blob: 0d5dd536589fe83bf550309df55e542a8ce33884 [file] [log] [blame]
//===--- ASTUnit.cpp - ASTUnit utility --------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// ASTUnit Implementation.
//
//===----------------------------------------------------------------------===//
#include "clang/Frontend/ASTUnit.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclVisitor.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/TypeOrdering.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/TargetOptions.h"
#include "clang/Basic/VirtualFileSystem.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/FrontendActions.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "clang/Frontend/FrontendOptions.h"
#include "clang/Frontend/MultiplexConsumer.h"
#include "clang/Frontend/Utils.h"
#include "clang/Lex/HeaderSearch.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/PreprocessorOptions.h"
#include "clang/Sema/Sema.h"
#include "clang/Serialization/ASTReader.h"
#include "clang/Serialization/ASTWriter.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/CrashRecoveryContext.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/MutexGuard.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/raw_ostream.h"
#include <atomic>
#include <cstdio>
#include <cstdlib>
using namespace clang;
using llvm::TimeRecord;
namespace {
class SimpleTimer {
bool WantTiming;
TimeRecord Start;
std::string Output;
public:
explicit SimpleTimer(bool WantTiming) : WantTiming(WantTiming) {
if (WantTiming)
Start = TimeRecord::getCurrentTime();
}
void setOutput(const Twine &Output) {
if (WantTiming)
this->Output = Output.str();
}
~SimpleTimer() {
if (WantTiming) {
TimeRecord Elapsed = TimeRecord::getCurrentTime();
Elapsed -= Start;
llvm::errs() << Output << ':';
Elapsed.print(Elapsed, llvm::errs());
llvm::errs() << '\n';
}
}
};
struct OnDiskData {
/// \brief The file in which the precompiled preamble is stored.
std::string PreambleFile;
/// \brief Temporary files that should be removed when the ASTUnit is
/// destroyed.
SmallVector<std::string, 4> TemporaryFiles;
/// \brief Erase temporary files.
void CleanTemporaryFiles();
/// \brief Erase the preamble file.
void CleanPreambleFile();
/// \brief Erase temporary files and the preamble file.
void Cleanup();
};
}
static llvm::sys::SmartMutex<false> &getOnDiskMutex() {
static llvm::sys::SmartMutex<false> M(/* recursive = */ true);
return M;
}
static void cleanupOnDiskMapAtExit();
typedef llvm::DenseMap<const ASTUnit *,
std::unique_ptr<OnDiskData>> OnDiskDataMap;
static OnDiskDataMap &getOnDiskDataMap() {
static OnDiskDataMap M;
static bool hasRegisteredAtExit = false;
if (!hasRegisteredAtExit) {
hasRegisteredAtExit = true;
atexit(cleanupOnDiskMapAtExit);
}
return M;
}
static void cleanupOnDiskMapAtExit() {
// Use the mutex because there can be an alive thread destroying an ASTUnit.
llvm::MutexGuard Guard(getOnDiskMutex());
for (const auto &I : getOnDiskDataMap()) {
// We don't worry about freeing the memory associated with OnDiskDataMap.
// All we care about is erasing stale files.
I.second->Cleanup();
}
}
static OnDiskData &getOnDiskData(const ASTUnit *AU) {
// We require the mutex since we are modifying the structure of the
// DenseMap.
llvm::MutexGuard Guard(getOnDiskMutex());
OnDiskDataMap &M = getOnDiskDataMap();
auto &D = M[AU];
if (!D)
D = llvm::make_unique<OnDiskData>();
return *D;
}
static void erasePreambleFile(const ASTUnit *AU) {
getOnDiskData(AU).CleanPreambleFile();
}
static void removeOnDiskEntry(const ASTUnit *AU) {
// We require the mutex since we are modifying the structure of the
// DenseMap.
llvm::MutexGuard Guard(getOnDiskMutex());
OnDiskDataMap &M = getOnDiskDataMap();
OnDiskDataMap::iterator I = M.find(AU);
if (I != M.end()) {
I->second->Cleanup();
M.erase(I);
}
}
static void setPreambleFile(const ASTUnit *AU, StringRef preambleFile) {
getOnDiskData(AU).PreambleFile = preambleFile;
}
static const std::string &getPreambleFile(const ASTUnit *AU) {
return getOnDiskData(AU).PreambleFile;
}
void OnDiskData::CleanTemporaryFiles() {
for (StringRef File : TemporaryFiles)
llvm::sys::fs::remove(File);
TemporaryFiles.clear();
}
void OnDiskData::CleanPreambleFile() {
if (!PreambleFile.empty()) {
llvm::sys::fs::remove(PreambleFile);
PreambleFile.clear();
}
}
void OnDiskData::Cleanup() {
CleanTemporaryFiles();
CleanPreambleFile();
}
struct ASTUnit::ASTWriterData {
SmallString<128> Buffer;
llvm::BitstreamWriter Stream;
ASTWriter Writer;
ASTWriterData() : Stream(Buffer), Writer(Stream, { }) { }
};
void ASTUnit::clearFileLevelDecls() {
llvm::DeleteContainerSeconds(FileDecls);
}
void ASTUnit::CleanTemporaryFiles() {
getOnDiskData(this).CleanTemporaryFiles();
}
void ASTUnit::addTemporaryFile(StringRef TempFile) {
getOnDiskData(this).TemporaryFiles.push_back(TempFile);
}
/// \brief After failing to build a precompiled preamble (due to
/// errors in the source that occurs in the preamble), the number of
/// reparses during which we'll skip even trying to precompile the
/// preamble.
const unsigned DefaultPreambleRebuildInterval = 5;
/// \brief Tracks the number of ASTUnit objects that are currently active.
///
/// Used for debugging purposes only.
static std::atomic<unsigned> ActiveASTUnitObjects;
ASTUnit::ASTUnit(bool _MainFileIsAST)
: Reader(nullptr), HadModuleLoaderFatalFailure(false),
OnlyLocalDecls(false), CaptureDiagnostics(false),
MainFileIsAST(_MainFileIsAST),
TUKind(TU_Complete), WantTiming(getenv("LIBCLANG_TIMING")),
OwnsRemappedFileBuffers(true),
NumStoredDiagnosticsFromDriver(0),
PreambleRebuildCounter(0),
NumWarningsInPreamble(0),
ShouldCacheCodeCompletionResults(false),
IncludeBriefCommentsInCodeCompletion(false), UserFilesAreVolatile(false),
CompletionCacheTopLevelHashValue(0),
PreambleTopLevelHashValue(0),
CurrentTopLevelHashValue(0),
UnsafeToFree(false) {
if (getenv("LIBCLANG_OBJTRACKING"))
fprintf(stderr, "+++ %u translation units\n", ++ActiveASTUnitObjects);
}
ASTUnit::~ASTUnit() {
// If we loaded from an AST file, balance out the BeginSourceFile call.
if (MainFileIsAST && getDiagnostics().getClient()) {
getDiagnostics().getClient()->EndSourceFile();
}
clearFileLevelDecls();
// Clean up the temporary files and the preamble file.
removeOnDiskEntry(this);
// Free the buffers associated with remapped files. We are required to
// perform this operation here because we explicitly request that the
// compiler instance *not* free these buffers for each invocation of the
// parser.
if (Invocation.get() && OwnsRemappedFileBuffers) {
PreprocessorOptions &PPOpts = Invocation->getPreprocessorOpts();
for (const auto &RB : PPOpts.RemappedFileBuffers)
delete RB.second;
}
ClearCachedCompletionResults();
if (getenv("LIBCLANG_OBJTRACKING"))
fprintf(stderr, "--- %u translation units\n", --ActiveASTUnitObjects);
}
void ASTUnit::setPreprocessor(Preprocessor *pp) { PP = pp; }
/// \brief Determine the set of code-completion contexts in which this
/// declaration should be shown.
static unsigned getDeclShowContexts(const NamedDecl *ND,
const LangOptions &LangOpts,
bool &IsNestedNameSpecifier) {
IsNestedNameSpecifier = false;
if (isa<UsingShadowDecl>(ND))
ND = dyn_cast<NamedDecl>(ND->getUnderlyingDecl());
if (!ND)
return 0;
uint64_t Contexts = 0;
if (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND) ||
isa<ClassTemplateDecl>(ND) || isa<TemplateTemplateParmDecl>(ND)) {
// Types can appear in these contexts.
if (LangOpts.CPlusPlus || !isa<TagDecl>(ND))
Contexts |= (1LL << CodeCompletionContext::CCC_TopLevel)
| (1LL << CodeCompletionContext::CCC_ObjCIvarList)
| (1LL << CodeCompletionContext::CCC_ClassStructUnion)
| (1LL << CodeCompletionContext::CCC_Statement)
| (1LL << CodeCompletionContext::CCC_Type)
| (1LL << CodeCompletionContext::CCC_ParenthesizedExpression);
// In C++, types can appear in expressions contexts (for functional casts).
if (LangOpts.CPlusPlus)
Contexts |= (1LL << CodeCompletionContext::CCC_Expression);
// In Objective-C, message sends can send interfaces. In Objective-C++,
// all types are available due to functional casts.
if (LangOpts.CPlusPlus || isa<ObjCInterfaceDecl>(ND))
Contexts |= (1LL << CodeCompletionContext::CCC_ObjCMessageReceiver);
// In Objective-C, you can only be a subclass of another Objective-C class
if (isa<ObjCInterfaceDecl>(ND))
Contexts |= (1LL << CodeCompletionContext::CCC_ObjCInterfaceName);
// Deal with tag names.
if (isa<EnumDecl>(ND)) {
Contexts |= (1LL << CodeCompletionContext::CCC_EnumTag);
// Part of the nested-name-specifier in C++0x.
if (LangOpts.CPlusPlus11)
IsNestedNameSpecifier = true;
} else if (const RecordDecl *Record = dyn_cast<RecordDecl>(ND)) {
if (Record->isUnion())
Contexts |= (1LL << CodeCompletionContext::CCC_UnionTag);
else
Contexts |= (1LL << CodeCompletionContext::CCC_ClassOrStructTag);
if (LangOpts.CPlusPlus)
IsNestedNameSpecifier = true;
} else if (isa<ClassTemplateDecl>(ND))
IsNestedNameSpecifier = true;
} else if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
// Values can appear in these contexts.
Contexts = (1LL << CodeCompletionContext::CCC_Statement)
| (1LL << CodeCompletionContext::CCC_Expression)
| (1LL << CodeCompletionContext::CCC_ParenthesizedExpression)
| (1LL << CodeCompletionContext::CCC_ObjCMessageReceiver);
} else if (isa<ObjCProtocolDecl>(ND)) {
Contexts = (1LL << CodeCompletionContext::CCC_ObjCProtocolName);
} else if (isa<ObjCCategoryDecl>(ND)) {
Contexts = (1LL << CodeCompletionContext::CCC_ObjCCategoryName);
} else if (isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND)) {
Contexts = (1LL << CodeCompletionContext::CCC_Namespace);
// Part of the nested-name-specifier.
IsNestedNameSpecifier = true;
}
return Contexts;
}
void ASTUnit::CacheCodeCompletionResults() {
if (!TheSema)
return;
SimpleTimer Timer(WantTiming);
Timer.setOutput("Cache global code completions for " + getMainFileName());
// Clear out the previous results.
ClearCachedCompletionResults();
// Gather the set of global code completions.
typedef CodeCompletionResult Result;
SmallVector<Result, 8> Results;
CachedCompletionAllocator = new GlobalCodeCompletionAllocator;
CodeCompletionTUInfo CCTUInfo(CachedCompletionAllocator);
TheSema->GatherGlobalCodeCompletions(*CachedCompletionAllocator,
CCTUInfo, Results);
// Translate global code completions into cached completions.
llvm::DenseMap<CanQualType, unsigned> CompletionTypes;
CodeCompletionContext CCContext(CodeCompletionContext::CCC_TopLevel);
for (Result &R : Results) {
switch (R.Kind) {
case Result::RK_Declaration: {
bool IsNestedNameSpecifier = false;
CachedCodeCompletionResult CachedResult;
CachedResult.Completion = R.CreateCodeCompletionString(
*TheSema, CCContext, *CachedCompletionAllocator, CCTUInfo,
IncludeBriefCommentsInCodeCompletion);
CachedResult.ShowInContexts = getDeclShowContexts(
R.Declaration, Ctx->getLangOpts(), IsNestedNameSpecifier);
CachedResult.Priority = R.Priority;
CachedResult.Kind = R.CursorKind;
CachedResult.Availability = R.Availability;
// Keep track of the type of this completion in an ASTContext-agnostic
// way.
