blob: f4b81e4b7eefae7aeaae63fbc94e77660f4902f3 [file] [log] [blame]
// ignore-tidy-filelength
/* global addClass, getNakedUrl, getSettingValue */
/* global onEachLazy, removeClass, searchState, browserSupportsHistoryApi, exports */
"use strict";
// polyfill
// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/toSpliced
if (!Array.prototype.toSpliced) {
// Can't use arrow functions, because we want `this`
Array.prototype.toSpliced = function() {
const me = this.slice();
Array.prototype.splice.apply(me, arguments);
return me;
};
}
(function() {
// This mapping table should match the discriminants of
// `rustdoc::formats::item_type::ItemType` type in Rust.
const itemTypes = [
"keyword",
"primitive",
"mod",
"externcrate",
"import",
"struct", // 5
"enum",
"fn",
"type",
"static",
"trait", // 10
"impl",
"tymethod",
"method",
"structfield",
"variant", // 15
"macro",
"associatedtype",
"constant",
"associatedconstant",
"union", // 20
"foreigntype",
"existential",
"attr",
"derive",
"traitalias", // 25
"generic",
];
const longItemTypes = [
"keyword",
"primitive type",
"module",
"extern crate",
"re-export",
"struct",
"enum",
"function",
"type alias",
"static",
"trait",
"",
"trait method",
"method",
"struct field",
"enum variant",
"macro",
"assoc type",
"constant",
"assoc const",
"union",
"foreign type",
"existential type",
"attribute macro",
"derive macro",
"trait alias",
];
// used for special search precedence
const TY_GENERIC = itemTypes.indexOf("generic");
const TY_IMPORT = itemTypes.indexOf("import");
const ROOT_PATH = typeof window !== "undefined" ? window.rootPath : "../";
// Hard limit on how deep to recurse into generics when doing type-driven search.
// This needs limited, partially because
// a search for `Ty` shouldn't match `WithInfcx<ParamEnvAnd<Vec<ConstTy<Interner<Ty=Ty>>>>>`,
// but mostly because this is the simplest and most principled way to limit the number
// of permutations we need to check.
const UNBOXING_LIMIT = 5;
// used for search query verification
const REGEX_IDENT = /\p{ID_Start}\p{ID_Continue}*|_\p{ID_Continue}+/uy;
const REGEX_INVALID_TYPE_FILTER = /[^a-z]/ui;
// In the search display, allows to switch between tabs.
function printTab(nb) {
let iter = 0;
let foundCurrentTab = false;
let foundCurrentResultSet = false;
onEachLazy(document.getElementById("search-tabs").childNodes, elem => {
if (nb === iter) {
addClass(elem, "selected");
foundCurrentTab = true;
} else {
removeClass(elem, "selected");
}
iter += 1;
});
const isTypeSearch = (nb > 0 || iter === 1);
iter = 0;
onEachLazy(document.getElementById("results").childNodes, elem => {
if (nb === iter) {
addClass(elem, "active");
foundCurrentResultSet = true;
} else {
removeClass(elem, "active");
}
iter += 1;
});
if (foundCurrentTab && foundCurrentResultSet) {
searchState.currentTab = nb;
// Corrections only kick in on type-based searches.
const correctionsElem = document.getElementsByClassName("search-corrections");
if (isTypeSearch) {
removeClass(correctionsElem[0], "hidden");
} else {
addClass(correctionsElem[0], "hidden");
}
} else if (nb !== 0) {
printTab(0);
}
}
/**
* The [edit distance] is a metric for measuring the difference between two strings.
*
* [edit distance]: https://en.wikipedia.org/wiki/Edit_distance
*/
/*
* This function was translated, mostly line-for-line, from
* https://github.com/rust-lang/rust/blob/ff4b772f805ec1e/compiler/rustc_span/src/edit_distance.rs
*
* The current implementation is the restricted Damerau-Levenshtein algorithm. It is restricted
* because it does not permit modifying characters that have already been transposed. The specific
* algorithm should not matter to the caller of the methods, which is why it is not noted in the
* documentation.
*/
const editDistanceState = {
current: [],
prev: [],
prevPrev: [],
calculate: function calculate(a, b, limit) {
// Ensure that `b` is the shorter string, minimizing memory use.
if (a.length < b.length) {
const aTmp = a;
a = b;
b = aTmp;
}
const minDist = a.length - b.length;
// If we know the limit will be exceeded, we can return early.
if (minDist > limit) {
return limit + 1;
}
// Strip common prefix.
// We know that `b` is the shorter string, so we don't need to check
// `a.length`.
while (b.length > 0 && b[0] === a[0]) {
a = a.substring(1);
b = b.substring(1);
}
// Strip common suffix.
while (b.length > 0 && b[b.length - 1] === a[a.length - 1]) {
a = a.substring(0, a.length - 1);
b = b.substring(0, b.length - 1);
}
// If either string is empty, the distance is the length of the other.
