blob: a96f23c44894e6299393e906a7b7b10c009ce933 [file] [log] [blame]
//===--- CodeGenTypes.h - Type translation for LLVM CodeGen -----*- C++ -*-===//
// The LLVM Compiler Infrastructure
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
// This is the code that handles AST -> LLVM type lowering.
#include "CGCall.h"
#include "clang/AST/GlobalDecl.h"
#include "clang/CodeGen/CGFunctionInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/IR/Module.h"
#include <vector>
namespace llvm {
class FunctionType;
class Module;
class DataLayout;
class Type;
class LLVMContext;
class StructType;
namespace clang {
class ABIInfo;
class ASTContext;
template <typename> class CanQual;
class CXXConstructorDecl;
class CXXDestructorDecl;
class CXXMethodDecl;
class CodeGenOptions;
class FieldDecl;
class FunctionProtoType;
class ObjCInterfaceDecl;
class ObjCIvarDecl;
class PointerType;
class QualType;
class RecordDecl;
class TagDecl;
class TargetInfo;
class Type;
typedef CanQual<Type> CanQualType;
namespace CodeGen {
class CGRecordLayout;
class CodeGenModule;
class RequiredArgs;
enum class StructorType {
Complete, // constructor or destructor
Base, // constructor or destructor
Deleting // destructor only
inline CXXCtorType toCXXCtorType(StructorType T) {
switch (T) {
case StructorType::Complete:
return Ctor_Complete;
case StructorType::Base:
return Ctor_Base;
case StructorType::Deleting:
llvm_unreachable("cannot have a deleting ctor");
llvm_unreachable("not a StructorType");
inline StructorType getFromCtorType(CXXCtorType T) {
switch (T) {
case Ctor_Complete:
return StructorType::Complete;
case Ctor_Base:
return StructorType::Base;
case Ctor_Comdat:
llvm_unreachable("not expecting a COMDAT");
case Ctor_CopyingClosure:
case Ctor_DefaultClosure:
llvm_unreachable("not expecting a closure");
llvm_unreachable("not a CXXCtorType");
inline CXXDtorType toCXXDtorType(StructorType T) {
switch (T) {
case StructorType::Complete:
return Dtor_Complete;
case StructorType::Base:
return Dtor_Base;
case StructorType::Deleting:
return Dtor_Deleting;
llvm_unreachable("not a StructorType");
inline StructorType getFromDtorType(CXXDtorType T) {
switch (T) {
case Dtor_Deleting:
return StructorType::Deleting;
case Dtor_Complete:
return StructorType::Complete;
case Dtor_Base:
return StructorType::Base;
case Dtor_Comdat:
llvm_unreachable("not expecting a COMDAT");
llvm_unreachable("not a CXXDtorType");
/// This class organizes the cross-module state that is used while lowering
/// AST types to LLVM types.
class CodeGenTypes {
CodeGenModule &CGM;
// Some of this stuff should probably be left on the CGM.
ASTContext &Context;
llvm::Module &TheModule;
const TargetInfo &Target;
// This should not be moved earlier, since its initialization depends on some
// of the previous reference members being already initialized
const ABIInfo &TheABIInfo;
/// The opaque type map for Objective-C interfaces. All direct
/// manipulation is done by the runtime interfaces, which are
/// responsible for coercing to the appropriate type; these opaque
/// types are never refined.
llvm::DenseMap<const ObjCInterfaceType*, llvm::Type *> InterfaceTypes;
/// Maps clang struct type with corresponding record layout info.
llvm::DenseMap<const Type*, CGRecordLayout *> CGRecordLayouts;
/// Contains the LLVM IR type for any converted RecordDecl.
llvm::DenseMap<const Type*, llvm::StructType *> RecordDeclTypes;
/// Hold memoized CGFunctionInfo results.
