blob: 73834244f4e57a725f7111d42078081c557fd44f [file] [log] [blame]
//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This coordinates the per-module state used while generating code.
//
//===----------------------------------------------------------------------===//
#include "CodeGenModule.h"
#include "CGBlocks.h"
#include "CGCUDARuntime.h"
#include "CGCXXABI.h"
#include "CGCall.h"
#include "CGDebugInfo.h"
#include "CGObjCRuntime.h"
#include "CGOpenCLRuntime.h"
#include "CGOpenMPRuntime.h"
#include "CGOpenMPRuntimeNVPTX.h"
#include "CodeGenFunction.h"
#include "CodeGenPGO.h"
#include "CodeGenTBAA.h"
#include "CoverageMappingGen.h"
#include "TargetInfo.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/Module.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/Version.h"
#include "clang/Frontend/CodeGenOptions.h"
#include "clang/Sema/SemaDiagnostic.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/Support/ConvertUTF.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MD5.h"
using namespace clang;
using namespace CodeGen;
static const char AnnotationSection[] = "llvm.metadata";
static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
switch (CGM.getTarget().getCXXABI().getKind()) {
case TargetCXXABI::GenericAArch64:
case TargetCXXABI::GenericARM:
case TargetCXXABI::iOS:
case TargetCXXABI::iOS64:
case TargetCXXABI::WatchOS:
case TargetCXXABI::GenericMIPS:
case TargetCXXABI::GenericItanium:
case TargetCXXABI::WebAssembly:
return CreateItaniumCXXABI(CGM);
case TargetCXXABI::Microsoft:
return CreateMicrosoftCXXABI(CGM);
}
llvm_unreachable("invalid C++ ABI kind");
}
CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
const PreprocessorOptions &PPO,
const CodeGenOptions &CGO, llvm::Module &M,
DiagnosticsEngine &diags,
CoverageSourceInfo *CoverageInfo)
: Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
VMContext(M.getContext()), Types(*this), VTables(*this),
SanitizerMD(new SanitizerMetadata(*this)) {
// Initialize the type cache.
llvm::LLVMContext &LLVMContext = M.getContext();
VoidTy = llvm::Type::getVoidTy(LLVMContext);
Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
FloatTy = llvm::Type::getFloatTy(LLVMContext);
DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
PointerAlignInBytes =
C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
IntAlignInBytes =
C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
Int8PtrTy = Int8Ty->getPointerTo(0);
Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
if (LangOpts.ObjC1)
createObjCRuntime();
if (LangOpts.OpenCL)
createOpenCLRuntime();
if (LangOpts.OpenMP)
createOpenMPRuntime();
if (LangOpts.CUDA)
createCUDARuntime();
// Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
(!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
getCXXABI().getMangleContext()));
// If debug info or coverage generation is enabled, create the CGDebugInfo
// object.
if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
DebugInfo.reset(new CGDebugInfo(*this));
Block.GlobalUniqueCount = 0;
if (C.getLangOpts().ObjC1)
ObjCData.reset(new ObjCEntrypoints());
if (CodeGenOpts.hasProfileClangUse()) {
auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
CodeGenOpts.ProfileInstrumentUsePath);
if (auto E = ReaderOrErr.takeError()) {
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"Could not read profile %0: %1");
llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
<< EI.message();
});
} else
PGOReader = std::move(ReaderOrErr.get());
}
// If coverage mapping generation is enabled, create the
// CoverageMappingModuleGen object.
if (CodeGenOpts.CoverageMapping)
CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
}
CodeGenModule::~CodeGenModule() {}
void CodeGenModule::createObjCRuntime() {
// This is just isGNUFamily(), but we want to force implementors of
// new ABIs to decide how best to do this.
switch (LangOpts.ObjCRuntime.getKind()) {
case ObjCRuntime::GNUstep:
case ObjCRuntime::GCC:
case ObjCRuntime::ObjFW:
ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
return;
case ObjCRuntime::FragileMacOSX:
case ObjCRuntime::MacOSX:
case ObjCRuntime::iOS:
case ObjCRuntime::WatchOS:
ObjCRuntime.reset(CreateMacObjCRuntime(*this));
return;
}
llvm_unreachable("bad runtime kind");
}
void CodeGenModule::createOpenCLRuntime() {
OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
}
void CodeGenModule::createOpenMPRuntime() {
// Select a specialized code generation class based on the target, if any.
// If it does not exist use the default implementation.
switch (getTarget().getTriple().getArch()) {
case llvm::Triple::nvptx:
case llvm::Triple::nvptx64:
assert(getLangOpts().OpenMPIsDevice &&
"OpenMP NVPTX is only prepared to deal with device code.");
OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
break;
default:
OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
break;
}
}
void CodeGenModule::createCUDARuntime() {
CUDARuntime.reset(CreateNVCUDARuntime(*this));
}
void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
Replacements[Name] = C;
}
void CodeGenModule::applyReplacements() {
for (auto &I : Replacements) {
StringRef MangledName = I.first();
llvm::Constant *Replacement = I.second;
llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
if (!Entry)
continue;
auto *OldF = cast<llvm::Function>(Entry);
auto *NewF = dyn_cast<llvm::Function>(Replacement);
if (!NewF) {
if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
} else {
auto *CE = cast<llvm::ConstantExpr>(Replacement);
assert(CE->getOpcode() == llvm::Instruction::BitCast ||
CE->getOpcode() == llvm::Instruction::GetElementPtr);
NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
}
}
// Replace old with new, but keep the old order.
OldF->replaceAllUsesWith(Replacement);
if (NewF) {
NewF->removeFromParent();
OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
NewF);
}
OldF->eraseFromParent();
}
}
void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
GlobalValReplacements.push_back(std::make_pair(GV, C));
}
void CodeGenModule::applyGlobalValReplacements() {
for (auto &I : GlobalValReplacements) {
llvm::GlobalValue *GV = I.first;
llvm::Constant *C = I.second;
GV->replaceAllUsesWith(C);
GV->eraseFromParent();
}
}
// This is only used in aliases that we created and we know they have a
// linear structure.
static const llvm::GlobalObject *getAliasedGlobal(
const llvm::GlobalIndirectSymbol &GIS) {
llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
const llvm::Constant *C = &GIS;
for (;;) {
C = C->stripPointerCasts();
if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
return GO;
// stripPointerCasts will not walk over weak aliases.
auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
if (!GIS2)
return nullptr;
if (!Visited.insert(GIS2).second)
return nullptr;
C = GIS2->getIndirectSymbol();
}
}
void CodeGenModule::checkAliases() {
// Check if the constructed aliases are well formed. It is really unfortunate
// that we have to do this in CodeGen, but we only construct mangled names
// and aliases during codegen.
bool Error = false;
DiagnosticsEngine &Diags = getDiags();
for (const GlobalDecl &GD : Aliases) {
const auto *D = cast<ValueDecl>(GD.getDecl());
SourceLocation Location;
bool IsIFunc = D->hasAttr<IFuncAttr>();
if (const Attr *A = D->getDefiningAttr())
Location = A->getLocation();
else
llvm_unreachable("Not an alias or ifunc?");
StringRef MangledName = getMangledName(GD);
llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
if (!GV) {
Error = true;
Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
} else if (GV->isDeclaration()) {
Error = true;
Diags.Report(Location, diag::err_alias_to_undefined)
<< IsIFunc << IsIFunc;
} else if (IsIFunc) {
// Check resolver function type.
llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
GV->getType()->getPointerElementType());
assert(FTy);
if (!FTy->getReturnType()->isPointerTy())
Diags.Report(Location, diag::err_ifunc_resolver_return);
if (FTy->getNumParams())
Diags.Report(Location, diag::err_ifunc_resolver_params);
}
llvm::Constant *Aliasee = Alias->getIndirectSymbol();
llvm::GlobalValue *AliaseeGV;
if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
else
AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
StringRef AliasSection = SA->getName();
if (AliasSection != AliaseeGV->getSection())
Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
<< AliasSection << IsIFunc << IsIFunc;
}
// We have to handle alias to weak aliases in here. LLVM itself disallows
// this since the object semantics would not match the IL one. For
// compatibility with gcc we implement it by just pointing the alias
// to its aliasee's aliasee. We also warn, since the user is probably
// expecting the link to be weak.
if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
if (GA->isInterposable()) {
Diags.Report(Location, diag::warn_alias_to_weak_alias)
<< GV->getName() << GA->getName() << IsIFunc;
Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
GA->getIndirectSymbol(), Alias->getType());
Alias->setIndirectSymbol(Aliasee);
}
}
}
if (!Error)
return;
for (const GlobalDecl &GD : Aliases) {
StringRef MangledName = getMangledName(GD);
llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
Alias->eraseFromParent();
}
}
void CodeGenModule::clear() {
DeferredDeclsToEmit.clear();
if (OpenMPRuntime)
OpenMPRuntime->clear();
}
void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
StringRef MainFile) {
if (!hasDiagnostics())
return;
if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
if (MainFile.empty())
MainFile = "<stdin>";
Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
} else
Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
<< Mismatched;
}
void CodeGenModule::Release() {
EmitDeferred();
applyGlobalValReplacements();
applyReplacements();
checkAliases();
EmitCXXGlobalInitFunc();
EmitCXXGlobalDtorFunc();
EmitCXXThreadLocalInitFunc();
if (ObjCRuntime)
if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
AddGlobalCtor(ObjCInitFunction);
if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
CUDARuntime) {
if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
AddGlobalCtor(CudaCtorFunction);
if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
AddGlobalDtor(CudaDtorFunction);
}
if (OpenMPRuntime)
if (llvm::Function *OpenMPRegistrationFunction =
OpenMPRuntime->emitRegistrationFunction())
AddGlobalCtor(OpenMPRegistrationFunction, 0);
if (PGOReader) {
getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
if (PGOStats.hasDiagnostics())
PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
}
EmitCtorList(GlobalCtors, "llvm.global_ctors");
EmitCtorList(GlobalDtors, "llvm.global_dtors");
EmitGlobalAnnotations();
EmitStaticExternCAliases();
EmitDeferredUnusedCoverageMappings();
if (CoverageMapping)
CoverageMapping->emit();
if (CodeGenOpts.SanitizeCfiCrossDso)
CodeGenFunction(*this).EmitCfiCheckFail();
emitLLVMUsed();
if (SanStats)
SanStats->finish();
if (CodeGenOpts.Autolink &&
(Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
EmitModuleLinkOptions();
}
if (CodeGenOpts.DwarfVersion) {
// We actually want the latest version when there are conflicts.