// We know that `b` is the shorter string, so we don't need to check `a`.
if (b.length === 0) {
return minDist;
}
const aLength = a.length;
const bLength = b.length;
for (let i = 0; i <= bLength; ++i) {
this.current[i] = 0;
this.prev[i] = i;
this.prevPrev[i] = Number.MAX_VALUE;
}
// row by row
for (let i = 1; i <= aLength; ++i) {
this.current[0] = i;
const aIdx = i - 1;
// column by column
for (let j = 1; j <= bLength; ++j) {
const bIdx = j - 1;
// There is no cost to substitute a character with itself.
const substitutionCost = a[aIdx] === b[bIdx] ? 0 : 1;
this.current[j] = Math.min(
// deletion
this.prev[j] + 1,
// insertion
this.current[j - 1] + 1,
// substitution
this.prev[j - 1] + substitutionCost,
);
if ((i > 1) && (j > 1) && (a[aIdx] === b[bIdx - 1]) && (a[aIdx - 1] === b[bIdx])) {
// transposition
this.current[j] = Math.min(
this.current[j],
this.prevPrev[j - 2] + 1,
);
}
}
// Rotate the buffers, reusing the memory
const prevPrevTmp = this.prevPrev;
this.prevPrev = this.prev;
this.prev = this.current;
this.current = prevPrevTmp;
}
// `prev` because we already rotated the buffers.
const distance = this.prev[bLength];
return distance <= limit ? distance : (limit + 1);
},
};
function editDistance(a, b, limit) {
return editDistanceState.calculate(a, b, limit);
}
function initSearch(rawSearchIndex) {
const MAX_RESULTS = 200;
const NO_TYPE_FILTER = -1;
/**
* @type {Array<Row>}
*/
let searchIndex;
/**
* @type {Map<String, RoaringBitmap>}
*/
let searchIndexDeprecated;
/**
* @type {Map<String, RoaringBitmap>}
*/
let searchIndexEmptyDesc;
/**
* @type {Uint32Array}
*/
let functionTypeFingerprint;
let currentResults;
/**
* Map from normalized type names to integers. Used to make type search
* more efficient.
*
* @type {Map<string, {id: integer, assocOnly: boolean}>}
*/
const typeNameIdMap = new Map();
const ALIASES = new Map();
/**
* Special type name IDs for searching by array.
*/
const typeNameIdOfArray = buildTypeMapIndex("array");
/**
* Special type name IDs for searching by slice.
*/
const typeNameIdOfSlice = buildTypeMapIndex("slice");
/**
* Special type name IDs for searching by both array and slice (`[]` syntax).
*/
const typeNameIdOfArrayOrSlice = buildTypeMapIndex("[]");
/**
* Special type name IDs for searching by tuple.
*/
const typeNameIdOfTuple = buildTypeMapIndex("tuple");
/**
* Special type name IDs for searching by unit.
*/
const typeNameIdOfUnit = buildTypeMapIndex("unit");
/**
* Special type name IDs for searching by both tuple and unit (`()` syntax).
*/
const typeNameIdOfTupleOrUnit = buildTypeMapIndex("()");
/**
* Special type name IDs for searching `fn`.
*/
const typeNameIdOfFn = buildTypeMapIndex("fn");
/**
* Special type name IDs for searching `fnmut`.
*/
const typeNameIdOfFnMut = buildTypeMapIndex("fnmut");
/**
* Special type name IDs for searching `fnonce`.
*/
const typeNameIdOfFnOnce = buildTypeMapIndex("fnonce");
/**
* Special type name IDs for searching higher order functions (`->` syntax).
*/
const typeNameIdOfHof = buildTypeMapIndex("->");
/**
* Add an item to the type Name->ID map, or, if one already exists, use it.
* Returns the number. If name is "" or null, return null (pure generic).
*
* This is effectively string interning, so that function matching can be
* done more quickly. Two types with the same name but different item kinds
* get the same ID.
*
* @param {string} name
* @param {boolean} isAssocType - True if this is an assoc type
*
* @returns {integer}
*/
function buildTypeMapIndex(name, isAssocType) {
if (name === "" || name === null) {
return null;
}
if (typeNameIdMap.has(name)) {
const obj = typeNameIdMap.get(name);
obj.assocOnly = isAssocType && obj.assocOnly;
return obj.id;
} else {
const id = typeNameIdMap.size;
typeNameIdMap.set(name, {id, assocOnly: isAssocType});
return id;
}
}
function isSpecialStartCharacter(c) {
return "<\"".indexOf(c) !== -1;
}
function isEndCharacter(c) {
return "=,>-])".indexOf(c) !== -1;
}
function itemTypeFromName(typename) {
const index = itemTypes.findIndex(i => i === typename);
if (index < 0) {
throw ["Unknown type filter ", typename];
}
return index;
}
/**
* If we encounter a `"`, then we try to extract the string from it until we find another `"`.
*
* This function will throw an error in the following cases:
* * There is already another string element.
* * We are parsing a generic argument.
* * There is more than one element.
* * There is no closing `"`.
*
* @param {ParsedQuery} query
* @param {ParserState} parserState
* @param {boolean} isInGenerics
*/
function getStringElem(query, parserState, isInGenerics) {
if (isInGenerics) {
throw ["Unexpected ", "\"", " in generics"];
} else if (query.literalSearch) {
throw ["Cannot have more than one literal search element"];
} else if (parserState.totalElems - parserState.genericsElems > 0) {
throw ["Cannot use literal search when there is more than one element"];
}
parserState.pos += 1;
const start = parserState.pos;
const end = getIdentEndPosition(parserState);
if (parserState.pos >= parserState.length) {
throw ["Unclosed ", "\""];
} else if (parserState.userQuery[end] !== "\"") {
throw ["Unexpected ", parserState.userQuery[end], " in a string element"];
} else if (start === end) {
throw ["Cannot have empty string element"];
}
// To skip the quote at the end.
parserState.pos += 1;
query.literalSearch = true;
}
/**
* Returns `true` if the current parser position is starting with "::".
