| /* |
| * Copyright 2015-2019 Arm Limited |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "spirv_cross.hpp" |
| #include "GLSL.std.450.h" |
| #include "spirv_cfg.hpp" |
| #include "spirv_common.hpp" |
| #include "spirv_parser.hpp" |
| #include <algorithm> |
| #include <cstring> |
| #include <utility> |
| |
| using namespace std; |
| using namespace spv; |
| using namespace SPIRV_CROSS_NAMESPACE; |
| |
| Compiler::Compiler(vector<uint32_t> ir_) |
| { |
| Parser parser(move(ir_)); |
| parser.parse(); |
| set_ir(move(parser.get_parsed_ir())); |
| } |
| |
| Compiler::Compiler(const uint32_t *ir_, size_t word_count) |
| { |
| Parser parser(ir_, word_count); |
| parser.parse(); |
| set_ir(move(parser.get_parsed_ir())); |
| } |
| |
| Compiler::Compiler(const ParsedIR &ir_) |
| { |
| set_ir(ir_); |
| } |
| |
| Compiler::Compiler(ParsedIR &&ir_) |
| { |
| set_ir(move(ir_)); |
| } |
| |
| void Compiler::set_ir(ParsedIR &&ir_) |
| { |
| ir = move(ir_); |
| parse_fixup(); |
| } |
| |
| void Compiler::set_ir(const ParsedIR &ir_) |
| { |
| ir = ir_; |
| parse_fixup(); |
| } |
| |
| string Compiler::compile() |
| { |
| return ""; |
| } |
| |
| bool Compiler::variable_storage_is_aliased(const SPIRVariable &v) |
| { |
| auto &type = get<SPIRType>(v.basetype); |
| bool ssbo = v.storage == StorageClassStorageBuffer || |
| ir.meta[type.self].decoration.decoration_flags.get(DecorationBufferBlock); |
| bool image = type.basetype == SPIRType::Image; |
| bool counter = type.basetype == SPIRType::AtomicCounter; |
| bool buffer_reference = type.storage == StorageClassPhysicalStorageBufferEXT; |
| |
| bool is_restrict; |
| if (ssbo) |
| is_restrict = ir.get_buffer_block_flags(v).get(DecorationRestrict); |
| else |
| is_restrict = has_decoration(v.self, DecorationRestrict); |
| |
| return !is_restrict && (ssbo || image || counter || buffer_reference); |
| } |
| |
| bool Compiler::block_is_pure(const SPIRBlock &block) |
| { |
| for (auto &i : block.ops) |
| { |
| auto ops = stream(i); |
| auto op = static_cast<Op>(i.op); |
| |
| switch (op) |
| { |
| case OpFunctionCall: |
| { |
| uint32_t func = ops[2]; |
| if (!function_is_pure(get<SPIRFunction>(func))) |
| return false; |
| break; |
| } |
| |
| case OpCopyMemory: |
| case OpStore: |
| { |
| auto &type = expression_type(ops[0]); |
| if (type.storage != StorageClassFunction) |
| return false; |
| break; |
| } |
| |
| case OpImageWrite: |
| return false; |
| |
| // Atomics are impure. |
| case OpAtomicLoad: |
| case OpAtomicStore: |
| case OpAtomicExchange: |
| case OpAtomicCompareExchange: |
| case OpAtomicCompareExchangeWeak: |
| case OpAtomicIIncrement: |
| case OpAtomicIDecrement: |
| case OpAtomicIAdd: |
| case OpAtomicISub: |
| case OpAtomicSMin: |
| case OpAtomicUMin: |
| case OpAtomicSMax: |
| case OpAtomicUMax: |
| case OpAtomicAnd: |
| case OpAtomicOr: |
| case OpAtomicXor: |
| return false; |
| |
| // Geometry shader builtins modify global state. |
| case OpEndPrimitive: |
| case OpEmitStreamVertex: |
| case OpEndStreamPrimitive: |
| case OpEmitVertex: |
| return false; |
| |
| // Barriers disallow any reordering, so we should treat blocks with barrier as writing. |
| case OpControlBarrier: |
| case OpMemoryBarrier: |
| return false; |
| |
| // Ray tracing builtins are impure. |
| case OpReportIntersectionNV: |
| case OpIgnoreIntersectionNV: |
| case OpTerminateRayNV: |
| case OpTraceNV: |
| case OpExecuteCallableNV: |
| return false; |
| |
| // OpExtInst is potentially impure depending on extension, but GLSL builtins are at least pure. |
| |
| default: |
| break; |
| } |
| } |
| |
| return true; |
| } |
| |
| string Compiler::to_name(uint32_t id, bool allow_alias) const |
| { |
| if (allow_alias && ir.ids[id].get_type() == TypeType) |
| { |
| // If this type is a simple alias, emit the |
| // name of the original type instead. |
| // We don't want to override the meta alias |
| // as that can be overridden by the reflection APIs after parse. |
| auto &type = get<SPIRType>(id); |
| if (type.type_alias) |
| { |
| // If the alias master has been specially packed, we will have emitted a clean variant as well, |
| // so skip the name aliasing here. |
| if (!has_extended_decoration(type.type_alias, SPIRVCrossDecorationBufferBlockRepacked)) |
| return to_name(type.type_alias); |
| } |
| } |
| |
| auto &alias = ir.get_name(id); |
| if (alias.empty()) |
| return join("_", id); |
| else |
| return alias; |
| } |
| |
| bool Compiler::function_is_pure(const SPIRFunction &func) |
| { |
| for (auto block : func.blocks) |
| { |
| if (!block_is_pure(get<SPIRBlock>(block))) |
| { |
| //fprintf(stderr, "Function %s is impure!\n", to_name(func.self).c_str()); |
| return false; |
| } |
| } |
| |
| //fprintf(stderr, "Function %s is pure!\n", to_name(func.self).c_str()); |
| return true; |
| } |
| |
| void Compiler::register_global_read_dependencies(const SPIRBlock &block, uint32_t id) |
| { |
| for (auto &i : block.ops) |
| { |
| auto ops = stream(i); |
| auto op = static_cast<Op>(i.op); |
| |
| switch (op) |
| { |
| case OpFunctionCall: |
| { |
| uint32_t func = ops[2]; |
| register_global_read_dependencies(get<SPIRFunction>(func), id); |
| break; |
| } |
| |
| case OpLoad: |
| case OpImageRead: |
| { |
| // If we're in a storage class which does not get invalidated, adding dependencies here is no big deal. |
| auto *var = maybe_get_backing_variable(ops[2]); |
| if (var && var->storage != StorageClassFunction) |
| { |
| auto &type = get<SPIRType>(var->basetype); |
| |
| // InputTargets are immutable. |
| if (type.basetype != SPIRType::Image && type.image.dim != DimSubpassData) |
| var->dependees.push_back(id); |
| } |
| break; |
| } |
| |
| default: |
| break; |
| } |
| } |
| } |
| |
| void Compiler::register_global_read_dependencies(const SPIRFunction &func, uint32_t id) |
| { |
| for (auto block : func.blocks) |
| register_global_read_dependencies(get<SPIRBlock>(block), id); |
| } |
| |
| SPIRVariable *Compiler::maybe_get_backing_variable(uint32_t chain) |
| { |
| auto *var = maybe_get<SPIRVariable>(chain); |
| if (!var) |
| { |
| auto *cexpr = maybe_get<SPIRExpression>(chain); |
| if (cexpr) |
| var = maybe_get<SPIRVariable>(cexpr->loaded_from); |
| |
| auto *access_chain = maybe_get<SPIRAccessChain>(chain); |
| if (access_chain) |
| var = maybe_get<SPIRVariable>(access_chain->loaded_from); |
| } |
| |
| return var; |
| } |
| |
| void Compiler::register_read(uint32_t expr, uint32_t chain, bool forwarded) |
| { |
| auto &e = get<SPIRExpression>(expr); |
| auto *var = maybe_get_backing_variable(chain); |
| |
| if (var) |
| { |
| e.loaded_from = var->self; |
| |
| // If the backing variable is immutable, we do not need to depend on the variable. |
| if (forwarded && !is_immutable(var->self)) |
| var->dependees.push_back(e.self); |
| |
| // If we load from a parameter, make sure we create "inout" if we also write to the parameter. |
| // The default is "in" however, so we never invalidate our compilation by reading. |
| if (var && var->parameter) |
| var->parameter->read_count++; |
| } |
| } |
| |
| void Compiler::register_write(uint32_t chain) |
| { |
| auto *var = maybe_get<SPIRVariable>(chain); |
| if (!var) |
| { |
| // If we're storing through an access chain, invalidate the backing variable instead. |
| auto *expr = maybe_get<SPIRExpression>(chain); |
| if (expr && expr->loaded_from) |
| var = maybe_get<SPIRVariable>(expr->loaded_from); |
| |
| auto *access_chain = maybe_get<SPIRAccessChain>(chain); |
| if (access_chain && access_chain->loaded_from) |
| var = maybe_get<SPIRVariable>(access_chain->loaded_from); |
| } |
| |
| if (var) |
| { |
| bool check_argument_storage_qualifier = true; |
| auto &type = expression_type(chain); |
| |
| // If our variable is in a storage class which can alias with other buffers, |
| // invalidate all variables which depend on aliased variables. And if this is a |
| // variable pointer, then invalidate all variables regardless. |
| if (get_variable_data_type(*var).pointer) |
| { |
| flush_all_active_variables(); |
| |
| if (type.pointer_depth == 1) |
| { |
| // We have a backing variable which is a pointer-to-pointer type. |
| // We are storing some data through a pointer acquired through that variable, |
| // but we are not writing to the value of the variable itself, |
| // i.e., we are not modifying the pointer directly. |
| // If we are storing a non-pointer type (pointer_depth == 1), |
| // we know that we are storing some unrelated data. |
| // A case here would be |
| // void foo(Foo * const *arg) { |
| // Foo *bar = *arg; |
| // bar->unrelated = 42; |
| // } |
| // arg, the argument is constant. |
| check_argument_storage_qualifier = false; |
| } |
| } |
| |
| if (type.storage == StorageClassPhysicalStorageBufferEXT || variable_storage_is_aliased(*var)) |
| flush_all_aliased_variables(); |
| else if (var) |
| flush_dependees(*var); |
| |
| // We tried to write to a parameter which is not marked with out qualifier, force a recompile. |
| if (check_argument_storage_qualifier && var->parameter && var->parameter->write_count == 0) |
| { |
| var->parameter->write_count++; |
| force_recompile(); |
| } |
| } |
| else |
| { |
| // If we stored through a variable pointer, then we don't know which |
| // variable we stored to. So *all* expressions after this point need to |
| // be invalidated. |
| // FIXME: If we can prove that the variable pointer will point to |
| // only certain variables, we can invalidate only those. |
| flush_all_active_variables(); |
| } |
| } |
| |
| void Compiler::flush_dependees(SPIRVariable &var) |
| { |
| for (auto expr : var.dependees) |
| invalid_expressions.insert(expr); |
| var.dependees.clear(); |
| } |
| |
| void Compiler::flush_all_aliased_variables() |
| { |
| for (auto aliased : aliased_variables) |
| flush_dependees(get<SPIRVariable>(aliased)); |
| } |
| |
| void Compiler::flush_all_atomic_capable_variables() |
| { |
| for (auto global : global_variables) |
| flush_dependees(get<SPIRVariable>(global)); |
| flush_all_aliased_variables(); |
| } |
| |
| void Compiler::flush_control_dependent_expressions(uint32_t block_id) |
| { |
| auto &block = get<SPIRBlock>(block_id); |
| for (auto &expr : block.invalidate_expressions) |
| invalid_expressions.insert(expr); |
| block.invalidate_expressions.clear(); |
| } |
| |
| void Compiler::flush_all_active_variables() |
| { |
| // Invalidate all temporaries we read from variables in this block since they were forwarded. |
| // Invalidate all temporaries we read from globals. |
| for (auto &v : current_function->local_variables) |
| flush_dependees(get<SPIRVariable>(v)); |
| for (auto &arg : current_function->arguments) |
| flush_dependees(get<SPIRVariable>(arg.id)); |
| for (auto global : global_variables) |
| flush_dependees(get<SPIRVariable>(global)); |
| |
| flush_all_aliased_variables(); |
| } |
| |
| uint32_t Compiler::expression_type_id(uint32_t id) const |
| { |
| switch (ir.ids[id].get_type()) |
| { |
| case TypeVariable: |
| return get<SPIRVariable>(id).basetype; |
| |
| case TypeExpression: |
| return get<SPIRExpression>(id).expression_type; |
| |
| case TypeConstant: |
| return get<SPIRConstant>(id).constant_type; |
| |
| case TypeConstantOp: |
| return get<SPIRConstantOp>(id).basetype; |
| |
| case TypeUndef: |
| return get<SPIRUndef>(id).basetype; |
| |
| case TypeCombinedImageSampler: |
| return get<SPIRCombinedImageSampler>(id).combined_type; |
| |
| case TypeAccessChain: |
| return get<SPIRAccessChain>(id).basetype; |
| |
| default: |
| SPIRV_CROSS_THROW("Cannot resolve expression type."); |
| } |
| } |
| |
| const SPIRType &Compiler::expression_type(uint32_t id) const |
| { |
| return get<SPIRType>(expression_type_id(id)); |
| } |
| |
| bool Compiler::expression_is_lvalue(uint32_t id) const |
| { |
| auto &type = expression_type(id); |
| switch (type.basetype) |
| { |
| case SPIRType::SampledImage: |
| case SPIRType::Image: |
| case SPIRType::Sampler: |
| return false; |
| |
| default: |
| return true; |
| } |
| } |
| |
| bool Compiler::is_immutable(uint32_t id) const |
| { |
| if (ir.ids[id].get_type() == TypeVariable) |
| { |
| auto &var = get<SPIRVariable>(id); |
| |
| // Anything we load from the UniformConstant address space is guaranteed to be immutable. |
| bool pointer_to_const = var.storage == StorageClassUniformConstant; |
| return pointer_to_const || var.phi_variable || !expression_is_lvalue(id); |
| } |
| else if (ir.ids[id].get_type() == TypeAccessChain) |
| return get<SPIRAccessChain>(id).immutable; |
| else if (ir.ids[id].get_type() == TypeExpression) |
| return get<SPIRExpression>(id).immutable; |
| else if (ir.ids[id].get_type() == TypeConstant || ir.ids[id].get_type() == TypeConstantOp || |
| ir.ids[id].get_type() == TypeUndef) |
| return true; |
| else |
| return false; |
| } |
| |
| static inline bool storage_class_is_interface(spv::StorageClass storage) |
| { |
| switch (storage) |
| { |
| case StorageClassInput: |
| case StorageClassOutput: |
| case StorageClassUniform: |
| case StorageClassUniformConstant: |
| case StorageClassAtomicCounter: |
| case StorageClassPushConstant: |
| case StorageClassStorageBuffer: |
| return true; |
| |
| default: |
| return false; |
| } |
| } |
| |
| bool Compiler::is_hidden_variable(const SPIRVariable &var, bool include_builtins) const |
| { |
| if ((is_builtin_variable(var) && !include_builtins) || var.remapped_variable) |
| return true; |
| |
| // Combined image samplers are always considered active as they are "magic" variables. |
| if (find_if(begin(combined_image_samplers), end(combined_image_samplers), [&var](const CombinedImageSampler &samp) { |
| return samp.combined_id == var.self; |
| }) != end(combined_image_samplers)) |
| { |
| return false; |
| } |
| |
| bool hidden = false; |
| if (check_active_interface_variables && storage_class_is_interface(var.storage)) |
| hidden = active_interface_variables.find(var.self) == end(active_interface_variables); |
| return hidden; |
| } |
| |
| bool Compiler::is_builtin_type(const SPIRType &type) const |
| { |
| auto *type_meta = ir.find_meta(type.self); |
| |
| // We can have builtin structs as well. If one member of a struct is builtin, the struct must also be builtin. |
| if (type_meta) |
| for (auto &m : type_meta->members) |
| if (m.builtin) |
| return true; |
| |
| return false; |
| } |
| |
| bool Compiler::is_builtin_variable(const SPIRVariable &var) const |
| { |
| auto *m = ir.find_meta(var.self); |
| |
| if (var.compat_builtin || (m && m->decoration.builtin)) |
| return true; |
| else |
| return is_builtin_type(get<SPIRType>(var.basetype)); |
| } |
| |
| bool Compiler::is_member_builtin(const SPIRType &type, uint32_t index, BuiltIn *builtin) const |
| { |
| auto *type_meta = ir.find_meta(type.self); |
| |
| if (type_meta) |
| { |
| auto &memb = type_meta->members; |
| if (index < memb.size() && memb[index].builtin) |
| { |
| if (builtin) |
| *builtin = memb[index].builtin_type; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool Compiler::is_scalar(const SPIRType &type) const |
| { |
| return type.basetype != SPIRType::Struct && type.vecsize == 1 && type.columns == 1; |
| } |
| |
| bool Compiler::is_vector(const SPIRType &type) const |
| { |
| return type.vecsize > 1 && type.columns == 1; |
| } |
| |
| bool Compiler::is_matrix(const SPIRType &type) const |
| { |
| return type.vecsize > 1 && type.columns > 1; |
| } |
| |
| bool Compiler::is_array(const SPIRType &type) const |
| { |
| return !type.array.empty(); |
| } |
| |
| ShaderResources Compiler::get_shader_resources() const |
| { |
| return get_shader_resources(nullptr); |
| } |
| |
| ShaderResources Compiler::get_shader_resources(const unordered_set<uint32_t> &active_variables) const |
| { |
| return get_shader_resources(&active_variables); |
| } |
| |
| bool Compiler::InterfaceVariableAccessHandler::handle(Op opcode, const uint32_t *args, uint32_t length) |
| { |
| uint32_t variable = 0; |
| switch (opcode) |
| { |
| // Need this first, otherwise, GCC complains about unhandled switch statements. |
| default: |
| break; |
| |
| case OpFunctionCall: |
| { |
| // Invalid SPIR-V. |
| if (length < 3) |
| return false; |
| |
| uint32_t count = length - 3; |
| args += 3; |
| for (uint32_t i = 0; i < count; i++) |
| { |
| auto *var = compiler.maybe_get<SPIRVariable>(args[i]); |
| if (var && storage_class_is_interface(var->storage)) |
| variables.insert(args[i]); |
| } |
| break; |
| } |
| |
| case OpSelect: |
| { |
| // Invalid SPIR-V. |
| if (length < 5) |
| return false; |
| |
| uint32_t count = length - 3; |
| args += 3; |
| for (uint32_t i = 0; i < count; i++) |
| { |
| auto *var = compiler.maybe_get<SPIRVariable>(args[i]); |