QualType UsageType = getDeclUsageType(*Ctx, R.Declaration);
if (UsageType.isNull()) {
CachedResult.TypeClass = STC_Void;
CachedResult.Type = 0;
} else {
CanQualType CanUsageType
= Ctx->getCanonicalType(UsageType.getUnqualifiedType());
CachedResult.TypeClass = getSimplifiedTypeClass(CanUsageType);
// Determine whether we have already seen this type. If so, we save
// ourselves the work of formatting the type string by using the
// temporary, CanQualType-based hash table to find the associated value.
unsigned &TypeValue = CompletionTypes[CanUsageType];
if (TypeValue == 0) {
TypeValue = CompletionTypes.size();
CachedCompletionTypes[QualType(CanUsageType).getAsString()]
= TypeValue;
}
CachedResult.Type = TypeValue;
}
CachedCompletionResults.push_back(CachedResult);
/// Handle nested-name-specifiers in C++.
if (TheSema->Context.getLangOpts().CPlusPlus && IsNestedNameSpecifier &&
!R.StartsNestedNameSpecifier) {
// The contexts in which a nested-name-specifier can appear in C++.
uint64_t NNSContexts
= (1LL << CodeCompletionContext::CCC_TopLevel)
| (1LL << CodeCompletionContext::CCC_ObjCIvarList)
| (1LL << CodeCompletionContext::CCC_ClassStructUnion)
| (1LL << CodeCompletionContext::CCC_Statement)
| (1LL << CodeCompletionContext::CCC_Expression)
| (1LL << CodeCompletionContext::CCC_ObjCMessageReceiver)
| (1LL << CodeCompletionContext::CCC_EnumTag)
| (1LL << CodeCompletionContext::CCC_UnionTag)
| (1LL << CodeCompletionContext::CCC_ClassOrStructTag)
| (1LL << CodeCompletionContext::CCC_Type)
| (1LL << CodeCompletionContext::CCC_PotentiallyQualifiedName)
| (1LL << CodeCompletionContext::CCC_ParenthesizedExpression);
if (isa<NamespaceDecl>(R.Declaration) ||
isa<NamespaceAliasDecl>(R.Declaration))
NNSContexts |= (1LL << CodeCompletionContext::CCC_Namespace);
if (unsigned RemainingContexts
= NNSContexts & ~CachedResult.ShowInContexts) {
// If there any contexts where this completion can be a
// nested-name-specifier but isn't already an option, create a
// nested-name-specifier completion.
R.StartsNestedNameSpecifier = true;
CachedResult.Completion = R.CreateCodeCompletionString(
*TheSema, CCContext, *CachedCompletionAllocator, CCTUInfo,
IncludeBriefCommentsInCodeCompletion);
CachedResult.ShowInContexts = RemainingContexts;
CachedResult.Priority = CCP_NestedNameSpecifier;
CachedResult.TypeClass = STC_Void;
CachedResult.Type = 0;
CachedCompletionResults.push_back(CachedResult);
}
}
break;
}
case Result::RK_Keyword:
case Result::RK_Pattern:
// Ignore keywords and patterns; we don't care, since they are so
// easily regenerated.
break;
case Result::RK_Macro: {
CachedCodeCompletionResult CachedResult;
CachedResult.Completion = R.CreateCodeCompletionString(
*TheSema, CCContext, *CachedCompletionAllocator, CCTUInfo,
IncludeBriefCommentsInCodeCompletion);
CachedResult.ShowInContexts
= (1LL << CodeCompletionContext::CCC_TopLevel)
| (1LL << CodeCompletionContext::CCC_ObjCInterface)
| (1LL << CodeCompletionContext::CCC_ObjCImplementation)
| (1LL << CodeCompletionContext::CCC_ObjCIvarList)
| (1LL << CodeCompletionContext::CCC_ClassStructUnion)
| (1LL << CodeCompletionContext::CCC_Statement)
| (1LL << CodeCompletionContext::CCC_Expression)
| (1LL << CodeCompletionContext::CCC_ObjCMessageReceiver)
| (1LL << CodeCompletionContext::CCC_MacroNameUse)
| (1LL << CodeCompletionContext::CCC_PreprocessorExpression)
| (1LL << CodeCompletionContext::CCC_ParenthesizedExpression)
| (1LL << CodeCompletionContext::CCC_OtherWithMacros);
CachedResult.Priority = R.Priority;
CachedResult.Kind = R.CursorKind;
CachedResult.Availability = R.Availability;
CachedResult.TypeClass = STC_Void;
CachedResult.Type = 0;
CachedCompletionResults.push_back(CachedResult);
break;
}
}
}
// Save the current top-level hash value.
CompletionCacheTopLevelHashValue = CurrentTopLevelHashValue;
}
void ASTUnit::ClearCachedCompletionResults() {
CachedCompletionResults.clear();
CachedCompletionTypes.clear();
CachedCompletionAllocator = nullptr;
}
namespace {
/// \brief Gathers information from ASTReader that will be used to initialize
/// a Preprocessor.
class ASTInfoCollector : public ASTReaderListener {
Preprocessor &PP;
ASTContext &Context;
LangOptions &LangOpt;
std::shared_ptr<TargetOptions> &TargetOpts;
IntrusiveRefCntPtr<TargetInfo> &Target;
unsigned &Counter;
bool InitializedLanguage;
public:
ASTInfoCollector(Preprocessor &PP, ASTContext &Context, LangOptions &LangOpt,
std::shared_ptr<TargetOptions> &TargetOpts,
IntrusiveRefCntPtr<TargetInfo> &Target, unsigned &Counter)
: PP(PP), Context(Context), LangOpt(LangOpt), TargetOpts(TargetOpts),
Target(Target), Counter(Counter), InitializedLanguage(false) {}
bool ReadLanguageOptions(const LangOptions &LangOpts, bool Complain,
bool AllowCompatibleDifferences) override {
if (InitializedLanguage)
return false;
LangOpt = LangOpts;
InitializedLanguage = true;
updated();
return false;
}
bool ReadTargetOptions(const TargetOptions &TargetOpts, bool Complain,
bool AllowCompatibleDifferences) override {
// If we've already initialized the target, don't do it again.
if (Target)
return false;
this->TargetOpts = std::make_shared<TargetOptions>(TargetOpts);
Target =
TargetInfo::CreateTargetInfo(PP.getDiagnostics(), this->TargetOpts);
updated();
return false;
}
void ReadCounter(const serialization::ModuleFile &M,
unsigned Value) override {
Counter = Value;
}
private:
void updated() {
if (!Target || !InitializedLanguage)
return;
// Inform the target of the language options.
//
// FIXME: We shouldn't need to do this, the target should be immutable once
// created. This complexity should be lifted elsewhere.
Target->adjust(LangOpt);
// Initialize the preprocessor.
PP.Initialize(*Target);
// Initialize the ASTContext
Context.InitBuiltinTypes(*Target);
// We didn't have access to the comment options when the ASTContext was
// constructed, so register them now.
Context.getCommentCommandTraits().registerCommentOptions(
LangOpt.CommentOpts);
}
};
/// \brief Diagnostic consumer that saves each diagnostic it is given.
class StoredDiagnosticConsumer : public DiagnosticConsumer {
SmallVectorImpl<StoredDiagnostic> &StoredDiags;
SourceManager *SourceMgr;
public:
explicit StoredDiagnosticConsumer(
SmallVectorImpl<StoredDiagnostic> &StoredDiags)
: StoredDiags(StoredDiags), SourceMgr(nullptr) {}
void BeginSourceFile(const LangOptions &LangOpts,
const Preprocessor *PP = nullptr) override {
if (PP)
SourceMgr = &PP->getSourceManager();
}
void HandleDiagnostic(DiagnosticsEngine::Level Level,
const Diagnostic &Info) override;
};
/// \brief RAII object that optionally captures diagnostics, if
/// there is no diagnostic client to capture them already.
class CaptureDroppedDiagnostics {
DiagnosticsEngine &Diags;
StoredDiagnosticConsumer Client;
DiagnosticConsumer *PreviousClient;
std::unique_ptr<DiagnosticConsumer> OwningPreviousClient;
public:
CaptureDroppedDiagnostics(bool RequestCapture, DiagnosticsEngine &Diags,
SmallVectorImpl<StoredDiagnostic> &StoredDiags)
: Diags(Diags), Client(StoredDiags), PreviousClient(nullptr)
{
if (RequestCapture || Diags.getClient() == nullptr) {
OwningPreviousClient = Diags.takeClient();
PreviousClient = Diags.getClient();
Diags.setClient(&Client, false);
}
}
~CaptureDroppedDiagnostics() {
if (Diags.getClient() == &Client)
Diags.setClient(PreviousClient, !!OwningPreviousClient.release());
}
};
} // anonymous namespace
void StoredDiagnosticConsumer::HandleDiagnostic(DiagnosticsEngine::Level Level,
const Diagnostic &Info) {
// Default implementation (Warnings/errors count).
DiagnosticConsumer::HandleDiagnostic(Level, Info);
// Only record the diagnostic if it's part of the source manager we know
// about. This effectively drops diagnostics from modules we're building.
// FIXME: In the long run, ee don't want to drop source managers from modules.
if (!Info.hasSourceManager() || &Info.getSourceManager() == SourceMgr)
StoredDiags.emplace_back(Level, Info);
}
ASTMutationListener *ASTUnit::getASTMutationListener() {
if (WriterData)
return &WriterData->Writer;
return nullptr;
}
ASTDeserializationListener *ASTUnit::getDeserializationListener() {
if (WriterData)
return &WriterData->Writer;
return nullptr;
}
std::unique_ptr<llvm::MemoryBuffer>
ASTUnit::getBufferForFile(StringRef Filename, std::string *ErrorStr) {
assert(FileMgr);
auto Buffer = FileMgr->getBufferForFile(Filename);
if (Buffer)
return std::move(*Buffer);
if (ErrorStr)
*ErrorStr = Buffer.getError().message();
return nullptr;
}
/// \brief Configure the diagnostics object for use with ASTUnit.
void ASTUnit::ConfigureDiags(IntrusiveRefCntPtr<DiagnosticsEngine> Diags,
ASTUnit &AST, bool CaptureDiagnostics) {
assert(Diags.get() && "no DiagnosticsEngine was provided");
if (CaptureDiagnostics)
Diags->setClient(new StoredDiagnosticConsumer(AST.StoredDiagnostics));
}
std::unique_ptr<ASTUnit> ASTUnit::LoadFromASTFile(
const std::string &Filename, const PCHContainerReader &PCHContainerRdr,
IntrusiveRefCntPtr<DiagnosticsEngine> Diags,
const FileSystemOptions &FileSystemOpts, bool UseDebugInfo,
bool OnlyLocalDecls, ArrayRef<RemappedFile> RemappedFiles,
bool CaptureDiagnostics, bool AllowPCHWithCompilerErrors,
bool UserFilesAreVolatile) {
std::unique_ptr<ASTUnit> AST(new ASTUnit(true));
// Recover resources if we crash before exiting this method.
llvm::CrashRecoveryContextCleanupRegistrar<ASTUnit>
ASTUnitCleanup(AST.get());
llvm::CrashRecoveryContextCleanupRegistrar<DiagnosticsEngine,
llvm::CrashRecoveryContextReleaseRefCleanup<DiagnosticsEngine> >
DiagCleanup(Diags.get());
ConfigureDiags(Diags, *AST, CaptureDiagnostics);
AST->OnlyLocalDecls = OnlyLocalDecls;
AST->CaptureDiagnostics = CaptureDiagnostics;
AST->Diagnostics = Diags;
IntrusiveRefCntPtr<vfs::FileSystem> VFS = vfs::getRealFileSystem();
AST->FileMgr = new FileManager(FileSystemOpts, VFS);
AST->UserFilesAreVolatile = UserFilesAreVolatile;
AST->SourceMgr = new SourceManager(AST->getDiagnostics(),
AST->getFileManager(),
UserFilesAreVolatile);
AST->HSOpts = new HeaderSearchOptions();
AST->HSOpts->ModuleFormat = PCHContainerRdr.getFormat();
AST->HeaderInfo.reset(new HeaderSearch(AST->HSOpts,
AST->getSourceManager(),
AST->getDiagnostics(),
AST->ASTFileLangOpts,
/*Target=*/nullptr));
PreprocessorOptions *PPOpts = new PreprocessorOptions();
for (const auto &RemappedFile : RemappedFiles)
PPOpts->addRemappedFile(RemappedFile.first, RemappedFile.second);
// Gather Info for preprocessor construction later on.