llvm::FoldingSet<CGFunctionInfo> FunctionInfos;
/// This set keeps track of records that we're currently converting
/// to an IR type. For example, when converting:
/// struct A { struct B { int x; } } when processing 'x', the 'A' and 'B'
/// types will be in this set.
llvm::SmallPtrSet<const Type*, 4> RecordsBeingLaidOut;
llvm::SmallPtrSet<const CGFunctionInfo*, 4> FunctionsBeingProcessed;
/// True if we didn't layout a function due to a being inside
/// a recursive struct conversion, set this to true.
bool SkippedLayout;
SmallVector<const RecordDecl *, 8> DeferredRecords;
/// This map keeps cache of llvm::Types and maps clang::Type to
/// corresponding llvm::Type.
llvm::DenseMap<const Type *, llvm::Type *> TypeCache;
CodeGenTypes(CodeGenModule &cgm);
const llvm::DataLayout &getDataLayout() const {
return TheModule.getDataLayout();
ASTContext &getContext() const { return Context; }
const ABIInfo &getABIInfo() const { return TheABIInfo; }
const TargetInfo &getTarget() const { return Target; }
CGCXXABI &getCXXABI() const { return TheCXXABI; }
llvm::LLVMContext &getLLVMContext() { return TheModule.getContext(); }
/// ConvertType - Convert type T into a llvm::Type.
llvm::Type *ConvertType(QualType T);
/// \brief Converts the GlobalDecl into an llvm::Type. This should be used
/// when we know the target of the function we want to convert. This is
/// because some functions (explicitly, those with pass_object_size
/// parameters) may not have the same signature as their type portrays, and
/// can only be called directly.
llvm::Type *ConvertFunctionType(QualType FT,
const FunctionDecl *FD = nullptr);
/// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from
/// ConvertType in that it is used to convert to the memory representation for
/// a type. For example, the scalar representation for _Bool is i1, but the
/// memory representation is usually i8 or i32, depending on the target.
llvm::Type *ConvertTypeForMem(QualType T);
/// GetFunctionType - Get the LLVM function type for \arg Info.
llvm::FunctionType *GetFunctionType(const CGFunctionInfo &Info);
llvm::FunctionType *GetFunctionType(GlobalDecl GD);
/// isFuncTypeConvertible - Utility to check whether a function type can
/// be converted to an LLVM type (i.e. doesn't depend on an incomplete tag
/// type).
bool isFuncTypeConvertible(const FunctionType *FT);
bool isFuncParamTypeConvertible(QualType Ty);
/// GetFunctionTypeForVTable - Get the LLVM function type for use in a vtable,
/// given a CXXMethodDecl. If the method to has an incomplete return type,
/// and/or incomplete argument types, this will return the opaque type.
llvm::Type *GetFunctionTypeForVTable(GlobalDecl GD);
const CGRecordLayout &getCGRecordLayout(const RecordDecl*);
/// UpdateCompletedType - When we find the full definition for a TagDecl,
/// replace the 'opaque' type we previously made for it if applicable.
void UpdateCompletedType(const TagDecl *TD);
/// getNullaryFunctionInfo - Get the function info for a void()
/// function with standard CC.
const CGFunctionInfo &arrangeNullaryFunction();
// The arrangement methods are split into three families:
// - those meant to drive the signature and prologue/epilogue
// of a function declaration or definition,
// - those meant for the computation of the LLVM type for an abstract
// appearance of a function, and
// - those meant for performing the IR-generation of a call.
// They differ mainly in how they deal with optional (i.e. variadic)
// arguments, as well as unprototyped functions.
// Key points:
// - The CGFunctionInfo for emitting a specific call site must include
// entries for the optional arguments.
// - The function type used at the call site must reflect the formal
// signature of the declaration being called, or else the call will
// go awry.