| if (var && storage_class_is_interface(var->storage)) |
| variables.insert(args[i]); |
| } |
| break; |
| } |
| |
| case OpPhi: |
| { |
| // Invalid SPIR-V. |
| if (length < 2) |
| return false; |
| |
| uint32_t count = length - 2; |
| args += 2; |
| for (uint32_t i = 0; i < count; i += 2) |
| { |
| auto *var = compiler.maybe_get<SPIRVariable>(args[i]); |
| if (var && storage_class_is_interface(var->storage)) |
| variables.insert(args[i]); |
| } |
| break; |
| } |
| |
| case OpAtomicStore: |
| case OpStore: |
| // Invalid SPIR-V. |
| if (length < 1) |
| return false; |
| variable = args[0]; |
| break; |
| |
| case OpCopyMemory: |
| { |
| if (length < 2) |
| return false; |
| |
| auto *var = compiler.maybe_get<SPIRVariable>(args[0]); |
| if (var && storage_class_is_interface(var->storage)) |
| variables.insert(args[0]); |
| |
| var = compiler.maybe_get<SPIRVariable>(args[1]); |
| if (var && storage_class_is_interface(var->storage)) |
| variables.insert(args[1]); |
| break; |
| } |
| |
| case OpExtInst: |
| { |
| if (length < 5) |
| return false; |
| uint32_t extension_set = args[2]; |
| if (compiler.get<SPIRExtension>(extension_set).ext == SPIRExtension::SPV_AMD_shader_explicit_vertex_parameter) |
| { |
| enum AMDShaderExplicitVertexParameter |
| { |
| InterpolateAtVertexAMD = 1 |
| }; |
| |
| auto op = static_cast<AMDShaderExplicitVertexParameter>(args[3]); |
| |
| switch (op) |
| { |
| case InterpolateAtVertexAMD: |
| { |
| auto *var = compiler.maybe_get<SPIRVariable>(args[4]); |
| if (var && storage_class_is_interface(var->storage)) |
| variables.insert(args[4]); |
| break; |
| } |
| |
| default: |
| break; |
| } |
| } |
| break; |
| } |
| |
| case OpAccessChain: |
| case OpInBoundsAccessChain: |
| case OpPtrAccessChain: |
| case OpLoad: |
| case OpCopyObject: |
| case OpImageTexelPointer: |
| case OpAtomicLoad: |
| case OpAtomicExchange: |
| case OpAtomicCompareExchange: |
| case OpAtomicCompareExchangeWeak: |
| case OpAtomicIIncrement: |
| case OpAtomicIDecrement: |
| case OpAtomicIAdd: |
| case OpAtomicISub: |
| case OpAtomicSMin: |
| case OpAtomicUMin: |
| case OpAtomicSMax: |
| case OpAtomicUMax: |
| case OpAtomicAnd: |
| case OpAtomicOr: |
| case OpAtomicXor: |
| case OpArrayLength: |
| // Invalid SPIR-V. |
| if (length < 3) |
| return false; |
| variable = args[2]; |
| break; |
| } |
| |
| if (variable) |
| { |
| auto *var = compiler.maybe_get<SPIRVariable>(variable); |
| if (var && storage_class_is_interface(var->storage)) |
| variables.insert(variable); |
| } |
| return true; |
| } |
| |
| unordered_set<uint32_t> Compiler::get_active_interface_variables() const |
| { |
| // Traverse the call graph and find all interface variables which are in use. |
| unordered_set<uint32_t> variables; |
| InterfaceVariableAccessHandler handler(*this, variables); |
| traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler); |
| |
| // Make sure we preserve output variables which are only initialized, but never accessed by any code. |
| ir.for_each_typed_id<SPIRVariable>([&](uint32_t, const SPIRVariable &var) { |
| if (var.storage == StorageClassOutput && var.initializer != 0) |
| variables.insert(var.self); |
| }); |
| |
| // If we needed to create one, we'll need it. |
| if (dummy_sampler_id) |
| variables.insert(dummy_sampler_id); |
| |
| return variables; |
| } |
| |
| void Compiler::set_enabled_interface_variables(std::unordered_set<uint32_t> active_variables) |
| { |
| active_interface_variables = move(active_variables); |
| check_active_interface_variables = true; |
| } |
| |
| ShaderResources Compiler::get_shader_resources(const unordered_set<uint32_t> *active_variables) const |
| { |
| ShaderResources res; |
| |
| bool ssbo_instance_name = reflection_ssbo_instance_name_is_significant(); |
| |
| ir.for_each_typed_id<SPIRVariable>([&](uint32_t, const SPIRVariable &var) { |
| auto &type = this->get<SPIRType>(var.basetype); |
| |
| // It is possible for uniform storage classes to be passed as function parameters, so detect |
| // that. To detect function parameters, check of StorageClass of variable is function scope. |
| if (var.storage == StorageClassFunction || !type.pointer || is_builtin_variable(var)) |
| return; |
| |
| if (active_variables && active_variables->find(var.self) == end(*active_variables)) |
| return; |
| |
| // Input |
| if (var.storage == StorageClassInput && interface_variable_exists_in_entry_point(var.self)) |
| { |
| if (has_decoration(type.self, DecorationBlock)) |
| { |
| res.stage_inputs.push_back( |
| { var.self, var.basetype, type.self, get_remapped_declared_block_name(var.self, false) }); |
| } |
| else |
| res.stage_inputs.push_back({ var.self, var.basetype, type.self, get_name(var.self) }); |
| } |
| // Subpass inputs |
| else if (var.storage == StorageClassUniformConstant && type.image.dim == DimSubpassData) |
| { |
| res.subpass_inputs.push_back({ var.self, var.basetype, type.self, get_name(var.self) }); |
| } |
| // Outputs |
| else if (var.storage == StorageClassOutput && interface_variable_exists_in_entry_point(var.self)) |
| { |
| if (has_decoration(type.self, DecorationBlock)) |
| { |
| res.stage_outputs.push_back( |
| { var.self, var.basetype, type.self, get_remapped_declared_block_name(var.self, false) }); |
| } |
| else |
| res.stage_outputs.push_back({ var.self, var.basetype, type.self, get_name(var.self) }); |
| } |
| // UBOs |
| else if (type.storage == StorageClassUniform && has_decoration(type.self, DecorationBlock)) |
| { |
| res.uniform_buffers.push_back( |
| { var.self, var.basetype, type.self, get_remapped_declared_block_name(var.self, false) }); |
| } |
| // Old way to declare SSBOs. |
| else if (type.storage == StorageClassUniform && has_decoration(type.self, DecorationBufferBlock)) |
| { |
| res.storage_buffers.push_back( |
| { var.self, var.basetype, type.self, get_remapped_declared_block_name(var.self, ssbo_instance_name) }); |
| } |
| // Modern way to declare SSBOs. |
| else if (type.storage == StorageClassStorageBuffer) |
| { |
| res.storage_buffers.push_back( |
| { var.self, var.basetype, type.self, get_remapped_declared_block_name(var.self, ssbo_instance_name) }); |
| } |
| // Push constant blocks |
| else if (type.storage == StorageClassPushConstant) |
| { |
| // There can only be one push constant block, but keep the vector in case this restriction is lifted |
| // in the future. |
| res.push_constant_buffers.push_back({ var.self, var.basetype, type.self, get_name(var.self) }); |
| } |
| // Images |
| else if (type.storage == StorageClassUniformConstant && type.basetype == SPIRType::Image && |
| type.image.sampled == 2) |
| { |
| res.storage_images.push_back({ var.self, var.basetype, type.self, get_name(var.self) }); |
| } |
| // Separate images |
| else if (type.storage == StorageClassUniformConstant && type.basetype == SPIRType::Image && |
| type.image.sampled == 1) |
| { |
| res.separate_images.push_back({ var.self, var.basetype, type.self, get_name(var.self) }); |
| } |
| // Separate samplers |
| else if (type.storage == StorageClassUniformConstant && type.basetype == SPIRType::Sampler) |
| { |
| res.separate_samplers.push_back({ var.self, var.basetype, type.self, get_name(var.self) }); |
| } |
| // Textures |
| else if (type.storage == StorageClassUniformConstant && type.basetype == SPIRType::SampledImage) |
| { |
| res.sampled_images.push_back({ var.self, var.basetype, type.self, get_name(var.self) }); |
| } |
| // Atomic counters |
| else if (type.storage == StorageClassAtomicCounter) |
| { |
| res.atomic_counters.push_back({ var.self, var.basetype, type.self, get_name(var.self) }); |
| } |
| // Acceleration structures |
| else if (type.storage == StorageClassUniformConstant && type.basetype == SPIRType::AccelerationStructureNV) |
| { |
| res.acceleration_structures.push_back({ var.self, var.basetype, type.self, get_name(var.self) }); |
| } |
| }); |
| |
| return res; |
| } |
| |
| bool Compiler::type_is_block_like(const SPIRType &type) const |
| { |
| if (type.basetype != SPIRType::Struct) |
| return false; |
| |
| if (has_decoration(type.self, DecorationBlock) || has_decoration(type.self, DecorationBufferBlock)) |
| { |
| return true; |
| } |
| |
| // Block-like types may have Offset decorations. |
| for (uint32_t i = 0; i < uint32_t(type.member_types.size()); i++) |
| if (has_member_decoration(type.self, i, DecorationOffset)) |
| return true; |
| |
| return false; |
| } |
| |
| void Compiler::parse_fixup() |
| { |
| // Figure out specialization constants for work group sizes. |
| for (auto id_ : ir.ids_for_constant_or_variable) |
| { |
| auto &id = ir.ids[id_]; |
| |
| if (id.get_type() == TypeConstant) |
| { |
| auto &c = id.get<SPIRConstant>(); |
| if (ir.meta[c.self].decoration.builtin && ir.meta[c.self].decoration.builtin_type == BuiltInWorkgroupSize) |
| { |
| // In current SPIR-V, there can be just one constant like this. |
| // All entry points will receive the constant value. |
| for (auto &entry : ir.entry_points) |
| { |
| entry.second.workgroup_size.constant = c.self; |
| entry.second.workgroup_size.x = c.scalar(0, 0); |
| entry.second.workgroup_size.y = c.scalar(0, 1); |
| entry.second.workgroup_size.z = c.scalar(0, 2); |
| } |
| } |
| } |
| else if (id.get_type() == TypeVariable) |
| { |
| auto &var = id.get<SPIRVariable>(); |
| if (var.storage == StorageClassPrivate || var.storage == StorageClassWorkgroup || |
| var.storage == StorageClassOutput) |
| global_variables.push_back(var.self); |
| if (variable_storage_is_aliased(var)) |
| aliased_variables.push_back(var.self); |
| } |
| } |
| } |
| |
| void Compiler::update_name_cache(unordered_set<string> &cache_primary, const unordered_set<string> &cache_secondary, |
| string &name) |
| { |
| if (name.empty()) |
| return; |
| |
| const auto find_name = [&](const string &n) -> bool { |
| if (cache_primary.find(n) != end(cache_primary)) |
| return true; |
| |
| if (&cache_primary != &cache_secondary) |
| if (cache_secondary.find(n) != end(cache_secondary)) |
| return true; |
| |
| return false; |
| }; |
| |
| const auto insert_name = [&](const string &n) { cache_primary.insert(n); }; |
| |
| if (!find_name(name)) |
| { |
| insert_name(name); |
| return; |
| } |
| |
| uint32_t counter = 0; |
| auto tmpname = name; |
| |
| bool use_linked_underscore = true; |
| |
| if (tmpname == "_") |
| { |
| // We cannot just append numbers, as we will end up creating internally reserved names. |
| // Make it like _0_<counter> instead. |
| tmpname += "0"; |
| } |
| else if (tmpname.back() == '_') |
| { |
| // The last_character is an underscore, so we don't need to link in underscore. |
| // This would violate double underscore rules. |
| use_linked_underscore = false; |
| } |
| |
| // If there is a collision (very rare), |
| // keep tacking on extra identifier until it's unique. |
| do |
| { |
| counter++; |
| name = tmpname + (use_linked_underscore ? "_" : "") + convert_to_string(counter); |
| } while (find_name(name)); |
| insert_name(name); |
| } |
| |
| void Compiler::update_name_cache(unordered_set<string> &cache, string &name) |
| { |
| update_name_cache(cache, cache, name); |
| } |
| |
| void Compiler::set_name(uint32_t id, const std::string &name) |
| { |
| ir.set_name(id, name); |
| } |
| |
| const SPIRType &Compiler::get_type(uint32_t id) const |
| { |
| return get<SPIRType>(id); |
| } |
| |
| const SPIRType &Compiler::get_type_from_variable(uint32_t id) const |
| { |
| return get<SPIRType>(get<SPIRVariable>(id).basetype); |
| } |
| |
| uint32_t Compiler::get_pointee_type_id(uint32_t type_id) const |
| { |
| auto *p_type = &get<SPIRType>(type_id); |
| if (p_type->pointer) |
| { |
| assert(p_type->parent_type); |
| type_id = p_type->parent_type; |
| } |
| return type_id; |
| } |
| |
| const SPIRType &Compiler::get_pointee_type(const SPIRType &type) const |
| { |
| auto *p_type = &type; |
| if (p_type->pointer) |
| { |
| assert(p_type->parent_type); |
| p_type = &get<SPIRType>(p_type->parent_type); |
| } |
| return *p_type; |
| } |
| |
| const SPIRType &Compiler::get_pointee_type(uint32_t type_id) const |
| { |
| return get_pointee_type(get<SPIRType>(type_id)); |
| } |
| |
| uint32_t Compiler::get_variable_data_type_id(const SPIRVariable &var) const |
| { |
| if (var.phi_variable) |
| return var.basetype; |
| return get_pointee_type_id(var.basetype); |
| } |
| |
| SPIRType &Compiler::get_variable_data_type(const SPIRVariable &var) |
| { |
| return get<SPIRType>(get_variable_data_type_id(var)); |
| } |
| |
| const SPIRType &Compiler::get_variable_data_type(const SPIRVariable &var) const |
| { |
| return get<SPIRType>(get_variable_data_type_id(var)); |
| } |
| |
| SPIRType &Compiler::get_variable_element_type(const SPIRVariable &var) |
| { |
| SPIRType *type = &get_variable_data_type(var); |
| if (is_array(*type)) |
| type = &get<SPIRType>(type->parent_type); |
| return *type; |
| } |
| |
| const SPIRType &Compiler::get_variable_element_type(const SPIRVariable &var) const |
| { |
| const SPIRType *type = &get_variable_data_type(var); |
| if (is_array(*type)) |
| type = &get<SPIRType>(type->parent_type); |
| return *type; |
| } |
| |
| bool Compiler::is_sampled_image_type(const SPIRType &type) |
| { |
| return (type.basetype == SPIRType::Image || type.basetype == SPIRType::SampledImage) && type.image.sampled == 1 && |
| type.image.dim != DimBuffer; |
| } |
| |
| void Compiler::set_member_decoration_string(uint32_t id, uint32_t index, spv::Decoration decoration, |
| const std::string &argument) |
| { |
| ir.set_member_decoration_string(id, index, decoration, argument); |
| } |
| |
| void Compiler::set_member_decoration(uint32_t id, uint32_t index, Decoration decoration, uint32_t argument) |
| { |
| ir.set_member_decoration(id, index, decoration, argument); |
| } |
| |
| void Compiler::set_member_name(uint32_t id, uint32_t index, const std::string &name) |
| { |
| ir.set_member_name(id, index, name); |
| } |
| |
| const std::string &Compiler::get_member_name(uint32_t id, uint32_t index) const |
| { |
| return ir.get_member_name(id, index); |
| } |
| |
| void Compiler::set_qualified_name(uint32_t id, const string &name) |
| { |
| ir.meta[id].decoration.qualified_alias = name; |
| } |
| |
| void Compiler::set_member_qualified_name(uint32_t type_id, uint32_t index, const std::string &name) |
| { |
| ir.meta[type_id].members.resize(max(ir.meta[type_id].members.size(), size_t(index) + 1)); |
| ir.meta[type_id].members[index].qualified_alias = name; |
| } |
| |
| const string &Compiler::get_member_qualified_name(uint32_t type_id, uint32_t index) const |
| { |
| auto *m = ir.find_meta(type_id); |
| if (m && index < m->members.size()) |
| return m->members[index].qualified_alias; |
| else |
| return ir.get_empty_string(); |
| } |
| |
| uint32_t Compiler::get_member_decoration(uint32_t id, uint32_t index, Decoration decoration) const |
| { |
| return ir.get_member_decoration(id, index, decoration); |
| } |
| |
| const Bitset &Compiler::get_member_decoration_bitset(uint32_t id, uint32_t index) const |
| { |
| return ir.get_member_decoration_bitset(id, index); |
| } |
| |
| bool Compiler::has_member_decoration(uint32_t id, uint32_t index, Decoration decoration) const |
| { |
| return ir.has_member_decoration(id, index, decoration); |
| } |
| |
| void Compiler::unset_member_decoration(uint32_t id, uint32_t index, Decoration decoration) |
| { |
| ir.unset_member_decoration(id, index, decoration); |
| } |
| |
| void Compiler::set_decoration_string(uint32_t id, spv::Decoration decoration, const std::string &argument) |
| { |
| ir.set_decoration_string(id, decoration, argument); |
| } |
| |
| void Compiler::set_decoration(uint32_t id, Decoration decoration, uint32_t argument) |
| { |
| ir.set_decoration(id, decoration, argument); |
| } |
| |
| void Compiler::set_extended_decoration(uint32_t id, ExtendedDecorations decoration, uint32_t value) |
| { |
| auto &dec = ir.meta[id].decoration; |
| dec.extended.flags.set(decoration); |
| dec.extended.values[decoration] = value; |
| } |
| |
| void Compiler::set_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration, |
| uint32_t value) |
| { |
| ir.meta[type].members.resize(max(ir.meta[type].members.size(), size_t(index) + 1)); |
| auto &dec = ir.meta[type].members[index]; |
| dec.extended.flags.set(decoration); |
| dec.extended.values[decoration] = value; |
| } |
| |
| static uint32_t get_default_extended_decoration(ExtendedDecorations decoration) |
| { |
| switch (decoration) |
| { |
| case SPIRVCrossDecorationResourceIndexPrimary: |
| case SPIRVCrossDecorationResourceIndexSecondary: |
| case SPIRVCrossDecorationInterfaceMemberIndex: |
| return ~(0u); |