// We can change from Warning to Latest if such mode is supported.
getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
CodeGenOpts.DwarfVersion);
}
if (CodeGenOpts.EmitCodeView) {
// Indicate that we want CodeView in the metadata.
getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
}
if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
// We don't support LTO with 2 with different StrictVTablePointers
// FIXME: we could support it by stripping all the information introduced
// by StrictVTablePointers.
getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
llvm::Metadata *Ops[2] = {
llvm::MDString::get(VMContext, "StrictVTablePointers"),
llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
llvm::Type::getInt32Ty(VMContext), 1))};
getModule().addModuleFlag(llvm::Module::Require,
"StrictVTablePointersRequirement",
llvm::MDNode::get(VMContext, Ops));
}
if (DebugInfo)
// We support a single version in the linked module. The LLVM
// parser will drop debug info with a different version number
// (and warn about it, too).
getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
llvm::DEBUG_METADATA_VERSION);
// We need to record the widths of enums and wchar_t, so that we can generate
// the correct build attributes in the ARM backend.
llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
if ( Arch == llvm::Triple::arm
|| Arch == llvm::Triple::armeb
|| Arch == llvm::Triple::thumb
|| Arch == llvm::Triple::thumbeb) {
// Width of wchar_t in bytes
uint64_t WCharWidth =
Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
// The minimum width of an enum in bytes
uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
}
if (CodeGenOpts.SanitizeCfiCrossDso) {
// Indicate that we want cross-DSO control flow integrity checks.
getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
}
if (LangOpts.CUDAIsDevice && getTarget().getTriple().isNVPTX()) {
// Indicate whether __nvvm_reflect should be configured to flush denormal
// floating point values to 0. (This corresponds to its "__CUDA_FTZ"
// property.)
getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
}
if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
assert(PLevel < 3 && "Invalid PIC Level");
getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
if (Context.getLangOpts().PIE)
getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
}
SimplifyPersonality();
if (getCodeGenOpts().EmitDeclMetadata)
EmitDeclMetadata();
if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
EmitCoverageFile();
if (DebugInfo)
DebugInfo->finalize();
EmitVersionIdentMetadata();
EmitTargetMetadata();
// Emit any deferred diagnostics gathered during codegen. We didn't emit them
// when we first discovered them because that would have halted codegen,
// preventing us from gathering other deferred diags.
for (const PartialDiagnosticAt &DiagAt : DeferredDiags) {
SourceLocation Loc = DiagAt.first;
const PartialDiagnostic &PD = DiagAt.second;
DiagnosticBuilder Builder(getDiags().Report(Loc, PD.getDiagID()));
PD.Emit(Builder);
}
}
void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
// Make sure that this type is translated.
Types.UpdateCompletedType(TD);
}
void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
// Make sure that this type is translated.
Types.RefreshTypeCacheForClass(RD);
}
llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
if (!TBAA)
return nullptr;
return TBAA->getTBAAInfo(QTy);
}
llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
if (!TBAA)
return nullptr;
return TBAA->getTBAAInfoForVTablePtr();
}
llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
if (!TBAA)
return nullptr;
return TBAA->getTBAAStructInfo(QTy);
}
llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
llvm::MDNode *AccessN,
uint64_t O) {
if (!TBAA)
return nullptr;
return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
}
/// Decorate the instruction with a TBAA tag. For both scalar TBAA
/// and struct-path aware TBAA, the tag has the same format:
/// base type, access type and offset.
/// When ConvertTypeToTag is true, we create a tag based on the scalar type.
void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
llvm::MDNode *TBAAInfo,
bool ConvertTypeToTag) {
if (ConvertTypeToTag && TBAA)
Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
TBAA->getTBAAScalarTagInfo(TBAAInfo));
else
Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
}
void CodeGenModule::DecorateInstructionWithInvariantGroup(
llvm::Instruction *I, const CXXRecordDecl *RD) {
llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD);
// Check if we have to wrap MDString in MDNode.
if (!MetaDataNode)
MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD);
I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode);
}
void CodeGenModule::Error(SourceLocation loc, StringRef message) {
unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
getDiags().Report(Context.getFullLoc(loc), diagID) << message;
}
/// ErrorUnsupported - Print out an error that codegen doesn't support the
/// specified stmt yet.
void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
"cannot compile this %0 yet");
std::string Msg = Type;
getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
<< Msg << S->getSourceRange();
}
/// ErrorUnsupported - Print out an error that codegen doesn't support the
/// specified decl yet.
void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
"cannot compile this %0 yet");
std::string Msg = Type;
getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
}
llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
return llvm::ConstantInt::get(SizeTy, size.getQuantity());
}
void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
const NamedDecl *D) const {
// Internal definitions always have default visibility.
if (GV->hasLocalLinkage()) {
GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
return;
}
// Set visibility for definitions.
LinkageInfo LV = D->getLinkageAndVisibility();
if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
}
static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
.Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
.Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
.Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
.Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
}
static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
CodeGenOptions::TLSModel M) {
switch (M) {
case CodeGenOptions::GeneralDynamicTLSModel:
return llvm::GlobalVariable::GeneralDynamicTLSModel;
case CodeGenOptions::LocalDynamicTLSModel:
return llvm::GlobalVariable::LocalDynamicTLSModel;
case CodeGenOptions::InitialExecTLSModel:
return llvm::GlobalVariable::InitialExecTLSModel;
case CodeGenOptions::LocalExecTLSModel:
return llvm::GlobalVariable::LocalExecTLSModel;
}
llvm_unreachable("Invalid TLS model!");
}
void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
llvm::GlobalValue::ThreadLocalMode TLM;
TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
// Override the TLS model if it is explicitly specified.
if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
TLM = GetLLVMTLSModel(Attr->getModel());
}
GV->setThreadLocalMode(TLM);
}
StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
GlobalDecl CanonicalGD = GD.getCanonicalDecl();
// Some ABIs don't have constructor variants. Make sure that base and
// complete constructors get mangled the same.
if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
if (!getTarget().getCXXABI().hasConstructorVariants()) {
CXXCtorType OrigCtorType = GD.getCtorType();
assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
if (OrigCtorType == Ctor_Base)
CanonicalGD = GlobalDecl(CD, Ctor_Complete);
}
}
StringRef &FoundStr = MangledDeclNames[CanonicalGD];
if (!FoundStr.empty())
return FoundStr;
const auto *ND = cast<NamedDecl>(GD.getDecl());
SmallString<256> Buffer;
StringRef Str;
if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
llvm::raw_svector_ostream Out(Buffer);
if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
else
getCXXABI().getMangleContext().mangleName(ND, Out);
Str = Out.str();
} else {
IdentifierInfo *II = ND->getIdentifier();
assert(II && "Attempt to mangle unnamed decl.");
Str = II->getName();
}
// Keep the first result in the case of a mangling collision.
auto Result = Manglings.insert(std::make_pair(Str, GD));
return FoundStr = Result.first->first();
}
StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
const BlockDecl *BD) {
MangleContext &MangleCtx = getCXXABI().getMangleContext();
const Decl *D = GD.getDecl();
SmallString<256> Buffer;
llvm::raw_svector_ostream Out(Buffer);
if (!D)
MangleCtx.mangleGlobalBlock(BD,
dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
else
MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
return Result.first->first();
}
llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
return getModule().getNamedValue(Name);
}
/// AddGlobalCtor - Add a function to the list that will be called before
/// main() runs.
void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
llvm::Constant *AssociatedData) {
// FIXME: Type coercion of void()* types.
GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
}
/// AddGlobalDtor - Add a function to the list that will be called
/// when the module is unloaded.
void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
// FIXME: Type coercion of void()* types.
GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
}
void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
// Ctor function type is void()*.
llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
// Get the type of a ctor entry, { i32, void ()*, i8* }.
llvm::StructType *CtorStructTy = llvm::StructType::get(
Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr);
// Construct the constructor and destructor arrays.