HeaderSearch &HeaderInfo = *AST->HeaderInfo;
unsigned Counter;
AST->PP =
new Preprocessor(PPOpts, AST->getDiagnostics(), AST->ASTFileLangOpts,
AST->getSourceManager(), HeaderInfo, *AST,
/*IILookup=*/nullptr,
/*OwnsHeaderSearch=*/false);
Preprocessor &PP = *AST->PP;
AST->Ctx = new ASTContext(AST->ASTFileLangOpts, AST->getSourceManager(),
PP.getIdentifierTable(), PP.getSelectorTable(),
PP.getBuiltinInfo());
ASTContext &Context = *AST->Ctx;
bool disableValid = false;
if (::getenv("LIBCLANG_DISABLE_PCH_VALIDATION"))
disableValid = true;
AST->Reader = new ASTReader(PP, Context, PCHContainerRdr, { },
/*isysroot=*/"",
/*DisableValidation=*/disableValid,
AllowPCHWithCompilerErrors);
AST->Reader->setListener(llvm::make_unique<ASTInfoCollector>(
*AST->PP, Context, AST->ASTFileLangOpts, AST->TargetOpts, AST->Target,
Counter));
// Attach the AST reader to the AST context as an external AST
// source, so that declarations will be deserialized from the
// AST file as needed.
// We need the external source to be set up before we read the AST, because
// eagerly-deserialized declarations may use it.
Context.setExternalSource(AST->Reader);
switch (AST->Reader->ReadAST(Filename, serialization::MK_MainFile,
SourceLocation(), ASTReader::ARR_None)) {
case ASTReader::Success:
break;
case ASTReader::Failure:
case ASTReader::Missing:
case ASTReader::OutOfDate:
case ASTReader::VersionMismatch:
case ASTReader::ConfigurationMismatch:
case ASTReader::HadErrors:
AST->getDiagnostics().Report(diag::err_fe_unable_to_load_pch);
return nullptr;
}
AST->OriginalSourceFile = AST->Reader->getOriginalSourceFile();
PP.setCounterValue(Counter);
// Create an AST consumer, even though it isn't used.
AST->Consumer.reset(new ASTConsumer);
// Create a semantic analysis object and tell the AST reader about it.
AST->TheSema.reset(new Sema(PP, Context, *AST->Consumer));
AST->TheSema->Initialize();
AST->Reader->InitializeSema(*AST->TheSema);
// Tell the diagnostic client that we have started a source file.
AST->getDiagnostics().getClient()->BeginSourceFile(Context.getLangOpts(),&PP);
return AST;
}
namespace {
/// \brief Preprocessor callback class that updates a hash value with the names
/// of all macros that have been defined by the translation unit.
class MacroDefinitionTrackerPPCallbacks : public PPCallbacks {
unsigned &Hash;
public:
explicit MacroDefinitionTrackerPPCallbacks(unsigned &Hash) : Hash(Hash) { }
void MacroDefined(const Token &MacroNameTok,
const MacroDirective *MD) override {
Hash = llvm::HashString(MacroNameTok.getIdentifierInfo()->getName(), Hash);
}
};
/// \brief Add the given declaration to the hash of all top-level entities.
void AddTopLevelDeclarationToHash(Decl *D, unsigned &Hash) {
if (!D)
return;
DeclContext *DC = D->getDeclContext();
if (!DC)
return;
if (!(DC->isTranslationUnit() || DC->getLookupParent()->isTranslationUnit()))
return;
if (NamedDecl *ND = dyn_cast<NamedDecl>(D)) {
if (EnumDecl *EnumD = dyn_cast<EnumDecl>(D)) {
// For an unscoped enum include the enumerators in the hash since they
// enter the top-level namespace.
if (!EnumD->isScoped()) {
for (const auto *EI : EnumD->enumerators()) {
if (EI->getIdentifier())
Hash = llvm::HashString(EI->getIdentifier()->getName(), Hash);
}
}
}
if (ND->getIdentifier())
Hash = llvm::HashString(ND->getIdentifier()->getName(), Hash);
else if (DeclarationName Name = ND->getDeclName()) {
std::string NameStr = Name.getAsString();
Hash = llvm::HashString(NameStr, Hash);
}
return;
}
if (ImportDecl *ImportD = dyn_cast<ImportDecl>(D)) {
if (Module *Mod = ImportD->getImportedModule()) {
std::string ModName = Mod->getFullModuleName();
Hash = llvm::HashString(ModName, Hash);
}
return;
}
}
class TopLevelDeclTrackerConsumer : public ASTConsumer {
ASTUnit &Unit;
unsigned &Hash;
public:
TopLevelDeclTrackerConsumer(ASTUnit &_Unit, unsigned &Hash)
: Unit(_Unit), Hash(Hash) {
Hash = 0;
}
void handleTopLevelDecl(Decl *D) {
if (!D)
return;
// FIXME: Currently ObjC method declarations are incorrectly being
// reported as top-level declarations, even though their DeclContext
// is the containing ObjC @interface/@implementation. This is a
// fundamental problem in the parser right now.
if (isa<ObjCMethodDecl>(D))
return;
AddTopLevelDeclarationToHash(D, Hash);
Unit.addTopLevelDecl(D);
handleFileLevelDecl(D);
}
void handleFileLevelDecl(Decl *D) {
Unit.addFileLevelDecl(D);
if (NamespaceDecl *NSD = dyn_cast<NamespaceDecl>(D)) {
for (auto *I : NSD->decls())
handleFileLevelDecl(I);
}
}
bool HandleTopLevelDecl(DeclGroupRef D) override {
for (Decl *TopLevelDecl : D)
handleTopLevelDecl(TopLevelDecl);
return true;
}
// We're not interested in "interesting" decls.
void HandleInterestingDecl(DeclGroupRef) override {}
void HandleTopLevelDeclInObjCContainer(DeclGroupRef D) override {
for (Decl *TopLevelDecl : D)
handleTopLevelDecl(TopLevelDecl);
}
ASTMutationListener *GetASTMutationListener() override {
return Unit.getASTMutationListener();
}
ASTDeserializationListener *GetASTDeserializationListener() override {
return Unit.getDeserializationListener();
}
};
class TopLevelDeclTrackerAction : public ASTFrontendAction {
public:
ASTUnit &Unit;
std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &CI,
StringRef InFile) override {
CI.getPreprocessor().addPPCallbacks(
llvm::make_unique<MacroDefinitionTrackerPPCallbacks>(
Unit.getCurrentTopLevelHashValue()));
return llvm::make_unique<TopLevelDeclTrackerConsumer>(
Unit, Unit.getCurrentTopLevelHashValue());
}
public:
TopLevelDeclTrackerAction(ASTUnit &_Unit) : Unit(_Unit) {}
bool hasCodeCompletionSupport() const override { return false; }
TranslationUnitKind getTranslationUnitKind() override {
return Unit.getTranslationUnitKind();
}
};
class PrecompilePreambleAction : public ASTFrontendAction {
ASTUnit &Unit;
bool HasEmittedPreamblePCH;
public:
explicit PrecompilePreambleAction(ASTUnit &Unit)
: Unit(Unit), HasEmittedPreamblePCH(false) {}
std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &CI,
StringRef InFile) override;
bool hasEmittedPreamblePCH() const { return HasEmittedPreamblePCH; }
void setHasEmittedPreamblePCH() { HasEmittedPreamblePCH = true; }
bool shouldEraseOutputFiles() override { return !hasEmittedPreamblePCH(); }
bool hasCodeCompletionSupport() const override { return false; }
bool hasASTFileSupport() const override { return false; }
TranslationUnitKind getTranslationUnitKind() override { return TU_Prefix; }
};
class PrecompilePreambleConsumer : public PCHGenerator {
ASTUnit &Unit;
unsigned &Hash;
std::vector<Decl *> TopLevelDecls;
PrecompilePreambleAction *Action;
raw_ostream *Out;
public:
PrecompilePreambleConsumer(ASTUnit &Unit, PrecompilePreambleAction *Action,
const Preprocessor &PP, StringRef isysroot,
raw_ostream *Out)
: PCHGenerator(PP, "", nullptr, isysroot, std::make_shared<PCHBuffer>(),
ArrayRef<llvm::IntrusiveRefCntPtr<ModuleFileExtension>>(),
/*AllowASTWithErrors=*/true),
Unit(Unit), Hash(Unit.getCurrentTopLevelHashValue()), Action(Action),
Out(Out) {
Hash = 0;
}
bool HandleTopLevelDecl(DeclGroupRef DG) override {
for (Decl *D : DG) {
// FIXME: Currently ObjC method declarations are incorrectly being
// reported as top-level declarations, even though their DeclContext
// is the containing ObjC @interface/@implementation. This is a
// fundamental problem in the parser right now.
if (isa<ObjCMethodDecl>(D))
continue;
AddTopLevelDeclarationToHash(D, Hash);
TopLevelDecls.push_back(D);
}
return true;
}
void HandleTranslationUnit(ASTContext &Ctx) override {
PCHGenerator::HandleTranslationUnit(Ctx);
if (hasEmittedPCH()) {
// Write the generated bitstream to "Out".
*Out << getPCH();
// Make sure it hits disk now.
Out->flush();
// Free the buffer.
llvm::SmallVector<char, 0> Empty;
getPCH() = std::move(Empty);
// Translate the top-level declarations we captured during
// parsing into declaration IDs in the precompiled
// preamble. This will allow us to deserialize those top-level
// declarations when requested.
for (Decl *D : TopLevelDecls) {
// Invalid top-level decls may not have been serialized.
if (D->isInvalidDecl())
continue;
Unit.addTopLevelDeclFromPreamble(getWriter().getDeclID(D));
}
Action->setHasEmittedPreamblePCH();
}
}
};
} // anonymous namespace
std::unique_ptr<ASTConsumer>
PrecompilePreambleAction::CreateASTConsumer(CompilerInstance &CI,
StringRef InFile) {
std::string Sysroot;
std::string OutputFile;
raw_ostream *OS = GeneratePCHAction::ComputeASTConsumerArguments(
CI, InFile, Sysroot, OutputFile);
if (!OS)
return nullptr;
if (!CI.getFrontendOpts().RelocatablePCH)
Sysroot.clear();
CI.getPreprocessor().addPPCallbacks(
llvm::make_unique<MacroDefinitionTrackerPPCallbacks>(
Unit.getCurrentTopLevelHashValue()));
return llvm::make_unique<PrecompilePreambleConsumer>(
Unit, this, CI.getPreprocessor(), Sysroot, OS);
}
static bool isNonDriverDiag(const StoredDiagnostic &StoredDiag) {
return StoredDiag.getLocation().isValid();
}
static void
checkAndRemoveNonDriverDiags(SmallVectorImpl<StoredDiagnostic> &StoredDiags) {
// Get rid of stored diagnostics except the ones from the driver which do not
// have a source location.