| |
| default: |
| return 0; |
| } |
| } |
| |
| uint32_t Compiler::get_extended_decoration(uint32_t id, ExtendedDecorations decoration) const |
| { |
| auto *m = ir.find_meta(id); |
| if (!m) |
| return 0; |
| |
| auto &dec = m->decoration; |
| |
| if (!dec.extended.flags.get(decoration)) |
| return get_default_extended_decoration(decoration); |
| |
| return dec.extended.values[decoration]; |
| } |
| |
| uint32_t Compiler::get_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration) const |
| { |
| auto *m = ir.find_meta(type); |
| if (!m) |
| return 0; |
| |
| if (index >= m->members.size()) |
| return 0; |
| |
| auto &dec = m->members[index]; |
| if (!dec.extended.flags.get(decoration)) |
| return get_default_extended_decoration(decoration); |
| return dec.extended.values[decoration]; |
| } |
| |
| bool Compiler::has_extended_decoration(uint32_t id, ExtendedDecorations decoration) const |
| { |
| auto *m = ir.find_meta(id); |
| if (!m) |
| return false; |
| |
| auto &dec = m->decoration; |
| return dec.extended.flags.get(decoration); |
| } |
| |
| bool Compiler::has_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration) const |
| { |
| auto *m = ir.find_meta(type); |
| if (!m) |
| return false; |
| |
| if (index >= m->members.size()) |
| return false; |
| |
| auto &dec = m->members[index]; |
| return dec.extended.flags.get(decoration); |
| } |
| |
| void Compiler::unset_extended_decoration(uint32_t id, ExtendedDecorations decoration) |
| { |
| auto &dec = ir.meta[id].decoration; |
| dec.extended.flags.clear(decoration); |
| dec.extended.values[decoration] = 0; |
| } |
| |
| void Compiler::unset_extended_member_decoration(uint32_t type, uint32_t index, ExtendedDecorations decoration) |
| { |
| ir.meta[type].members.resize(max(ir.meta[type].members.size(), size_t(index) + 1)); |
| auto &dec = ir.meta[type].members[index]; |
| dec.extended.flags.clear(decoration); |
| dec.extended.values[decoration] = 0; |
| } |
| |
| StorageClass Compiler::get_storage_class(uint32_t id) const |
| { |
| return get<SPIRVariable>(id).storage; |
| } |
| |
| const std::string &Compiler::get_name(uint32_t id) const |
| { |
| return ir.get_name(id); |
| } |
| |
| const std::string Compiler::get_fallback_name(uint32_t id) const |
| { |
| return join("_", id); |
| } |
| |
| const std::string Compiler::get_block_fallback_name(uint32_t id) const |
| { |
| auto &var = get<SPIRVariable>(id); |
| if (get_name(id).empty()) |
| return join("_", get<SPIRType>(var.basetype).self, "_", id); |
| else |
| return get_name(id); |
| } |
| |
| const Bitset &Compiler::get_decoration_bitset(uint32_t id) const |
| { |
| return ir.get_decoration_bitset(id); |
| } |
| |
| bool Compiler::has_decoration(uint32_t id, Decoration decoration) const |
| { |
| return ir.has_decoration(id, decoration); |
| } |
| |
| const string &Compiler::get_decoration_string(uint32_t id, Decoration decoration) const |
| { |
| return ir.get_decoration_string(id, decoration); |
| } |
| |
| const string &Compiler::get_member_decoration_string(uint32_t id, uint32_t index, Decoration decoration) const |
| { |
| return ir.get_member_decoration_string(id, index, decoration); |
| } |
| |
| uint32_t Compiler::get_decoration(uint32_t id, Decoration decoration) const |
| { |
| return ir.get_decoration(id, decoration); |
| } |
| |
| void Compiler::unset_decoration(uint32_t id, Decoration decoration) |
| { |
| ir.unset_decoration(id, decoration); |
| } |
| |
| bool Compiler::get_binary_offset_for_decoration(uint32_t id, spv::Decoration decoration, uint32_t &word_offset) const |
| { |
| auto *m = ir.find_meta(id); |
| if (!m) |
| return false; |
| |
| auto &word_offsets = m->decoration_word_offset; |
| auto itr = word_offsets.find(decoration); |
| if (itr == end(word_offsets)) |
| return false; |
| |
| word_offset = itr->second; |
| return true; |
| } |
| |
| bool Compiler::block_is_loop_candidate(const SPIRBlock &block, SPIRBlock::Method method) const |
| { |
| // Tried and failed. |
| if (block.disable_block_optimization || block.complex_continue) |
| return false; |
| |
| if (method == SPIRBlock::MergeToSelectForLoop || method == SPIRBlock::MergeToSelectContinueForLoop) |
| { |
| // Try to detect common for loop pattern |
| // which the code backend can use to create cleaner code. |
| // for(;;) { if (cond) { some_body; } else { break; } } |
| // is the pattern we're looking for. |
| const auto *false_block = maybe_get<SPIRBlock>(block.false_block); |
| const auto *true_block = maybe_get<SPIRBlock>(block.true_block); |
| const auto *merge_block = maybe_get<SPIRBlock>(block.merge_block); |
| |
| bool false_block_is_merge = block.false_block == block.merge_block || |
| (false_block && merge_block && execution_is_noop(*false_block, *merge_block)); |
| |
| bool true_block_is_merge = block.true_block == block.merge_block || |
| (true_block && merge_block && execution_is_noop(*true_block, *merge_block)); |
| |
| bool positive_candidate = |
| block.true_block != block.merge_block && block.true_block != block.self && false_block_is_merge; |
| |
| bool negative_candidate = |
| block.false_block != block.merge_block && block.false_block != block.self && true_block_is_merge; |
| |
| bool ret = block.terminator == SPIRBlock::Select && block.merge == SPIRBlock::MergeLoop && |
| (positive_candidate || negative_candidate); |
| |
| if (ret && positive_candidate && method == SPIRBlock::MergeToSelectContinueForLoop) |
| ret = block.true_block == block.continue_block; |
| else if (ret && negative_candidate && method == SPIRBlock::MergeToSelectContinueForLoop) |
| ret = block.false_block == block.continue_block; |
| |
| // If we have OpPhi which depends on branches which came from our own block, |
| // we need to flush phi variables in else block instead of a trivial break, |
| // so we cannot assume this is a for loop candidate. |
| if (ret) |
| { |
| for (auto &phi : block.phi_variables) |
| if (phi.parent == block.self) |
| return false; |
| |
| auto *merge = maybe_get<SPIRBlock>(block.merge_block); |
| if (merge) |
| for (auto &phi : merge->phi_variables) |
| if (phi.parent == block.self) |
| return false; |
| } |
| return ret; |
| } |
| else if (method == SPIRBlock::MergeToDirectForLoop) |
| { |
| // Empty loop header that just sets up merge target |
| // and branches to loop body. |
| bool ret = block.terminator == SPIRBlock::Direct && block.merge == SPIRBlock::MergeLoop && block.ops.empty(); |
| |
| if (!ret) |
| return false; |
| |
| auto &child = get<SPIRBlock>(block.next_block); |
| |
| const auto *false_block = maybe_get<SPIRBlock>(child.false_block); |
| const auto *true_block = maybe_get<SPIRBlock>(child.true_block); |
| const auto *merge_block = maybe_get<SPIRBlock>(block.merge_block); |
| |
| bool false_block_is_merge = child.false_block == block.merge_block || |
| (false_block && merge_block && execution_is_noop(*false_block, *merge_block)); |
| |
| bool true_block_is_merge = child.true_block == block.merge_block || |
| (true_block && merge_block && execution_is_noop(*true_block, *merge_block)); |
| |
| bool positive_candidate = |
| child.true_block != block.merge_block && child.true_block != block.self && false_block_is_merge; |
| |
| bool negative_candidate = |
| child.false_block != block.merge_block && child.false_block != block.self && true_block_is_merge; |
| |
| ret = child.terminator == SPIRBlock::Select && child.merge == SPIRBlock::MergeNone && |
| (positive_candidate || negative_candidate); |
| |
| // If we have OpPhi which depends on branches which came from our own block, |
| // we need to flush phi variables in else block instead of a trivial break, |
| // so we cannot assume this is a for loop candidate. |
| if (ret) |
| { |
| for (auto &phi : block.phi_variables) |
| if (phi.parent == block.self || phi.parent == child.self) |
| return false; |
| |
| for (auto &phi : child.phi_variables) |
| if (phi.parent == block.self) |
| return false; |
| |
| auto *merge = maybe_get<SPIRBlock>(block.merge_block); |
| if (merge) |
| for (auto &phi : merge->phi_variables) |
| if (phi.parent == block.self || phi.parent == child.false_block) |
| return false; |
| } |
| |
| return ret; |
| } |
| else |
| return false; |
| } |
| |
| bool Compiler::block_is_outside_flow_control_from_block(const SPIRBlock &from, const SPIRBlock &to) |
| { |
| auto *start = &from; |
| |
| if (start->self == to.self) |
| return true; |
| |
| // Break cycles. |
| if (is_continue(start->self)) |
| return false; |
| |
| // If our select block doesn't merge, we must break or continue in these blocks, |
| // so if continues occur branchless within these blocks, consider them branchless as well. |
| // This is typically used for loop control. |
| if (start->terminator == SPIRBlock::Select && start->merge == SPIRBlock::MergeNone && |
| (block_is_outside_flow_control_from_block(get<SPIRBlock>(start->true_block), to) || |
| block_is_outside_flow_control_from_block(get<SPIRBlock>(start->false_block), to))) |
| { |
| return true; |
| } |
| else if (start->merge_block && block_is_outside_flow_control_from_block(get<SPIRBlock>(start->merge_block), to)) |
| { |
| return true; |
| } |
| else if (start->next_block && block_is_outside_flow_control_from_block(get<SPIRBlock>(start->next_block), to)) |
| { |
| return true; |
| } |
| else |
| return false; |
| } |
| |
| bool Compiler::execution_is_noop(const SPIRBlock &from, const SPIRBlock &to) const |
| { |
| if (!execution_is_branchless(from, to)) |
| return false; |
| |
| auto *start = &from; |
| for (;;) |
| { |
| if (start->self == to.self) |
| return true; |
| |
| if (!start->ops.empty()) |
| return false; |
| |
| auto &next = get<SPIRBlock>(start->next_block); |
| // Flushing phi variables does not count as noop. |
| for (auto &phi : next.phi_variables) |
| if (phi.parent == start->self) |
| return false; |
| |
| start = &next; |
| } |
| } |
| |
| bool Compiler::execution_is_branchless(const SPIRBlock &from, const SPIRBlock &to) const |
| { |
| auto *start = &from; |
| for (;;) |
| { |
| if (start->self == to.self) |
| return true; |
| |
| if (start->terminator == SPIRBlock::Direct && start->merge == SPIRBlock::MergeNone) |
| start = &get<SPIRBlock>(start->next_block); |
| else |
| return false; |
| } |
| } |
| |
| bool Compiler::execution_is_direct_branch(const SPIRBlock &from, const SPIRBlock &to) const |
| { |
| return from.terminator == SPIRBlock::Direct && from.merge == SPIRBlock::MergeNone && from.next_block == to.self; |
| } |
| |
| SPIRBlock::ContinueBlockType Compiler::continue_block_type(const SPIRBlock &block) const |
| { |
| // The block was deemed too complex during code emit, pick conservative fallback paths. |
| if (block.complex_continue) |
| return SPIRBlock::ComplexLoop; |
| |
| // In older glslang output continue block can be equal to the loop header. |
| // In this case, execution is clearly branchless, so just assume a while loop header here. |
| if (block.merge == SPIRBlock::MergeLoop) |
| return SPIRBlock::WhileLoop; |
| |
| if (block.loop_dominator == SPIRBlock::NoDominator) |
| { |
| // Continue block is never reached from CFG. |
| return SPIRBlock::ComplexLoop; |
| } |
| |
| auto &dominator = get<SPIRBlock>(block.loop_dominator); |
| |
| if (execution_is_noop(block, dominator)) |
| return SPIRBlock::WhileLoop; |
| else if (execution_is_branchless(block, dominator)) |
| return SPIRBlock::ForLoop; |
| else |
| { |
| const auto *false_block = maybe_get<SPIRBlock>(block.false_block); |
| const auto *true_block = maybe_get<SPIRBlock>(block.true_block); |
| const auto *merge_block = maybe_get<SPIRBlock>(dominator.merge_block); |
| |
| // If we need to flush Phi in this block, we cannot have a DoWhile loop. |
| bool flush_phi_to_false = false_block && flush_phi_required(block.self, block.false_block); |
| bool flush_phi_to_true = true_block && flush_phi_required(block.self, block.true_block); |
| if (flush_phi_to_false || flush_phi_to_true) |
| return SPIRBlock::ComplexLoop; |
| |
| bool positive_do_while = block.true_block == dominator.self && |
| (block.false_block == dominator.merge_block || |
| (false_block && merge_block && execution_is_noop(*false_block, *merge_block))); |
| |
| bool negative_do_while = block.false_block == dominator.self && |
| (block.true_block == dominator.merge_block || |
| (true_block && merge_block && execution_is_noop(*true_block, *merge_block))); |
| |
| if (block.merge == SPIRBlock::MergeNone && block.terminator == SPIRBlock::Select && |
| (positive_do_while || negative_do_while)) |
| { |
| return SPIRBlock::DoWhileLoop; |
| } |
| else |
| return SPIRBlock::ComplexLoop; |
| } |
| } |
| |
| bool Compiler::traverse_all_reachable_opcodes(const SPIRBlock &block, OpcodeHandler &handler) const |
| { |
| handler.set_current_block(block); |
| |
| // Ideally, perhaps traverse the CFG instead of all blocks in order to eliminate dead blocks, |
| // but this shouldn't be a problem in practice unless the SPIR-V is doing insane things like recursing |
| // inside dead blocks ... |
| for (auto &i : block.ops) |
| { |
| auto ops = stream(i); |
| auto op = static_cast<Op>(i.op); |
| |
| if (!handler.handle(op, ops, i.length)) |
| return false; |
| |
| if (op == OpFunctionCall) |
| { |
| auto &func = get<SPIRFunction>(ops[2]); |
| if (handler.follow_function_call(func)) |
| { |
| if (!handler.begin_function_scope(ops, i.length)) |
| return false; |
| if (!traverse_all_reachable_opcodes(get<SPIRFunction>(ops[2]), handler)) |
| return false; |
| if (!handler.end_function_scope(ops, i.length)) |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| bool Compiler::traverse_all_reachable_opcodes(const SPIRFunction &func, OpcodeHandler &handler) const |
| { |
| for (auto block : func.blocks) |
| if (!traverse_all_reachable_opcodes(get<SPIRBlock>(block), handler)) |
| return false; |
| |
| return true; |
| } |
| |
| uint32_t Compiler::type_struct_member_offset(const SPIRType &type, uint32_t index) const |
| { |
| auto *type_meta = ir.find_meta(type.self); |
| if (type_meta) |
| { |
| // Decoration must be set in valid SPIR-V, otherwise throw. |
| auto &dec = type_meta->members[index]; |
| if (dec.decoration_flags.get(DecorationOffset)) |
| return dec.offset; |
| else |
| SPIRV_CROSS_THROW("Struct member does not have Offset set."); |
| } |
| else |
| SPIRV_CROSS_THROW("Struct member does not have Offset set."); |
| } |
| |
| uint32_t Compiler::type_struct_member_array_stride(const SPIRType &type, uint32_t index) const |
| { |
| auto *type_meta = ir.find_meta(type.member_types[index]); |
| if (type_meta) |
| { |
| // Decoration must be set in valid SPIR-V, otherwise throw. |
| // ArrayStride is part of the array type not OpMemberDecorate. |
| auto &dec = type_meta->decoration; |
| if (dec.decoration_flags.get(DecorationArrayStride)) |
| return dec.array_stride; |
| else |
| SPIRV_CROSS_THROW("Struct member does not have ArrayStride set."); |
| } |
| else |
| SPIRV_CROSS_THROW("Struct member does not have ArrayStride set."); |
| } |
| |
| uint32_t Compiler::type_struct_member_matrix_stride(const SPIRType &type, uint32_t index) const |
| { |
| auto *type_meta = ir.find_meta(type.self); |
| if (type_meta) |
| { |
| // Decoration must be set in valid SPIR-V, otherwise throw. |
| // MatrixStride is part of OpMemberDecorate. |
| auto &dec = type_meta->members[index]; |
| if (dec.decoration_flags.get(DecorationMatrixStride)) |
| return dec.matrix_stride; |
| else |
| SPIRV_CROSS_THROW("Struct member does not have MatrixStride set."); |
| } |
| else |
| SPIRV_CROSS_THROW("Struct member does not have MatrixStride set."); |
| } |
| |
| size_t Compiler::get_declared_struct_size(const SPIRType &type) const |
| { |
| if (type.member_types.empty()) |
| SPIRV_CROSS_THROW("Declared struct in block cannot be empty."); |
| |
| uint32_t last = uint32_t(type.member_types.size() - 1); |
| size_t offset = type_struct_member_offset(type, last); |
| size_t size = get_declared_struct_member_size(type, last); |
| return offset + size; |
| } |
| |
| size_t Compiler::get_declared_struct_size_runtime_array(const SPIRType &type, size_t array_size) const |
| { |
| if (type.member_types.empty()) |
| SPIRV_CROSS_THROW("Declared struct in block cannot be empty."); |
| |
| size_t size = get_declared_struct_size(type); |
| auto &last_type = get<SPIRType>(type.member_types.back()); |
| if (!last_type.array.empty() && last_type.array_size_literal[0] && last_type.array[0] == 0) // Runtime array |
| size += array_size * type_struct_member_array_stride(type, uint32_t(type.member_types.size() - 1)); |
| |
| return size; |
| } |
| |
| size_t Compiler::get_declared_struct_member_size(const SPIRType &struct_type, uint32_t index) const |
