &AC, | 
|  | ThreadSafetyHandler &Handler, | 
|  | BeforeSet **BSet) { | 
|  | if (!*BSet) | 
|  | *BSet = new BeforeSet; | 
|  | ThreadSafetyAnalyzer Analyzer(Handler, *BSet); | 
|  | Analyzer.runAnalysis(AC); | 
|  | } | 
|  |  | 
|  | void threadSafety::threadSafetyCleanup(BeforeSet *Cache) { delete Cache; } | 
|  |  | 
|  | /// \brief Helper function that returns a LockKind required for the given level | 
|  | /// of access. | 
|  | LockKind threadSafety::getLockKindFromAccessKind(AccessKind AK) { | 
|  | switch (AK) { | 
|  | case AK_Read : | 
|  | return LK_Shared; | 
|  | case AK_Written : | 
|  | return LK_Exclusive; | 
|  | } | 
|  | llvm_unreachable("Unknown AccessKind"); | 
|  | } |