StoredDiags.erase(
std::remove_if(StoredDiags.begin(), StoredDiags.end(), isNonDriverDiag),
StoredDiags.end());
}
static void checkAndSanitizeDiags(SmallVectorImpl<StoredDiagnostic> &
StoredDiagnostics,
SourceManager &SM) {
// The stored diagnostic has the old source manager in it; update
// the locations to refer into the new source manager. Since we've
// been careful to make sure that the source manager's state
// before and after are identical, so that we can reuse the source
// location itself.
for (StoredDiagnostic &SD : StoredDiagnostics) {
if (SD.getLocation().isValid()) {
FullSourceLoc Loc(SD.getLocation(), SM);
SD.setLocation(Loc);
}
}
}
/// Parse the source file into a translation unit using the given compiler
/// invocation, replacing the current translation unit.
///
/// \returns True if a failure occurred that causes the ASTUnit not to
/// contain any translation-unit information, false otherwise.
bool ASTUnit::Parse(std::shared_ptr<PCHContainerOperations> PCHContainerOps,
std::unique_ptr<llvm::MemoryBuffer> OverrideMainBuffer) {
SavedMainFileBuffer.reset();
if (!Invocation)
return true;
// Create the compiler instance to use for building the AST.
std::unique_ptr<CompilerInstance> Clang(
new CompilerInstance(PCHContainerOps));
// Recover resources if we crash before exiting this method.
llvm::CrashRecoveryContextCleanupRegistrar<CompilerInstance>
CICleanup(Clang.get());
IntrusiveRefCntPtr<CompilerInvocation>
CCInvocation(new CompilerInvocation(*Invocation));
Clang->setInvocation(CCInvocation.get());
OriginalSourceFile = Clang->getFrontendOpts().Inputs[0].getFile();
// Set up diagnostics, capturing any diagnostics that would
// otherwise be dropped.
Clang->setDiagnostics(&getDiagnostics());
// Create the target instance.
Clang->setTarget(TargetInfo::CreateTargetInfo(
Clang->getDiagnostics(), Clang->getInvocation().TargetOpts));
if (!Clang->hasTarget())
return true;
// Inform the target of the language options.
//
// FIXME: We shouldn't need to do this, the target should be immutable once
// created. This complexity should be lifted elsewhere.
Clang->getTarget().adjust(Clang->getLangOpts());
assert(Clang->getFrontendOpts().Inputs.size() == 1 &&
"Invocation must have exactly one source file!");
assert(Clang->getFrontendOpts().Inputs[0].getKind() != IK_AST &&
"FIXME: AST inputs not yet supported here!");
assert(Clang->getFrontendOpts().Inputs[0].getKind() != IK_LLVM_IR &&
"IR inputs not support here!");
// Configure the various subsystems.
LangOpts = Clang->getInvocation().LangOpts;
FileSystemOpts = Clang->getFileSystemOpts();
if (!FileMgr) {
Clang->createFileManager();
FileMgr = &Clang->getFileManager();
}
SourceMgr = new SourceManager(getDiagnostics(), *FileMgr,
UserFilesAreVolatile);
TheSema.reset();
Ctx = nullptr;
PP = nullptr;
Reader = nullptr;
// Clear out old caches and data.
TopLevelDecls.clear();
clearFileLevelDecls();
CleanTemporaryFiles();
if (!OverrideMainBuffer) {
checkAndRemoveNonDriverDiags(StoredDiagnostics);
TopLevelDeclsInPreamble.clear();
}
// Create a file manager object to provide access to and cache the filesystem.
Clang->setFileManager(&getFileManager());
// Create the source manager.
Clang->setSourceManager(&getSourceManager());
// If the main file has been overridden due to the use of a preamble,
// make that override happen and introduce the preamble.
PreprocessorOptions &PreprocessorOpts = Clang->getPreprocessorOpts();
if (OverrideMainBuffer) {
PreprocessorOpts.addRemappedFile(OriginalSourceFile,
OverrideMainBuffer.get());
PreprocessorOpts.PrecompiledPreambleBytes.first = Preamble.size();
PreprocessorOpts.PrecompiledPreambleBytes.second
= PreambleEndsAtStartOfLine;
PreprocessorOpts.ImplicitPCHInclude = getPreambleFile(this);
PreprocessorOpts.DisablePCHValidation = true;
// The stored diagnostic has the old source manager in it; update
// the locations to refer into the new source manager. Since we've
// been careful to make sure that the source manager's state
// before and after are identical, so that we can reuse the source
// location itself.
checkAndSanitizeDiags(StoredDiagnostics, getSourceManager());
// Keep track of the override buffer;
SavedMainFileBuffer = std::move(OverrideMainBuffer);
}
std::unique_ptr<TopLevelDeclTrackerAction> Act(
new TopLevelDeclTrackerAction(*this));
// Recover resources if we crash before exiting this method.
llvm::CrashRecoveryContextCleanupRegistrar<TopLevelDeclTrackerAction>
ActCleanup(Act.get());
if (!Act->BeginSourceFile(*Clang.get(), Clang->getFrontendOpts().Inputs[0]))
goto error;
if (SavedMainFileBuffer) {
std::string ModName = getPreambleFile(this);
TranslateStoredDiagnostics(getFileManager(), getSourceManager(),
PreambleDiagnostics, StoredDiagnostics);
}
if (!Act->Execute())
goto error;
transferASTDataFromCompilerInstance(*Clang);
Act->EndSourceFile();
FailedParseDiagnostics.clear();
return false;
error:
// Remove the overridden buffer we used for the preamble.
SavedMainFileBuffer = nullptr;
// Keep the ownership of the data in the ASTUnit because the client may
// want to see the diagnostics.
transferASTDataFromCompilerInstance(*Clang);
FailedParseDiagnostics.swap(StoredDiagnostics);
StoredDiagnostics.clear();
NumStoredDiagnosticsFromDriver = 0;
return true;
}
/// \brief Simple function to retrieve a path for a preamble precompiled header.
static std::string GetPreamblePCHPath() {
// FIXME: This is a hack so that we can override the preamble file during
// crash-recovery testing, which is the only case where the preamble files
// are not necessarily cleaned up.
const char *TmpFile = ::getenv("CINDEXTEST_PREAMBLE_FILE");
if (TmpFile)
return TmpFile;
SmallString<128> Path;
llvm::sys::fs::createTemporaryFile("preamble", "pch", Path);
return Path.str();
}
/// \brief Compute the preamble for the main file, providing the source buffer
/// that corresponds to the main file along with a pair (bytes, start-of-line)
/// that describes the preamble.
ASTUnit::ComputedPreamble
ASTUnit::ComputePreamble(CompilerInvocation &Invocation, unsigned MaxLines) {
FrontendOptions &FrontendOpts = Invocation.getFrontendOpts();
PreprocessorOptions &PreprocessorOpts = Invocation.getPreprocessorOpts();
// Try to determine if the main file has been remapped, either from the
// command line (to another file) or directly through the compiler invocation
// (to a memory buffer).
llvm::MemoryBuffer *Buffer = nullptr;
std::unique_ptr<llvm::MemoryBuffer> BufferOwner;
std::string MainFilePath(FrontendOpts.Inputs[0].getFile());
llvm::sys::fs::UniqueID MainFileID;
if (!llvm::sys::fs::getUniqueID(MainFilePath, MainFileID)) {
// Check whether there is a file-file remapping of the main file
for (const auto &RF : PreprocessorOpts.RemappedFiles) {
std::string MPath(RF.first);
llvm::sys::fs::UniqueID MID;
if (!llvm::sys::fs::getUniqueID(MPath, MID)) {
if (MainFileID == MID) {
// We found a remapping. Try to load the resulting, remapped source.
BufferOwner = getBufferForFile(RF.second);
if (!BufferOwner)
return ComputedPreamble(nullptr, nullptr, 0, true);
}
}
}
// Check whether there is a file-buffer remapping. It supercedes the
// file-file remapping.
for (const auto &RB : PreprocessorOpts.RemappedFileBuffers) {
std::string MPath(RB.first);
llvm::sys::fs::UniqueID MID;
if (!llvm::sys::fs::getUniqueID(MPath, MID)) {
if (MainFileID == MID) {
// We found a remapping.
BufferOwner.reset();
Buffer = const_cast<llvm::MemoryBuffer *>(RB.second);
}
}
}
}
// If the main source file was not remapped, load it now.
if (!Buffer && !BufferOwner) {
BufferOwner = getBufferForFile(FrontendOpts.Inputs[0].getFile());
if (!BufferOwner)
return ComputedPreamble(nullptr, nullptr, 0, true);
}
if (!Buffer)
Buffer = BufferOwner.get();
auto Pre = Lexer::ComputePreamble(Buffer->getBuffer(),
*Invocation.getLangOpts(), MaxLines);
return ComputedPreamble(Buffer, std::move(BufferOwner), Pre.first,
Pre.second);
}
ASTUnit::PreambleFileHash
ASTUnit::PreambleFileHash::createForFile(off_t Size, time_t ModTime) {
PreambleFileHash Result;
Result.Size = Size;
Result.ModTime = ModTime;
memset(Result.MD5, 0, sizeof(Result.MD5));
return Result;
}
ASTUnit::PreambleFileHash ASTUnit::PreambleFileHash::createForMemoryBuffer(
const llvm::MemoryBuffer *Buffer) {
PreambleFileHash Result;
Result.Size = Buffer->getBufferSize();
Result.ModTime = 0;
llvm::MD5 MD5Ctx;
MD5Ctx.update(Buffer->getBuffer().data());
MD5Ctx.final(Result.MD5);
return Result;
}
namespace clang {
bool operator==(const ASTUnit::PreambleFileHash &LHS,
const ASTUnit::PreambleFileHash &RHS) {
return LHS.Size == RHS.Size && LHS.ModTime == RHS.ModTime &&
memcmp(LHS.MD5, RHS.MD5, sizeof(LHS.MD5)) == 0;
}
} // namespace clang
static std::pair<unsigned, unsigned>
makeStandaloneRange(CharSourceRange Range, const SourceManager &SM,
const LangOptions &LangOpts) {
CharSourceRange FileRange = Lexer::makeFileCharRange(Range, SM, LangOpts);
unsigned Offset = SM.getFileOffset(FileRange.getBegin());
unsigned EndOffset = SM.getFileOffset(FileRange.getEnd());
return std::make_pair(Offset, EndOffset);
}
static ASTUnit::StandaloneFixIt makeStandaloneFixIt(const SourceManager &SM,
const LangOptions &LangOpts,
const FixItHint &InFix) {
ASTUnit::StandaloneFixIt OutFix;
OutFix.RemoveRange = makeStandaloneRange(InFix.RemoveRange, SM, LangOpts);
OutFix.InsertFromRange = makeStandaloneRange(InFix.InsertFromRange, SM,
LangOpts);
OutFix.CodeToInsert = InFix.CodeToInsert;
OutFix.BeforePreviousInsertions = InFix.BeforePreviousInsertions;
return OutFix;
}
static ASTUnit::StandaloneDiagnostic
makeStandaloneDiagnostic(const LangOptions &LangOpts,
const StoredDiagnostic &InDiag) {
ASTUnit::StandaloneDiagnostic OutDiag;
OutDiag.ID = InDiag.getID();
OutDiag.Level = InDiag.getLevel();
OutDiag.Message = InDiag.getMessage();
OutDiag.LocOffset = 0;
if (InDiag.getLocation().isInvalid())
return OutDiag;
const SourceManager &SM = InDiag.getLocation().getManager();
SourceLocation FileLoc = SM.getFileLoc(InDiag.getLocation());
OutDiag.Filename = SM.getFilename(FileLoc);
if (OutDiag.Filename.empty())
return OutDiag;
OutDiag.LocOffset = SM.getFileOffset(FileLoc);
for (const CharSourceRange &Range : InDiag.getRanges())
OutDiag.Ranges.push_back(makeStandaloneRange(Range, SM, LangOpts));
for (const FixItHint &FixIt : InDiag.getFixIts())
OutDiag.FixIts.push_back(makeStandaloneFixIt(SM, LangOpts, FixIt));
return OutDiag;
}
/// \brief Attempt to build or re-use a precompiled preamble when (re-)parsing
/// the source file.
