blob: 76573d6b59f69d8ff85a64da16ffde34f8afb260 [file] [log] [blame]
//===--- Transformer.cpp - Transformer library implementation ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/Tooling/Refactoring/Transformer.h"
#include "clang/AST/Expr.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/ASTMatchers/ASTMatchers.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Rewrite/Core/Rewriter.h"
#include "clang/Tooling/Refactoring/AtomicChange.h"
#include "clang/Tooling/Refactoring/SourceCode.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/Error.h"
#include <deque>
#include <string>
#include <utility>
#include <vector>
using namespace clang;
using namespace tooling;
using ast_matchers::MatchFinder;
using ast_matchers::internal::DynTypedMatcher;
using ast_type_traits::ASTNodeKind;
using ast_type_traits::DynTypedNode;
using llvm::Error;
using llvm::StringError;
using MatchResult = MatchFinder::MatchResult;
// Did the text at this location originate in a macro definition (aka. body)?
// For example,
//
// #define NESTED(x) x
// #define MACRO(y) { int y = NESTED(3); }
// if (true) MACRO(foo)
//
// The if statement expands to
//
// if (true) { int foo = 3; }
// ^ ^
// Loc1 Loc2
//
// For SourceManager SM, SM.isMacroArgExpansion(Loc1) and
// SM.isMacroArgExpansion(Loc2) are both true, but isOriginMacroBody(sm, Loc1)
// is false, because "foo" originated in the source file (as an argument to a
// macro), whereas isOriginMacroBody(SM, Loc2) is true, because "3" originated
// in the definition of MACRO.
static bool isOriginMacroBody(const clang::SourceManager &SM,
clang::SourceLocation Loc) {
while (Loc.isMacroID()) {
if (SM.isMacroBodyExpansion(Loc))
return true;
// Otherwise, it must be in an argument, so we continue searching up the
// invocation stack. getImmediateMacroCallerLoc() gives the location of the
// argument text, inside the call text.
Loc = SM.getImmediateMacroCallerLoc(Loc);
}
return false;
}
Expected<SmallVector<tooling::detail::Transformation, 1>>
tooling::detail::translateEdits(const MatchResult &Result,
llvm::ArrayRef<ASTEdit> Edits) {
SmallVector<tooling::detail::Transformation, 1> Transformations;
for (const auto &Edit : Edits) {
Expected<CharSourceRange> Range = Edit.TargetRange(Result);
if (!Range)
return Range.takeError();
if (Range->isInvalid() ||
isOriginMacroBody(*Result.SourceManager, Range->getBegin()))
return SmallVector<Transformation, 0>();
auto Replacement = Edit.Replacement(Result);
if (!Replacement)
return Replacement.takeError();
tooling::detail::Transformation T;
T.Range = *Range;
T.Replacement = std::move(*Replacement);
Transformations.push_back(std::move(T));
}
return Transformations;
}
ASTEdit tooling::change(RangeSelector S, TextGenerator Replacement) {
ASTEdit E;
E.TargetRange = std::move(S);
E.Replacement = std::move(Replacement);
return E;
}
RewriteRule tooling::makeRule(DynTypedMatcher M, SmallVector<ASTEdit, 1> Edits,
TextGenerator Explanation) {
return RewriteRule{{RewriteRule::Case{std::move(M), std::move(Edits),
std::move(Explanation)}}};
}
// Determines whether A is a base type of B in the class hierarchy, including
// the implicit relationship of Type and QualType.
static bool isBaseOf(ASTNodeKind A, ASTNodeKind B) {
static auto TypeKind = ASTNodeKind::getFromNodeKind<Type>();
static auto QualKind = ASTNodeKind::getFromNodeKind<QualType>();
/// Mimic the implicit conversions of Matcher<>.
/// - From Matcher<Type> to Matcher<QualType>
/// - From Matcher<Base> to Matcher<Derived>
return (A.isSame(TypeKind) && B.isSame(QualKind)) || A.isBaseOf(B);
}
// Try to find a common kind to which all of the rule's matchers can be
// converted.
static ASTNodeKind
findCommonKind(const SmallVectorImpl<RewriteRule::Case> &Cases) {
assert(!Cases.empty() && "Rule must have at least one case.");
ASTNodeKind JoinKind = Cases[0].Matcher.getSupportedKind();
// Find a (least) Kind K, for which M.canConvertTo(K) holds, for all matchers
// M in Rules.