// - For the most part, unprototyped functions are called by casting to
// a formal signature inferred from the specific argument types used
// at the call-site. However, some targets (e.g. x86-64) screw with
// this for compatibility reasons.
const CGFunctionInfo &arrangeGlobalDeclaration(GlobalDecl GD);
const CGFunctionInfo &arrangeFunctionDeclaration(const FunctionDecl *FD);
const CGFunctionInfo &
arrangeFreeFunctionDeclaration(QualType ResTy, const FunctionArgList &Args,
const FunctionType::ExtInfo &Info,
bool isVariadic);
const CGFunctionInfo &arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD);
const CGFunctionInfo &arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
QualType receiverType);
const CGFunctionInfo &arrangeCXXMethodDeclaration(const CXXMethodDecl *MD);
const CGFunctionInfo &arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
StructorType Type);
const CGFunctionInfo &arrangeCXXConstructorCall(const CallArgList &Args,
const CXXConstructorDecl *D,
CXXCtorType CtorKind,
unsigned ExtraArgs);
const CGFunctionInfo &arrangeFreeFunctionCall(const CallArgList &Args,
const FunctionType *Ty,
bool ChainCall);
const CGFunctionInfo &arrangeFreeFunctionCall(QualType ResTy,
const CallArgList &args,
FunctionType::ExtInfo info,
RequiredArgs required);
const CGFunctionInfo &arrangeBlockFunctionCall(const CallArgList &args,
const FunctionType *type);
const CGFunctionInfo &arrangeCXXMethodCall(const CallArgList &args,
const FunctionProtoType *type,
RequiredArgs required);
const CGFunctionInfo &arrangeMSMemberPointerThunk(const CXXMethodDecl *MD);
const CGFunctionInfo &arrangeMSCtorClosure(const CXXConstructorDecl *CD,
CXXCtorType CT);
const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionProtoType> Ty,
const FunctionDecl *FD);
const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionNoProtoType> Ty);
const CGFunctionInfo &arrangeCXXMethodType(const CXXRecordDecl *RD,
const FunctionProtoType *FTP,
const CXXMethodDecl *MD);
/// "Arrange" the LLVM information for a call or type with the given
/// signature. This is largely an internal method; other clients
/// should use one of the above routines, which ultimately defer to
/// this.
/// \param argTypes - must all actually be canonical as params
const CGFunctionInfo &arrangeLLVMFunctionInfo(CanQualType returnType,
bool instanceMethod,
bool chainCall,
ArrayRef<CanQualType> argTypes,
FunctionType::ExtInfo info,
RequiredArgs args);
/// \brief Compute a new LLVM record layout object for the given record.
CGRecordLayout *ComputeRecordLayout(const RecordDecl *D,
llvm::StructType *Ty);
/// addRecordTypeName - Compute a name from the given record decl with an
/// optional suffix and name the given LLVM type using it.
void addRecordTypeName(const RecordDecl *RD, llvm::StructType *Ty,
StringRef suffix);
public: // These are internal details of CGT that shouldn't be used externally.
/// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
llvm::StructType *ConvertRecordDeclType(const RecordDecl *TD);
/// getExpandedTypes - Expand the type \arg Ty into the LLVM
/// argument types it would be passed as. See ABIArgInfo::Expand.
void getExpandedTypes(QualType Ty,
SmallVectorImpl<llvm::Type *>::iterator &TI);
/// IsZeroInitializable - Return whether a type can be
/// zero-initialized (in the C++ sense) with an LLVM zeroinitializer.
bool isZeroInitializable(QualType T);
/// IsZeroInitializable - Return whether a record type can be
/// zero-initialized (in the C++ sense) with an LLVM zeroinitializer.
bool isZeroInitializable(const RecordDecl *RD);
bool isRecordLayoutComplete(const Type *Ty) const;
bool noRecordsBeingLaidOut() const {
return RecordsBeingLaidOut.empty();
bool isRecordBeingLaidOut(const Type *Ty) const {
return RecordsBeingLaidOut.count(Ty);
} // end namespace CodeGen
} // end namespace clang