*
* @param {ParserState} parserState
*
* @return {boolean}
*/
function isPathStart(parserState) {
return parserState.userQuery.slice(parserState.pos, parserState.pos + 2) === "::";
}
/**
* Returns `true` if the current parser position is starting with "->".
*
* @param {ParserState} parserState
*
* @return {boolean}
*/
function isReturnArrow(parserState) {
return parserState.userQuery.slice(parserState.pos, parserState.pos + 2) === "->";
}
/**
* If the current parser position is at the beginning of an identifier,
* move the position to the end of it and return `true`. Otherwise, return `false`.
*
* @param {ParserState} parserState
*
* @return {boolean}
*/
function consumeIdent(parserState) {
REGEX_IDENT.lastIndex = parserState.pos;
const match = parserState.userQuery.match(REGEX_IDENT);
if (match) {
parserState.pos += match[0].length;
return true;
}
return false;
}
/**
* Returns `true` if the given `c` character is a separator.
*
* @param {string} c
*
* @return {boolean}
*/
function isSeparatorCharacter(c) {
return c === "," || c === "=";
}
/**
* Returns `true` if the given `c` character is a path separator. For example
* `:` in `a::b` or a whitespace in `a b`.
*
* @param {string} c
*
* @return {boolean}
*/
function isPathSeparator(c) {
return c === ":" || c === " ";
}
/**
* Returns `true` if the previous character is `lookingFor`.
*
* @param {ParserState} parserState
* @param {String} lookingFor
*
* @return {boolean}
*/
function prevIs(parserState, lookingFor) {
let pos = parserState.pos;
while (pos > 0) {
const c = parserState.userQuery[pos - 1];
if (c === lookingFor) {
return true;
} else if (c !== " ") {
break;
}
pos -= 1;
}
return false;
}
/**
* Returns `true` if the last element in the `elems` argument has generics.
*
* @param {Array<QueryElement>} elems
* @param {ParserState} parserState
*
* @return {boolean}
*/
function isLastElemGeneric(elems, parserState) {
return (elems.length > 0 && elems[elems.length - 1].generics.length > 0) ||
prevIs(parserState, ">");
}
/**
* Increase current parser position until it doesn't find a whitespace anymore.
*
* @param {ParserState} parserState
*/
function skipWhitespace(parserState) {
while (parserState.pos < parserState.userQuery.length) {
const c = parserState.userQuery[parserState.pos];
if (c !== " ") {
break;
}
parserState.pos += 1;
}
}
function makePrimitiveElement(name, extra) {
return Object.assign({
name,
id: null,
fullPath: [name],
pathWithoutLast: [],
pathLast: name,
normalizedPathLast: name,
generics: [],
bindings: new Map(),
typeFilter: "primitive",
bindingName: null,
}, extra);
}
/**
* @param {ParsedQuery} query
* @param {ParserState} parserState
* @param {string} name - Name of the query element.
* @param {Array<QueryElement>} generics - List of generics of this query element.
*
* @return {QueryElement} - The newly created `QueryElement`.
*/
function createQueryElement(query, parserState, name, generics, isInGenerics) {
const path = name.trim();
if (path.length === 0 && generics.length === 0) {
throw ["Unexpected ", parserState.userQuery[parserState.pos]];
}
if (query.literalSearch && parserState.totalElems - parserState.genericsElems > 0) {
throw ["Cannot have more than one element if you use quotes"];
}
const typeFilter = parserState.typeFilter;
parserState.typeFilter = null;
if (name === "!") {
if (typeFilter !== null && typeFilter !== "primitive") {
throw [
"Invalid search type: primitive never type ",
"!",
" and ",
typeFilter,
" both specified",
];
}
if (generics.length !== 0) {
throw [
"Never type ",
"!",
" does not accept generic parameters",
];
}
const bindingName = parserState.isInBinding;
parserState.isInBinding = null;
return makePrimitiveElement("never", { bindingName });
}
const quadcolon = /::\s*::/.exec(path);
if (path.startsWith("::")) {
throw ["Paths cannot start with ", "::"];
} else if (path.endsWith("::")) {
throw ["Paths cannot end with ", "::"];
} else if (quadcolon !== null) {
throw ["Unexpected ", quadcolon[0]];
}
const pathSegments = path.split(/(?:::\s*)|(?:\s+(?:::\s*)?)/);
// In case we only have something like `<p>`, there is no name.