| { |
| if (struct_type.member_types.empty()) |
| SPIRV_CROSS_THROW("Declared struct in block cannot be empty."); |
| |
| auto &flags = get_member_decoration_bitset(struct_type.self, index); |
| auto &type = get<SPIRType>(struct_type.member_types[index]); |
| |
| switch (type.basetype) |
| { |
| case SPIRType::Unknown: |
| case SPIRType::Void: |
| case SPIRType::Boolean: // Bools are purely logical, and cannot be used for externally visible types. |
| case SPIRType::AtomicCounter: |
| case SPIRType::Image: |
| case SPIRType::SampledImage: |
| case SPIRType::Sampler: |
| SPIRV_CROSS_THROW("Querying size for object with opaque size."); |
| |
| default: |
| break; |
| } |
| |
| if (!type.array.empty()) |
| { |
| // For arrays, we can use ArrayStride to get an easy check. |
| bool array_size_literal = type.array_size_literal.back(); |
| uint32_t array_size = array_size_literal ? type.array.back() : get<SPIRConstant>(type.array.back()).scalar(); |
| return type_struct_member_array_stride(struct_type, index) * array_size; |
| } |
| else if (type.basetype == SPIRType::Struct) |
| { |
| return get_declared_struct_size(type); |
| } |
| else |
| { |
| unsigned vecsize = type.vecsize; |
| unsigned columns = type.columns; |
| |
| // Vectors. |
| if (columns == 1) |
| { |
| size_t component_size = type.width / 8; |
| return vecsize * component_size; |
| } |
| else |
| { |
| uint32_t matrix_stride = type_struct_member_matrix_stride(struct_type, index); |
| |
| // Per SPIR-V spec, matrices must be tightly packed and aligned up for vec3 accesses. |
| if (flags.get(DecorationRowMajor)) |
| return matrix_stride * vecsize; |
| else if (flags.get(DecorationColMajor)) |
| return matrix_stride * columns; |
| else |
| SPIRV_CROSS_THROW("Either row-major or column-major must be declared for matrices."); |
| } |
| } |
| } |
| |
| bool Compiler::BufferAccessHandler::handle(Op opcode, const uint32_t *args, uint32_t length) |
| { |
| if (opcode != OpAccessChain && opcode != OpInBoundsAccessChain && opcode != OpPtrAccessChain) |
| return true; |
| |
| bool ptr_chain = (opcode == OpPtrAccessChain); |
| |
| // Invalid SPIR-V. |
| if (length < (ptr_chain ? 5u : 4u)) |
| return false; |
| |
| if (args[2] != id) |
| return true; |
| |
| // Don't bother traversing the entire access chain tree yet. |
| // If we access a struct member, assume we access the entire member. |
| uint32_t index = compiler.get<SPIRConstant>(args[ptr_chain ? 4 : 3]).scalar(); |
| |
| // Seen this index already. |
| if (seen.find(index) != end(seen)) |
| return true; |
| seen.insert(index); |
| |
| auto &type = compiler.expression_type(id); |
| uint32_t offset = compiler.type_struct_member_offset(type, index); |
| |
| size_t range; |
| // If we have another member in the struct, deduce the range by looking at the next member. |
| // This is okay since structs in SPIR-V can have padding, but Offset decoration must be |
| // monotonically increasing. |
| // Of course, this doesn't take into account if the SPIR-V for some reason decided to add |
| // very large amounts of padding, but that's not really a big deal. |
| if (index + 1 < type.member_types.size()) |
| { |
| range = compiler.type_struct_member_offset(type, index + 1) - offset; |
| } |
| else |
| { |
| // No padding, so just deduce it from the size of the member directly. |
| range = compiler.get_declared_struct_member_size(type, index); |
| } |
| |
| ranges.push_back({ index, offset, range }); |
| return true; |
| } |
| |
| SmallVector<BufferRange> Compiler::get_active_buffer_ranges(uint32_t id) const |
| { |
| SmallVector<BufferRange> ranges; |
| BufferAccessHandler handler(*this, ranges, id); |
| traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler); |
| return ranges; |
| } |
| |
| bool Compiler::types_are_logically_equivalent(const SPIRType &a, const SPIRType &b) const |
| { |
| if (a.basetype != b.basetype) |
| return false; |
| if (a.width != b.width) |
| return false; |
| if (a.vecsize != b.vecsize) |
| return false; |
| if (a.columns != b.columns) |
| return false; |
| if (a.array.size() != b.array.size()) |
| return false; |
| |
| size_t array_count = a.array.size(); |
| if (array_count && memcmp(a.array.data(), b.array.data(), array_count * sizeof(uint32_t)) != 0) |
| return false; |
| |
| if (a.basetype == SPIRType::Image || a.basetype == SPIRType::SampledImage) |
| { |
| if (memcmp(&a.image, &b.image, sizeof(SPIRType::Image)) != 0) |
| return false; |
| } |
| |
| if (a.member_types.size() != b.member_types.size()) |
| return false; |
| |
| size_t member_types = a.member_types.size(); |
| for (size_t i = 0; i < member_types; i++) |
| { |
| if (!types_are_logically_equivalent(get<SPIRType>(a.member_types[i]), get<SPIRType>(b.member_types[i]))) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| const Bitset &Compiler::get_execution_mode_bitset() const |
| { |
| return get_entry_point().flags; |
| } |
| |
| void Compiler::set_execution_mode(ExecutionMode mode, uint32_t arg0, uint32_t arg1, uint32_t arg2) |
| { |
| auto &execution = get_entry_point(); |
| |
| execution.flags.set(mode); |
| switch (mode) |
| { |
| case ExecutionModeLocalSize: |
| execution.workgroup_size.x = arg0; |
| execution.workgroup_size.y = arg1; |
| execution.workgroup_size.z = arg2; |
| break; |
| |
| case ExecutionModeInvocations: |
| execution.invocations = arg0; |
| break; |
| |
| case ExecutionModeOutputVertices: |
| execution.output_vertices = arg0; |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| void Compiler::unset_execution_mode(ExecutionMode mode) |
| { |
| auto &execution = get_entry_point(); |
| execution.flags.clear(mode); |
| } |
| |
| uint32_t Compiler::get_work_group_size_specialization_constants(SpecializationConstant &x, SpecializationConstant &y, |
| SpecializationConstant &z) const |
| { |
| auto &execution = get_entry_point(); |
| x = { 0, 0 }; |
| y = { 0, 0 }; |
| z = { 0, 0 }; |
| |
| if (execution.workgroup_size.constant != 0) |
| { |
| auto &c = get<SPIRConstant>(execution.workgroup_size.constant); |
| |
| if (c.m.c[0].id[0] != 0) |
| { |
| x.id = c.m.c[0].id[0]; |
| x.constant_id = get_decoration(c.m.c[0].id[0], DecorationSpecId); |
| } |
| |
| if (c.m.c[0].id[1] != 0) |
| { |
| y.id = c.m.c[0].id[1]; |
| y.constant_id = get_decoration(c.m.c[0].id[1], DecorationSpecId); |
| } |
| |
| if (c.m.c[0].id[2] != 0) |
| { |
| z.id = c.m.c[0].id[2]; |
| z.constant_id = get_decoration(c.m.c[0].id[2], DecorationSpecId); |
| } |
| } |
| |
| return execution.workgroup_size.constant; |
| } |
| |
| uint32_t Compiler::get_execution_mode_argument(spv::ExecutionMode mode, uint32_t index) const |
| { |
| auto &execution = get_entry_point(); |
| switch (mode) |
| { |
| case ExecutionModeLocalSize: |
| switch (index) |
| { |
| case 0: |
| return execution.workgroup_size.x; |
| case 1: |
| return execution.workgroup_size.y; |
| case 2: |
| return execution.workgroup_size.z; |
| default: |
| return 0; |
| } |
| |
| case ExecutionModeInvocations: |
| return execution.invocations; |
| |
| case ExecutionModeOutputVertices: |
| return execution.output_vertices; |
| |
| default: |
| return 0; |
| } |
| } |
| |
| ExecutionModel Compiler::get_execution_model() const |
| { |
| auto &execution = get_entry_point(); |
| return execution.model; |
| } |
| |
| bool Compiler::is_tessellation_shader(ExecutionModel model) |
| { |
| return model == ExecutionModelTessellationControl || model == ExecutionModelTessellationEvaluation; |
| } |
| |
| bool Compiler::is_tessellation_shader() const |
| { |
| return is_tessellation_shader(get_execution_model()); |
| } |
| |
| void Compiler::set_remapped_variable_state(uint32_t id, bool remap_enable) |
| { |
| get<SPIRVariable>(id).remapped_variable = remap_enable; |
| } |
| |
| bool Compiler::get_remapped_variable_state(uint32_t id) const |
| { |
| return get<SPIRVariable>(id).remapped_variable; |
| } |
| |
| void Compiler::set_subpass_input_remapped_components(uint32_t id, uint32_t components) |
| { |
| get<SPIRVariable>(id).remapped_components = components; |
| } |
| |
| uint32_t Compiler::get_subpass_input_remapped_components(uint32_t id) const |
| { |
| return get<SPIRVariable>(id).remapped_components; |
| } |
| |
| void Compiler::add_implied_read_expression(SPIRExpression &e, uint32_t source) |
| { |
| auto itr = find(begin(e.implied_read_expressions), end(e.implied_read_expressions), source); |
| if (itr == end(e.implied_read_expressions)) |
| e.implied_read_expressions.push_back(source); |
| } |
| |
| void Compiler::add_implied_read_expression(SPIRAccessChain &e, uint32_t source) |
| { |
| auto itr = find(begin(e.implied_read_expressions), end(e.implied_read_expressions), source); |
| if (itr == end(e.implied_read_expressions)) |
| e.implied_read_expressions.push_back(source); |
| } |
| |
| void Compiler::inherit_expression_dependencies(uint32_t dst, uint32_t source_expression) |
| { |
| // Don't inherit any expression dependencies if the expression in dst |
| // is not a forwarded temporary. |
| if (forwarded_temporaries.find(dst) == end(forwarded_temporaries) || |
| forced_temporaries.find(dst) != end(forced_temporaries)) |
| { |
| return; |
| } |
| |
| auto &e = get<SPIRExpression>(dst); |
| auto *phi = maybe_get<SPIRVariable>(source_expression); |
| if (phi && phi->phi_variable) |
| { |
| // We have used a phi variable, which can change at the end of the block, |
| // so make sure we take a dependency on this phi variable. |
| phi->dependees.push_back(dst); |
| } |
| |
| auto *s = maybe_get<SPIRExpression>(source_expression); |
| if (!s) |
| return; |
| |
| auto &e_deps = e.expression_dependencies; |
| auto &s_deps = s->expression_dependencies; |
| |
| // If we depend on a expression, we also depend on all sub-dependencies from source. |
| e_deps.push_back(source_expression); |
| e_deps.insert(end(e_deps), begin(s_deps), end(s_deps)); |
| |
| // Eliminate duplicated dependencies. |
| sort(begin(e_deps), end(e_deps)); |
| e_deps.erase(unique(begin(e_deps), end(e_deps)), end(e_deps)); |
| } |
| |
| SmallVector<EntryPoint> Compiler::get_entry_points_and_stages() const |
| { |
| SmallVector<EntryPoint> entries; |
| for (auto &entry : ir.entry_points) |
| entries.push_back({ entry.second.orig_name, entry.second.model }); |
| return entries; |
| } |
| |
| void Compiler::rename_entry_point(const std::string &old_name, const std::string &new_name, spv::ExecutionModel model) |
| { |
| auto &entry = get_entry_point(old_name, model); |
| entry.orig_name = new_name; |
| entry.name = new_name; |
| } |
| |
| void Compiler::set_entry_point(const std::string &name, spv::ExecutionModel model) |
| { |
| auto &entry = get_entry_point(name, model); |
| ir.default_entry_point = entry.self; |
| } |
| |
| SPIREntryPoint &Compiler::get_first_entry_point(const std::string &name) |
| { |
| auto itr = find_if( |
| begin(ir.entry_points), end(ir.entry_points), |
| [&](const std::pair<uint32_t, SPIREntryPoint> &entry) -> bool { return entry.second.orig_name == name; }); |
| |
| if (itr == end(ir.entry_points)) |
| SPIRV_CROSS_THROW("Entry point does not exist."); |
| |
| return itr->second; |
| } |
| |
| const SPIREntryPoint &Compiler::get_first_entry_point(const std::string &name) const |
| { |
| auto itr = find_if( |
| begin(ir.entry_points), end(ir.entry_points), |
| [&](const std::pair<uint32_t, SPIREntryPoint> &entry) -> bool { return entry.second.orig_name == name; }); |
| |
| if (itr == end(ir.entry_points)) |
| SPIRV_CROSS_THROW("Entry point does not exist."); |
| |
| return itr->second; |
| } |
| |
| SPIREntryPoint &Compiler::get_entry_point(const std::string &name, ExecutionModel model) |
| { |
| auto itr = find_if(begin(ir.entry_points), end(ir.entry_points), |
| [&](const std::pair<uint32_t, SPIREntryPoint> &entry) -> bool { |
| return entry.second.orig_name == name && entry.second.model == model; |
| }); |
| |
| if (itr == end(ir.entry_points)) |
| SPIRV_CROSS_THROW("Entry point does not exist."); |
| |
| return itr->second; |
| } |
| |
| const SPIREntryPoint &Compiler::get_entry_point(const std::string &name, ExecutionModel model) const |
| { |
| auto itr = find_if(begin(ir.entry_points), end(ir.entry_points), |
| [&](const std::pair<uint32_t, SPIREntryPoint> &entry) -> bool { |
| return entry.second.orig_name == name && entry.second.model == model; |
| }); |
| |
| if (itr == end(ir.entry_points)) |
| SPIRV_CROSS_THROW("Entry point does not exist."); |
| |
| return itr->second; |
| } |
| |
| const string &Compiler::get_cleansed_entry_point_name(const std::string &name, ExecutionModel model) const |
| { |
| return get_entry_point(name, model).name; |
| } |
| |
| const SPIREntryPoint &Compiler::get_entry_point() const |
| { |
| return ir.entry_points.find(ir.default_entry_point)->second; |
| } |
| |
| SPIREntryPoint &Compiler::get_entry_point() |
| { |
| return ir.entry_points.find(ir.default_entry_point)->second; |
| } |
| |
| bool Compiler::interface_variable_exists_in_entry_point(uint32_t id) const |
| { |
| auto &var = get<SPIRVariable>(id); |
| if (var.storage != StorageClassInput && var.storage != StorageClassOutput && |
| var.storage != StorageClassUniformConstant) |
| SPIRV_CROSS_THROW("Only Input, Output variables and Uniform constants are part of a shader linking interface."); |
| |
| // This is to avoid potential problems with very old glslang versions which did |
| // not emit input/output interfaces properly. |
| // We can assume they only had a single entry point, and single entry point |
| // shaders could easily be assumed to use every interface variable anyways. |
| if (ir.entry_points.size() <= 1) |
| return true; |
| |
| auto &execution = get_entry_point(); |
| return find(begin(execution.interface_variables), end(execution.interface_variables), id) != |
| end(execution.interface_variables); |
| } |
| |
| void Compiler::CombinedImageSamplerHandler::push_remap_parameters(const SPIRFunction &func, const uint32_t *args, |
| uint32_t length) |
| { |
| // If possible, pipe through a remapping table so that parameters know |
| // which variables they actually bind to in this scope. |
| unordered_map<uint32_t, uint32_t> remapping; |
| for (uint32_t i = 0; i < length; i++) |
| remapping[func.arguments[i].id] = remap_parameter(args[i]); |
| parameter_remapping.push(move(remapping)); |
| } |
| |
| void Compiler::CombinedImageSamplerHandler::pop_remap_parameters() |
| { |
| parameter_remapping.pop(); |
| } |
| |
| uint32_t Compiler::CombinedImageSamplerHandler::remap_parameter(uint32_t id) |
| { |
| auto *var = compiler.maybe_get_backing_variable(id); |
| if (var) |
| id = var->self; |
| |
| if (parameter_remapping.empty()) |
| return id; |
| |
| auto &remapping = parameter_remapping.top(); |
| auto itr = remapping.find(id); |
| if (itr != end(remapping)) |
| return itr->second; |
| else |
| return id; |
| } |
| |
| bool Compiler::CombinedImageSamplerHandler::begin_function_scope(const uint32_t *args, uint32_t length) |
| { |
| if (length < 3) |
| return false; |
| |
| auto &callee = compiler.get<SPIRFunction>(args[2]); |
| args += 3; |
| length -= 3; |
| push_remap_parameters(callee, args, length); |
| functions.push(&callee); |
| return true; |
| } |
| |
| bool Compiler::CombinedImageSamplerHandler::end_function_scope(const uint32_t *args, uint32_t length) |
| { |
| if (length < 3) |
| return false; |
| |
| auto &callee = compiler.get<SPIRFunction>(args[2]); |
| args += 3; |
| |
| // There are two types of cases we have to handle, |
| // a callee might call sampler2D(texture2D, sampler) directly where |
| // one or more parameters originate from parameters. |
| // Alternatively, we need to provide combined image samplers to our callees, |
| // and in this case we need to add those as well. |
| |
| pop_remap_parameters(); |
| |
| // Our callee has now been processed at least once. |
| // No point in doing it again. |
| callee.do_combined_parameters = false; |
| |
| auto ¶ms = functions.top()->combined_parameters; |
| functions.pop(); |
| if (functions.empty()) |
| return true; |
| |
| auto &caller = *functions.top(); |
| if (caller.do_combined_parameters) |
| { |
| for (auto ¶m : params) |
| { |
| uint32_t image_id = param.global_image ? param.image_id : args[param.image_id]; |
| uint32_t sampler_id = param.global_sampler ? param.sampler_id : args[param.sampler_id]; |
| |
| auto *i = compiler.maybe_get_backing_variable(image_id); |
| auto *s = compiler.maybe_get_backing_variable(sampler_id); |
| if (i) |
| image_id = i->self; |
| if (s) |
| sampler_id = s->self; |
| |
| register_combined_image_sampler(caller, image_id, sampler_id, param.depth); |
| } |
| } |