///
/// This routine will compute the preamble of the main source file. If a
/// non-trivial preamble is found, it will precompile that preamble into a
/// precompiled header so that the precompiled preamble can be used to reduce
/// reparsing time. If a precompiled preamble has already been constructed,
/// this routine will determine if it is still valid and, if so, avoid
/// rebuilding the precompiled preamble.
///
/// \param AllowRebuild When true (the default), this routine is
/// allowed to rebuild the precompiled preamble if it is found to be
/// out-of-date.
///
/// \param MaxLines When non-zero, the maximum number of lines that
/// can occur within the preamble.
///
/// \returns If the precompiled preamble can be used, returns a newly-allocated
/// buffer that should be used in place of the main file when doing so.
/// Otherwise, returns a NULL pointer.
std::unique_ptr<llvm::MemoryBuffer>
ASTUnit::getMainBufferWithPrecompiledPreamble(
std::shared_ptr<PCHContainerOperations> PCHContainerOps,
const CompilerInvocation &PreambleInvocationIn, bool AllowRebuild,
unsigned MaxLines) {
IntrusiveRefCntPtr<CompilerInvocation>
PreambleInvocation(new CompilerInvocation(PreambleInvocationIn));
FrontendOptions &FrontendOpts = PreambleInvocation->getFrontendOpts();
PreprocessorOptions &PreprocessorOpts
= PreambleInvocation->getPreprocessorOpts();
ComputedPreamble NewPreamble = ComputePreamble(*PreambleInvocation, MaxLines);
if (!NewPreamble.Size) {
// We couldn't find a preamble in the main source. Clear out the current
// preamble, if we have one. It's obviously no good any more.
Preamble.clear();
erasePreambleFile(this);
// The next time we actually see a preamble, precompile it.
PreambleRebuildCounter = 1;
return nullptr;
}
if (!Preamble.empty()) {
// We've previously computed a preamble. Check whether we have the same
// preamble now that we did before, and that there's enough space in
// the main-file buffer within the precompiled preamble to fit the
// new main file.
if (Preamble.size() == NewPreamble.Size &&
PreambleEndsAtStartOfLine == NewPreamble.PreambleEndsAtStartOfLine &&
memcmp(Preamble.getBufferStart(), NewPreamble.Buffer->getBufferStart(),
NewPreamble.Size) == 0) {
// The preamble has not changed. We may be able to re-use the precompiled
// preamble.
// Check that none of the files used by the preamble have changed.
bool AnyFileChanged = false;
// First, make a record of those files that have been overridden via
// remapping or unsaved_files.
llvm::StringMap<PreambleFileHash> OverriddenFiles;
for (const auto &R : PreprocessorOpts.RemappedFiles) {
if (AnyFileChanged)
break;
vfs::Status Status;
if (FileMgr->getNoncachedStatValue(R.second, Status)) {
// If we can't stat the file we're remapping to, assume that something
// horrible happened.
AnyFileChanged = true;
break;
}
OverriddenFiles[R.first] = PreambleFileHash::createForFile(
Status.getSize(), Status.getLastModificationTime().toEpochTime());
}
for (const auto &RB : PreprocessorOpts.RemappedFileBuffers) {
if (AnyFileChanged)
break;
OverriddenFiles[RB.first] =
PreambleFileHash::createForMemoryBuffer(RB.second);
}
// Check whether anything has changed.
for (llvm::StringMap<PreambleFileHash>::iterator
F = FilesInPreamble.begin(), FEnd = FilesInPreamble.end();
!AnyFileChanged && F != FEnd;
++F) {
llvm::StringMap<PreambleFileHash>::iterator Overridden
= OverriddenFiles.find(F->first());
if (Overridden != OverriddenFiles.end()) {
// This file was remapped; check whether the newly-mapped file
// matches up with the previous mapping.
if (Overridden->second != F->second)
AnyFileChanged = true;
continue;
}
// The file was not remapped; check whether it has changed on disk.
vfs::Status Status;
if (FileMgr->getNoncachedStatValue(F->first(), Status)) {
// If we can't stat the file, assume that something horrible happened.
AnyFileChanged = true;
} else if (Status.getSize() != uint64_t(F->second.Size) ||
Status.getLastModificationTime().toEpochTime() !=
uint64_t(F->second.ModTime))
AnyFileChanged = true;
}
if (!AnyFileChanged) {
// Okay! We can re-use the precompiled preamble.
// Set the state of the diagnostic object to mimic its state
// after parsing the preamble.
getDiagnostics().Reset();
ProcessWarningOptions(getDiagnostics(),
PreambleInvocation->getDiagnosticOpts());
getDiagnostics().setNumWarnings(NumWarningsInPreamble);
return llvm::MemoryBuffer::getMemBufferCopy(
NewPreamble.Buffer->getBuffer(), FrontendOpts.Inputs[0].getFile());
}
}
// If we aren't allowed to rebuild the precompiled preamble, just
// return now.
if (!AllowRebuild)
return nullptr;
// We can't reuse the previously-computed preamble. Build a new one.
Preamble.clear();
PreambleDiagnostics.clear();
erasePreambleFile(this);
PreambleRebuildCounter = 1;
} else if (!AllowRebuild) {
// We aren't allowed to rebuild the precompiled preamble; just
// return now.
return nullptr;
}
// If the preamble rebuild counter > 1, it's because we previously
// failed to build a preamble and we're not yet ready to try
// again. Decrement the counter and return a failure.
if (PreambleRebuildCounter > 1) {
--PreambleRebuildCounter;
return nullptr;
}
// Create a temporary file for the precompiled preamble. In rare
// circumstances, this can fail.
std::string PreamblePCHPath = GetPreamblePCHPath();
if (PreamblePCHPath.empty()) {
// Try again next time.
PreambleRebuildCounter = 1;
return nullptr;
}
// We did not previously compute a preamble, or it can't be reused anyway.
SimpleTimer PreambleTimer(WantTiming);
PreambleTimer.setOutput("Precompiling preamble");
// Save the preamble text for later; we'll need to compare against it for
// subsequent reparses.
StringRef MainFilename = FrontendOpts.Inputs[0].getFile();
Preamble.assign(FileMgr->getFile(MainFilename),
NewPreamble.Buffer->getBufferStart(),
NewPreamble.Buffer->getBufferStart() + NewPreamble.Size);
PreambleEndsAtStartOfLine = NewPreamble.PreambleEndsAtStartOfLine;
PreambleBuffer = llvm::MemoryBuffer::getMemBufferCopy(
NewPreamble.Buffer->getBuffer().slice(0, Preamble.size()), MainFilename);
// Remap the main source file to the preamble buffer.
StringRef MainFilePath = FrontendOpts.Inputs[0].getFile();
PreprocessorOpts.addRemappedFile(MainFilePath, PreambleBuffer.get());
// Tell the compiler invocation to generate a temporary precompiled header.
FrontendOpts.ProgramAction = frontend::GeneratePCH;
// FIXME: Generate the precompiled header into memory?
FrontendOpts.OutputFile = PreamblePCHPath;
PreprocessorOpts.PrecompiledPreambleBytes.first = 0;
PreprocessorOpts.PrecompiledPreambleBytes.second = false;
// Create the compiler instance to use for building the precompiled preamble.
std::unique_ptr<CompilerInstance> Clang(
new CompilerInstance(PCHContainerOps));
// Recover resources if we crash before exiting this method.
llvm::CrashRecoveryContextCleanupRegistrar<CompilerInstance>
CICleanup(Clang.get());
Clang->setInvocation(&*PreambleInvocation);
OriginalSourceFile = Clang->getFrontendOpts().Inputs[0].getFile();
// Set up diagnostics, capturing all of the diagnostics produced.
Clang->setDiagnostics(&getDiagnostics());
// Create the target instance.
Clang->setTarget(TargetInfo::CreateTargetInfo(
Clang->getDiagnostics(), Clang->getInvocation().TargetOpts));
if (!Clang->hasTarget()) {
llvm::sys::fs::remove(FrontendOpts.OutputFile);
Preamble.clear();
PreambleRebuildCounter = DefaultPreambleRebuildInterval;
PreprocessorOpts.RemappedFileBuffers.pop_back();
return nullptr;
}
// Inform the target of the language options.
//
// FIXME: We shouldn't need to do this, the target should be immutable once
// created. This complexity should be lifted elsewhere.
Clang->getTarget().adjust(Clang->getLangOpts());
assert(Clang->getFrontendOpts().Inputs.size() == 1 &&
"Invocation must have exactly one source file!");
assert(Clang->getFrontendOpts().Inputs[0].getKind() != IK_AST &&
"FIXME: AST inputs not yet supported here!");
assert(Clang->getFrontendOpts().Inputs[0].getKind() != IK_LLVM_IR &&
"IR inputs not support here!");
// Clear out old caches and data.
getDiagnostics().Reset();
ProcessWarningOptions(getDiagnostics(), Clang->getDiagnosticOpts());
checkAndRemoveNonDriverDiags(StoredDiagnostics);
TopLevelDecls.clear();
TopLevelDeclsInPreamble.clear();
PreambleDiagnostics.clear();
IntrusiveRefCntPtr<vfs::FileSystem> VFS =
createVFSFromCompilerInvocation(Clang->getInvocation(), getDiagnostics());
if (!VFS)
return nullptr;
// Create a file manager object to provide access to and cache the filesystem.
Clang->setFileManager(new FileManager(Clang->getFileSystemOpts(), VFS));
// Create the source manager.
Clang->setSourceManager(new SourceManager(getDiagnostics(),
Clang->getFileManager()));
auto PreambleDepCollector = std::make_shared<DependencyCollector>();
Clang->addDependencyCollector(PreambleDepCollector);
std::unique_ptr<PrecompilePreambleAction> Act;
Act.reset(new PrecompilePreambleAction(*this));
if (!Act->BeginSourceFile(*Clang.get(), Clang->getFrontendOpts().Inputs[0])) {
llvm::sys::fs::remove(FrontendOpts.OutputFile);
Preamble.clear();
PreambleRebuildCounter = DefaultPreambleRebuildInterval;
PreprocessorOpts.RemappedFileBuffers.pop_back();
return nullptr;
}
Act->Execute();
// Transfer any diagnostics generated when parsing the preamble into the set
// of preamble diagnostics.
for (stored_diag_iterator I = stored_diag_afterDriver_begin(),
E = stored_diag_end();
I != E; ++I)
PreambleDiagnostics.push_back(
makeStandaloneDiagnostic(Clang->getLangOpts(), *I));
Act->EndSourceFile();
checkAndRemoveNonDriverDiags(StoredDiagnostics);
if (!Act->hasEmittedPreamblePCH()) {
// The preamble PCH failed (e.g. there was a module loading fatal error),
// so no precompiled header was generated. Forget that we even tried.
// FIXME: Should we leave a note for ourselves to try again?
llvm::sys::fs::remove(FrontendOpts.OutputFile);
Preamble.clear();
TopLevelDeclsInPreamble.clear();
PreambleRebuildCounter = DefaultPreambleRebuildInterval;
PreprocessorOpts.RemappedFileBuffers.pop_back();
return nullptr;
}
// Keep track of the preamble we precompiled.
setPreambleFile(this, FrontendOpts.OutputFile);
NumWarningsInPreamble = getDiagnostics().getNumWarnings();
// Keep track of all of the files that the source manager knows about,
// so we can verify whether they have changed or not.