SmallVector<llvm::Constant *, 8> Ctors;
for (const auto &I : Fns) {
llvm::Constant *S[] = {
llvm::ConstantInt::get(Int32Ty, I.Priority, false),
llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy),
(I.AssociatedData
? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)
: llvm::Constant::getNullValue(VoidPtrTy))};
Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
}
if (!Ctors.empty()) {
llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
new llvm::GlobalVariable(TheModule, AT, false,
llvm::GlobalValue::AppendingLinkage,
llvm::ConstantArray::get(AT, Ctors),
GlobalName);
}
}
llvm::GlobalValue::LinkageTypes
CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
const auto *D = cast<FunctionDecl>(GD.getDecl());
GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
if (isa<CXXDestructorDecl>(D) &&
getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
GD.getDtorType())) {
// Destructor variants in the Microsoft C++ ABI are always internal or
// linkonce_odr thunks emitted on an as-needed basis.
return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
: llvm::GlobalValue::LinkOnceODRLinkage;
}
if (isa<CXXConstructorDecl>(D) &&
cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
Context.getTargetInfo().getCXXABI().isMicrosoft()) {
// Our approach to inheriting constructors is fundamentally different from
// that used by the MS ABI, so keep our inheriting constructor thunks
// internal rather than trying to pick an unambiguous mangling for them.
return llvm::GlobalValue::InternalLinkage;
}
return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
}
void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
const auto *FD = cast<FunctionDecl>(GD.getDecl());
if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
// Don't dllexport/import destructor thunks.
F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
return;
}
}
if (FD->hasAttr<DLLImportAttr>())
F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
else if (FD->hasAttr<DLLExportAttr>())
F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
else
F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
}
llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
if (!MDS) return nullptr;
llvm::MD5 md5;
llvm::MD5::MD5Result result;
md5.update(MDS->getString());
md5.final(result);
uint64_t id = 0;
for (int i = 0; i < 8; ++i)
id |= static_cast<uint64_t>(result[i]) << (i * 8);
return llvm::ConstantInt::get(Int64Ty, id);
}
void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
llvm::Function *F) {
setNonAliasAttributes(D, F);
}
void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
const CGFunctionInfo &Info,
llvm::Function *F) {
unsigned CallingConv;
AttributeListType AttributeList;
ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv,
false);
F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
}
/// Determines whether the language options require us to model
/// unwind exceptions. We treat -fexceptions as mandating this
/// except under the fragile ObjC ABI with only ObjC exceptions
/// enabled. This means, for example, that C with -fexceptions
/// enables this.
static bool hasUnwindExceptions(const LangOptions &LangOpts) {
// If exceptions are completely disabled, obviously this is false.
if (!LangOpts.Exceptions) return false;
// If C++ exceptions are enabled, this is true.
if (LangOpts.CXXExceptions) return true;
// If ObjC exceptions are enabled, this depends on the ABI.
if (LangOpts.ObjCExceptions) {
return LangOpts.ObjCRuntime.hasUnwindExceptions();
}
return true;
}
void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
llvm::Function *F) {
llvm::AttrBuilder B;
if (CodeGenOpts.UnwindTables)
B.addAttribute(llvm::Attribute::UWTable);
if (!hasUnwindExceptions(LangOpts))
B.addAttribute(llvm::Attribute::NoUnwind);
if (LangOpts.getStackProtector() == LangOptions::SSPOn)
B.addAttribute(llvm::Attribute::StackProtect);
else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
B.addAttribute(llvm::Attribute::StackProtectStrong);
else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
B.addAttribute(llvm::Attribute::StackProtectReq);
if (!D) {
F->addAttributes(llvm::AttributeSet::FunctionIndex,
llvm::AttributeSet::get(
F->getContext(),
llvm::AttributeSet::FunctionIndex, B));
return;
}
if (D->hasAttr<NakedAttr>()) {
// Naked implies noinline: we should not be inlining such functions.
B.addAttribute(llvm::Attribute::Naked);
B.addAttribute(llvm::Attribute::NoInline);
} else if (D->hasAttr<NoDuplicateAttr>()) {
B.addAttribute(llvm::Attribute::NoDuplicate);
} else if (D->hasAttr<NoInlineAttr>()) {
B.addAttribute(llvm::Attribute::NoInline);
} else if (D->hasAttr<AlwaysInlineAttr>() &&
!F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
llvm::Attribute::NoInline)) {
// (noinline wins over always_inline, and we can't specify both in IR)
B.addAttribute(llvm::Attribute::AlwaysInline);
}
if (D->hasAttr<ColdAttr>()) {
if (!D->hasAttr<OptimizeNoneAttr>())
B.addAttribute(llvm::Attribute::OptimizeForSize);
B.addAttribute(llvm::Attribute::Cold);
}
if (D->hasAttr<MinSizeAttr>())
B.addAttribute(llvm::Attribute::MinSize);
F->addAttributes(llvm::AttributeSet::FunctionIndex,
llvm::AttributeSet::get(
F->getContext(), llvm::AttributeSet::FunctionIndex, B));
if (D->hasAttr<OptimizeNoneAttr>()) {
// OptimizeNone implies noinline; we should not be inlining such functions.
F->addFnAttr(llvm::Attribute::OptimizeNone);
F->addFnAttr(llvm::Attribute::NoInline);
// OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline.
F->removeFnAttr(llvm::Attribute::OptimizeForSize);
F->removeFnAttr(llvm::Attribute::MinSize);
assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
"OptimizeNone and AlwaysInline on same function!");
// Attribute 'inlinehint' has no effect on 'optnone' functions.
// Explicitly remove it from the set of function attributes.
F->removeFnAttr(llvm::Attribute::InlineHint);
}
unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
if (alignment)
F->setAlignment(alignment);
// Some C++ ABIs require 2-byte alignment for member functions, in order to
// reserve a bit for differentiating between virtual and non-virtual member
// functions. If the current target's C++ ABI requires this and this is a
// member function, set its alignment accordingly.
if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
F->setAlignment(2);
}
}
void CodeGenModule::SetCommonAttributes(const Decl *D,
llvm::GlobalValue *GV) {
if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
setGlobalVisibility(GV, ND);
else
GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
if (D && D->hasAttr<UsedAttr>())
addUsedGlobal(GV);
}
void CodeGenModule::setAliasAttributes(const Decl *D,
llvm::GlobalValue *GV) {
SetCommonAttributes(D, GV);
// Process the dllexport attribute based on whether the original definition
// (not necessarily the aliasee) was exported.
if (D->hasAttr<DLLExportAttr>())
GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
}
void CodeGenModule::setNonAliasAttributes(const Decl *D,
llvm::GlobalObject *GO) {
SetCommonAttributes(D, GO);
if (D)
if (const SectionAttr *SA = D->getAttr<SectionAttr>())
GO->setSection(SA->getName());
getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
}
void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
llvm::Function *F,
const CGFunctionInfo &FI) {
SetLLVMFunctionAttributes(D, FI, F);
SetLLVMFunctionAttributesForDefinition(D, F);
F->setLinkage(llvm::Function::InternalLinkage);
setNonAliasAttributes(D, F);
}
static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
const NamedDecl *ND) {
// Set linkage and visibility in case we never see a definition.
LinkageInfo LV = ND->getLinkageAndVisibility();
if (LV.getLinkage() != ExternalLinkage) {
// Don't set internal linkage on declarations.
} else {
if (ND->hasAttr<DLLImportAttr>()) {
GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
} else if (ND->hasAttr<DLLExportAttr>()) {
GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
} else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
// "extern_weak" is overloaded in LLVM; we probably should have
// separate linkage types for this.
GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
}
// Set visibility on a declaration only if it's explicit.
if (LV.isVisibilityExplicit())
GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
}
}
void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
llvm::Function *F) {
// Only if we are checking indirect calls.
if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
return;
// Non-static class methods are handled via vtable pointer checks elsewhere.
if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
return;
// Additionally, if building with cross-DSO support...
if (CodeGenOpts.SanitizeCfiCrossDso) {
// Don't emit entries for function declarations. In cross-DSO mode these are
// handled with better precision at run time.
if (!FD->hasBody())
return;
// Skip available_externally functions. They won't be codegen'ed in the
// current module anyway.
if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
return;
}
llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
F->addTypeMetadata(0, MD);
// Emit a hash-based bit set entry for cross-DSO calls.
if (CodeGenOpts.SanitizeCfiCrossDso)
if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
}
void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
bool IsIncompleteFunction,
bool IsThunk) {
if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
// If this is an intrinsic function, set the function's attributes
// to the intrinsic's attributes.
F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
return;
}
const auto *FD = cast<FunctionDecl>(GD.getDecl());
if (!IsIncompleteFunction)
SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
// Add the Returned attribute for "this", except for iOS 5 and earlier
// where substantial code, including the libstdc++ dylib, was compiled with
// GCC and does not actually return "this".
if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
!(getTarget().getTriple().isiOS() &&
getTarget().getTriple().isOSVersionLT(6))) {
assert(!F->arg_empty() &&
F->arg_begin()->getType()
->canLosslesslyBitCastTo(F->getReturnType()) &&
"unexpected this return");
F->addAttribute(1, llvm::Attribute::Returned);
}
// Only a few attributes are set on declarations; these may later be
// overridden by a definition.
setLinkageAndVisibilityForGV(F, FD);
if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
F->setSection(SA->getName());
if (FD->isReplaceableGlobalAllocationFunction()) {
// A replaceable global allocation function does not act like a builtin by
// default, only if it is invoked by a new-expression or delete-expression.