| |
| return true; |
| } |
| |
| void Compiler::CombinedImageSamplerHandler::register_combined_image_sampler(SPIRFunction &caller, uint32_t image_id, |
| uint32_t sampler_id, bool depth) |
| { |
| // We now have a texture ID and a sampler ID which will either be found as a global |
| // or a parameter in our own function. If both are global, they will not need a parameter, |
| // otherwise, add it to our list. |
| SPIRFunction::CombinedImageSamplerParameter param = { |
| 0u, image_id, sampler_id, true, true, depth, |
| }; |
| |
| auto texture_itr = find_if(begin(caller.arguments), end(caller.arguments), |
| [image_id](const SPIRFunction::Parameter &p) { return p.id == image_id; }); |
| auto sampler_itr = find_if(begin(caller.arguments), end(caller.arguments), |
| [sampler_id](const SPIRFunction::Parameter &p) { return p.id == sampler_id; }); |
| |
| if (texture_itr != end(caller.arguments)) |
| { |
| param.global_image = false; |
| param.image_id = uint32_t(texture_itr - begin(caller.arguments)); |
| } |
| |
| if (sampler_itr != end(caller.arguments)) |
| { |
| param.global_sampler = false; |
| param.sampler_id = uint32_t(sampler_itr - begin(caller.arguments)); |
| } |
| |
| if (param.global_image && param.global_sampler) |
| return; |
| |
| auto itr = find_if(begin(caller.combined_parameters), end(caller.combined_parameters), |
| [¶m](const SPIRFunction::CombinedImageSamplerParameter &p) { |
| return param.image_id == p.image_id && param.sampler_id == p.sampler_id && |
| param.global_image == p.global_image && param.global_sampler == p.global_sampler; |
| }); |
| |
| if (itr == end(caller.combined_parameters)) |
| { |
| uint32_t id = compiler.ir.increase_bound_by(3); |
| auto type_id = id + 0; |
| auto ptr_type_id = id + 1; |
| auto combined_id = id + 2; |
| auto &base = compiler.expression_type(image_id); |
| auto &type = compiler.set<SPIRType>(type_id); |
| auto &ptr_type = compiler.set<SPIRType>(ptr_type_id); |
| |
| type = base; |
| type.self = type_id; |
| type.basetype = SPIRType::SampledImage; |
| type.pointer = false; |
| type.storage = StorageClassGeneric; |
| type.image.depth = depth; |
| |
| ptr_type = type; |
| ptr_type.pointer = true; |
| ptr_type.storage = StorageClassUniformConstant; |
| ptr_type.parent_type = type_id; |
| |
| // Build new variable. |
| compiler.set<SPIRVariable>(combined_id, ptr_type_id, StorageClassFunction, 0); |
| |
| // Inherit RelaxedPrecision (and potentially other useful flags if deemed relevant). |
| auto &new_flags = compiler.ir.meta[combined_id].decoration.decoration_flags; |
| auto &old_flags = compiler.ir.meta[sampler_id].decoration.decoration_flags; |
| new_flags.reset(); |
| if (old_flags.get(DecorationRelaxedPrecision)) |
| new_flags.set(DecorationRelaxedPrecision); |
| |
| param.id = combined_id; |
| |
| compiler.set_name(combined_id, |
| join("SPIRV_Cross_Combined", compiler.to_name(image_id), compiler.to_name(sampler_id))); |
| |
| caller.combined_parameters.push_back(param); |
| caller.shadow_arguments.push_back({ ptr_type_id, combined_id, 0u, 0u, true }); |
| } |
| } |
| |
| bool Compiler::DummySamplerForCombinedImageHandler::handle(Op opcode, const uint32_t *args, uint32_t length) |
| { |
| if (need_dummy_sampler) |
| { |
| // No need to traverse further, we know the result. |
| return false; |
| } |
| |
| switch (opcode) |
| { |
| case OpLoad: |
| { |
| if (length < 3) |
| return false; |
| |
| uint32_t result_type = args[0]; |
| |
| auto &type = compiler.get<SPIRType>(result_type); |
| bool separate_image = |
| type.basetype == SPIRType::Image && type.image.sampled == 1 && type.image.dim != DimBuffer; |
| |
| // If not separate image, don't bother. |
| if (!separate_image) |
| return true; |
| |
| uint32_t id = args[1]; |
| uint32_t ptr = args[2]; |
| compiler.set<SPIRExpression>(id, "", result_type, true); |
| compiler.register_read(id, ptr, true); |
| break; |
| } |
| |
| case OpImageFetch: |
| case OpImageQuerySizeLod: |
| case OpImageQuerySize: |
| case OpImageQueryLevels: |
| case OpImageQuerySamples: |
| { |
| // If we are fetching or querying LOD from a plain OpTypeImage, we must pre-combine with our dummy sampler. |
| auto *var = compiler.maybe_get_backing_variable(args[2]); |
| if (var) |
| { |
| auto &type = compiler.get<SPIRType>(var->basetype); |
| if (type.basetype == SPIRType::Image && type.image.sampled == 1 && type.image.dim != DimBuffer) |
| need_dummy_sampler = true; |
| } |
| |
| break; |
| } |
| |
| case OpInBoundsAccessChain: |
| case OpAccessChain: |
| case OpPtrAccessChain: |
| { |
| if (length < 3) |
| return false; |
| |
| uint32_t result_type = args[0]; |
| auto &type = compiler.get<SPIRType>(result_type); |
| bool separate_image = |
| type.basetype == SPIRType::Image && type.image.sampled == 1 && type.image.dim != DimBuffer; |
| if (!separate_image) |
| return true; |
| |
| uint32_t id = args[1]; |
| uint32_t ptr = args[2]; |
| compiler.set<SPIRExpression>(id, "", result_type, true); |
| compiler.register_read(id, ptr, true); |
| |
| // Other backends might use SPIRAccessChain for this later. |
| compiler.ir.ids[id].set_allow_type_rewrite(); |
| break; |
| } |
| |
| default: |
| break; |
| } |
| |
| return true; |
| } |
| |
| bool Compiler::CombinedImageSamplerHandler::handle(Op opcode, const uint32_t *args, uint32_t length) |
| { |
| // We need to figure out where samplers and images are loaded from, so do only the bare bones compilation we need. |
| bool is_fetch = false; |
| |
| switch (opcode) |
| { |
| case OpLoad: |
| { |
| if (length < 3) |
| return false; |
| |
| uint32_t result_type = args[0]; |
| |
| auto &type = compiler.get<SPIRType>(result_type); |
| bool separate_image = type.basetype == SPIRType::Image && type.image.sampled == 1; |
| bool separate_sampler = type.basetype == SPIRType::Sampler; |
| |
| // If not separate image or sampler, don't bother. |
| if (!separate_image && !separate_sampler) |
| return true; |
| |
| uint32_t id = args[1]; |
| uint32_t ptr = args[2]; |
| compiler.set<SPIRExpression>(id, "", result_type, true); |
| compiler.register_read(id, ptr, true); |
| return true; |
| } |
| |
| case OpInBoundsAccessChain: |
| case OpAccessChain: |
| case OpPtrAccessChain: |
| { |
| if (length < 3) |
| return false; |
| |
| // Technically, it is possible to have arrays of textures and arrays of samplers and combine them, but this becomes essentially |
| // impossible to implement, since we don't know which concrete sampler we are accessing. |
| // One potential way is to create a combinatorial explosion where N textures and M samplers are combined into N * M sampler2Ds, |
| // but this seems ridiculously complicated for a problem which is easy to work around. |
| // Checking access chains like this assumes we don't have samplers or textures inside uniform structs, but this makes no sense. |
| |
| uint32_t result_type = args[0]; |
| |
| auto &type = compiler.get<SPIRType>(result_type); |
| bool separate_image = type.basetype == SPIRType::Image && type.image.sampled == 1; |
| bool separate_sampler = type.basetype == SPIRType::Sampler; |
| if (separate_sampler) |
| SPIRV_CROSS_THROW( |
| "Attempting to use arrays or structs of separate samplers. This is not possible to statically " |
| "remap to plain GLSL."); |
| |
| if (separate_image) |
| { |
| uint32_t id = args[1]; |
| uint32_t ptr = args[2]; |
| compiler.set<SPIRExpression>(id, "", result_type, true); |
| compiler.register_read(id, ptr, true); |
| } |
| return true; |
| } |
| |
| case OpImageFetch: |
| case OpImageQuerySizeLod: |
| case OpImageQuerySize: |
| case OpImageQueryLevels: |
| case OpImageQuerySamples: |
| { |
| // If we are fetching from a plain OpTypeImage or querying LOD, we must pre-combine with our dummy sampler. |
| auto *var = compiler.maybe_get_backing_variable(args[2]); |
| if (!var) |
| return true; |
| |
| auto &type = compiler.get<SPIRType>(var->basetype); |
| if (type.basetype == SPIRType::Image && type.image.sampled == 1 && type.image.dim != DimBuffer) |
| { |
| if (compiler.dummy_sampler_id == 0) |
| SPIRV_CROSS_THROW("texelFetch without sampler was found, but no dummy sampler has been created with " |
| "build_dummy_sampler_for_combined_images()."); |
| |
| // Do it outside. |
| is_fetch = true; |
| break; |
| } |
| |
| return true; |
| } |
| |
| case OpSampledImage: |
| // Do it outside. |
| break; |
| |
| default: |
| return true; |
| } |
| |
| // Registers sampler2D calls used in case they are parameters so |
| // that their callees know which combined image samplers to propagate down the call stack. |
| if (!functions.empty()) |
| { |
| auto &callee = *functions.top(); |
| if (callee.do_combined_parameters) |
| { |
| uint32_t image_id = args[2]; |
| |
| auto *image = compiler.maybe_get_backing_variable(image_id); |
| if (image) |
| image_id = image->self; |
| |
| uint32_t sampler_id = is_fetch ? compiler.dummy_sampler_id : args[3]; |
| auto *sampler = compiler.maybe_get_backing_variable(sampler_id); |
| if (sampler) |
| sampler_id = sampler->self; |
| |
| auto &combined_type = compiler.get<SPIRType>(args[0]); |
| register_combined_image_sampler(callee, image_id, sampler_id, combined_type.image.depth); |
| } |
| } |
| |
| // For function calls, we need to remap IDs which are function parameters into global variables. |
| // This information is statically known from the current place in the call stack. |
| // Function parameters are not necessarily pointers, so if we don't have a backing variable, remapping will know |
| // which backing variable the image/sample came from. |
| uint32_t image_id = remap_parameter(args[2]); |
| uint32_t sampler_id = is_fetch ? compiler.dummy_sampler_id : remap_parameter(args[3]); |
| |
| auto itr = find_if(begin(compiler.combined_image_samplers), end(compiler.combined_image_samplers), |
| [image_id, sampler_id](const CombinedImageSampler &combined) { |
| return combined.image_id == image_id && combined.sampler_id == sampler_id; |
| }); |
| |
| if (itr == end(compiler.combined_image_samplers)) |
| { |
| uint32_t sampled_type; |
| if (is_fetch) |
| { |
| // Have to invent the sampled image type. |
| sampled_type = compiler.ir.increase_bound_by(1); |
| auto &type = compiler.set<SPIRType>(sampled_type); |
| type = compiler.expression_type(args[2]); |
| type.self = sampled_type; |
| type.basetype = SPIRType::SampledImage; |
| type.image.depth = false; |
| } |
| else |
| { |
| sampled_type = args[0]; |
| } |
| |
| auto id = compiler.ir.increase_bound_by(2); |
| auto type_id = id + 0; |
| auto combined_id = id + 1; |
| |
| // Make a new type, pointer to OpTypeSampledImage, so we can make a variable of this type. |
| // We will probably have this type lying around, but it doesn't hurt to make duplicates for internal purposes. |
| auto &type = compiler.set<SPIRType>(type_id); |
| auto &base = compiler.get<SPIRType>(sampled_type); |
| type = base; |
| type.pointer = true; |
| type.storage = StorageClassUniformConstant; |
| type.parent_type = type_id; |
| |
| // Build new variable. |
| compiler.set<SPIRVariable>(combined_id, type_id, StorageClassUniformConstant, 0); |
| |
| // Inherit RelaxedPrecision (and potentially other useful flags if deemed relevant). |
| auto &new_flags = compiler.ir.meta[combined_id].decoration.decoration_flags; |
| // Fetch inherits precision from the image, not sampler (there is no sampler). |
| auto &old_flags = compiler.ir.meta[is_fetch ? image_id : sampler_id].decoration.decoration_flags; |
| new_flags.reset(); |
| if (old_flags.get(DecorationRelaxedPrecision)) |
| new_flags.set(DecorationRelaxedPrecision); |
| |
| // Propagate the array type for the original image as well. |
| auto *var = compiler.maybe_get_backing_variable(image_id); |
| if (var) |
| { |
| auto &parent_type = compiler.get<SPIRType>(var->basetype); |
| type.array = parent_type.array; |
| type.array_size_literal = parent_type.array_size_literal; |
| } |
| |
| compiler.combined_image_samplers.push_back({ combined_id, image_id, sampler_id }); |
| } |
| |
| return true; |
| } |
| |
| uint32_t Compiler::build_dummy_sampler_for_combined_images() |
| { |
| DummySamplerForCombinedImageHandler handler(*this); |
| traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler); |
| if (handler.need_dummy_sampler) |
| { |
| uint32_t offset = ir.increase_bound_by(3); |
| auto type_id = offset + 0; |
| auto ptr_type_id = offset + 1; |
| auto var_id = offset + 2; |
| |
| SPIRType sampler_type; |
| auto &sampler = set<SPIRType>(type_id); |
| sampler.basetype = SPIRType::Sampler; |
| |
| auto &ptr_sampler = set<SPIRType>(ptr_type_id); |
| ptr_sampler = sampler; |
| ptr_sampler.self = type_id; |
| ptr_sampler.storage = StorageClassUniformConstant; |
| ptr_sampler.pointer = true; |
| ptr_sampler.parent_type = type_id; |
| |
| set<SPIRVariable>(var_id, ptr_type_id, StorageClassUniformConstant, 0); |
| set_name(var_id, "SPIRV_Cross_DummySampler"); |
| dummy_sampler_id = var_id; |
| return var_id; |
| } |
| else |
| return 0; |
| } |
| |
| void Compiler::build_combined_image_samplers() |
| { |
| ir.for_each_typed_id<SPIRFunction>([&](uint32_t, SPIRFunction &func) { |
| func.combined_parameters.clear(); |
| func.shadow_arguments.clear(); |
| func.do_combined_parameters = true; |
| }); |
| |
| combined_image_samplers.clear(); |
| CombinedImageSamplerHandler handler(*this); |
| traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler); |
| } |
| |
| SmallVector<SpecializationConstant> Compiler::get_specialization_constants() const |
| { |
| SmallVector<SpecializationConstant> spec_consts; |
| ir.for_each_typed_id<SPIRConstant>([&](uint32_t, const SPIRConstant &c) { |
| if (c.specialization && has_decoration(c.self, DecorationSpecId)) |
| spec_consts.push_back({ c.self, get_decoration(c.self, DecorationSpecId) }); |
| }); |
| return spec_consts; |
| } |
| |
| SPIRConstant &Compiler::get_constant(uint32_t id) |
| { |
| return get<SPIRConstant>(id); |
| } |
| |
| const SPIRConstant &Compiler::get_constant(uint32_t id) const |
| { |
| return get<SPIRConstant>(id); |
| } |
| |
| static bool exists_unaccessed_path_to_return(const CFG &cfg, uint32_t block, const unordered_set<uint32_t> &blocks) |
| { |
| // This block accesses the variable. |
| if (blocks.find(block) != end(blocks)) |
| return false; |
| |
| // We are at the end of the CFG. |
| if (cfg.get_succeeding_edges(block).empty()) |
| return true; |
| |
| // If any of our successors have a path to the end, there exists a path from block. |
| for (auto &succ : cfg.get_succeeding_edges(block)) |
| if (exists_unaccessed_path_to_return(cfg, succ, blocks)) |
| return true; |
| |
| return false; |
| } |
| |
| void Compiler::analyze_parameter_preservation( |
| SPIRFunction &entry, const CFG &cfg, const unordered_map<uint32_t, unordered_set<uint32_t>> &variable_to_blocks, |
| const unordered_map<uint32_t, unordered_set<uint32_t>> &complete_write_blocks) |
| { |
| for (auto &arg : entry.arguments) |
| { |
| // Non-pointers are always inputs. |
| auto &type = get<SPIRType>(arg.type); |
| if (!type.pointer) |
| continue; |
| |
| // Opaque argument types are always in |
| bool potential_preserve; |
| switch (type.basetype) |
| { |
| case SPIRType::Sampler: |
| case SPIRType::Image: |
| case SPIRType::SampledImage: |
| case SPIRType::AtomicCounter: |
| potential_preserve = false; |
| break; |
| |
| default: |
| potential_preserve = true; |
| break; |
| } |
| |
| if (!potential_preserve) |
| continue; |
| |
| auto itr = variable_to_blocks.find(arg.id); |
| if (itr == end(variable_to_blocks)) |
| { |
| // Variable is never accessed. |
| continue; |
| } |
| |
| // We have accessed a variable, but there was no complete writes to that variable. |
| // We deduce that we must preserve the argument. |
| itr = complete_write_blocks.find(arg.id); |
| if (itr == end(complete_write_blocks)) |
| { |
| arg.read_count++; |
| continue; |
| } |
| |
| // If there is a path through the CFG where no block completely writes to the variable, the variable will be in an undefined state |
| // when the function returns. We therefore need to implicitly preserve the variable in case there are writers in the function. |
| // Major case here is if a function is |
| // void foo(int &var) { if (cond) var = 10; } |
| // Using read/write counts, we will think it's just an out variable, but it really needs to be inout, |
| // because if we don't write anything whatever we put into the function must return back to the caller. |
| if (exists_unaccessed_path_to_return(cfg, entry.entry_block, itr->second)) |
| arg.read_count++; |
| } |
| } |
| |
| Compiler::AnalyzeVariableScopeAccessHandler::AnalyzeVariableScopeAccessHandler(Compiler &compiler_, |