if (pathSegments.length === 0 || (pathSegments.length === 1 && pathSegments[0] === "")) {
if (generics.length > 0 || prevIs(parserState, ">")) {
throw ["Found generics without a path"];
} else {
throw ["Unexpected ", parserState.userQuery[parserState.pos]];
}
}
for (const [i, pathSegment] of pathSegments.entries()) {
if (pathSegment === "!") {
if (i !== 0) {
throw ["Never type ", "!", " is not associated item"];
}
pathSegments[i] = "never";
}
}
parserState.totalElems += 1;
if (isInGenerics) {
parserState.genericsElems += 1;
}
const bindingName = parserState.isInBinding;
parserState.isInBinding = null;
const bindings = new Map();
const pathLast = pathSegments[pathSegments.length - 1];
return {
name: name.trim(),
id: null,
fullPath: pathSegments,
pathWithoutLast: pathSegments.slice(0, pathSegments.length - 1),
pathLast,
normalizedPathLast: pathLast.replace(/_/g, ""),
generics: generics.filter(gen => {
// Syntactically, bindings are parsed as generics,
// but the query engine treats them differently.
if (gen.bindingName !== null) {
if (gen.name !== null) {
gen.bindingName.generics.unshift(gen);
}
bindings.set(gen.bindingName.name, gen.bindingName.generics);
return false;
}
return true;
}),
bindings,
typeFilter,
bindingName,
};
}
/**
* This function goes through all characters until it reaches an invalid ident character or the
* end of the query. It returns the position of the last character of the ident.
*
* @param {ParserState} parserState
*
* @return {integer}
*/
function getIdentEndPosition(parserState) {
const start = parserState.pos;
let afterIdent = consumeIdent(parserState);
let end = parserState.pos;
let macroExclamation = -1;
while (parserState.pos < parserState.length) {
const c = parserState.userQuery[parserState.pos];
if (c === "!") {
if (macroExclamation !== -1) {
throw ["Cannot have more than one ", "!", " in an ident"];
} else if (parserState.pos + 1 < parserState.length) {
const pos = parserState.pos;
parserState.pos++;
const beforeIdent = consumeIdent(parserState);
parserState.pos = pos;
if (beforeIdent) {
throw ["Unexpected ", "!", ": it can only be at the end of an ident"];
}
}
if (afterIdent) macroExclamation = parserState.pos;
} else if (isPathSeparator(c)) {
if (c === ":") {
if (!isPathStart(parserState)) {
break;
}
// Skip current ":".
parserState.pos += 1;
} else {
while (parserState.pos + 1 < parserState.length) {
const next_c = parserState.userQuery[parserState.pos + 1];
if (next_c !== " ") {
break;
}
parserState.pos += 1;
}
}
if (macroExclamation !== -1) {
throw ["Cannot have associated items in macros"];
}
} else if (
c === "[" ||
c === "(" ||
isEndCharacter(c) ||
isSpecialStartCharacter(c) ||
isSeparatorCharacter(c)
) {
break;
} else if (parserState.pos > 0) {
throw ["Unexpected ", c, " after ", parserState.userQuery[parserState.pos - 1]];
} else {
throw ["Unexpected ", c];
}
parserState.pos += 1;
afterIdent = consumeIdent(parserState);
end = parserState.pos;
}
if (macroExclamation !== -1) {
if (parserState.typeFilter === null) {
parserState.typeFilter = "macro";
} else if (parserState.typeFilter !== "macro") {
throw [
"Invalid search type: macro ",
"!",
" and ",
parserState.typeFilter,
" both specified",
];
}
end = macroExclamation;
}
return end;
}
function getFilteredNextElem(query, parserState, elems, isInGenerics) {
const start = parserState.pos;
if (parserState.userQuery[parserState.pos] === ":" && !isPathStart(parserState)) {
throw ["Expected type filter before ", ":"];
}
getNextElem(query, parserState, elems, isInGenerics);
if (parserState.userQuery[parserState.pos] === ":" && !isPathStart(parserState)) {
if (parserState.typeFilter !== null) {
throw [
"Unexpected ",
":",
" (expected path after type filter ",
parserState.typeFilter + ":",
")",
];
}
if (elems.length === 0) {
throw ["Expected type filter before ", ":"];
} else if (query.literalSearch) {
throw ["Cannot use quotes on type filter"];
}
// The type filter doesn't count as an element since it's a modifier.
const typeFilterElem = elems.pop();
checkExtraTypeFilterCharacters(start, parserState);
parserState.typeFilter = typeFilterElem.name;
parserState.pos += 1;
parserState.totalElems -= 1;
query.literalSearch = false;
getNextElem(query, parserState, elems, isInGenerics);
}
}
/**
* @param {ParsedQuery} query
* @param {ParserState} parserState
* @param {Array<QueryElement>} elems - This is where the new {QueryElement} will be added.