F->addAttribute(llvm::AttributeSet::FunctionIndex,
llvm::Attribute::NoBuiltin);
// A sane operator new returns a non-aliasing pointer.
// FIXME: Also add NonNull attribute to the return value
// for the non-nothrow forms?
auto Kind = FD->getDeclName().getCXXOverloadedOperator();
if (getCodeGenOpts().AssumeSaneOperatorNew &&
(Kind == OO_New || Kind == OO_Array_New))
F->addAttribute(llvm::AttributeSet::ReturnIndex,
llvm::Attribute::NoAlias);
}
if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
if (MD->isVirtual())
F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
CreateFunctionTypeMetadata(FD, F);
}
void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
assert(!GV->isDeclaration() &&
"Only globals with definition can force usage.");
LLVMUsed.emplace_back(GV);
}
void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
assert(!GV->isDeclaration() &&
"Only globals with definition can force usage.");
LLVMCompilerUsed.emplace_back(GV);
}
static void emitUsed(CodeGenModule &CGM, StringRef Name,
std::vector<llvm::WeakVH> &List) {
// Don't create llvm.used if there is no need.
if (List.empty())
return;
// Convert List to what ConstantArray needs.
SmallVector<llvm::Constant*, 8> UsedArray;
UsedArray.resize(List.size());
for (unsigned i = 0, e = List.size(); i != e; ++i) {
UsedArray[i] =
llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
}
if (UsedArray.empty())
return;
llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
auto *GV = new llvm::GlobalVariable(
CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
llvm::ConstantArray::get(ATy, UsedArray), Name);
GV->setSection("llvm.metadata");
}
void CodeGenModule::emitLLVMUsed() {
emitUsed(*this, "llvm.used", LLVMUsed);
emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
}
void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
}
void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
llvm::SmallString<32> Opt;
getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
}
void CodeGenModule::AddDependentLib(StringRef Lib) {
llvm::SmallString<24> Opt;
getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
}
/// \brief Add link options implied by the given module, including modules
/// it depends on, using a postorder walk.
static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
SmallVectorImpl<llvm::Metadata *> &Metadata,
llvm::SmallPtrSet<Module *, 16> &Visited) {
// Import this module's parent.
if (Mod->Parent && Visited.insert(Mod->Parent).second) {
addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
}
// Import this module's dependencies.
for (unsigned I = Mod->Imports.size(); I > 0; --I) {
if (Visited.insert(Mod->Imports[I - 1]).second)
addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
}
// Add linker options to link against the libraries/frameworks
// described by this module.
llvm::LLVMContext &Context = CGM.getLLVMContext();
for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
// Link against a framework. Frameworks are currently Darwin only, so we
// don't to ask TargetCodeGenInfo for the spelling of the linker option.
if (Mod->LinkLibraries[I-1].IsFramework) {
llvm::Metadata *Args[2] = {
llvm::MDString::get(Context, "-framework"),
llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
Metadata.push_back(llvm::MDNode::get(Context, Args));
continue;
}
// Link against a library.
llvm::SmallString<24> Opt;
CGM.getTargetCodeGenInfo().getDependentLibraryOption(
Mod->LinkLibraries[I-1].Library, Opt);
auto *OptString = llvm::MDString::get(Context, Opt);
Metadata.push_back(llvm::MDNode::get(Context, OptString));
}
}
void CodeGenModule::EmitModuleLinkOptions() {
// Collect the set of all of the modules we want to visit to emit link
// options, which is essentially the imported modules and all of their
// non-explicit child modules.
llvm::SetVector<clang::Module *> LinkModules;
llvm::SmallPtrSet<clang::Module *, 16> Visited;
SmallVector<clang::Module *, 16> Stack;
// Seed the stack with imported modules.
for (Module *M : ImportedModules)
if (Visited.insert(M).second)
Stack.push_back(M);
// Find all of the modules to import, making a little effort to prune
// non-leaf modules.
while (!Stack.empty()) {
clang::Module *Mod = Stack.pop_back_val();
bool AnyChildren = false;
// Visit the submodules of this module.
for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
SubEnd = Mod->submodule_end();
Sub != SubEnd; ++Sub) {
// Skip explicit children; they need to be explicitly imported to be
// linked against.
if ((*Sub)->IsExplicit)
continue;
if (Visited.insert(*Sub).second) {
Stack.push_back(*Sub);
AnyChildren = true;
}
}
// We didn't find any children, so add this module to the list of
// modules to link against.
if (!AnyChildren) {
LinkModules.insert(Mod);
}
}
// Add link options for all of the imported modules in reverse topological
// order. We don't do anything to try to order import link flags with respect
// to linker options inserted by things like #pragma comment().
SmallVector<llvm::Metadata *, 16> MetadataArgs;
Visited.clear();
for (Module *M : LinkModules)
if (Visited.insert(M).second)
addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
std::reverse(MetadataArgs.begin(), MetadataArgs.end());
LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
// Add the linker options metadata flag.
getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
llvm::MDNode::get(getLLVMContext(),
LinkerOptionsMetadata));
}
void CodeGenModule::EmitDeferred() {
// Emit code for any potentially referenced deferred decls. Since a
// previously unused static decl may become used during the generation of code
// for a static function, iterate until no changes are made.
if (!DeferredVTables.empty()) {
EmitDeferredVTables();
// Emitting a vtable doesn't directly cause more vtables to
// become deferred, although it can cause functions to be
// emitted that then need those vtables.
assert(DeferredVTables.empty());
}
// Stop if we're out of both deferred vtables and deferred declarations.
if (DeferredDeclsToEmit.empty())
return;
// Grab the list of decls to emit. If EmitGlobalDefinition schedules more
// work, it will not interfere with this.
std::vector<DeferredGlobal> CurDeclsToEmit;
CurDeclsToEmit.swap(DeferredDeclsToEmit);
for (DeferredGlobal &G : CurDeclsToEmit) {
GlobalDecl D = G.GD;
G.GV = nullptr;
// We should call GetAddrOfGlobal with IsForDefinition set to true in order
// to get GlobalValue with exactly the type we need, not something that
// might had been created for another decl with the same mangled name but
// different type.
llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
GetAddrOfGlobal(D, /*IsForDefinition=*/true));
// In case of different address spaces, we may still get a cast, even with
// IsForDefinition equal to true. Query mangled names table to get
// GlobalValue.
if (!GV)
GV = GetGlobalValue(getMangledName(D));
// Make sure GetGlobalValue returned non-null.
assert(GV);
// Check to see if we've already emitted this. This is necessary
// for a couple of reasons: first, decls can end up in the
// deferred-decls queue multiple times, and second, decls can end
// up with definitions in unusual ways (e.g. by an extern inline
// function acquiring a strong function redefinition). Just
// ignore these cases.
if (!GV->isDeclaration())
continue;
// Otherwise, emit the definition and move on to the next one.
EmitGlobalDefinition(D, GV);
// If we found out that we need to emit more decls, do that recursively.
// This has the advantage that the decls are emitted in a DFS and related
// ones are close together, which is convenient for testing.
if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
EmitDeferred();
assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
}
}
}
void CodeGenModule::EmitGlobalAnnotations() {
if (Annotations.empty())
return;
// Create a new global variable for the ConstantStruct in the Module.
llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
Annotations[0]->getType(), Annotations.size()), Annotations);
auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
llvm::GlobalValue::AppendingLinkage,
Array, "llvm.global.annotations");
gv->setSection(AnnotationSection);
}
llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
llvm::Constant *&AStr = AnnotationStrings[Str];
if (AStr)
return AStr;
// Not found yet, create a new global.
llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
auto *gv =
new llvm::GlobalVariable(getModule(), s->getType(), true,
llvm::GlobalValue::PrivateLinkage, s, ".str");
gv->setSection(AnnotationSection);
gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
AStr = gv;
return gv;
}
llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
SourceManager &SM = getContext().getSourceManager();
PresumedLoc PLoc = SM.getPresumedLoc(Loc);
if (PLoc.isValid())
return EmitAnnotationString(PLoc.getFilename());
return EmitAnnotationString(SM.getBufferName(Loc));
}
llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
SourceManager &SM = getContext().getSourceManager();
PresumedLoc PLoc = SM.getPresumedLoc(L);
unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
SM.getExpansionLineNumber(L);
return llvm::ConstantInt::get(Int32Ty, LineNo);
}
llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
const AnnotateAttr *AA,
SourceLocation L) {
// Get the globals for file name, annotation, and the line number.
llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
*UnitGV = EmitAnnotationUnit(L),
*LineNoCst = EmitAnnotationLineNo(L);
// Create the ConstantStruct for the global annotation.
llvm::Constant *Fields[4] = {
llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
LineNoCst
};
return llvm::ConstantStruct::getAnon(Fields);
}
void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
llvm::GlobalValue *GV) {
assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
// Get the struct elements for these annotations.