| SPIRFunction &entry_) |
| : compiler(compiler_) |
| , entry(entry_) |
| { |
| } |
| |
| bool Compiler::AnalyzeVariableScopeAccessHandler::follow_function_call(const SPIRFunction &) |
| { |
| // Only analyze within this function. |
| return false; |
| } |
| |
| void Compiler::AnalyzeVariableScopeAccessHandler::set_current_block(const SPIRBlock &block) |
| { |
| current_block = █ |
| |
| // If we're branching to a block which uses OpPhi, in GLSL |
| // this will be a variable write when we branch, |
| // so we need to track access to these variables as well to |
| // have a complete picture. |
| const auto test_phi = [this, &block](uint32_t to) { |
| auto &next = compiler.get<SPIRBlock>(to); |
| for (auto &phi : next.phi_variables) |
| { |
| if (phi.parent == block.self) |
| { |
| accessed_variables_to_block[phi.function_variable].insert(block.self); |
| // Phi variables are also accessed in our target branch block. |
| accessed_variables_to_block[phi.function_variable].insert(next.self); |
| |
| notify_variable_access(phi.local_variable, block.self); |
| } |
| } |
| }; |
| |
| switch (block.terminator) |
| { |
| case SPIRBlock::Direct: |
| notify_variable_access(block.condition, block.self); |
| test_phi(block.next_block); |
| break; |
| |
| case SPIRBlock::Select: |
| notify_variable_access(block.condition, block.self); |
| test_phi(block.true_block); |
| test_phi(block.false_block); |
| break; |
| |
| case SPIRBlock::MultiSelect: |
| notify_variable_access(block.condition, block.self); |
| for (auto &target : block.cases) |
| test_phi(target.block); |
| if (block.default_block) |
| test_phi(block.default_block); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| void Compiler::AnalyzeVariableScopeAccessHandler::notify_variable_access(uint32_t id, uint32_t block) |
| { |
| if (id == 0) |
| return; |
| |
| if (id_is_phi_variable(id)) |
| accessed_variables_to_block[id].insert(block); |
| else if (id_is_potential_temporary(id)) |
| accessed_temporaries_to_block[id].insert(block); |
| } |
| |
| bool Compiler::AnalyzeVariableScopeAccessHandler::id_is_phi_variable(uint32_t id) const |
| { |
| if (id >= compiler.get_current_id_bound()) |
| return false; |
| auto *var = compiler.maybe_get<SPIRVariable>(id); |
| return var && var->phi_variable; |
| } |
| |
| bool Compiler::AnalyzeVariableScopeAccessHandler::id_is_potential_temporary(uint32_t id) const |
| { |
| if (id >= compiler.get_current_id_bound()) |
| return false; |
| |
| // Temporaries are not created before we start emitting code. |
| return compiler.ir.ids[id].empty() || (compiler.ir.ids[id].get_type() == TypeExpression); |
| } |
| |
| bool Compiler::AnalyzeVariableScopeAccessHandler::handle(spv::Op op, const uint32_t *args, uint32_t length) |
| { |
| // Keep track of the types of temporaries, so we can hoist them out as necessary. |
| uint32_t result_type, result_id; |
| if (compiler.instruction_to_result_type(result_type, result_id, op, args, length)) |
| result_id_to_type[result_id] = result_type; |
| |
| switch (op) |
| { |
| case OpStore: |
| { |
| if (length < 2) |
| return false; |
| |
| uint32_t ptr = args[0]; |
| auto *var = compiler.maybe_get_backing_variable(ptr); |
| |
| // If we store through an access chain, we have a partial write. |
| if (var) |
| { |
| accessed_variables_to_block[var->self].insert(current_block->self); |
| if (var->self == ptr) |
| complete_write_variables_to_block[var->self].insert(current_block->self); |
| else |
| partial_write_variables_to_block[var->self].insert(current_block->self); |
| } |
| |
| // args[0] might be an access chain we have to track use of. |
| notify_variable_access(args[0], current_block->self); |
| // Might try to store a Phi variable here. |
| notify_variable_access(args[1], current_block->self); |
| break; |
| } |
| |
| case OpAccessChain: |
| case OpInBoundsAccessChain: |
| case OpPtrAccessChain: |
| { |
| if (length < 3) |
| return false; |
| |
| uint32_t ptr = args[2]; |
| auto *var = compiler.maybe_get<SPIRVariable>(ptr); |
| if (var) |
| accessed_variables_to_block[var->self].insert(current_block->self); |
| |
| // args[2] might be another access chain we have to track use of. |
| for (uint32_t i = 2; i < length; i++) |
| notify_variable_access(args[i], current_block->self); |
| |
| // Also keep track of the access chain pointer itself. |
| // In exceptionally rare cases, we can end up with a case where |
| // the access chain is generated in the loop body, but is consumed in continue block. |
| // This means we need complex loop workarounds, and we must detect this via CFG analysis. |
| notify_variable_access(args[1], current_block->self); |
| |
| // The result of an access chain is a fixed expression and is not really considered a temporary. |
| auto &e = compiler.set<SPIRExpression>(args[1], "", args[0], true); |
| auto *backing_variable = compiler.maybe_get_backing_variable(ptr); |
| e.loaded_from = backing_variable ? backing_variable->self : 0; |
| |
| // Other backends might use SPIRAccessChain for this later. |
| compiler.ir.ids[args[1]].set_allow_type_rewrite(); |
| access_chain_expressions.insert(args[1]); |
| break; |
| } |
| |
| case OpCopyMemory: |
| { |
| if (length < 2) |
| return false; |
| |
| uint32_t lhs = args[0]; |
| uint32_t rhs = args[1]; |
| auto *var = compiler.maybe_get_backing_variable(lhs); |
| |
| // If we store through an access chain, we have a partial write. |
| if (var) |
| { |
| accessed_variables_to_block[var->self].insert(current_block->self); |
| if (var->self == lhs) |
| complete_write_variables_to_block[var->self].insert(current_block->self); |
| else |
| partial_write_variables_to_block[var->self].insert(current_block->self); |
| } |
| |
| // args[0:1] might be access chains we have to track use of. |
| for (uint32_t i = 0; i < 2; i++) |
| notify_variable_access(args[i], current_block->self); |
| |
| var = compiler.maybe_get_backing_variable(rhs); |
| if (var) |
| accessed_variables_to_block[var->self].insert(current_block->self); |
| break; |
| } |
| |
| case OpCopyObject: |
| { |
| if (length < 3) |
| return false; |
| |
| auto *var = compiler.maybe_get_backing_variable(args[2]); |
| if (var) |
| accessed_variables_to_block[var->self].insert(current_block->self); |
| |
| // Might be an access chain which we have to keep track of. |
| notify_variable_access(args[1], current_block->self); |
| if (access_chain_expressions.count(args[2])) |
| access_chain_expressions.insert(args[1]); |
| |
| // Might try to copy a Phi variable here. |
| notify_variable_access(args[2], current_block->self); |
| break; |
| } |
| |
| case OpLoad: |
| { |
| if (length < 3) |
| return false; |
| uint32_t ptr = args[2]; |
| auto *var = compiler.maybe_get_backing_variable(ptr); |
| if (var) |
| accessed_variables_to_block[var->self].insert(current_block->self); |
| |
| // Loaded value is a temporary. |
| notify_variable_access(args[1], current_block->self); |
| |
| // Might be an access chain we have to track use of. |
| notify_variable_access(args[2], current_block->self); |
| break; |
| } |
| |
| case OpFunctionCall: |
| { |
| if (length < 3) |
| return false; |
| |
| length -= 3; |
| args += 3; |
| |
| for (uint32_t i = 0; i < length; i++) |
| { |
| auto *var = compiler.maybe_get_backing_variable(args[i]); |
| if (var) |
| { |
| accessed_variables_to_block[var->self].insert(current_block->self); |
| // Assume we can get partial writes to this variable. |
| partial_write_variables_to_block[var->self].insert(current_block->self); |
| } |
| |
| // Cannot easily prove if argument we pass to a function is completely written. |
| // Usually, functions write to a dummy variable, |
| // which is then copied to in full to the real argument. |
| |
| // Might try to copy a Phi variable here. |
| notify_variable_access(args[i], current_block->self); |
| } |
| |
| // Return value may be a temporary. |
| notify_variable_access(args[1], current_block->self); |
| break; |
| } |
| |
| case OpExtInst: |
| { |
| for (uint32_t i = 4; i < length; i++) |
| notify_variable_access(args[i], current_block->self); |
| notify_variable_access(args[1], current_block->self); |
| break; |
| } |
| |
| case OpArrayLength: |
| case OpLine: |
| case OpNoLine: |
| // Uses literals, but cannot be a phi variable or temporary, so ignore. |
| break; |
| |
| // Atomics shouldn't be able to access function-local variables. |
| // Some GLSL builtins access a pointer. |
| |
| case OpCompositeInsert: |
| case OpVectorShuffle: |
| // Specialize for opcode which contains literals. |
| for (uint32_t i = 1; i < 4; i++) |
| notify_variable_access(args[i], current_block->self); |
| break; |
| |
| case OpCompositeExtract: |
| // Specialize for opcode which contains literals. |
| for (uint32_t i = 1; i < 3; i++) |
| notify_variable_access(args[i], current_block->self); |
| break; |
| |
| case OpImageWrite: |
| for (uint32_t i = 0; i < length; i++) |
| { |
| // Argument 3 is a literal. |
| if (i != 3) |
| notify_variable_access(args[i], current_block->self); |
| } |
| break; |
| |
| case OpImageSampleImplicitLod: |
| case OpImageSampleExplicitLod: |
| case OpImageSparseSampleImplicitLod: |
| case OpImageSparseSampleExplicitLod: |
| case OpImageSampleProjImplicitLod: |
| case OpImageSampleProjExplicitLod: |
| case OpImageSparseSampleProjImplicitLod: |
| case OpImageSparseSampleProjExplicitLod: |
| case OpImageFetch: |
| case OpImageSparseFetch: |
| case OpImageRead: |
| case OpImageSparseRead: |
| for (uint32_t i = 1; i < length; i++) |
| { |
| // Argument 4 is a literal. |
| if (i != 4) |
| notify_variable_access(args[i], current_block->self); |
| } |
| break; |
| |
| case OpImageSampleDrefImplicitLod: |
| case OpImageSampleDrefExplicitLod: |
| case OpImageSparseSampleDrefImplicitLod: |
| case OpImageSparseSampleDrefExplicitLod: |
| case OpImageSampleProjDrefImplicitLod: |
| case OpImageSampleProjDrefExplicitLod: |
| case OpImageSparseSampleProjDrefImplicitLod: |
| case OpImageSparseSampleProjDrefExplicitLod: |
| case OpImageGather: |
| case OpImageSparseGather: |
| case OpImageDrefGather: |
| case OpImageSparseDrefGather: |
| for (uint32_t i = 1; i < length; i++) |
| { |
| // Argument 5 is a literal. |
| if (i != 5) |
| notify_variable_access(args[i], current_block->self); |
| } |
| break; |
| |
| default: |
| { |
| // Rather dirty way of figuring out where Phi variables are used. |
| // As long as only IDs are used, we can scan through instructions and try to find any evidence that |
| // the ID of a variable has been used. |
| // There are potential false positives here where a literal is used in-place of an ID, |
| // but worst case, it does not affect the correctness of the compile. |
| // Exhaustive analysis would be better here, but it's not worth it for now. |
| for (uint32_t i = 0; i < length; i++) |
| notify_variable_access(args[i], current_block->self); |
| break; |
| } |
| } |
| return true; |
| } |
| |
| Compiler::StaticExpressionAccessHandler::StaticExpressionAccessHandler(Compiler &compiler_, uint32_t variable_id_) |
| : compiler(compiler_) |
| , variable_id(variable_id_) |
| { |
| } |
| |
| bool Compiler::StaticExpressionAccessHandler::follow_function_call(const SPIRFunction &) |
| { |
| return false; |
| } |
| |
| bool Compiler::StaticExpressionAccessHandler::handle(spv::Op op, const uint32_t *args, uint32_t length) |
| { |
| switch (op) |
| { |
| case OpStore: |
| if (length < 2) |
| return false; |
| if (args[0] == variable_id) |
| { |
| static_expression = args[1]; |
| write_count++; |
| } |
| break; |
| |
| case OpLoad: |
| if (length < 3) |
| return false; |
| if (args[2] == variable_id && static_expression == 0) // Tried to read from variable before it was initialized. |
| return false; |
| break; |
| |
| case OpAccessChain: |
| case OpInBoundsAccessChain: |
| case OpPtrAccessChain: |
| if (length < 3) |
| return false; |
| if (args[2] == variable_id) // If we try to access chain our candidate variable before we store to it, bail. |
| return false; |
| break; |
| |
| default: |
| break; |
| } |
| |
| return true; |
| } |
| |
| void Compiler::find_function_local_luts(SPIRFunction &entry, const AnalyzeVariableScopeAccessHandler &handler, |
| bool single_function) |
| { |
| auto &cfg = *function_cfgs.find(entry.self)->second; |
| |
| // For each variable which is statically accessed. |
| for (auto &accessed_var : handler.accessed_variables_to_block) |
| { |
| auto &blocks = accessed_var.second; |
| auto &var = get<SPIRVariable>(accessed_var.first); |
| auto &type = expression_type(accessed_var.first); |
| |
| // Only consider function local variables here. |
| // If we only have a single function in our CFG, private storage is also fine, |
| // since it behaves like a function local variable. |
| bool allow_lut = var.storage == StorageClassFunction || (single_function && var.storage == StorageClassPrivate); |
| if (!allow_lut) |
| continue; |
| |
| // We cannot be a phi variable. |
| if (var.phi_variable) |
| continue; |
| |
| // Only consider arrays here. |
| if (type.array.empty()) |
| continue; |
| |
| // If the variable has an initializer, make sure it is a constant expression. |
| uint32_t static_constant_expression = 0; |
| if (var.initializer) |
| { |
| if (ir.ids[var.initializer].get_type() != TypeConstant) |
| continue; |
| static_constant_expression = var.initializer; |
| |
| // There can be no stores to this variable, we have now proved we have a LUT. |
| if (handler.complete_write_variables_to_block.count(var.self) != 0 || |
| handler.partial_write_variables_to_block.count(var.self) != 0) |
| continue; |
| } |
| else |
| { |
| // We can have one, and only one write to the variable, and that write needs to be a constant. |
| |
| // No partial writes allowed. |
| if (handler.partial_write_variables_to_block.count(var.self) != 0) |
| continue; |
| |
| auto itr = handler.complete_write_variables_to_block.find(var.self); |
| |
| // No writes? |
| if (itr == end(handler.complete_write_variables_to_block)) |
| continue; |
| |
| // We write to the variable in more than one block. |
| auto &write_blocks = itr->second; |
| if (write_blocks.size() != 1) |
| continue; |
| |
| // The write needs to happen in the dominating block. |
| DominatorBuilder builder(cfg); |
| for (auto &block : blocks) |
| builder.add_block(block); |
| uint32_t dominator = builder.get_dominator(); |
| |
| // The complete write happened in a branch or similar, cannot deduce static expression. |
| if (write_blocks.count(dominator) == 0) |
| continue; |
| |
| // Find the static expression for this variable. |
| StaticExpressionAccessHandler static_expression_handler(*this, var.self); |
| traverse_all_reachable_opcodes(get<SPIRBlock>(dominator), static_expression_handler); |
| |
| // We want one, and exactly one write |
| if (static_expression_handler.write_count != 1 || static_expression_handler.static_expression == 0) |
| continue; |
| |
| // Is it a constant expression? |
| if (ir.ids[static_expression_handler.static_expression].get_type() != TypeConstant) |
| continue; |
| |
| // We found a LUT! |
| static_constant_expression = static_expression_handler.static_expression; |
| } |
| |
| get<SPIRConstant>(static_constant_expression).is_used_as_lut = true; |
| var.static_expression = static_constant_expression; |
| var.statically_assigned = true; |
| var.remapped_variable = true; |
| } |
| } |
| |
| void Compiler::analyze_variable_scope(SPIRFunction &entry, AnalyzeVariableScopeAccessHandler &handler) |
| { |
| // First, we map out all variable access within a function. |
| // Essentially a map of block -> { variables accessed in the basic block } |
| traverse_all_reachable_opcodes(entry, handler); |
| |
| auto &cfg = *function_cfgs.find(entry.self)->second; |
| |
| // Analyze if there are parameters which need to be implicitly preserved with an "in" qualifier. |
| analyze_parameter_preservation(entry, cfg, handler.accessed_variables_to_block, |
| handler.complete_write_variables_to_block); |
| |
| unordered_map<uint32_t, uint32_t> potential_loop_variables; |
| |
| // Find the loop dominator block for each block. |
| for (auto &block_id : entry.blocks) |
| { |
| auto &block = get<SPIRBlock>(block_id); |
| |
| auto itr = ir.continue_block_to_loop_header.find(block_id); |
| if (itr != end(ir.continue_block_to_loop_header) && itr->second != block_id) |
| { |
| // Continue block might be unreachable in the CFG, but we still like to know the loop dominator. |
| // Edge case is when continue block is also the loop header, don't set the dominator in this case. |
| block.loop_dominator = itr->second; |
| } |
| else |
| { |