* @param {boolean} isInGenerics
*/
function getNextElem(query, parserState, elems, isInGenerics) {
const generics = [];
skipWhitespace(parserState);
let start = parserState.pos;
let end;
if ("[(".indexOf(parserState.userQuery[parserState.pos]) !== -1) {
let endChar = ")";
let name = "()";
let friendlyName = "tuple";
if (parserState.userQuery[parserState.pos] === "[") {
endChar = "]";
name = "[]";
friendlyName = "slice";
}
parserState.pos += 1;
const { foundSeparator } = getItemsBefore(query, parserState, generics, endChar);
const typeFilter = parserState.typeFilter;
const bindingName = parserState.isInBinding;
parserState.typeFilter = null;
parserState.isInBinding = null;
for (const gen of generics) {
if (gen.bindingName !== null) {
throw ["Type parameter ", "=", ` cannot be within ${friendlyName} `, name];
}
}
if (name === "()" && !foundSeparator && generics.length === 1 && typeFilter === null) {
elems.push(generics[0]);
} else if (name === "()" && generics.length === 1 && generics[0].name === "->") {
// `primitive:(a -> b)` parser to `primitive:"->"<output=b, (a,)>`
// not `primitive:"()"<"->"<output=b, (a,)>>`
generics[0].typeFilter = typeFilter;
elems.push(generics[0]);
} else {
if (typeFilter !== null && typeFilter !== "primitive") {
throw [
"Invalid search type: primitive ",
name,
" and ",
typeFilter,
" both specified",
];
}
parserState.totalElems += 1;
if (isInGenerics) {
parserState.genericsElems += 1;
}
elems.push(makePrimitiveElement(name, { bindingName, generics }));
}
} else if (parserState.userQuery[parserState.pos] === "&") {
if (parserState.typeFilter !== null && parserState.typeFilter !== "primitive") {
throw [
"Invalid search type: primitive ",
"&",
" and ",
parserState.typeFilter,
" both specified",
];
}
parserState.typeFilter = null;
parserState.pos += 1;
let c = parserState.userQuery[parserState.pos];
while (c === " " && parserState.pos < parserState.length) {
parserState.pos += 1;
c = parserState.userQuery[parserState.pos];
}
const generics = [];
if (parserState.userQuery.slice(parserState.pos, parserState.pos + 3) === "mut") {
generics.push(makePrimitiveElement("mut", { typeFilter: "keyword"}));
parserState.pos += 3;
c = parserState.userQuery[parserState.pos];
}
while (c === " " && parserState.pos < parserState.length) {
parserState.pos += 1;
c = parserState.userQuery[parserState.pos];
}
if (!isEndCharacter(c) && parserState.pos < parserState.length) {
getFilteredNextElem(query, parserState, generics, isInGenerics);
}
elems.push(makePrimitiveElement("reference", { generics }));
} else {
const isStringElem = parserState.userQuery[start] === "\"";
// We handle the strings on their own mostly to make code easier to follow.
if (isStringElem) {
start += 1;
getStringElem(query, parserState, isInGenerics);
end = parserState.pos - 1;
} else {
end = getIdentEndPosition(parserState);
}
if (parserState.pos < parserState.length &&
parserState.userQuery[parserState.pos] === "<"
) {
if (start >= end) {
throw ["Found generics without a path"];
}
parserState.pos += 1;
getItemsBefore(query, parserState, generics, ">");
} else if (parserState.pos < parserState.length &&
parserState.userQuery[parserState.pos] === "("
) {
if (start >= end) {
throw ["Found generics without a path"];
}
if (parserState.isInBinding) {
throw ["Unexpected ", "(", " after ", "="];
}
parserState.pos += 1;
const typeFilter = parserState.typeFilter;
parserState.typeFilter = null;
getItemsBefore(query, parserState, generics, ")");
skipWhitespace(parserState);
if (isReturnArrow(parserState)) {
parserState.pos += 2;
skipWhitespace(parserState);
getFilteredNextElem(query, parserState, generics, isInGenerics);
generics[generics.length - 1].bindingName = makePrimitiveElement("output");
} else {
generics.push(makePrimitiveElement(null, {
bindingName: makePrimitiveElement("output"),
typeFilter: null,
}));
}
parserState.typeFilter = typeFilter;
}
if (isStringElem) {
skipWhitespace(parserState);
}
if (start >= end && generics.length === 0) {
return;
}
if (parserState.userQuery[parserState.pos] === "=") {
if (parserState.isInBinding) {
throw ["Cannot write ", "=", " twice in a binding"];
}
if (!isInGenerics) {
throw ["Type parameter ", "=", " must be within generics list"];
}
const name = parserState.userQuery.slice(start, end).trim();
if (name === "!") {
throw ["Type parameter ", "=", " key cannot be ", "!", " never type"];
}
if (name.includes("!")) {
throw ["Type parameter ", "=", " key cannot be ", "!", " macro"];
}
if (name.includes("::")) {
throw ["Type parameter ", "=", " key cannot contain ", "::", " path"];
}
if (name.includes(":")) {
throw ["Type parameter ", "=", " key cannot contain ", ":", " type"];
}
parserState.isInBinding = { name, generics };
} else {
elems.push(
createQueryElement(
query,
parserState,
parserState.userQuery.slice(start, end),
generics,
isInGenerics,
),
);
}
}
}
/**
* This function parses the next query element until it finds `endChar`, calling `getNextElem`
* to collect each element.
*
* If there is no `endChar`, this function will implicitly stop at the end without raising an
* error.
*
* @param {ParsedQuery} query
* @param {ParserState} parserState
* @param {Array<QueryElement>} elems - This is where the new {QueryElement} will be added.
* @param {string} endChar - This function will stop when it'll encounter this
* character.