for (const auto *I : D->specific_attrs<AnnotateAttr>())
Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
}
bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
SourceLocation Loc) const {
const auto &SanitizerBL = getContext().getSanitizerBlacklist();
// Blacklist by function name.
if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
return true;
// Blacklist by location.
if (Loc.isValid())
return SanitizerBL.isBlacklistedLocation(Loc);
// If location is unknown, this may be a compiler-generated function. Assume
// it's located in the main file.
auto &SM = Context.getSourceManager();
if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
return SanitizerBL.isBlacklistedFile(MainFile->getName());
}
return false;
}
bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
SourceLocation Loc, QualType Ty,
StringRef Category) const {
// For now globals can be blacklisted only in ASan and KASan.
if (!LangOpts.Sanitize.hasOneOf(
SanitizerKind::Address | SanitizerKind::KernelAddress))
return false;
const auto &SanitizerBL = getContext().getSanitizerBlacklist();
if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
return true;
if (SanitizerBL.isBlacklistedLocation(Loc, Category))
return true;
// Check global type.
if (!Ty.isNull()) {
// Drill down the array types: if global variable of a fixed type is
// blacklisted, we also don't instrument arrays of them.
while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
Ty = AT->getElementType();
Ty = Ty.getCanonicalType().getUnqualifiedType();
// We allow to blacklist only record types (classes, structs etc.)
if (Ty->isRecordType()) {
std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
if (SanitizerBL.isBlacklistedType(TypeStr, Category))
return true;
}
}
return false;
}
bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
// Never defer when EmitAllDecls is specified.
if (LangOpts.EmitAllDecls)
return true;
return getContext().DeclMustBeEmitted(Global);
}
bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
if (const auto *FD = dyn_cast<FunctionDecl>(Global))
if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
// Implicit template instantiations may change linkage if they are later
// explicitly instantiated, so they should not be emitted eagerly.
return false;
if (const auto *VD = dyn_cast<VarDecl>(Global))
if (Context.getInlineVariableDefinitionKind(VD) ==
ASTContext::InlineVariableDefinitionKind::WeakUnknown)
// A definition of an inline constexpr static data member may change
// linkage later if it's redeclared outside the class.
return false;
// If OpenMP is enabled and threadprivates must be generated like TLS, delay
// codegen for global variables, because they may be marked as threadprivate.
if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
return false;
return true;
}
ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
const CXXUuidofExpr* E) {
// Sema has verified that IIDSource has a __declspec(uuid()), and that its
// well-formed.
StringRef Uuid = E->getUuidStr();
std::string Name = "_GUID_" + Uuid.lower();
std::replace(Name.begin(), Name.end(), '-', '_');
// The UUID descriptor should be pointer aligned.
CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
// Look for an existing global.
if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
return ConstantAddress(GV, Alignment);
llvm::Constant *Init = EmitUuidofInitializer(Uuid);
assert(Init && "failed to initialize as constant");
auto *GV = new llvm::GlobalVariable(
getModule(), Init->getType(),
/*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
if (supportsCOMDAT())
GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
return ConstantAddress(GV, Alignment);
}
ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
const AliasAttr *AA = VD->getAttr<AliasAttr>();
assert(AA && "No alias?");
CharUnits Alignment = getContext().getDeclAlign(VD);
llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
// See if there is already something with the target's name in the module.
llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
if (Entry) {
unsigned AS = getContext().getTargetAddressSpace(VD->getType());
auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
return ConstantAddress(Ptr, Alignment);
}
llvm::Constant *Aliasee;
if (isa<llvm::FunctionType>(DeclTy))
Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
GlobalDecl(cast<FunctionDecl>(VD)),
/*ForVTable=*/false);
else
Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
llvm::PointerType::getUnqual(DeclTy),
nullptr);
auto *F = cast<llvm::GlobalValue>(Aliasee);
F->setLinkage(llvm::Function::ExternalWeakLinkage);
WeakRefReferences.insert(F);
return ConstantAddress(Aliasee, Alignment);
}
void CodeGenModule::EmitGlobal(GlobalDecl GD) {
const auto *Global = cast<ValueDecl>(GD.getDecl());
// Weak references don't produce any output by themselves.
if (Global->hasAttr<WeakRefAttr>())
return;
// If this is an alias definition (which otherwise looks like a declaration)
// emit it now.
if (Global->hasAttr<AliasAttr>())
return EmitAliasDefinition(GD);
// IFunc like an alias whose value is resolved at runtime by calling resolver.
if (Global->hasAttr<IFuncAttr>())
return emitIFuncDefinition(GD);
// If this is CUDA, be selective about which declarations we emit.
if (LangOpts.CUDA) {
if (LangOpts.CUDAIsDevice) {
if (!Global->hasAttr<CUDADeviceAttr>() &&
!Global->hasAttr<CUDAGlobalAttr>() &&
!Global->hasAttr<CUDAConstantAttr>() &&
!Global->hasAttr<CUDASharedAttr>())
return;
} else {
// We need to emit host-side 'shadows' for all global
// device-side variables because the CUDA runtime needs their
// size and host-side address in order to provide access to
// their device-side incarnations.
// So device-only functions are the only things we skip.
if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
Global->hasAttr<CUDADeviceAttr>())
return;
assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
"Expected Variable or Function");
}
}
if (LangOpts.OpenMP) {
// If this is OpenMP device, check if it is legal to emit this global
// normally.
if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
return;
if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
if (MustBeEmitted(Global))
EmitOMPDeclareReduction(DRD);
return;
}
}
// Ignore declarations, they will be emitted on their first use.
if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
// Forward declarations are emitted lazily on first use.
if (!FD->doesThisDeclarationHaveABody()) {
if (!FD->doesDeclarationForceExternallyVisibleDefinition())
return;
StringRef MangledName = getMangledName(GD);
// Compute the function info and LLVM type.
const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
llvm::Type *Ty = getTypes().GetFunctionType(FI);
GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
/*DontDefer=*/false);
return;
}
} else {
const auto *VD = cast<VarDecl>(Global);
assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
// We need to emit device-side global CUDA variables even if a
// variable does not have a definition -- we still need to define
// host-side shadow for it.
bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
!VD->hasDefinition() &&
(VD->hasAttr<CUDAConstantAttr>() ||
VD->hasAttr<CUDADeviceAttr>());
if (!MustEmitForCuda &&
VD->isThisDeclarationADefinition() != VarDecl::Definition &&
!Context.isMSStaticDataMemberInlineDefinition(VD)) {
// If this declaration may have caused an inline variable definition to
// change linkage, make sure that it's emitted.
if (Context.getInlineVariableDefinitionKind(VD) ==
ASTContext::InlineVariableDefinitionKind::Strong)
GetAddrOfGlobalVar(VD);
return;
}
}
// Defer code generation to first use when possible, e.g. if this is an inline
// function. If the global must always be emitted, do it eagerly if possible
// to benefit from cache locality.
if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
// Emit the definition if it can't be deferred.
EmitGlobalDefinition(GD);
return;
}
// If we're deferring emission of a C++ variable with an
// initializer, remember the order in which it appeared in the file.
if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
cast<VarDecl>(Global)->hasInit()) {
DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
CXXGlobalInits.push_back(nullptr);
}
StringRef MangledName = getMangledName(GD);
if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) {
// The value has already been used and should therefore be emitted.
addDeferredDeclToEmit(GV, GD);
} else if (MustBeEmitted(Global)) {
// The value must be emitted, but cannot be emitted eagerly.
assert(!MayBeEmittedEagerly(Global));
addDeferredDeclToEmit(/*GV=*/nullptr, GD);
} else {
// Otherwise, remember that we saw a deferred decl with this name. The
// first use of the mangled name will cause it to move into
// DeferredDeclsToEmit.
DeferredDecls[MangledName] = GD;
}
}
namespace {
struct FunctionIsDirectlyRecursive :
public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
const StringRef Name;
const Builtin::Context &BI;
bool Result;
FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
Name(N), BI(C), Result(false) {
}
typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
bool TraverseCallExpr(CallExpr *E) {
const FunctionDecl *FD = E->getDirectCallee();
if (!FD)
return true;
AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
if (Attr && Name == Attr->getLabel()) {
Result = true;
return false;
}
unsigned BuiltinID = FD->getBuiltinID();
if (!BuiltinID || !BI.isLibFunction(BuiltinID))
return true;
StringRef BuiltinName = BI.getName(BuiltinID);
if (BuiltinName.startswith("__builtin_") &&
Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
Result = true;
return false;
}
return true;
}
};
struct DLLImportFunctionVisitor
: public RecursiveASTVisitor<DLLImportFunctionVisitor> {
bool SafeToInline = true;
bool VisitVarDecl(VarDecl *VD) {
// A thread-local variable cannot be imported.
SafeToInline = !VD->getTLSKind();
return SafeToInline;
}
// Make sure we're not referencing non-imported vars or functions.
bool VisitDeclRefExpr(DeclRefExpr *E) {
ValueDecl *VD = E->getDecl();
if (isa<FunctionDecl>(VD))
SafeToInline = VD->hasAttr<DLLImportAttr>();
else if (VarDecl *V = dyn_cast<VarDecl>(VD))
SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
return SafeToInline;
}
bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
return SafeToInline;
}
bool VisitCXXNewExpr(CXXNewExpr *E) {
SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
return SafeToInline;
}
};
}
// isTriviallyRecursive - Check if this function calls another
// decl that, because of the asm attribute or the other decl being a builtin,
// ends up pointing to itself.
bool
CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
StringRef Name;
if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
// asm labels are a special kind of mangling we have to support.
AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
if (!Attr)
return false;
Name = Attr->getLabel();
} else {
Name = FD->getName();
}
FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
return Walker.Result;
}
bool
CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
return true;
const auto *F = cast<FunctionDecl>(GD.getDecl());
if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
return false;
if (F->hasAttr<DLLImportAttr>()) {
// Check whether it would be safe to inline this dllimport function.
DLLImportFunctionVisitor Visitor;
Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
if (!Visitor.SafeToInline)
return false;
}
// PR9614. Avoid cases where the source code is lying to us. An available
// externally function should have an equivalent function somewhere else,
// but a function that calls itself is clearly not equivalent to the real
// implementation.
// This happens in glibc's btowc and in some configure checks.
return !isTriviallyRecursive(F);
}
/// If the type for the method's class was generated by
/// CGDebugInfo::createContextChain(), the cache contains only a
/// limited DIType without any declarations. Since EmitFunctionStart()
/// needs to find the canonical declaration for each method, we need
/// to construct the complete type prior to emitting the method.
void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
if (!D->isInstance())
return;
if (CGDebugInfo *DI = getModuleDebugInfo())
if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
}
}
void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
const auto *D = cast<ValueDecl>(GD.getDecl());
PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
Context.getSourceManager(),
"Generating code for declaration");
if (isa<FunctionDecl>(D)) {
// At -O0, don't generate IR for functions with available_externally
// linkage.
if (!shouldEmitFunction(GD))
return;
if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
CompleteDIClassType(Method);
// Make sure to emit the definition(s) before we emit the thunks.
// This is necessary for the generation of certain thunks.
if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
else
EmitGlobalFunctionDefinition(GD, GV);
if (Method->isVirtual())
getVTables().EmitThunks(GD);
return;
}
return EmitGlobalFunctionDefinition(GD, GV);
}
if (const auto *VD = dyn_cast<VarDecl>(D))
return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
}
static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
llvm::Function *NewFn);
/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
/// module, create and return an llvm Function with the specified type. If there
/// is something in the module with the specified name, return it potentially
/// bitcasted to the right type.
///
/// If D is non-null, it specifies a decl that correspond to this. This is used
/// to set the attributes on the function when it is first created.
llvm::Constant *
CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
llvm::Type *Ty,
GlobalDecl GD, bool ForVTable,
bool DontDefer, bool IsThunk,
llvm::AttributeSet ExtraAttrs,
bool IsForDefinition) {
const Decl *D = GD.getDecl();
// Lookup the entry, lazily creating it if necessary.
llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
if (Entry) {
if (WeakRefReferences.erase(Entry)) {
const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
if (FD && !FD->hasAttr<WeakAttr>())
Entry->setLinkage(llvm::Function::ExternalLinkage);
}
// Handle dropped DLL attributes.
if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
// If there are two attempts to define the same mangled name, issue an
// error.
if (IsForDefinition && !Entry->isDeclaration()) {
GlobalDecl OtherGD;
// Check that GD is not yet in DiagnosedConflictingDefinitions is required
// to make sure that we issue an error only once.
if (lookupRepresentativeDecl(MangledName, OtherGD) &&
(GD.getCanonicalDecl().getDecl() !=
OtherGD.getCanonicalDecl().getDecl()) &&
DiagnosedConflictingDefinitions.insert(GD).second) {
getDiags().Report(D->getLocation(),
diag::err_duplicate_mangled_name);
getDiags().Report(OtherGD.getDecl()->getLocation(),
diag::note_previous_definition);
}
}
if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
(Entry->getType()->getElementType() == Ty)) {
return Entry;
}
// Make sure the result is of the correct type.
// (If function is requested for a definition, we always need to create a new
// function, not just return a bitcast.)
if (!IsForDefinition)
return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
}
// This function doesn't have a complete type (for example, the return
// type is an incomplete struct). Use a fake type instead, and make
// sure not to try to set attributes.
bool IsIncompleteFunction = false;
llvm::FunctionType *FTy;
if (isa<llvm::FunctionType>(Ty)) {
FTy = cast<llvm::FunctionType>(Ty);
} else {
FTy = llvm::FunctionType::get(VoidTy, false);
IsIncompleteFunction = true;
}
llvm::Function *F =
llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
Entry ? StringRef() : MangledName, &getModule());
// If we already created a function with the same mangled name (but different
// type) before, take its name and add it to the list of functions to be
// replaced with F at the end of CodeGen.
//
// This happens if there is a prototype for a function (e.g. "int f()") and
// then a definition of a different type (e.g. "int f(int x)").
if (Entry) {
F->takeName(Entry);
// This might be an implementation of a function without a prototype, in
// which case, try to do special replacement of calls which match the new
// prototype. The really key thing here is that we also potentially drop
// arguments from the call site so as to make a direct call, which makes the
// inliner happier and suppresses a number of optimizer warnings (!) about
// dropping arguments.
if (!Entry->use_empty()) {
ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
Entry->removeDeadConstantUsers();
}
llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
F, Entry->getType()->getElementType()->getPointerTo());
addGlobalValReplacement(Entry, BC);
}
assert(F->getName() == MangledName && "name was uniqued!");
if (D)
SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
F->addAttributes(llvm::AttributeSet::FunctionIndex,
llvm::AttributeSet::get(VMContext,
llvm::AttributeSet::FunctionIndex,
B));
}
if (!DontDefer) {
// All MSVC dtors other than the base dtor are linkonce_odr and delegate to
// each other bottoming out with the base dtor. Therefore we emit non-base
// dtors on usage, even if there is no dtor definition in the TU.
if (D && isa<CXXDestructorDecl>(D) &&
getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
GD.getDtorType()))
addDeferredDeclToEmit(F, GD);
// This is the first use or definition of a mangled name. If there is a
// deferred decl with this name, remember that we need to emit it at the end
// of the file.
auto DDI = DeferredDecls.find(MangledName);
if (DDI != DeferredDecls.end()) {
// Move the potentially referenced deferred decl to the
// DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
// don't need it anymore).
addDeferredDeclToEmit(F, DDI->second);
DeferredDecls.erase(DDI);
// Otherwise, there are cases we have to worry about where we're
// using a declaration for which we must emit a definition but where
// we might not find a top-level definition:
// - member functions defined inline in their classes
// - friend functions defined inline in some class
// - special member functions with implicit definitions
// If we ever change our AST traversal to walk into class methods,
// this will be unnecessary.
//
// We also don't emit a definition for a function if it's going to be an
// entry in a vtable, unless it's already marked as used.
} else if (getLangOpts().CPlusPlus && D) {
// Look for a declaration that's lexically in a record.
for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
FD = FD->getPreviousDecl()) {
if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
if (FD->doesThisDeclarationHaveABody()) {
addDeferredDeclToEmit(F, GD.getWithDecl(FD));
break;
}
}
}
}
}
// Make sure the result is of the requested type.
if (!IsIncompleteFunction) {
assert(F->getType()->getElementType() == Ty);
return F;
}
llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
return llvm::ConstantExpr::getBitCast(F, PTy);
}
/// GetAddrOfFunction - Return the address of the given function. If Ty is
/// non-null, then this function will use the specified type if it has to
/// create it (this occurs when we see a definition of the function).
llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
llvm::Type *Ty,
bool ForVTable,
bool DontDefer,
bool IsForDefinition) {
// If there was no specific requested type, just convert it now.
if (!Ty) {
const auto *FD = cast<FunctionDecl>(GD.getDecl());
auto CanonTy = Context.getCanonicalType(FD->getType());
Ty = getTypes().ConvertFunctionType(CanonTy, FD);
}
StringRef MangledName = getMangledName(GD);
return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
/*IsThunk=*/false, llvm::AttributeSet(),
IsForDefinition);
}
/// CreateRuntimeFunction - Create a new runtime function with the specified
/// type and name.
llvm::Constant *
CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
StringRef Name,
llvm::AttributeSet ExtraAttrs) {
llvm::Constant *C =
GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
/*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
if (auto *F = dyn_cast<llvm::Function>(C))
if (F->empty())
F->setCallingConv(getRuntimeCC());
return C;
}
/// CreateBuiltinFunction - Create a new builtin function with the specified
/// type and name.
llvm::Constant *
CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy,
StringRef Name,
llvm::AttributeSet ExtraAttrs) {
llvm::Constant *C =
GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
/*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
if (auto *F = dyn_cast<llvm::Function>(C))
if (F->empty())
F->setCallingConv(getBuiltinCC());
return C;
}
/// isTypeConstant - Determine whether an object of this type can be emitted
/// as a constant.