for (const auto &Case : Cases) {
auto K = Case.Matcher.getSupportedKind();
if (isBaseOf(JoinKind, K)) {
JoinKind = K;
continue;
}
if (K.isSame(JoinKind) || isBaseOf(K, JoinKind))
// JoinKind is already the lowest.
continue;
// K and JoinKind are unrelated -- there is no least common kind.
return ASTNodeKind();
}
return JoinKind;
}
// Binds each rule's matcher to a unique (and deterministic) tag based on
// `TagBase`.
static std::vector<DynTypedMatcher>
taggedMatchers(StringRef TagBase,
const SmallVectorImpl<RewriteRule::Case> &Cases) {
std::vector<DynTypedMatcher> Matchers;
Matchers.reserve(Cases.size());
size_t count = 0;
for (const auto &Case : Cases) {
std::string Tag = (TagBase + Twine(count)).str();
++count;
auto M = Case.Matcher.tryBind(Tag);
assert(M && "RewriteRule matchers should be bindable.");
Matchers.push_back(*std::move(M));
}
return Matchers;
}
// Simply gathers the contents of the various rules into a single rule. The
// actual work to combine these into an ordered choice is deferred to matcher
// registration.
RewriteRule tooling::applyFirst(ArrayRef<RewriteRule> Rules) {
RewriteRule R;
for (auto &Rule : Rules)
R.Cases.append(Rule.Cases.begin(), Rule.Cases.end());
return R;
}
static DynTypedMatcher joinCaseMatchers(const RewriteRule &Rule) {
assert(!Rule.Cases.empty() && "Rule must have at least one case.");
if (Rule.Cases.size() == 1)
return Rule.Cases[0].Matcher;
auto CommonKind = findCommonKind(Rule.Cases);
assert(!CommonKind.isNone() && "Cases must have compatible matchers.");
return DynTypedMatcher::constructVariadic(
DynTypedMatcher::VO_AnyOf, CommonKind, taggedMatchers("Tag", Rule.Cases));
}
DynTypedMatcher tooling::detail::buildMatcher(const RewriteRule &Rule) {
DynTypedMatcher M = joinCaseMatchers(Rule);
M.setAllowBind(true);
// `tryBind` is guaranteed to succeed, because `AllowBind` was set to true.
return *M.tryBind(RewriteRule::RootID);
}
// Finds the case that was "selected" -- that is, whose matcher triggered the
// `MatchResult`.
const RewriteRule::Case &
tooling::detail::findSelectedCase(const MatchResult &Result,
const RewriteRule &Rule) {
if (Rule.Cases.size() == 1)
return Rule.Cases[0];
auto &NodesMap = Result.Nodes.getMap();
for (size_t i = 0, N = Rule.Cases.size(); i < N; ++i) {
std::string Tag = ("Tag" + Twine(i)).str();
if (NodesMap.find(Tag) != NodesMap.end())
return Rule.Cases[i];
}
llvm_unreachable("No tag found for this rule.");
}
constexpr llvm::StringLiteral RewriteRule::RootID;
void Transformer::registerMatchers(MatchFinder *MatchFinder) {
MatchFinder->addDynamicMatcher(tooling::detail::buildMatcher(Rule), this);
}
void Transformer::run(const MatchResult &Result) {
if (Result.Context->getDiagnostics().hasErrorOccurred())
return;
// Verify the existence and validity of the AST node that roots this rule.
auto &NodesMap = Result.Nodes.getMap();
auto Root = NodesMap.find(RewriteRule::RootID);
assert(Root != NodesMap.end() && "Transformation failed: missing root node.");
SourceLocation RootLoc = Result.SourceManager->getExpansionLoc(
Root->second.getSourceRange().getBegin());
assert(RootLoc.isValid() && "Invalid location for Root node of match.");
auto Transformations = tooling::detail::translateEdits(
Result, tooling::detail::findSelectedCase(Result, Rule).Edits);
if (!Transformations) {
Consumer(Transformations.takeError());
return;
}
if (Transformations->empty()) {
// No rewrite applied (but no error encountered either).
RootLoc.print(llvm::errs() << "note: skipping match at loc ",
*Result.SourceManager);
llvm::errs() << "\n";
return;
}
// Record the results in the AtomicChange.
AtomicChange AC(*Result.SourceManager, RootLoc);
for (const auto &T : *Transformations) {
if (auto Err = AC.replace(*Result.SourceManager, T.Range, T.Replacement)) {
Consumer(std::move(Err));
return;
}
}
Consumer(std::move(AC));
}