* @returns {{foundSeparator: bool}}
*/
function getItemsBefore(query, parserState, elems, endChar) {
let foundStopChar = true;
let foundSeparator = false;
// If this is a generic, keep the outer item's type filter around.
const oldTypeFilter = parserState.typeFilter;
parserState.typeFilter = null;
const oldIsInBinding = parserState.isInBinding;
parserState.isInBinding = null;
// ML-style Higher Order Function notation
//
// a way to search for any closure or fn pointer regardless of
// which closure trait is used
//
// Looks like this:
//
// `option<t>, (t -> u) -> option<u>`
// ^^^^^^
//
// The Rust-style closure notation is implemented in getNextElem
let hofParameters = null;
let extra = "";
if (endChar === ">") {
extra = "<";
} else if (endChar === "]") {
extra = "[";
} else if (endChar === ")") {
extra = "(";
} else if (endChar === "") {
extra = "->";
} else {
extra = endChar;
}
while (parserState.pos < parserState.length) {
const c = parserState.userQuery[parserState.pos];
if (c === endChar) {
if (parserState.isInBinding) {
throw ["Unexpected ", endChar, " after ", "="];
}
break;
} else if (endChar !== "" && isReturnArrow(parserState)) {
// ML-style HOF notation only works when delimited in something,
// otherwise a function arrow starts the return type of the top
if (parserState.isInBinding) {
throw ["Unexpected ", "->", " after ", "="];
}
hofParameters = [...elems];
elems.length = 0;
parserState.pos += 2;
foundStopChar = true;
foundSeparator = false;
continue;
} else if (c === " ") {
parserState.pos += 1;
continue;
} else if (isSeparatorCharacter(c)) {
parserState.pos += 1;
foundStopChar = true;
foundSeparator = true;
continue;
} else if (c === ":" && isPathStart(parserState)) {
throw ["Unexpected ", "::", ": paths cannot start with ", "::"];
} else if (isEndCharacter(c)) {
throw ["Unexpected ", c, " after ", extra];
}
if (!foundStopChar) {
let extra = [];
if (isLastElemGeneric(query.elems, parserState)) {
extra = [" after ", ">"];
} else if (prevIs(parserState, "\"")) {
throw ["Cannot have more than one element if you use quotes"];
}
if (endChar !== "") {
throw [
"Expected ",
",",
", ",
"=",
", or ",
endChar,
...extra,
", found ",
c,
];
}
throw [
"Expected ",
",",
" or ",
"=",
...extra,
", found ",
c,
];
}
const posBefore = parserState.pos;
getFilteredNextElem(query, parserState, elems, endChar !== "");
if (endChar !== "" && parserState.pos >= parserState.length) {
throw ["Unclosed ", extra];
}
// This case can be encountered if `getNextElem` encountered a "stop character" right
// from the start. For example if you have `,,` or `<>`. In this case, we simply move up
// the current position to continue the parsing.
if (posBefore === parserState.pos) {
parserState.pos += 1;
}
foundStopChar = false;
}
if (parserState.pos >= parserState.length && endChar !== "") {
throw ["Unclosed ", extra];
}
// We are either at the end of the string or on the `endChar` character, let's move forward
// in any case.
parserState.pos += 1;
if (hofParameters) {
// Commas in a HOF don't cause wrapping parens to become a tuple.
// If you want a one-tuple with a HOF in it, write `((a -> b),)`.
foundSeparator = false;
// HOFs can't have directly nested bindings.
if ([...elems, ...hofParameters].some(x => x.bindingName) || parserState.isInBinding) {
throw ["Unexpected ", "=", " within ", "->"];
}
// HOFs are represented the same way closures are.
// The arguments are wrapped in a tuple, and the output
// is a binding, even though the compiler doesn't technically
// represent fn pointers that way.
const hofElem = makePrimitiveElement("->", {
generics: hofParameters,
bindings: new Map([["output", [...elems]]]),
typeFilter: null,
});
elems.length = 0;
elems[0] = hofElem;
}
parserState.typeFilter = oldTypeFilter;
parserState.isInBinding = oldIsInBinding;
return { foundSeparator };
}
/**
* Checks that the type filter doesn't have unwanted characters like `<>` (which are ignored
* if empty).
*
* @param {ParserState} parserState
*/
function checkExtraTypeFilterCharacters(start, parserState) {
const query = parserState.userQuery.slice(start, parserState.pos).trim();
const match = query.match(REGEX_INVALID_TYPE_FILTER);
if (match) {
throw [
"Unexpected ",
match[0],
" in type filter (before ",
":",
")",
];
}
}
/**
* Parses the provided `query` input to fill `parserState`. If it encounters an error while
* parsing `query`, it'll throw an error.
*
* @param {ParsedQuery} query
* @param {ParserState} parserState
*/
function parseInput(query, parserState) {
let foundStopChar = true;
while (parserState.pos < parserState.length) {
const c = parserState.userQuery[parserState.pos];
if (isEndCharacter(c)) {
foundStopChar = true;
if (isSeparatorCharacter(c)) {
parserState.pos += 1;
continue;
} else if (c === "-" || c === ">") {
if (isReturnArrow(parserState)) {
break;
}
throw ["Unexpected ", c, " (did you mean ", "->", "?)"];
} else if (parserState.pos > 0) {
throw ["Unexpected ", c, " after ", parserState.userQuery[parserState.pos - 1]];
}
throw ["Unexpected ", c];
} else if (c === " ") {
skipWhitespace(parserState);
continue;
}
if (!foundStopChar) {
let extra = "";
if (isLastElemGeneric(query.elems, parserState)) {
extra = [" after ", ">"];
} else if (prevIs(parserState, "\"")) {
throw ["Cannot have more than one element if you use quotes"];
}
if (parserState.typeFilter !== null) {
throw [
"Expected ",
",",
" or ",
"->",
...extra,
", found ",
c,
];
}
throw [
"Expected ",
",",
", ",
":",
" or ",
"->",
...extra,
", found ",
c,
];
}
const before = query.elems.length;
getFilteredNextElem(query, parserState, query.elems, false);
if (query.elems.length === before) {
// Nothing was added, weird... Let's increase the position to not remain stuck.