FilesInPreamble.clear();
SourceManager &SourceMgr = Clang->getSourceManager();
for (auto &Filename : PreambleDepCollector->getDependencies()) {
const FileEntry *File = Clang->getFileManager().getFile(Filename);
if (!File || File == SourceMgr.getFileEntryForID(SourceMgr.getMainFileID()))
continue;
if (time_t ModTime = File->getModificationTime()) {
FilesInPreamble[File->getName()] = PreambleFileHash::createForFile(
File->getSize(), ModTime);
} else {
llvm::MemoryBuffer *Buffer = SourceMgr.getMemoryBufferForFile(File);
FilesInPreamble[File->getName()] =
PreambleFileHash::createForMemoryBuffer(Buffer);
}
}
PreambleRebuildCounter = 1;
PreprocessorOpts.RemappedFileBuffers.pop_back();
// If the hash of top-level entities differs from the hash of the top-level
// entities the last time we rebuilt the preamble, clear out the completion
// cache.
if (CurrentTopLevelHashValue != PreambleTopLevelHashValue) {
CompletionCacheTopLevelHashValue = 0;
PreambleTopLevelHashValue = CurrentTopLevelHashValue;
}
return llvm::MemoryBuffer::getMemBufferCopy(NewPreamble.Buffer->getBuffer(),
MainFilename);
}
void ASTUnit::RealizeTopLevelDeclsFromPreamble() {
std::vector<Decl *> Resolved;
Resolved.reserve(TopLevelDeclsInPreamble.size());
ExternalASTSource &Source = *getASTContext().getExternalSource();
for (serialization::DeclID TopLevelDecl : TopLevelDeclsInPreamble) {
// Resolve the declaration ID to an actual declaration, possibly
// deserializing the declaration in the process.
if (Decl *D = Source.GetExternalDecl(TopLevelDecl))
Resolved.push_back(D);
}
TopLevelDeclsInPreamble.clear();
TopLevelDecls.insert(TopLevelDecls.begin(), Resolved.begin(), Resolved.end());
}
void ASTUnit::transferASTDataFromCompilerInstance(CompilerInstance &CI) {
// Steal the created target, context, and preprocessor if they have been
// created.
assert(CI.hasInvocation() && "missing invocation");
LangOpts = CI.getInvocation().LangOpts;
TheSema = CI.takeSema();
Consumer = CI.takeASTConsumer();
if (CI.hasASTContext())
Ctx = &CI.getASTContext();
if (CI.hasPreprocessor())
PP = &CI.getPreprocessor();
CI.setSourceManager(nullptr);
CI.setFileManager(nullptr);
if (CI.hasTarget())
Target = &CI.getTarget();
Reader = CI.getModuleManager();
HadModuleLoaderFatalFailure = CI.hadModuleLoaderFatalFailure();
}
StringRef ASTUnit::getMainFileName() const {
if (Invocation && !Invocation->getFrontendOpts().Inputs.empty()) {
const FrontendInputFile &Input = Invocation->getFrontendOpts().Inputs[0];
if (Input.isFile())
return Input.getFile();
else
return Input.getBuffer()->getBufferIdentifier();
}
if (SourceMgr) {
if (const FileEntry *
FE = SourceMgr->getFileEntryForID(SourceMgr->getMainFileID()))
return FE->getName();
}
return StringRef();
}
StringRef ASTUnit::getASTFileName() const {
if (!isMainFileAST())
return StringRef();
serialization::ModuleFile &
Mod = Reader->getModuleManager().getPrimaryModule();
return Mod.FileName;
}
ASTUnit *ASTUnit::create(CompilerInvocation *CI,
IntrusiveRefCntPtr<DiagnosticsEngine> Diags,
bool CaptureDiagnostics,
bool UserFilesAreVolatile) {
std::unique_ptr<ASTUnit> AST;
AST.reset(new ASTUnit(false));
ConfigureDiags(Diags, *AST, CaptureDiagnostics);
AST->Diagnostics = Diags;
AST->Invocation = CI;
AST->FileSystemOpts = CI->getFileSystemOpts();
IntrusiveRefCntPtr<vfs::FileSystem> VFS =
createVFSFromCompilerInvocation(*CI, *Diags);
if (!VFS)
return nullptr;
AST->FileMgr = new FileManager(AST->FileSystemOpts, VFS);
AST->UserFilesAreVolatile = UserFilesAreVolatile;
AST->SourceMgr = new SourceManager(AST->getDiagnostics(), *AST->FileMgr,
UserFilesAreVolatile);
return AST.release();
}
ASTUnit *ASTUnit::LoadFromCompilerInvocationAction(
CompilerInvocation *CI,
std::shared_ptr<PCHContainerOperations> PCHContainerOps,
IntrusiveRefCntPtr<DiagnosticsEngine> Diags, ASTFrontendAction *Action,
ASTUnit *Unit, bool Persistent, StringRef ResourceFilesPath,
bool OnlyLocalDecls, bool CaptureDiagnostics, bool PrecompilePreamble,
bool CacheCodeCompletionResults, bool IncludeBriefCommentsInCodeCompletion,
bool UserFilesAreVolatile, std::unique_ptr<ASTUnit> *ErrAST) {
assert(CI && "A CompilerInvocation is required");
std::unique_ptr<ASTUnit> OwnAST;
ASTUnit *AST = Unit;
if (!AST) {
// Create the AST unit.
OwnAST.reset(create(CI, Diags, CaptureDiagnostics, UserFilesAreVolatile));
AST = OwnAST.get();
if (!AST)
return nullptr;
}
if (!ResourceFilesPath.empty()) {
// Override the resources path.
CI->getHeaderSearchOpts().ResourceDir = ResourceFilesPath;
}
AST->OnlyLocalDecls = OnlyLocalDecls;
AST->CaptureDiagnostics = CaptureDiagnostics;
if (PrecompilePreamble)
AST->PreambleRebuildCounter = 2;
AST->TUKind = Action ? Action->getTranslationUnitKind() : TU_Complete;
AST->ShouldCacheCodeCompletionResults = CacheCodeCompletionResults;
AST->IncludeBriefCommentsInCodeCompletion
= IncludeBriefCommentsInCodeCompletion;
// Recover resources if we crash before exiting this method.
llvm::CrashRecoveryContextCleanupRegistrar<ASTUnit>
ASTUnitCleanup(OwnAST.get());
llvm::CrashRecoveryContextCleanupRegistrar<DiagnosticsEngine,
llvm::CrashRecoveryContextReleaseRefCleanup<DiagnosticsEngine> >
DiagCleanup(Diags.get());
// We'll manage file buffers ourselves.
CI->getPreprocessorOpts().RetainRemappedFileBuffers = true;
CI->getFrontendOpts().DisableFree = false;
ProcessWarningOptions(AST->getDiagnostics(), CI->getDiagnosticOpts());
// Create the compiler instance to use for building the AST.
std::unique_ptr<CompilerInstance> Clang(
new CompilerInstance(PCHContainerOps));
// Recover resources if we crash before exiting this method.
llvm::CrashRecoveryContextCleanupRegistrar<CompilerInstance>
CICleanup(Clang.get());
Clang->setInvocation(CI);
AST->OriginalSourceFile = Clang->getFrontendOpts().Inputs[0].getFile();
// Set up diagnostics, capturing any diagnostics that would
// otherwise be dropped.
Clang->setDiagnostics(&AST->getDiagnostics());
// Create the target instance.
Clang->setTarget(TargetInfo::CreateTargetInfo(
Clang->getDiagnostics(), Clang->getInvocation().TargetOpts));
if (!Clang->hasTarget())
return nullptr;
// Inform the target of the language options.
//
// FIXME: We shouldn't need to do this, the target should be immutable once
// created. This complexity should be lifted elsewhere.
Clang->getTarget().adjust(Clang->getLangOpts());
assert(Clang->getFrontendOpts().Inputs.size() == 1 &&
"Invocation must have exactly one source file!");
assert(Clang->getFrontendOpts().Inputs[0].getKind() != IK_AST &&
"FIXME: AST inputs not yet supported here!");
assert(Clang->getFrontendOpts().Inputs[0].getKind() != IK_LLVM_IR &&
"IR inputs not supported here!");
// Configure the various subsystems.
AST->TheSema.reset();
AST->Ctx = nullptr;
AST->PP = nullptr;
AST->Reader = nullptr;
// Create a file manager object to provide access to and cache the filesystem.
Clang->setFileManager(&AST->getFileManager());
// Create the source manager.
Clang->setSourceManager(&AST->getSourceManager());
ASTFrontendAction *Act = Action;
std::unique_ptr<TopLevelDeclTrackerAction> TrackerAct;
if (!Act) {
TrackerAct.reset(new TopLevelDeclTrackerAction(*AST));
Act = TrackerAct.get();
}
// Recover resources if we crash before exiting this method.
llvm::CrashRecoveryContextCleanupRegistrar<TopLevelDeclTrackerAction>
ActCleanup(TrackerAct.get());
if (!Act->BeginSourceFile(*Clang.get(), Clang->getFrontendOpts().Inputs[0])) {
AST->transferASTDataFromCompilerInstance(*Clang);
if (OwnAST && ErrAST)
ErrAST->swap(OwnAST);
return nullptr;
}
if (Persistent && !TrackerAct) {
Clang->getPreprocessor().addPPCallbacks(
llvm::make_unique<MacroDefinitionTrackerPPCallbacks>(
AST->getCurrentTopLevelHashValue()));
std::vector<std::unique_ptr<ASTConsumer>> Consumers;
if (Clang->hasASTConsumer())
Consumers.push_back(Clang->takeASTConsumer());
Consumers.push_back(llvm::make_unique<TopLevelDeclTrackerConsumer>(
*AST, AST->getCurrentTopLevelHashValue()));
Clang->setASTConsumer(
llvm::make_unique<MultiplexConsumer>(std::move(Consumers)));
}
if (!Act->Execute()) {
AST->transferASTDataFromCompilerInstance(*Clang);
if (OwnAST && ErrAST)
ErrAST->swap(OwnAST);
return nullptr;
}
// Steal the created target, context, and preprocessor.
AST->transferASTDataFromCompilerInstance(*Clang);
Act->EndSourceFile();
if (OwnAST)
return OwnAST.release();
else
return AST;
}
bool ASTUnit::LoadFromCompilerInvocation(
std::shared_ptr<PCHContainerOperations> PCHContainerOps,
bool PrecompilePreamble) {
if (!Invocation)
return true;
// We'll manage file buffers ourselves.
Invocation->getPreprocessorOpts().RetainRemappedFileBuffers = true;
Invocation->getFrontendOpts().DisableFree = false;
ProcessWarningOptions(getDiagnostics(), Invocation->getDiagnosticOpts());
std::unique_ptr<llvm::MemoryBuffer> OverrideMainBuffer;
if (PrecompilePreamble) {
PreambleRebuildCounter = 2;
OverrideMainBuffer =
getMainBufferWithPrecompiledPreamble(PCHContainerOps, *Invocation);
}
SimpleTimer ParsingTimer(WantTiming);
ParsingTimer.setOutput("Parsing " + getMainFileName());
// Recover resources if we crash before exiting this method.
llvm::CrashRecoveryContextCleanupRegistrar<llvm::MemoryBuffer>
MemBufferCleanup(OverrideMainBuffer.get());
return Parse(PCHContainerOps, std::move(OverrideMainBuffer));
}
std::unique_ptr<ASTUnit> ASTUnit::LoadFromCompilerInvocation(
CompilerInvocation *CI,
std::shared_ptr<PCHContainerOperations> PCHContainerOps,
IntrusiveRefCntPtr<DiagnosticsEngine> Diags, FileManager *FileMgr,
bool OnlyLocalDecls, bool CaptureDiagnostics, bool PrecompilePreamble,
TranslationUnitKind TUKind, bool CacheCodeCompletionResults,
bool IncludeBriefCommentsInCodeCompletion, bool UserFilesAreVolatile) {
// Create the AST unit.
std::unique_ptr<ASTUnit> AST(new ASTUnit(false));
ConfigureDiags(Diags, *AST, CaptureDiagnostics);
AST->Diagnostics = Diags;
AST->OnlyLocalDecls = OnlyLocalDecls;
AST->CaptureDiagnostics = CaptureDiagnostics;
AST->TUKind = TUKind;
AST->ShouldCacheCodeCompletionResults = CacheCodeCompletionResults;
AST->IncludeBriefCommentsInCodeCompletion
= IncludeBriefCommentsInCodeCompletion;
AST->Invocation = CI;
AST->FileSystemOpts = FileMgr->getFileSystemOpts();
AST->FileMgr = FileMgr;
AST->UserFilesAreVolatile = UserFilesAreVolatile;
// Recover resources if we crash before exiting this method.