| uint32_t loop_dominator = cfg.find_loop_dominator(block_id); |
| if (loop_dominator != block_id) |
| block.loop_dominator = loop_dominator; |
| else |
| block.loop_dominator = SPIRBlock::NoDominator; |
| } |
| } |
| |
| // For each variable which is statically accessed. |
| for (auto &var : handler.accessed_variables_to_block) |
| { |
| // Only deal with variables which are considered local variables in this function. |
| if (find(begin(entry.local_variables), end(entry.local_variables), var.first) == end(entry.local_variables)) |
| continue; |
| |
| DominatorBuilder builder(cfg); |
| auto &blocks = var.second; |
| auto &type = expression_type(var.first); |
| |
| // Figure out which block is dominating all accesses of those variables. |
| for (auto &block : blocks) |
| { |
| // If we're accessing a variable inside a continue block, this variable might be a loop variable. |
| // We can only use loop variables with scalars, as we cannot track static expressions for vectors. |
| if (is_continue(block)) |
| { |
| // Potentially awkward case to check for. |
| // We might have a variable inside a loop, which is touched by the continue block, |
| // but is not actually a loop variable. |
| // The continue block is dominated by the inner part of the loop, which does not make sense in high-level |
| // language output because it will be declared before the body, |
| // so we will have to lift the dominator up to the relevant loop header instead. |
| builder.add_block(ir.continue_block_to_loop_header[block]); |
| |
| // Arrays or structs cannot be loop variables. |
| if (type.vecsize == 1 && type.columns == 1 && type.basetype != SPIRType::Struct && type.array.empty()) |
| { |
| // The variable is used in multiple continue blocks, this is not a loop |
| // candidate, signal that by setting block to -1u. |
| auto &potential = potential_loop_variables[var.first]; |
| |
| if (potential == 0) |
| potential = block; |
| else |
| potential = ~(0u); |
| } |
| } |
| builder.add_block(block); |
| } |
| |
| builder.lift_continue_block_dominator(); |
| |
| // Add it to a per-block list of variables. |
| uint32_t dominating_block = builder.get_dominator(); |
| |
| // For variables whose dominating block is inside a loop, there is a risk that these variables |
| // actually need to be preserved across loop iterations. We can express this by adding |
| // a "read" access to the loop header. |
| // In the dominating block, we must see an OpStore or equivalent as the first access of an OpVariable. |
| // Should that fail, we look for the outermost loop header and tack on an access there. |
| // Phi nodes cannot have this problem. |
| if (dominating_block) |
| { |
| auto &variable = get<SPIRVariable>(var.first); |
| if (!variable.phi_variable) |
| { |
| auto *block = &get<SPIRBlock>(dominating_block); |
| bool preserve = may_read_undefined_variable_in_block(*block, var.first); |
| if (preserve) |
| { |
| // Find the outermost loop scope. |
| while (block->loop_dominator != SPIRBlock::NoDominator) |
| block = &get<SPIRBlock>(block->loop_dominator); |
| |
| if (block->self != dominating_block) |
| { |
| builder.add_block(block->self); |
| dominating_block = builder.get_dominator(); |
| } |
| } |
| } |
| } |
| |
| // If all blocks here are dead code, this will be 0, so the variable in question |
| // will be completely eliminated. |
| if (dominating_block) |
| { |
| auto &block = get<SPIRBlock>(dominating_block); |
| block.dominated_variables.push_back(var.first); |
| get<SPIRVariable>(var.first).dominator = dominating_block; |
| } |
| } |
| |
| for (auto &var : handler.accessed_temporaries_to_block) |
| { |
| auto itr = handler.result_id_to_type.find(var.first); |
| |
| if (itr == end(handler.result_id_to_type)) |
| { |
| // We found a false positive ID being used, ignore. |
| // This should probably be an assert. |
| continue; |
| } |
| |
| // There is no point in doing domination analysis for opaque types. |
| auto &type = get<SPIRType>(itr->second); |
| if (type_is_opaque_value(type)) |
| continue; |
| |
| DominatorBuilder builder(cfg); |
| bool force_temporary = false; |
| |
| // Figure out which block is dominating all accesses of those temporaries. |
| auto &blocks = var.second; |
| for (auto &block : blocks) |
| { |
| builder.add_block(block); |
| |
| if (blocks.size() != 1 && is_continue(block)) |
| { |
| // The risk here is that inner loop can dominate the continue block. |
| // Any temporary we access in the continue block must be declared before the loop. |
| // This is moot for complex loops however. |
| auto &loop_header_block = get<SPIRBlock>(ir.continue_block_to_loop_header[block]); |
| assert(loop_header_block.merge == SPIRBlock::MergeLoop); |
| |
| // Only relevant if the loop is not marked as complex. |
| if (!loop_header_block.complex_continue) |
| builder.add_block(loop_header_block.self); |
| } |
| } |
| |
| uint32_t dominating_block = builder.get_dominator(); |
| |
| if (blocks.size() != 1 && is_single_block_loop(dominating_block)) |
| { |
| // Awkward case, because the loop header is also the continue block, |
| // so hoisting to loop header does not help. |
| force_temporary = true; |
| } |
| |
| if (dominating_block) |
| { |
| // If we touch a variable in the dominating block, this is the expected setup. |
| // SPIR-V normally mandates this, but we have extra cases for temporary use inside loops. |
| bool first_use_is_dominator = blocks.count(dominating_block) != 0; |
| |
| if (!first_use_is_dominator || force_temporary) |
| { |
| if (handler.access_chain_expressions.count(var.first)) |
| { |
| // Exceptionally rare case. |
| // We cannot declare temporaries of access chains (except on MSL perhaps with pointers). |
| // Rather than do that, we force a complex loop to make sure access chains are created and consumed |
| // in expected order. |
| auto &loop_header_block = get<SPIRBlock>(dominating_block); |
| assert(loop_header_block.merge == SPIRBlock::MergeLoop); |
| loop_header_block.complex_continue = true; |
| } |
| else |
| { |
| // This should be very rare, but if we try to declare a temporary inside a loop, |
| // and that temporary is used outside the loop as well (spirv-opt inliner likes this) |
| // we should actually emit the temporary outside the loop. |
| hoisted_temporaries.insert(var.first); |
| forced_temporaries.insert(var.first); |
| |
| auto &block_temporaries = get<SPIRBlock>(dominating_block).declare_temporary; |
| block_temporaries.emplace_back(handler.result_id_to_type[var.first], var.first); |
| } |
| } |
| else if (blocks.size() > 1) |
| { |
| // Keep track of the temporary as we might have to declare this temporary. |
| // This can happen if the loop header dominates a temporary, but we have a complex fallback loop. |
| // In this case, the header is actually inside the for (;;) {} block, and we have problems. |
| // What we need to do is hoist the temporaries outside the for (;;) {} block in case the header block |
| // declares the temporary. |
| auto &block_temporaries = get<SPIRBlock>(dominating_block).potential_declare_temporary; |
| block_temporaries.emplace_back(handler.result_id_to_type[var.first], var.first); |
| } |
| } |
| } |
| |
| unordered_set<uint32_t> seen_blocks; |
| |
| // Now, try to analyze whether or not these variables are actually loop variables. |
| for (auto &loop_variable : potential_loop_variables) |
| { |
| auto &var = get<SPIRVariable>(loop_variable.first); |
| auto dominator = var.dominator; |
| auto block = loop_variable.second; |
| |
| // The variable was accessed in multiple continue blocks, ignore. |
| if (block == ~(0u) || block == 0) |
| continue; |
| |
| // Dead code. |
| if (dominator == 0) |
| continue; |
| |
| uint32_t header = 0; |
| |
| // Find the loop header for this block if we are a continue block. |
| { |
| auto itr = ir.continue_block_to_loop_header.find(block); |
| if (itr != end(ir.continue_block_to_loop_header)) |
| { |
| header = itr->second; |
| } |
| else if (get<SPIRBlock>(block).continue_block == block) |
| { |
| // Also check for self-referential continue block. |
| header = block; |
| } |
| } |
| |
| assert(header); |
| auto &header_block = get<SPIRBlock>(header); |
| auto &blocks = handler.accessed_variables_to_block[loop_variable.first]; |
| |
| // If a loop variable is not used before the loop, it's probably not a loop variable. |
| bool has_accessed_variable = blocks.count(header) != 0; |
| |
| // Now, there are two conditions we need to meet for the variable to be a loop variable. |
| // 1. The dominating block must have a branch-free path to the loop header, |
| // this way we statically know which expression should be part of the loop variable initializer. |
| |
| // Walk from the dominator, if there is one straight edge connecting |
| // dominator and loop header, we statically know the loop initializer. |
| bool static_loop_init = true; |
| while (dominator != header) |
| { |
| if (blocks.count(dominator) != 0) |
| has_accessed_variable = true; |
| |
| auto &succ = cfg.get_succeeding_edges(dominator); |
| if (succ.size() != 1) |
| { |
| static_loop_init = false; |
| break; |
| } |
| |
| auto &pred = cfg.get_preceding_edges(succ.front()); |
| if (pred.size() != 1 || pred.front() != dominator) |
| { |
| static_loop_init = false; |
| break; |
| } |
| |
| dominator = succ.front(); |
| } |
| |
| if (!static_loop_init || !has_accessed_variable) |
| continue; |
| |
| // The second condition we need to meet is that no access after the loop |
| // merge can occur. Walk the CFG to see if we find anything. |
| |
| seen_blocks.clear(); |
| cfg.walk_from(seen_blocks, header_block.merge_block, [&](uint32_t walk_block) { |
| // We found a block which accesses the variable outside the loop. |
| if (blocks.find(walk_block) != end(blocks)) |
| static_loop_init = false; |
| }); |
| |
| if (!static_loop_init) |
| continue; |
| |
| // We have a loop variable. |
| header_block.loop_variables.push_back(loop_variable.first); |
| // Need to sort here as variables come from an unordered container, and pushing stuff in wrong order |
| // will break reproducability in regression runs. |
| sort(begin(header_block.loop_variables), end(header_block.loop_variables)); |
| get<SPIRVariable>(loop_variable.first).loop_variable = true; |
| } |
| } |
| |
| bool Compiler::may_read_undefined_variable_in_block(const SPIRBlock &block, uint32_t var) |
| { |
| for (auto &op : block.ops) |
| { |
| auto *ops = stream(op); |
| switch (op.op) |
| { |
| case OpStore: |
| case OpCopyMemory: |
| if (ops[0] == var) |
| return false; |
| break; |
| |
| case OpAccessChain: |
| case OpInBoundsAccessChain: |
| case OpPtrAccessChain: |
| // Access chains are generally used to partially read and write. It's too hard to analyze |
| // if all constituents are written fully before continuing, so just assume it's preserved. |
| // This is the same as the parameter preservation analysis. |
| if (ops[2] == var) |
| return true; |
| break; |
| |
| case OpSelect: |
| // Variable pointers. |
| // We might read before writing. |
| if (ops[3] == var || ops[4] == var) |
| return true; |
| break; |
| |
| case OpPhi: |
| { |
| // Variable pointers. |
| // We might read before writing. |
| if (op.length < 2) |
| break; |
| |
| uint32_t count = op.length - 2; |
| for (uint32_t i = 0; i < count; i += 2) |
| if (ops[i + 2] == var) |
| return true; |
| break; |
| } |
| |
| case OpCopyObject: |
| case OpLoad: |
| if (ops[2] == var) |
| return true; |
| break; |
| |
| case OpFunctionCall: |
| { |
| if (op.length < 3) |
| break; |
| |
| // May read before writing. |
| uint32_t count = op.length - 3; |
| for (uint32_t i = 0; i < count; i++) |
| if (ops[i + 3] == var) |
| return true; |
| break; |
| } |
| |
| default: |
| break; |
| } |
| } |
| |
| // Not accessed somehow, at least not in a usual fashion. |
| // It's likely accessed in a branch, so assume we must preserve. |
| return true; |
| } |
| |
| Bitset Compiler::get_buffer_block_flags(uint32_t id) const |
| { |
| return ir.get_buffer_block_flags(get<SPIRVariable>(id)); |
| } |
| |
| bool Compiler::get_common_basic_type(const SPIRType &type, SPIRType::BaseType &base_type) |
| { |
| if (type.basetype == SPIRType::Struct) |
| { |
| base_type = SPIRType::Unknown; |
| for (auto &member_type : type.member_types) |
| { |
| SPIRType::BaseType member_base; |
| if (!get_common_basic_type(get<SPIRType>(member_type), member_base)) |
| return false; |
| |
| if (base_type == SPIRType::Unknown) |
| base_type = member_base; |
| else if (base_type != member_base) |
| return false; |
| } |
| return true; |
| } |
| else |
| { |
| base_type = type.basetype; |
| return true; |
| } |
| } |
| |
| void Compiler::ActiveBuiltinHandler::handle_builtin(const SPIRType &type, BuiltIn builtin, |
| const Bitset &decoration_flags) |
| { |
| // If used, we will need to explicitly declare a new array size for these builtins. |
| |
| if (builtin == BuiltInClipDistance) |
| { |
| if (!type.array_size_literal[0]) |
| SPIRV_CROSS_THROW("Array size for ClipDistance must be a literal."); |
| uint32_t array_size = type.array[0]; |
| if (array_size == 0) |
| SPIRV_CROSS_THROW("Array size for ClipDistance must not be unsized."); |
| compiler.clip_distance_count = array_size; |
| } |
| else if (builtin == BuiltInCullDistance) |
| { |
| if (!type.array_size_literal[0]) |
| SPIRV_CROSS_THROW("Array size for CullDistance must be a literal."); |
| uint32_t array_size = type.array[0]; |
| if (array_size == 0) |
| SPIRV_CROSS_THROW("Array size for CullDistance must not be unsized."); |
| compiler.cull_distance_count = array_size; |
| } |
| else if (builtin == BuiltInPosition) |
| { |
| if (decoration_flags.get(DecorationInvariant)) |
| compiler.position_invariant = true; |
| } |
| } |
| |
| bool Compiler::ActiveBuiltinHandler::handle(spv::Op opcode, const uint32_t *args, uint32_t length) |
| { |
| const auto add_if_builtin = [&](uint32_t id) { |
| // Only handles variables here. |
| // Builtins which are part of a block are handled in AccessChain. |
| auto *var = compiler.maybe_get<SPIRVariable>(id); |
| auto &decorations = compiler.ir.meta[id].decoration; |
| if (var && decorations.builtin) |
| { |
| auto &type = compiler.get<SPIRType>(var->basetype); |
| auto &flags = |
| type.storage == StorageClassInput ? compiler.active_input_builtins : compiler.active_output_builtins; |
| flags.set(decorations.builtin_type); |
| handle_builtin(type, decorations.builtin_type, decorations.decoration_flags); |
| } |
| }; |
| |
| switch (opcode) |
| { |
| case OpStore: |
| if (length < 1) |
| return false; |
| |
| add_if_builtin(args[0]); |
| break; |
| |
| case OpCopyMemory: |
| if (length < 2) |
| return false; |
| |
| add_if_builtin(args[0]); |
| add_if_builtin(args[1]); |
| break; |
| |
| case OpCopyObject: |
| case OpLoad: |
| if (length < 3) |
| return false; |
| |
| add_if_builtin(args[2]); |
| break; |
| |
| case OpSelect: |
| if (length < 5) |
| return false; |
| |
| add_if_builtin(args[3]); |
| add_if_builtin(args[4]); |
| break; |
| |
| case OpPhi: |
| { |
| if (length < 2) |
| return false; |
| |
| uint32_t count = length - 2; |
| args += 2; |
| for (uint32_t i = 0; i < count; i += 2) |
| add_if_builtin(args[i]); |
| break; |
| } |
| |
| case OpFunctionCall: |
| { |
| if (length < 3) |
| return false; |
| |
| uint32_t count = length - 3; |
| args += 3; |
| for (uint32_t i = 0; i < count; i++) |
| add_if_builtin(args[i]); |
| break; |
| } |
| |
| case OpAccessChain: |
| case OpInBoundsAccessChain: |
| case OpPtrAccessChain: |
| { |
| if (length < 4) |
| return false; |
| |
| // Only consider global variables, cannot consider variables in functions yet, or other |
| // access chains as they have not been created yet. |
| auto *var = compiler.maybe_get<SPIRVariable>(args[2]); |
| if (!var) |
| break; |
| |
| // Required if we access chain into builtins like gl_GlobalInvocationID. |
| add_if_builtin(args[2]); |
| |
| // Start traversing type hierarchy at the proper non-pointer types. |
| auto *type = &compiler.get_variable_data_type(*var); |
| |
| auto &flags = |
| var->storage == StorageClassInput ? compiler.active_input_builtins : compiler.active_output_builtins; |
| |
| uint32_t count = length - 3; |
| args += 3; |
| for (uint32_t i = 0; i < count; i++) |
| { |
| // Pointers |
| if (opcode == OpPtrAccessChain && i == 0) |
| { |
| type = &compiler.get<SPIRType>(type->parent_type); |
| continue; |
| } |
| |
| // Arrays |
| if (!type->array.empty()) |
| { |
| type = &compiler.get<SPIRType>(type->parent_type); |
| } |
| // Structs |
| else if (type->basetype == SPIRType::Struct) |
| { |
| uint32_t index = compiler.get<SPIRConstant>(args[i]).scalar(); |