///
/// If ExcludeCtor is true, the duration when the object's constructor runs
/// will not be considered. The caller will need to verify that the object is
/// not written to during its construction.
bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
if (!Ty.isConstant(Context) && !Ty->isReferenceType())
return false;
if (Context.getLangOpts().CPlusPlus) {
if (const CXXRecordDecl *Record
= Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
return ExcludeCtor && !Record->hasMutableFields() &&
Record->hasTrivialDestructor();
}
return true;
}
/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
/// create and return an llvm GlobalVariable with the specified type. If there
/// is something in the module with the specified name, return it potentially
/// bitcasted to the right type.
///
/// If D is non-null, it specifies a decl that correspond to this. This is used
/// to set the attributes on the global when it is first created.
///
/// If IsForDefinition is true, it is guranteed that an actual global with
/// type Ty will be returned, not conversion of a variable with the same
/// mangled name but some other type.
llvm::Constant *
CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
llvm::PointerType *Ty,
const VarDecl *D,
bool IsForDefinition) {
// Lookup the entry, lazily creating it if necessary.
llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
if (Entry) {
if (WeakRefReferences.erase(Entry)) {
if (D && !D->hasAttr<WeakAttr>())
Entry->setLinkage(llvm::Function::ExternalLinkage);
}
// Handle dropped DLL attributes.
if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
if (Entry->getType() == Ty)
return Entry;
// If there are two attempts to define the same mangled name, issue an
// error.
if (IsForDefinition && !Entry->isDeclaration()) {
GlobalDecl OtherGD;
const VarDecl *OtherD;
// Check that D is not yet in DiagnosedConflictingDefinitions is required
// to make sure that we issue an error only once.
if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
(D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
(OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
OtherD->hasInit() &&
DiagnosedConflictingDefinitions.insert(D).second) {
getDiags().Report(D->getLocation(),
diag::err_duplicate_mangled_name);
getDiags().Report(OtherGD.getDecl()->getLocation(),
diag::note_previous_definition);
}
}
// Make sure the result is of the correct type.
if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
// (If global is requested for a definition, we always need to create a new
// global, not just return a bitcast.)
if (!IsForDefinition)
return llvm::ConstantExpr::getBitCast(Entry, Ty);
}
unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
auto *GV = new llvm::GlobalVariable(
getModule(), Ty->getElementType(), false,
llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
llvm::GlobalVariable::NotThreadLocal, AddrSpace);
// If we already created a global with the same mangled name (but different
// type) before, take its name and remove it from its parent.
if (Entry) {
GV->takeName(Entry);
if (!Entry->use_empty()) {
llvm::Constant *NewPtrForOldDecl =
llvm::ConstantExpr::getBitCast(GV, Entry->getType());
Entry->replaceAllUsesWith(NewPtrForOldDecl);
}
Entry->eraseFromParent();
}
// This is the first use or definition of a mangled name. If there is a
// deferred decl with this name, remember that we need to emit it at the end
// of the file.
auto DDI = DeferredDecls.find(MangledName);
if (DDI != DeferredDecls.end()) {
// Move the potentially referenced deferred decl to the DeferredDeclsToEmit
// list, and remove it from DeferredDecls (since we don't need it anymore).
addDeferredDeclToEmit(GV, DDI->second);
DeferredDecls.erase(DDI);
}
// Handle things which are present even on external declarations.
if (D) {
// FIXME: This code is overly simple and should be merged with other global
// handling.
GV->setConstant(isTypeConstant(D->getType(), false));
GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
setLinkageAndVisibilityForGV(GV, D);
if (D->getTLSKind()) {
if (D->getTLSKind() == VarDecl::TLS_Dynamic)
CXXThreadLocals.push_back(D);
setTLSMode(GV, *D);
}
// If required by the ABI, treat declarations of static data members with
// inline initializers as definitions.
if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
EmitGlobalVarDefinition(D);
}
// Handle XCore specific ABI requirements.
if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
D->getLanguageLinkage() == CLanguageLinkage &&
D->getType().isConstant(Context) &&
isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
GV->setSection(".cp.rodata");
}
if (AddrSpace != Ty->getAddressSpace())
return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
return GV;
}
llvm::Constant *
CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
bool IsForDefinition) {
if (isa<CXXConstructorDecl>(GD.getDecl()))
return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()),
getFromCtorType(GD.getCtorType()),
/*FnInfo=*/nullptr, /*FnType=*/nullptr,
/*DontDefer=*/false, IsForDefinition);
else if (isa<CXXDestructorDecl>(GD.getDecl()))
return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()),
getFromDtorType(GD.getDtorType()),
/*FnInfo=*/nullptr, /*FnType=*/nullptr,
/*DontDefer=*/false, IsForDefinition);
else if (isa<CXXMethodDecl>(GD.getDecl())) {
auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
cast<CXXMethodDecl>(GD.getDecl()));
auto Ty = getTypes().GetFunctionType(*FInfo);
return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
IsForDefinition);
} else if (isa<FunctionDecl>(GD.getDecl())) {
const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
IsForDefinition);
} else
return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()), /*Ty=*/nullptr,
IsForDefinition);
}
llvm::GlobalVariable *
CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
llvm::Type *Ty,
llvm::GlobalValue::LinkageTypes Linkage) {
llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
llvm::GlobalVariable *OldGV = nullptr;
if (GV) {
// Check if the variable has the right type.
if (GV->getType()->getElementType() == Ty)
return GV;
// Because C++ name mangling, the only way we can end up with an already
// existing global with the same name is if it has been declared extern "C".
assert(GV->isDeclaration() && "Declaration has wrong type!");
OldGV = GV;
}
// Create a new variable.
GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
Linkage, nullptr, Name);
if (OldGV) {
// Replace occurrences of the old variable if needed.
GV->takeName(OldGV);
if (!OldGV->use_empty()) {
llvm::Constant *NewPtrForOldDecl =
llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
OldGV->replaceAllUsesWith(NewPtrForOldDecl);
}
OldGV->eraseFromParent();
}
if (supportsCOMDAT() && GV->isWeakForLinker() &&
!GV->hasAvailableExternallyLinkage())
GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
return GV;
}
/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
/// given global variable. If Ty is non-null and if the global doesn't exist,
/// then it will be created with the specified type instead of whatever the
/// normal requested type would be. If IsForDefinition is true, it is guranteed
/// that an actual global with type Ty will be returned, not conversion of a
/// variable with the same mangled name but some other type.
llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
llvm::Type *Ty,
bool IsForDefinition) {
assert(D->hasGlobalStorage() && "Not a global variable");
QualType ASTTy = D->getType();
if (!Ty)
Ty = getTypes().ConvertTypeForMem(ASTTy);
llvm::PointerType *PTy =
llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
StringRef MangledName = getMangledName(D);
return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
}
/// CreateRuntimeVariable - Create a new runtime global variable with the
/// specified type and name.
llvm::Constant *
CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
StringRef Name) {
return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
}
void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
assert(!D->getInit() && "Cannot emit definite definitions here!");
StringRef MangledName = getMangledName(D);
llvm::GlobalValue *GV = GetGlobalValue(MangledName);
// We already have a definition, not declaration, with the same mangled name.
// Emitting of declaration is not required (and actually overwrites emitted
// definition).
if (GV && !GV->isDeclaration())
return;
// If we have not seen a reference to this variable yet, place it into the
// deferred declarations table to be emitted if needed later.
if (!MustBeEmitted(D) && !GV) {
DeferredDecls[MangledName] = D;
return;
}
// The tentative definition is the only definition.
EmitGlobalVarDefinition(D);
}
CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
return Context.toCharUnitsFromBits(
getDataLayout().getTypeStoreSizeInBits(Ty));
}
unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
unsigned AddrSpace) {
if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) {
if (D->hasAttr<CUDAConstantAttr>())
AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
else if (D->hasAttr<CUDASharedAttr>())
AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
else
AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
}
return AddrSpace;
}
template<typename SomeDecl>
void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
llvm::GlobalValue *GV) {
if (!getLangOpts().CPlusPlus)
return;
// Must have 'used' attribute, or else inline assembly can't rely on
// the name existing.
if (!D->template hasAttr<UsedAttr>())
return;
// Must have internal linkage and an ordinary name.
if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
return;
// Must be in an extern "C" context. Entities declared directly within
// a record are not extern "C" even if the record is in such a context.
const SomeDecl *First = D->getFirstDecl();
if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
return;
// OK, this is an internal linkage entity inside an extern "C" linkage
// specification. Make a note of that so we can give it the "expected"
// mangled name if nothing else is using that name.
std::pair<StaticExternCMap::iterator, bool> R =
StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
// If we have multiple internal linkage entities with the same name
// in extern "C" regions, none of them gets that name.
if (!R.second)
R.first->second = nullptr;
}
static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
if (!CGM.supportsCOMDAT())
return false;
if (D.hasAttr<SelectAnyAttr>())
return true;
GVALinkage Linkage;
if (auto *VD = dyn_cast<VarDecl>(&D))
Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
else
Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
switch (Linkage) {
case GVA_Internal:
case GVA_AvailableExternally:
case GVA_StrongExternal:
return false;
case GVA_DiscardableODR:
case GVA_StrongODR:
return true;
}
llvm_unreachable("No such linkage");
}
void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
llvm::GlobalObject &GO) {
if (!shouldBeInCOMDAT(*this, D))
return;
GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
}
/// Pass IsTentative as true if you want to create a tentative definition.
void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
bool IsTentative) {
// OpenCL global variables of sampler type are translated to function calls,
// therefore no need to be translated.