llvm::CrashRecoveryContextCleanupRegistrar<ASTUnit>
ASTUnitCleanup(AST.get());
llvm::CrashRecoveryContextCleanupRegistrar<DiagnosticsEngine,
llvm::CrashRecoveryContextReleaseRefCleanup<DiagnosticsEngine> >
DiagCleanup(Diags.get());
if (AST->LoadFromCompilerInvocation(PCHContainerOps, PrecompilePreamble))
return nullptr;
return AST;
}
ASTUnit *ASTUnit::LoadFromCommandLine(
const char **ArgBegin, const char **ArgEnd,
std::shared_ptr<PCHContainerOperations> PCHContainerOps,
IntrusiveRefCntPtr<DiagnosticsEngine> Diags, StringRef ResourceFilesPath,
bool OnlyLocalDecls, bool CaptureDiagnostics,
ArrayRef<RemappedFile> RemappedFiles, bool RemappedFilesKeepOriginalName,
bool PrecompilePreamble, TranslationUnitKind TUKind,
bool CacheCodeCompletionResults, bool IncludeBriefCommentsInCodeCompletion,
bool AllowPCHWithCompilerErrors, bool SkipFunctionBodies,
bool UserFilesAreVolatile, bool ForSerialization,
llvm::Optional<StringRef> ModuleFormat,
std::unique_ptr<ASTUnit> *ErrAST) {
assert(Diags.get() && "no DiagnosticsEngine was provided");
SmallVector<StoredDiagnostic, 4> StoredDiagnostics;
IntrusiveRefCntPtr<CompilerInvocation> CI;
{
CaptureDroppedDiagnostics Capture(CaptureDiagnostics, *Diags,
StoredDiagnostics);
CI = clang::createInvocationFromCommandLine(
llvm::makeArrayRef(ArgBegin, ArgEnd),
Diags);
if (!CI)
return nullptr;
}
// Override any files that need remapping
for (const auto &RemappedFile : RemappedFiles) {
CI->getPreprocessorOpts().addRemappedFile(RemappedFile.first,
RemappedFile.second);
}
PreprocessorOptions &PPOpts = CI->getPreprocessorOpts();
PPOpts.RemappedFilesKeepOriginalName = RemappedFilesKeepOriginalName;
PPOpts.AllowPCHWithCompilerErrors = AllowPCHWithCompilerErrors;
// Override the resources path.
CI->getHeaderSearchOpts().ResourceDir = ResourceFilesPath;
CI->getFrontendOpts().SkipFunctionBodies = SkipFunctionBodies;
if (ModuleFormat)
CI->getHeaderSearchOpts().ModuleFormat = ModuleFormat.getValue();
// Create the AST unit.
std::unique_ptr<ASTUnit> AST;
AST.reset(new ASTUnit(false));
ConfigureDiags(Diags, *AST, CaptureDiagnostics);
AST->Diagnostics = Diags;
AST->FileSystemOpts = CI->getFileSystemOpts();
IntrusiveRefCntPtr<vfs::FileSystem> VFS =
createVFSFromCompilerInvocation(*CI, *Diags);
if (!VFS)
return nullptr;
AST->FileMgr = new FileManager(AST->FileSystemOpts, VFS);
AST->OnlyLocalDecls = OnlyLocalDecls;
AST->CaptureDiagnostics = CaptureDiagnostics;
AST->TUKind = TUKind;
AST->ShouldCacheCodeCompletionResults = CacheCodeCompletionResults;
AST->IncludeBriefCommentsInCodeCompletion
= IncludeBriefCommentsInCodeCompletion;
AST->UserFilesAreVolatile = UserFilesAreVolatile;
AST->NumStoredDiagnosticsFromDriver = StoredDiagnostics.size();
AST->StoredDiagnostics.swap(StoredDiagnostics);
AST->Invocation = CI;
if (ForSerialization)
AST->WriterData.reset(new ASTWriterData());
// Zero out now to ease cleanup during crash recovery.
CI = nullptr;
Diags = nullptr;
// Recover resources if we crash before exiting this method.
llvm::CrashRecoveryContextCleanupRegistrar<ASTUnit>
ASTUnitCleanup(AST.get());
if (AST->LoadFromCompilerInvocation(PCHContainerOps, PrecompilePreamble)) {
// Some error occurred, if caller wants to examine diagnostics, pass it the
// ASTUnit.
if (ErrAST) {
AST->StoredDiagnostics.swap(AST->FailedParseDiagnostics);
ErrAST->swap(AST);
}
return nullptr;
}
return AST.release();
}
bool ASTUnit::Reparse(std::shared_ptr<PCHContainerOperations> PCHContainerOps,
ArrayRef<RemappedFile> RemappedFiles) {
if (!Invocation)
return true;
clearFileLevelDecls();
SimpleTimer ParsingTimer(WantTiming);
ParsingTimer.setOutput("Reparsing " + getMainFileName());
// Remap files.
PreprocessorOptions &PPOpts = Invocation->getPreprocessorOpts();
for (const auto &RB : PPOpts.RemappedFileBuffers)
delete RB.second;
Invocation->getPreprocessorOpts().clearRemappedFiles();
for (const auto &RemappedFile : RemappedFiles) {
Invocation->getPreprocessorOpts().addRemappedFile(RemappedFile.first,
RemappedFile.second);
}
// If we have a preamble file lying around, or if we might try to
// build a precompiled preamble, do so now.
std::unique_ptr<llvm::MemoryBuffer> OverrideMainBuffer;
if (!getPreambleFile(this).empty() || PreambleRebuildCounter > 0)
OverrideMainBuffer =
getMainBufferWithPrecompiledPreamble(PCHContainerOps, *Invocation);
// Clear out the diagnostics state.
FileMgr.reset();
getDiagnostics().Reset();
ProcessWarningOptions(getDiagnostics(), Invocation->getDiagnosticOpts());
if (OverrideMainBuffer)
getDiagnostics().setNumWarnings(NumWarningsInPreamble);
// Parse the sources
bool Result = Parse(PCHContainerOps, std::move(OverrideMainBuffer));
// If we're caching global code-completion results, and the top-level
// declarations have changed, clear out the code-completion cache.
if (!Result && ShouldCacheCodeCompletionResults &&
CurrentTopLevelHashValue != CompletionCacheTopLevelHashValue)
CacheCodeCompletionResults();
// We now need to clear out the completion info related to this translation
// unit; it'll be recreated if necessary.
CCTUInfo.reset();
return Result;
}
//----------------------------------------------------------------------------//
// Code completion
//----------------------------------------------------------------------------//
namespace {
/// \brief Code completion consumer that combines the cached code-completion
/// results from an ASTUnit with the code-completion results provided to it,
/// then passes the result on to
class AugmentedCodeCompleteConsumer : public CodeCompleteConsumer {
uint64_t NormalContexts;
ASTUnit &AST;
CodeCompleteConsumer &Next;
public:
AugmentedCodeCompleteConsumer(ASTUnit &AST, CodeCompleteConsumer &Next,
const CodeCompleteOptions &CodeCompleteOpts)
: CodeCompleteConsumer(CodeCompleteOpts, Next.isOutputBinary()),
AST(AST), Next(Next)
{
// Compute the set of contexts in which we will look when we don't have
// any information about the specific context.
NormalContexts
= (1LL << CodeCompletionContext::CCC_TopLevel)
| (1LL << CodeCompletionContext::CCC_ObjCInterface)
| (1LL << CodeCompletionContext::CCC_ObjCImplementation)
| (1LL << CodeCompletionContext::CCC_ObjCIvarList)
| (1LL << CodeCompletionContext::CCC_Statement)
| (1LL << CodeCompletionContext::CCC_Expression)
| (1LL << CodeCompletionContext::CCC_ObjCMessageReceiver)
| (1LL << CodeCompletionContext::CCC_DotMemberAccess)
| (1LL << CodeCompletionContext::CCC_ArrowMemberAccess)
| (1LL << CodeCompletionContext::CCC_ObjCPropertyAccess)
| (1LL << CodeCompletionContext::CCC_ObjCProtocolName)
| (1LL << CodeCompletionContext::CCC_ParenthesizedExpression)
| (1LL << CodeCompletionContext::CCC_Recovery);
if (AST.getASTContext().getLangOpts().CPlusPlus)
NormalContexts |= (1LL << CodeCompletionContext::CCC_EnumTag)
| (1LL << CodeCompletionContext::CCC_UnionTag)
| (1LL << CodeCompletionContext::CCC_ClassOrStructTag);
}
void ProcessCodeCompleteResults(Sema &S, CodeCompletionContext Context,
CodeCompletionResult *Results,
unsigned NumResults) override;
void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg,
OverloadCandidate *Candidates,
unsigned NumCandidates) override {
Next.ProcessOverloadCandidates(S, CurrentArg, Candidates, NumCandidates);
}
CodeCompletionAllocator &getAllocator() override {
return Next.getAllocator();
}
CodeCompletionTUInfo &getCodeCompletionTUInfo() override {
return Next.getCodeCompletionTUInfo();
}
};
} // anonymous namespace
/// \brief Helper function that computes which global names are hidden by the
/// local code-completion results.
static void CalculateHiddenNames(const CodeCompletionContext &Context,
CodeCompletionResult *Results,
unsigned NumResults,
ASTContext &Ctx,
llvm::StringSet<llvm::BumpPtrAllocator> &HiddenNames){
bool OnlyTagNames = false;
switch (Context.getKind()) {
case CodeCompletionContext::CCC_Recovery:
case CodeCompletionContext::CCC_TopLevel:
case CodeCompletionContext::CCC_ObjCInterface:
case CodeCompletionContext::CCC_ObjCImplementation:
case CodeCompletionContext::CCC_ObjCIvarList:
case CodeCompletionContext::CCC_ClassStructUnion:
case CodeCompletionContext::CCC_Statement:
case CodeCompletionContext::CCC_Expression:
case CodeCompletionContext::CCC_ObjCMessageReceiver:
case CodeCompletionContext::CCC_DotMemberAccess:
case CodeCompletionContext::CCC_ArrowMemberAccess:
case CodeCompletionContext::CCC_ObjCPropertyAccess:
case CodeCompletionContext::CCC_Namespace:
case CodeCompletionContext::CCC_Type:
case CodeCompletionContext::CCC_Name:
case CodeCompletionContext::CCC_PotentiallyQualifiedName:
case CodeCompletionContext::CCC_ParenthesizedExpression:
case CodeCompletionContext::CCC_ObjCInterfaceName:
break;
case CodeCompletionContext::CCC_EnumTag:
case CodeCompletionContext::CCC_UnionTag:
case CodeCompletionContext::CCC_ClassOrStructTag:
OnlyTagNames = true;
break;
case CodeCompletionContext::CCC_ObjCProtocolName:
case CodeCompletionContext::CCC_MacroName:
case CodeCompletionContext::CCC_MacroNameUse:
case CodeCompletionContext::CCC_PreprocessorExpression:
case CodeCompletionContext::CCC_PreprocessorDirective:
case CodeCompletionContext::CCC_NaturalLanguage:
case CodeCompletionContext::CCC_SelectorName:
case CodeCompletionContext::CCC_TypeQualifiers:
case CodeCompletionContext::CCC_Other:
case CodeCompletionContext::CCC_OtherWithMacros:
case CodeCompletionContext::CCC_ObjCInstanceMessage:
case CodeCompletionContext::CCC_ObjCClassMessage:
case CodeCompletionContext::CCC_ObjCCategoryName:
// We're looking for nothing, or we're looking for names that cannot
// be hidden.
return;
}
typedef CodeCompletionResult Result;
for (unsigned I = 0; I != NumResults; ++I) {
if (Results[I].Kind != Result::RK_Declaration)
continue;
unsigned IDNS
= Results[I].Declaration->getUnderlyingDecl()->getIdentifierNamespace();
bool Hiding = false;
if (OnlyTagNames)
Hiding = (IDNS & Decl::IDNS_Tag);
else {
unsigned HiddenIDNS = (Decl::IDNS_Type | Decl::IDNS_Member |
Decl::IDNS_Namespace | Decl::IDNS_Ordinary |
Decl::IDNS_NonMemberOperator);
if (Ctx.getLangOpts().CPlusPlus)
HiddenIDNS |= Decl::IDNS_Tag;
Hiding = (IDNS & HiddenIDNS);
}
if (!Hiding)
continue;
DeclarationName Name = Results[I].Declaration->getDeclName();
if (IdentifierInfo *Identifier = Name.getAsIdentifierInfo())
HiddenNames.insert(Identifier->getName());
else
HiddenNames.insert(Name.getAsString());
}
}
void AugmentedCodeCompleteConsumer::ProcessCodeCompleteResults(Sema &S,
CodeCompletionContext Context,
CodeCompletionResult *Results,
unsigned NumResults) {
// Merge the results we were given with the results we cached.