| |
| if (index < uint32_t(compiler.ir.meta[type->self].members.size())) |
| { |
| auto &decorations = compiler.ir.meta[type->self].members[index]; |
| if (decorations.builtin) |
| { |
| flags.set(decorations.builtin_type); |
| handle_builtin(compiler.get<SPIRType>(type->member_types[index]), decorations.builtin_type, |
| decorations.decoration_flags); |
| } |
| } |
| |
| type = &compiler.get<SPIRType>(type->member_types[index]); |
| } |
| else |
| { |
| // No point in traversing further. We won't find any extra builtins. |
| break; |
| } |
| } |
| break; |
| } |
| |
| default: |
| break; |
| } |
| |
| return true; |
| } |
| |
| void Compiler::update_active_builtins() |
| { |
| active_input_builtins.reset(); |
| active_output_builtins.reset(); |
| cull_distance_count = 0; |
| clip_distance_count = 0; |
| ActiveBuiltinHandler handler(*this); |
| traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler); |
| } |
| |
| // Returns whether this shader uses a builtin of the storage class |
| bool Compiler::has_active_builtin(BuiltIn builtin, StorageClass storage) |
| { |
| const Bitset *flags; |
| switch (storage) |
| { |
| case StorageClassInput: |
| flags = &active_input_builtins; |
| break; |
| case StorageClassOutput: |
| flags = &active_output_builtins; |
| break; |
| |
| default: |
| return false; |
| } |
| return flags->get(builtin); |
| } |
| |
| void Compiler::analyze_image_and_sampler_usage() |
| { |
| CombinedImageSamplerDrefHandler dref_handler(*this); |
| traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), dref_handler); |
| |
| CombinedImageSamplerUsageHandler handler(*this, dref_handler.dref_combined_samplers); |
| traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler); |
| comparison_ids = move(handler.comparison_ids); |
| need_subpass_input = handler.need_subpass_input; |
| |
| // Forward information from separate images and samplers into combined image samplers. |
| for (auto &combined : combined_image_samplers) |
| if (comparison_ids.count(combined.sampler_id)) |
| comparison_ids.insert(combined.combined_id); |
| } |
| |
| bool Compiler::CombinedImageSamplerDrefHandler::handle(spv::Op opcode, const uint32_t *args, uint32_t) |
| { |
| // Mark all sampled images which are used with Dref. |
| switch (opcode) |
| { |
| case OpImageSampleDrefExplicitLod: |
| case OpImageSampleDrefImplicitLod: |
| case OpImageSampleProjDrefExplicitLod: |
| case OpImageSampleProjDrefImplicitLod: |
| case OpImageSparseSampleProjDrefImplicitLod: |
| case OpImageSparseSampleDrefImplicitLod: |
| case OpImageSparseSampleProjDrefExplicitLod: |
| case OpImageSparseSampleDrefExplicitLod: |
| case OpImageDrefGather: |
| case OpImageSparseDrefGather: |
| dref_combined_samplers.insert(args[2]); |
| return true; |
| |
| default: |
| break; |
| } |
| |
| return true; |
| } |
| |
| void Compiler::build_function_control_flow_graphs_and_analyze() |
| { |
| CFGBuilder handler(*this); |
| handler.function_cfgs[ir.default_entry_point].reset(new CFG(*this, get<SPIRFunction>(ir.default_entry_point))); |
| traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler); |
| function_cfgs = move(handler.function_cfgs); |
| bool single_function = function_cfgs.size() <= 1; |
| |
| for (auto &f : function_cfgs) |
| { |
| auto &func = get<SPIRFunction>(f.first); |
| AnalyzeVariableScopeAccessHandler scope_handler(*this, func); |
| analyze_variable_scope(func, scope_handler); |
| find_function_local_luts(func, scope_handler, single_function); |
| |
| // Check if we can actually use the loop variables we found in analyze_variable_scope. |
| // To use multiple initializers, we need the same type and qualifiers. |
| for (auto block : func.blocks) |
| { |
| auto &b = get<SPIRBlock>(block); |
| if (b.loop_variables.size() < 2) |
| continue; |
| |
| auto &flags = get_decoration_bitset(b.loop_variables.front()); |
| uint32_t type = get<SPIRVariable>(b.loop_variables.front()).basetype; |
| bool invalid_initializers = false; |
| for (auto loop_variable : b.loop_variables) |
| { |
| if (flags != get_decoration_bitset(loop_variable) || |
| type != get<SPIRVariable>(b.loop_variables.front()).basetype) |
| { |
| invalid_initializers = true; |
| break; |
| } |
| } |
| |
| if (invalid_initializers) |
| { |
| for (auto loop_variable : b.loop_variables) |
| get<SPIRVariable>(loop_variable).loop_variable = false; |
| b.loop_variables.clear(); |
| } |
| } |
| } |
| } |
| |
| Compiler::CFGBuilder::CFGBuilder(Compiler &compiler_) |
| : compiler(compiler_) |
| { |
| } |
| |
| bool Compiler::CFGBuilder::handle(spv::Op, const uint32_t *, uint32_t) |
| { |
| return true; |
| } |
| |
| bool Compiler::CFGBuilder::follow_function_call(const SPIRFunction &func) |
| { |
| if (function_cfgs.find(func.self) == end(function_cfgs)) |
| { |
| function_cfgs[func.self].reset(new CFG(compiler, func)); |
| return true; |
| } |
| else |
| return false; |
| } |
| |
| bool Compiler::CombinedImageSamplerUsageHandler::begin_function_scope(const uint32_t *args, uint32_t length) |
| { |
| if (length < 3) |
| return false; |
| |
| auto &func = compiler.get<SPIRFunction>(args[2]); |
| const auto *arg = &args[3]; |
| length -= 3; |
| |
| for (uint32_t i = 0; i < length; i++) |
| { |
| auto &argument = func.arguments[i]; |
| dependency_hierarchy[argument.id].insert(arg[i]); |
| } |
| |
| return true; |
| } |
| |
| void Compiler::CombinedImageSamplerUsageHandler::add_hierarchy_to_comparison_ids(uint32_t id) |
| { |
| // Traverse the variable dependency hierarchy and tag everything in its path with comparison ids. |
| comparison_ids.insert(id); |
| for (auto &dep_id : dependency_hierarchy[id]) |
| add_hierarchy_to_comparison_ids(dep_id); |
| } |
| |
| bool Compiler::CombinedImageSamplerUsageHandler::handle(Op opcode, const uint32_t *args, uint32_t length) |
| { |
| switch (opcode) |
| { |
| case OpAccessChain: |
| case OpInBoundsAccessChain: |
| case OpPtrAccessChain: |
| case OpLoad: |
| { |
| if (length < 3) |
| return false; |
| dependency_hierarchy[args[1]].insert(args[2]); |
| |
| // Ideally defer this to OpImageRead, but then we'd need to track loaded IDs. |
| // If we load an image, we're going to use it and there is little harm in declaring an unused gl_FragCoord. |
| auto &type = compiler.get<SPIRType>(args[0]); |
| if (type.image.dim == DimSubpassData) |
| need_subpass_input = true; |
| |
| // If we load a SampledImage and it will be used with Dref, propagate the state up. |
| if (dref_combined_samplers.count(args[1]) != 0) |
| add_hierarchy_to_comparison_ids(args[1]); |
| break; |
| } |
| |
| case OpSampledImage: |
| { |
| if (length < 4) |
| return false; |
| |
| uint32_t result_type = args[0]; |
| uint32_t result_id = args[1]; |
| auto &type = compiler.get<SPIRType>(result_type); |
| if (type.image.depth || dref_combined_samplers.count(result_id) != 0) |
| { |
| // This image must be a depth image. |
| uint32_t image = args[2]; |
| add_hierarchy_to_comparison_ids(image); |
| |
| // This sampler must be a SamplerComparisonState, and not a regular SamplerState. |
| uint32_t sampler = args[3]; |
| add_hierarchy_to_comparison_ids(sampler); |
| |
| // Mark the OpSampledImage itself as being comparison state. |
| comparison_ids.insert(result_id); |
| } |
| return true; |
| } |
| |
| default: |
| break; |
| } |
| |
| return true; |
| } |
| |
| bool Compiler::buffer_is_hlsl_counter_buffer(uint32_t id) const |
| { |
| auto *m = ir.find_meta(id); |
| return m && m->hlsl_is_magic_counter_buffer; |
| } |
| |
| bool Compiler::buffer_get_hlsl_counter_buffer(uint32_t id, uint32_t &counter_id) const |
| { |
| auto *m = ir.find_meta(id); |
| |
| // First, check for the proper decoration. |
| if (m && m->hlsl_magic_counter_buffer != 0) |
| { |
| counter_id = m->hlsl_magic_counter_buffer; |
| return true; |
| } |
| else |
| return false; |
| } |
| |
| void Compiler::make_constant_null(uint32_t id, uint32_t type) |
| { |
| auto &constant_type = get<SPIRType>(type); |
| |
| if (constant_type.pointer) |
| { |
| auto &constant = set<SPIRConstant>(id, type); |
| constant.make_null(constant_type); |
| } |
| else if (!constant_type.array.empty()) |
| { |
| assert(constant_type.parent_type); |
| uint32_t parent_id = ir.increase_bound_by(1); |
| make_constant_null(parent_id, constant_type.parent_type); |
| |
| if (!constant_type.array_size_literal.back()) |
| SPIRV_CROSS_THROW("Array size of OpConstantNull must be a literal."); |
| |
| SmallVector<uint32_t> elements(constant_type.array.back()); |
| for (uint32_t i = 0; i < constant_type.array.back(); i++) |
| elements[i] = parent_id; |
| set<SPIRConstant>(id, type, elements.data(), uint32_t(elements.size()), false); |
| } |
| else if (!constant_type.member_types.empty()) |
| { |
| uint32_t member_ids = ir.increase_bound_by(uint32_t(constant_type.member_types.size())); |
| SmallVector<uint32_t> elements(constant_type.member_types.size()); |
| for (uint32_t i = 0; i < constant_type.member_types.size(); i++) |
| { |
| make_constant_null(member_ids + i, constant_type.member_types[i]); |
| elements[i] = member_ids + i; |
| } |
| set<SPIRConstant>(id, type, elements.data(), uint32_t(elements.size()), false); |
| } |
| else |
| { |
| auto &constant = set<SPIRConstant>(id, type); |
| constant.make_null(constant_type); |
| } |
| } |
| |
| const SmallVector<spv::Capability> &Compiler::get_declared_capabilities() const |
| { |
| return ir.declared_capabilities; |
| } |
| |
| const SmallVector<std::string> &Compiler::get_declared_extensions() const |
| { |
| return ir.declared_extensions; |
| } |
| |
| std::string Compiler::get_remapped_declared_block_name(uint32_t id) const |
| { |
| return get_remapped_declared_block_name(id, false); |
| } |
| |
| std::string Compiler::get_remapped_declared_block_name(uint32_t id, bool fallback_prefer_instance_name) const |
| { |
| auto itr = declared_block_names.find(id); |
| if (itr != end(declared_block_names)) |
| { |
| return itr->second; |
| } |
| else |
| { |
| auto &var = get<SPIRVariable>(id); |
| |
| if (fallback_prefer_instance_name) |
| { |
| return to_name(var.self); |
| } |
| else |
| { |
| auto &type = get<SPIRType>(var.basetype); |
| auto *type_meta = ir.find_meta(type.self); |
| auto *block_name = type_meta ? &type_meta->decoration.alias : nullptr; |
| return (!block_name || block_name->empty()) ? get_block_fallback_name(id) : *block_name; |
| } |
| } |
| } |
| |
| bool Compiler::reflection_ssbo_instance_name_is_significant() const |
| { |
| if (ir.source.known) |
| { |
| // UAVs from HLSL source tend to be declared in a way where the type is reused |
| // but the instance name is significant, and that's the name we should report. |
| // For GLSL, SSBOs each have their own block type as that's how GLSL is written. |
| return ir.source.hlsl; |
| } |
| |
| unordered_set<uint32_t> ssbo_type_ids; |
| bool aliased_ssbo_types = false; |
| |
| // If we don't have any OpSource information, we need to perform some shaky heuristics. |
| ir.for_each_typed_id<SPIRVariable>([&](uint32_t, const SPIRVariable &var) { |
| auto &type = this->get<SPIRType>(var.basetype); |
| if (!type.pointer || var.storage == StorageClassFunction) |
| return; |
| |
| bool ssbo = var.storage == StorageClassStorageBuffer || |
| (var.storage == StorageClassUniform && has_decoration(type.self, DecorationBufferBlock)); |
| |
| if (ssbo) |
| { |
| if (ssbo_type_ids.count(type.self)) |
| aliased_ssbo_types = true; |
| else |
| ssbo_type_ids.insert(type.self); |
| } |
| }); |
| |
| // If the block name is aliased, assume we have HLSL-style UAV declarations. |
| return aliased_ssbo_types; |
| } |
| |
| bool Compiler::instruction_to_result_type(uint32_t &result_type, uint32_t &result_id, spv::Op op, const uint32_t *args, |
| uint32_t length) |
| { |
| // Most instructions follow the pattern of <result-type> <result-id> <arguments>. |
| // There are some exceptions. |
| switch (op) |
| { |
| case OpStore: |
| case OpCopyMemory: |
| case OpCopyMemorySized: |
| case OpImageWrite: |
| case OpAtomicStore: |
| case OpAtomicFlagClear: |
| case OpEmitStreamVertex: |
| case OpEndStreamPrimitive: |
| case OpControlBarrier: |
| case OpMemoryBarrier: |
| case OpGroupWaitEvents: |
| case OpRetainEvent: |
| case OpReleaseEvent: |
| case OpSetUserEventStatus: |
| case OpCaptureEventProfilingInfo: |
| case OpCommitReadPipe: |
| case OpCommitWritePipe: |
| case OpGroupCommitReadPipe: |
| case OpGroupCommitWritePipe: |
| case OpLine: |
| case OpNoLine: |
| return false; |
| |
| default: |
| if (length > 1 && maybe_get<SPIRType>(args[0]) != nullptr) |
| { |
| result_type = args[0]; |
| result_id = args[1]; |
| return true; |
| } |
| else |
| return false; |
| } |
| } |
| |
| Bitset Compiler::combined_decoration_for_member(const SPIRType &type, uint32_t index) const |
| { |
| Bitset flags; |
| auto *type_meta = ir.find_meta(type.self); |
| |
| if (type_meta) |
| { |
| auto &memb = type_meta->members; |
| if (index >= memb.size()) |
| return flags; |
| auto &dec = memb[index]; |
| |
| // If our type is a struct, traverse all the members as well recursively. |
| flags.merge_or(dec.decoration_flags); |
| |
| for (uint32_t i = 0; i < type.member_types.size(); i++) |
| { |
| auto &memb_type = get<SPIRType>(type.member_types[i]); |
| if (!memb_type.pointer) |
| flags.merge_or(combined_decoration_for_member(memb_type, i)); |
| } |
| } |
| |
| return flags; |
| } |
| |
| bool Compiler::is_desktop_only_format(spv::ImageFormat format) |
| { |
| switch (format) |
| { |
| // Desktop-only formats |
| case ImageFormatR11fG11fB10f: |
| case ImageFormatR16f: |
| case ImageFormatRgb10A2: |
| case ImageFormatR8: |
| case ImageFormatRg8: |
| case ImageFormatR16: |
| case ImageFormatRg16: |
| case ImageFormatRgba16: |
| case ImageFormatR16Snorm: |
| case ImageFormatRg16Snorm: |
| case ImageFormatRgba16Snorm: |
| case ImageFormatR8Snorm: |
| case ImageFormatRg8Snorm: |
| case ImageFormatR8ui: |
| case ImageFormatRg8ui: |
| case ImageFormatR16ui: |
| case ImageFormatRgb10a2ui: |
| case ImageFormatR8i: |
| case ImageFormatRg8i: |
| case ImageFormatR16i: |
| return true; |
| default: |
| break; |
| } |
| |
| return false; |
| } |
| |
| bool Compiler::image_is_comparison(const SPIRType &type, uint32_t id) const |
| { |
| return type.image.depth || (comparison_ids.count(id) != 0); |
| } |
| |
| bool Compiler::type_is_opaque_value(const SPIRType &type) const |
| { |
| return !type.pointer && (type.basetype == SPIRType::SampledImage || type.basetype == SPIRType::Image || |
| type.basetype == SPIRType::Sampler); |
| } |
| |
| // Make these member functions so we can easily break on any force_recompile events. |
| void Compiler::force_recompile() |
| { |
| is_force_recompile = true; |
| } |
| |
| bool Compiler::is_forcing_recompilation() const |
| { |
| return is_force_recompile; |
| } |
| |
| void Compiler::clear_force_recompile() |
| { |
| is_force_recompile = false; |
| } |
| |
| Compiler::PhysicalStorageBufferPointerHandler::PhysicalStorageBufferPointerHandler(Compiler &compiler_) |
| : compiler(compiler_) |
| { |
| } |
| |
| bool Compiler::PhysicalStorageBufferPointerHandler::handle(Op op, const uint32_t *args, uint32_t) |
| { |
| if (op == OpConvertUToPtr || op == OpBitcast) |
| { |
| auto &type = compiler.get<SPIRType>(args[0]); |
| if (type.storage == StorageClassPhysicalStorageBufferEXT && type.pointer && type.pointer_depth == 1) |
| { |
| // If we need to cast to a pointer type which is not a block, we might need to synthesize ourselves |
| // a block type which wraps this POD type. |
| if (type.basetype != SPIRType::Struct) |
| types.insert(args[0]); |
| } |
| } |
| |
| return true; |
| } |
| |
| void Compiler::analyze_non_block_pointer_types() |
| { |
| PhysicalStorageBufferPointerHandler handler(*this); |
| traverse_all_reachable_opcodes(get<SPIRFunction>(ir.default_entry_point), handler); |
| physical_storage_non_block_pointer_types.reserve(handler.types.size()); |
| for (auto type : handler.types) |
| physical_storage_non_block_pointer_types.push_back(type); |
| sort(begin(physical_storage_non_block_pointer_types), end(physical_storage_non_block_pointer_types)); |
| } |
| |
| bool Compiler::type_is_array_of_pointers(const SPIRType &type) const |
| { |
| if (!type.pointer) |
| return false; |
| |
| // If parent type has same pointer depth, we must have an array of pointers. |
| return type.pointer_depth == get<SPIRType>(type.parent_type).pointer_depth; |
| } |
| |
| bool Compiler::flush_phi_required(uint32_t from, uint32_t to) const |
| { |
| auto &child = get<SPIRBlock>(to); |
| for (auto &phi : child.phi_variables) |
| if (phi.parent == from) |
| return true; |
| return false; |
| } |