QualType ASTTy = D->getType();
if (getLangOpts().OpenCL && ASTTy->isSamplerT())
return;
llvm::Constant *Init = nullptr;
CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
bool NeedsGlobalCtor = false;
bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
const VarDecl *InitDecl;
const Expr *InitExpr = D->getAnyInitializer(InitDecl);
// CUDA E.2.4.1 "__shared__ variables cannot have an initialization
// as part of their declaration." Sema has already checked for
// error cases, so we just need to set Init to UndefValue.
if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
D->hasAttr<CUDASharedAttr>())
Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
else if (!InitExpr) {
// This is a tentative definition; tentative definitions are
// implicitly initialized with { 0 }.
//
// Note that tentative definitions are only emitted at the end of
// a translation unit, so they should never have incomplete
// type. In addition, EmitTentativeDefinition makes sure that we
// never attempt to emit a tentative definition if a real one
// exists. A use may still exists, however, so we still may need
// to do a RAUW.
assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
Init = EmitNullConstant(D->getType());
} else {
initializedGlobalDecl = GlobalDecl(D);
Init = EmitConstantInit(*InitDecl);
if (!Init) {
QualType T = InitExpr->getType();
if (D->getType()->isReferenceType())
T = D->getType();
if (getLangOpts().CPlusPlus) {
Init = EmitNullConstant(T);
NeedsGlobalCtor = true;
} else {
ErrorUnsupported(D, "static initializer");
Init = llvm::UndefValue::get(getTypes().ConvertType(T));
}
} else {
// We don't need an initializer, so remove the entry for the delayed
// initializer position (just in case this entry was delayed) if we
// also don't need to register a destructor.
if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
DelayedCXXInitPosition.erase(D);
}
}
llvm::Type* InitType = Init->getType();
llvm::Constant *Entry =
GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative);
// Strip off a bitcast if we got one back.
if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
assert(CE->getOpcode() == llvm::Instruction::BitCast ||
CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
// All zero index gep.
CE->getOpcode() == llvm::Instruction::GetElementPtr);
Entry = CE->getOperand(0);
}
// Entry is now either a Function or GlobalVariable.
auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
// We have a definition after a declaration with the wrong type.
// We must make a new GlobalVariable* and update everything that used OldGV
// (a declaration or tentative definition) with the new GlobalVariable*
// (which will be a definition).
//
// This happens if there is a prototype for a global (e.g.
// "extern int x[];") and then a definition of a different type (e.g.
// "int x[10];"). This also happens when an initializer has a different type
// from the type of the global (this happens with unions).
if (!GV ||
GV->getType()->getElementType() != InitType ||
GV->getType()->getAddressSpace() !=
GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
// Move the old entry aside so that we'll create a new one.
Entry->setName(StringRef());
// Make a new global with the correct type, this is now guaranteed to work.
GV = cast<llvm::GlobalVariable>(
GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative));
// Replace all uses of the old global with the new global
llvm::Constant *NewPtrForOldDecl =
llvm::ConstantExpr::getBitCast(GV, Entry->getType());
Entry->replaceAllUsesWith(NewPtrForOldDecl);
// Erase the old global, since it is no longer used.
cast<llvm::GlobalValue>(Entry)->eraseFromParent();
}
MaybeHandleStaticInExternC(D, GV);
if (D->hasAttr<AnnotateAttr>())
AddGlobalAnnotations(D, GV);
// Set the llvm linkage type as appropriate.
llvm::GlobalValue::LinkageTypes Linkage =
getLLVMLinkageVarDefinition(D, GV->isConstant());
// CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
// the device. [...]"
// CUDA B.2.2 "The __constant__ qualifier, optionally used together with
// __device__, declares a variable that: [...]
// Is accessible from all the threads within the grid and from the host
// through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
// / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
if (GV && LangOpts.CUDA) {
if (LangOpts.CUDAIsDevice) {
if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
GV->setExternallyInitialized(true);
} else {
// Host-side shadows of external declarations of device-side
// global variables become internal definitions. These have to
// be internal in order to prevent name conflicts with global
// host variables with the same name in a different TUs.
if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
Linkage = llvm::GlobalValue::InternalLinkage;
// Shadow variables and their properties must be registered
// with CUDA runtime.
unsigned Flags = 0;
if (!D->hasDefinition())
Flags |= CGCUDARuntime::ExternDeviceVar;
if (D->hasAttr<CUDAConstantAttr>())
Flags |= CGCUDARuntime::ConstantDeviceVar;
getCUDARuntime().registerDeviceVar(*GV, Flags);
} else if (D->hasAttr<CUDASharedAttr>())
// __shared__ variables are odd. Shadows do get created, but
// they are not registered with the CUDA runtime, so they
// can't really be used to access their device-side
// counterparts. It's not clear yet whether it's nvcc's bug or
// a feature, but we've got to do the same for compatibility.
Linkage = llvm::GlobalValue::InternalLinkage;
}
}
GV->setInitializer(Init);
// If it is safe to mark the global 'constant', do so now.
GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
isTypeConstant(D->getType(), true));
// If it is in a read-only section, mark it 'constant'.
if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
GV->setConstant(true);
}
GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
// On Darwin, if the normal linkage of a C++ thread_local variable is
// LinkOnce or Weak, we keep the normal linkage to prevent multiple
// copies within a linkage unit; otherwise, the backing variable has
// internal linkage and all accesses should just be calls to the
// Itanium-specified entry point, which has the normal linkage of the
// variable. This is to preserve the ability to change the implementation
// behind the scenes.
if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
Context.getTargetInfo().getTriple().isOSDarwin() &&
!llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
!llvm::GlobalVariable::isWeakLinkage(Linkage))
Linkage = llvm::GlobalValue::InternalLinkage;
GV->setLinkage(Linkage);
if (D->hasAttr<DLLImportAttr>())
GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
else if (D->hasAttr<DLLExportAttr>())
GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
else
GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
if (Linkage == llvm::GlobalVariable::CommonLinkage)
// common vars aren't constant even if declared const.
GV->setConstant(false);
setNonAliasAttributes(D, GV);
if (D->getTLSKind() && !GV->isThreadLocal()) {
if (D->getTLSKind() == VarDecl::TLS_Dynamic)
CXXThreadLocals.push_back(D);
setTLSMode(GV, *D);
}
maybeSetTrivialComdat(*D, *GV);
// Emit the initializer function if necessary.
if (NeedsGlobalCtor || NeedsGlobalDtor)
EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
// Emit global variable debug information.
if (CGDebugInfo *DI = getModuleDebugInfo())
if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
DI->EmitGlobalVariable(GV, D);
}
static bool isVarDeclStrongDefinition(const ASTContext &Context,
CodeGenModule &CGM, const VarDecl *D,
bool NoCommon) {
// Don't give variables common linkage if -fno-common was specified unless it
// was overridden by a NoCommon attribute.
if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
return true;
// C11 6.9.2/2:
// A declaration of an identifier for an object that has file scope without
// an initializer, and without a storage-class specifier or with the
// storage-class specifier static, constitutes a tentative definition.
if (D->getInit() || D->hasExternalStorage())
return true;
// A variable cannot be both common and exist in a section.
if (D->hasAttr<SectionAttr>())
return true;
// Thread local vars aren't considered common linkage.
if (D->getTLSKind())
return true;
// Tentative definitions marked with WeakImportAttr are true definitions.
if (D->hasAttr<WeakImportAttr>())
return true;
// A variable cannot be both common and exist in a comdat.
if (shouldBeInCOMDAT(CGM, *D))
return true;
// Declarations with a required alignment do not have common linkage in MSVC
// mode.
if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
if (D->hasAttr<AlignedAttr>())
return true;
QualType VarType = D->getType();
if (Context.isAlignmentRequired(VarType))
return true;
if (const auto *RT = VarType->getAs<RecordType>()) {
const RecordDecl *RD = RT->getDecl();
for (const FieldDecl *FD : RD->fields()) {
if (FD->isBitField())
continue;
if (FD->hasAttr<AlignedAttr>())
return true;
if (Context.isAlignmentRequired(FD->getType()))
return true;
}
}
}
return false;
}
llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
if (Linkage == GVA_Internal)
return llvm::Function::InternalLinkage;
if (D->hasAttr<WeakAttr>()) {
if (IsConstantVariable)
return llvm::GlobalVariable::WeakODRLinkage;
else
return llvm::GlobalVariable::WeakAnyLinkage;
}
// We are guaranteed to have a strong definition somewhere else,
// so we can use available_externally linkage.
if (Linkage == GVA_AvailableExternally)
return llvm::Function::AvailableExternallyLinkage;
// Note that Apple's kernel linker doesn't support symbol
// coalescing, so we need to avoid linkonce and weak linkages there.
// Normally, this means we just map to internal, but for explicit
// instantiations we'll map to external.
// In C++, the compiler has to emit a definition in every translation unit
// that references the function. We should use linkonce_odr because
// a) if all references in this translation unit are optimized away, we
// don't need to codegen it. b) if the function persists, it needs to be
// merged with other definitions. c) C++ has the ODR, so we know the
// definition is dependable.