bool AddedResult = false;
uint64_t InContexts =
Context.getKind() == CodeCompletionContext::CCC_Recovery
? NormalContexts : (1LL << Context.getKind());
// Contains the set of names that are hidden by "local" completion results.
llvm::StringSet<llvm::BumpPtrAllocator> HiddenNames;
typedef CodeCompletionResult Result;
SmallVector<Result, 8> AllResults;
for (ASTUnit::cached_completion_iterator
C = AST.cached_completion_begin(),
CEnd = AST.cached_completion_end();
C != CEnd; ++C) {
// If the context we are in matches any of the contexts we are
// interested in, we'll add this result.
if ((C->ShowInContexts & InContexts) == 0)
continue;
// If we haven't added any results previously, do so now.
if (!AddedResult) {
CalculateHiddenNames(Context, Results, NumResults, S.Context,
HiddenNames);
AllResults.insert(AllResults.end(), Results, Results + NumResults);
AddedResult = true;
}
// Determine whether this global completion result is hidden by a local
// completion result. If so, skip it.
if (C->Kind != CXCursor_MacroDefinition &&
HiddenNames.count(C->Completion->getTypedText()))
continue;
// Adjust priority based on similar type classes.
unsigned Priority = C->Priority;
CodeCompletionString *Completion = C->Completion;
if (!Context.getPreferredType().isNull()) {
if (C->Kind == CXCursor_MacroDefinition) {
Priority = getMacroUsagePriority(C->Completion->getTypedText(),
S.getLangOpts(),
Context.getPreferredType()->isAnyPointerType());
} else if (C->Type) {
CanQualType Expected
= S.Context.getCanonicalType(
Context.getPreferredType().getUnqualifiedType());
SimplifiedTypeClass ExpectedSTC = getSimplifiedTypeClass(Expected);
if (ExpectedSTC == C->TypeClass) {
// We know this type is similar; check for an exact match.
llvm::StringMap<unsigned> &CachedCompletionTypes
= AST.getCachedCompletionTypes();
llvm::StringMap<unsigned>::iterator Pos
= CachedCompletionTypes.find(QualType(Expected).getAsString());
if (Pos != CachedCompletionTypes.end() && Pos->second == C->Type)
Priority /= CCF_ExactTypeMatch;
else
Priority /= CCF_SimilarTypeMatch;
}
}
}
// Adjust the completion string, if required.
if (C->Kind == CXCursor_MacroDefinition &&
Context.getKind() == CodeCompletionContext::CCC_MacroNameUse) {
// Create a new code-completion string that just contains the
// macro name, without its arguments.
CodeCompletionBuilder Builder(getAllocator(), getCodeCompletionTUInfo(),
CCP_CodePattern, C->Availability);
Builder.AddTypedTextChunk(C->Completion->getTypedText());
Priority = CCP_CodePattern;
Completion = Builder.TakeString();
}
AllResults.push_back(Result(Completion, Priority, C->Kind,
C->Availability));
}
// If we did not add any cached completion results, just forward the
// results we were given to the next consumer.
if (!AddedResult) {
Next.ProcessCodeCompleteResults(S, Context, Results, NumResults);
return;
}
Next.ProcessCodeCompleteResults(S, Context, AllResults.data(),
AllResults.size());
}
void ASTUnit::CodeComplete(
StringRef File, unsigned Line, unsigned Column,
ArrayRef<RemappedFile> RemappedFiles, bool IncludeMacros,
bool IncludeCodePatterns, bool IncludeBriefComments,
CodeCompleteConsumer &Consumer,
std::shared_ptr<PCHContainerOperations> PCHContainerOps,
DiagnosticsEngine &Diag, LangOptions &LangOpts, SourceManager &SourceMgr,
FileManager &FileMgr, SmallVectorImpl<StoredDiagnostic> &StoredDiagnostics,
SmallVectorImpl<const llvm::MemoryBuffer *> &OwnedBuffers) {
if (!Invocation)
return;
SimpleTimer CompletionTimer(WantTiming);
CompletionTimer.setOutput("Code completion @ " + File + ":" +
Twine(Line) + ":" + Twine(Column));
IntrusiveRefCntPtr<CompilerInvocation>
CCInvocation(new CompilerInvocation(*Invocation));
FrontendOptions &FrontendOpts = CCInvocation->getFrontendOpts();
CodeCompleteOptions &CodeCompleteOpts = FrontendOpts.CodeCompleteOpts;
PreprocessorOptions &PreprocessorOpts = CCInvocation->getPreprocessorOpts();
CodeCompleteOpts.IncludeMacros = IncludeMacros &&
CachedCompletionResults.empty();
CodeCompleteOpts.IncludeCodePatterns = IncludeCodePatterns;
CodeCompleteOpts.IncludeGlobals = CachedCompletionResults.empty();
CodeCompleteOpts.IncludeBriefComments = IncludeBriefComments;
assert(IncludeBriefComments == this->IncludeBriefCommentsInCodeCompletion);
FrontendOpts.CodeCompletionAt.FileName = File;
FrontendOpts.CodeCompletionAt.Line = Line;
FrontendOpts.CodeCompletionAt.Column = Column;
// Set the language options appropriately.
LangOpts = *CCInvocation->getLangOpts();
// Spell-checking and warnings are wasteful during code-completion.
LangOpts.SpellChecking = false;
CCInvocation->getDiagnosticOpts().IgnoreWarnings = true;
std::unique_ptr<CompilerInstance> Clang(
new CompilerInstance(PCHContainerOps));
// Recover resources if we crash before exiting this method.
llvm::CrashRecoveryContextCleanupRegistrar<CompilerInstance>
CICleanup(Clang.get());
Clang->setInvocation(&*CCInvocation);
OriginalSourceFile = Clang->getFrontendOpts().Inputs[0].getFile();
// Set up diagnostics, capturing any diagnostics produced.
Clang->setDiagnostics(&Diag);
CaptureDroppedDiagnostics Capture(true,
Clang->getDiagnostics(),
StoredDiagnostics);
ProcessWarningOptions(Diag, CCInvocation->getDiagnosticOpts());
// Create the target instance.
Clang->setTarget(TargetInfo::CreateTargetInfo(
Clang->getDiagnostics(), Clang->getInvocation().TargetOpts));
if (!Clang->hasTarget()) {
Clang->setInvocation(nullptr);
return;
}
// Inform the target of the language options.
//
// FIXME: We shouldn't need to do this, the target should be immutable once
// created. This complexity should be lifted elsewhere.
Clang->getTarget().adjust(Clang->getLangOpts());
assert(Clang->getFrontendOpts().Inputs.size() == 1 &&
"Invocation must have exactly one source file!");
assert(Clang->getFrontendOpts().Inputs[0].getKind() != IK_AST &&
"FIXME: AST inputs not yet supported here!");
assert(Clang->getFrontendOpts().Inputs[0].getKind() != IK_LLVM_IR &&
"IR inputs not support here!");
// Use the source and file managers that we were given.
Clang->setFileManager(&FileMgr);
Clang->setSourceManager(&SourceMgr);
// Remap files.
PreprocessorOpts.clearRemappedFiles();
PreprocessorOpts.RetainRemappedFileBuffers = true;
for (const auto &RemappedFile : RemappedFiles) {
PreprocessorOpts.addRemappedFile(RemappedFile.first, RemappedFile.second);
OwnedBuffers.push_back(RemappedFile.second);
}
// Use the code completion consumer we were given, but adding any cached
// code-completion results.
AugmentedCodeCompleteConsumer *AugmentedConsumer
= new AugmentedCodeCompleteConsumer(*this, Consumer, CodeCompleteOpts);
Clang->setCodeCompletionConsumer(AugmentedConsumer);
// If we have a precompiled preamble, try to use it. We only allow
// the use of the precompiled preamble if we're if the completion
// point is within the main file, after the end of the precompiled
// preamble.
std::unique_ptr<llvm::MemoryBuffer> OverrideMainBuffer;
if (!getPreambleFile(this).empty()) {
std::string CompleteFilePath(File);
llvm::sys::fs::UniqueID CompleteFileID;
if (!llvm::sys::fs::getUniqueID(CompleteFilePath, CompleteFileID)) {
std::string MainPath(OriginalSourceFile);
llvm::sys::fs::UniqueID MainID;
if (!llvm::sys::fs::getUniqueID(MainPath, MainID)) {
if (CompleteFileID == MainID && Line > 1)
OverrideMainBuffer = getMainBufferWithPrecompiledPreamble(
PCHContainerOps, *CCInvocation, false, Line - 1);
}
}
}
// If the main file has been overridden due to the use of a preamble,
// make that override happen and introduce the preamble.
if (OverrideMainBuffer) {
PreprocessorOpts.addRemappedFile(OriginalSourceFile,
OverrideMainBuffer.get());
PreprocessorOpts.PrecompiledPreambleBytes.first = Preamble.size();
PreprocessorOpts.PrecompiledPreambleBytes.second
= PreambleEndsAtStartOfLine;
PreprocessorOpts.ImplicitPCHInclude = getPreambleFile(this);
PreprocessorOpts.DisablePCHValidation = true;
OwnedBuffers.push_back(OverrideMainBuffer.release());
} else {
PreprocessorOpts.PrecompiledPreambleBytes.first = 0;
PreprocessorOpts.PrecompiledPreambleBytes.second = false;
}
// Disable the preprocessing record if modules are not enabled.
if (!Clang->getLangOpts().Modules)
PreprocessorOpts.DetailedRecord = false;
std::unique_ptr<SyntaxOnlyAction> Act;
Act.reset(new SyntaxOnlyAction);
if (Act->BeginSourceFile(*Clang.get(), Clang->getFrontendOpts().Inputs[0])) {
Act->Execute();
Act->EndSourceFile();
}
}
bool ASTUnit::Save(StringRef File) {
if (HadModuleLoaderFatalFailure)
return true;
// Write to a temporary file and later rename it to the actual file, to avoid
// possible race conditions.
SmallString<128> TempPath;
TempPath = File;
TempPath += "-%%%%%%%%";
int fd;
if (llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath))
return true;
// FIXME: Can we somehow regenerate the stat cache here, or do we need to
// unconditionally create a stat cache when we parse the file?
llvm::raw_fd_ostream Out(fd, /*shouldClose=*/true);
serialize(Out);
Out.close();
if (Out.has_error()) {
Out.clear_error();
return true;
}
if (llvm::sys::fs::rename(TempPath, File)) {
llvm::sys::fs::remove(TempPath);
return true;
}
return false;
}
static bool serializeUnit(ASTWriter &Writer,
SmallVectorImpl<char> &Buffer,
Sema &S,
bool hasErrors,
raw_ostream &OS) {
Writer.WriteAST(S, std::string(), nullptr, "", hasErrors);
// Write the generated bitstream to "Out".
if (!Buffer.empty())
OS.write(Buffer.data(), Buffer.size());
return false;
}
bool ASTUnit::serialize(raw_ostream &OS) {
bool hasErrors = getDiagnostics().hasErrorOccurred();
if (WriterData)
return serializeUnit(WriterData->Writer, WriterData->Buffer,
getSema(), hasErrors, OS);
SmallString<128> Buffer;
llvm::BitstreamWriter Stream(Buffer);
ASTWriter Writer(Stream, { });
return serializeUnit(Writer, Buffer, getSema(), hasErrors, OS);
}
typedef ContinuousRangeMap<unsigned, int, 2> SLocRemap;
void ASTUnit::TranslateStoredDiagnostics(
FileManager &FileMgr,