parserState.pos += 1;
}
foundStopChar = false;
}
if (parserState.typeFilter !== null) {
throw [
"Unexpected ",
":",
" (expected path after type filter ",
parserState.typeFilter + ":",
")",
];
}
while (parserState.pos < parserState.length) {
if (isReturnArrow(parserState)) {
parserState.pos += 2;
skipWhitespace(parserState);
// Get returned elements.
getItemsBefore(query, parserState, query.returned, "");
// Nothing can come afterward!
if (query.returned.length === 0) {
throw ["Expected at least one item after ", "->"];
}
break;
} else {
parserState.pos += 1;
}
}
}
/**
* Takes the user search input and returns an empty `ParsedQuery`.
*
* @param {string} userQuery
*
* @return {ParsedQuery}
*/
function newParsedQuery(userQuery) {
return {
original: userQuery,
userQuery: userQuery.toLowerCase(),
elems: [],
returned: [],
// Total number of "top" elements (does not include generics).
foundElems: 0,
// Total number of elements (includes generics).
totalElems: 0,
literalSearch: false,
error: null,
correction: null,
proposeCorrectionFrom: null,
proposeCorrectionTo: null,
// bloom filter build from type ids
typeFingerprint: new Uint32Array(4),
};
}
/**
* Build an URL with search parameters.
*
* @param {string} search - The current search being performed.
* @param {string|null} filterCrates - The current filtering crate (if any).
*
* @return {string}
*/
function buildUrl(search, filterCrates) {
let extra = "?search=" + encodeURIComponent(search);
if (filterCrates !== null) {
extra += "&filter-crate=" + encodeURIComponent(filterCrates);
}
return getNakedUrl() + extra + window.location.hash;
}
/**
* Return the filtering crate or `null` if there is none.
*
* @return {string|null}
*/
function getFilterCrates() {
const elem = document.getElementById("crate-search");
if (elem &&
elem.value !== "all crates" &&
rawSearchIndex.has(elem.value)
) {
return elem.value;
}
return null;
}
/**
* Parses the query.
*
* The supported syntax by this parser is given in the rustdoc book chapter
* /src/doc/rustdoc/src/read-documentation/search.md
*
* When adding new things to the parser, add them there, too!
*
* @param {string} val - The user query
*
* @return {ParsedQuery} - The parsed query
*/
function parseQuery(userQuery) {
function convertTypeFilterOnElem(elem) {
if (elem.typeFilter !== null) {
let typeFilter = elem.typeFilter;
if (typeFilter === "const") {
typeFilter = "constant";
}
elem.typeFilter = itemTypeFromName(typeFilter);
} else {
elem.typeFilter = NO_TYPE_FILTER;
}
for (const elem2 of elem.generics) {
convertTypeFilterOnElem(elem2);
}
for (const constraints of elem.bindings.values()) {
for (const constraint of constraints) {
convertTypeFilterOnElem(constraint);
}
}
}
userQuery = userQuery.trim().replace(/\r|\n|\t/g, " ");
const parserState = {
length: userQuery.length,
pos: 0,
// Total number of elements (includes generics).
totalElems: 0,
genericsElems: 0,
typeFilter: null,
isInBinding: null,
userQuery: userQuery.toLowerCase(),
};
let query = newParsedQuery(userQuery);
try {
parseInput(query, parserState);
for (const elem of query.elems) {
convertTypeFilterOnElem(elem);
}
for (const elem of query.returned) {
convertTypeFilterOnElem(elem);
}
} catch (err) {
query = newParsedQuery(userQuery);
query.error = err;
return query;
}
if (!query.literalSearch) {
// If there is more than one element in the query, we switch to literalSearch in any
// case.
query.literalSearch = parserState.totalElems > 1;
}
query.foundElems = query.elems.length + query.returned.length;
query.totalElems = parserState.totalElems;
return query;
}
/**
* Creates the query results.
*
* @param {Array<Result>} results_in_args
* @param {Array<Result>} results_returned
* @param {Array<Result>} results_others
* @param {ParsedQuery} parsedQuery
*
* @return {ResultsTable}
*/
function createQueryResults(results_in_args, results_returned, results_others, parsedQuery) {
return {
"in_args": results_in_args,
"returned": results_returned,
"others": results_others,
"query": parsedQuery,
};
}
/**
* Executes the parsed query and builds a {ResultsTable}.
*
* @param {ParsedQuery} parsedQuery - The parsed user query
* @param {Object} [filterCrates] - Crate to search in if defined
* @param {Object} [currentCrate] - Current crate, to rank results from this crate higher
*
* @return {ResultsTable}
*/
async function execQuery(parsedQuery, filterCrates, currentCrate) {
const results_others = new Map(), results_in_args = new Map(),
results_returned = new Map();
/**
* Add extra data to result objects, and filter items that have been
* marked for removal.
*
* @param {[ResultObject]} results
* @returns {[ResultObject]}
*/
function transformResults(results) {
const duplicates = new Set();
const out = [];
for (const result of results) {
if (result.id !== -1) {
const obj = searchIndex[result.id];
obj.dist = result.dist;
const res = buildHrefAndPath(obj);
obj.displayPath = pathSplitter(res[0]);
// To be sure than it some items aren't considered as duplicate.
obj.fullPath = res[2] + "|" + obj.ty;
if (duplicates.has(obj.fullPath)) {
continue;
}
// Exports are specifically not shown if the items they point at
// are already in the results.
if (obj.ty === TY_IMPORT && duplicates.has(res[2])) {
continue;
}
if (duplicates.has(res[2] + "|" + TY_IMPORT)) {
continue;
}
duplicates.add(obj.fullPath);
duplicates.add(res[2]);
obj.href = res[1];
out.push(obj);
if (out.length >= MAX_RESULTS) {
break;
}
}
}
return out;
}
/**
* This function takes a result map, and sorts it by various criteria, including edit
* distance, substring match, and the crate it comes from.
*
* @param {Results} results
* @param {boolean} isType
* @param {string} preferredCrate
* @returns {Promise<[ResultObject]>}
*/
async function sortResults(results, isType, preferredCrate) {
const userQuery = parsedQuery.userQuery;
const result_list = [];
for (const result of results.values()) {
result.item = searchIndex[result.id];
result.word = searchIndex[result.id].word;
result_list.push(result);
}
result_list.sort((aaa, bbb) => {
let a, b;
// sort by exact match with regard to the last word (mismatch goes later)
a = (aaa.word !== userQuery);
b = (bbb.word !== userQuery);
if (a !== b) {
return a - b;
}
// sort by index of keyword in item name (no literal occurrence goes later)
a = (aaa.index < 0);
b = (bbb.index < 0);
if (a !== b) {
return a - b;
}
// Sort by distance in the path part, if specified
// (less changes required to match means higher rankings)
a = aaa.path_dist;
b = bbb.path_dist;
if (a !== b) {
return a - b;
}
// (later literal occurrence, if any, goes later)
a = aaa.index;
b = bbb.index;
if (a !== b) {
return a - b;
}
// Sort by distance in the name part, the last part of the path
// (less changes required to match means higher rankings)
a = (aaa.dist);
b = (bbb.dist);
if (a !== b) {
return a - b;
}
// sort deprecated items later
a = searchIndexDeprecated.get(aaa.item.crate).contains(aaa.item.bitIndex);
b = searchIndexDeprecated.get(bbb.item.crate).contains(bbb.item.bitIndex);
if (a !== b) {
return a - b;
}
// sort by crate (current crate comes first)
a = (aaa.item.crate !== preferredCrate);
b = (bbb.item.crate !== preferredCrate);
if (a !== b) {
return a - b;
}
// sort by item name length (longer goes later)
a = aaa.word.length;
b = bbb.word.length;
if (a !== b) {
return a - b;
}
// sort by item name (lexicographically larger goes later)
a = aaa.word;
b = bbb.word;
if (a !== b) {
return (a > b ? +1 : -1);
}
// sort by description (no description goes later)
a = searchIndexEmptyDesc.get(aaa.item.crate).contains(aaa.item.bitIndex);
b = searchIndexEmptyDesc.get(bbb.item.crate).contains(bbb.item.bitIndex);
if (a !== b) {
return a - b;
}
// sort by type (later occurrence in `itemTypes` goes later)
a = aaa.item.ty;
b = bbb.item.ty;
if (a !== b) {
return a - b;
}
// sort by path (lexicographically larger goes later)
a = aaa.item.path;
b = bbb.item.path;
if (a !== b) {
return (a > b ? +1 : -1);
}
// que sera, sera
return 0;
});
return transformResults(result_list);
}
/**
* This function checks if a list of search query `queryElems` can all be found in the
* search index (`fnTypes`).
*
* This function returns `true` on a match, or `false` if none. If `solutionCb` is
* supplied, it will call that function with mgens, and that callback can accept or
* reject the result bu returning `true` or `false`. If the callback returns false,
* then this function will try with a different solution, or bail with false if it
* runs out of candidates.
*
* @param {Array<FunctionType>} fnTypesIn - The objects to check.
* @param {Array<QueryElement>} queryElems - The elements from the parsed query.
* @param {[FunctionType]} whereClause - Trait bounds for generic items.
* @param {Map<number,number>|null} mgensIn
* - Map functions generics to query generics (never modified).
* @param {null|Map<number,number> -> bool} solutionCb - Called for each `mgens` solution.
* @param {number} unboxingDepth
* - Limit checks that Ty matches Vec<Ty>,
* but not Vec<ParamEnvAnd<WithInfcx<ConstTy<Interner<Ty=Ty>>>>>
*
* @return {boolean} - Returns true if a match, false otherwise.
*/
function unifyFunctionTypes(
fnTypesIn,
queryElems,
whereClause,
mgensIn,
solutionCb,
unboxingDepth,
) {
if (unboxingDepth >= UNBOXING_LIMIT) {
return false;
}
/**
* @type Map<integer, integer>|null
*/
const mgens = mgensIn === null ? null : new Map(mgensIn);
if (queryElems.length === 0) {
return !solutionCb || solutionCb(mgens);
}
if (!fnTypesIn || fnTypesIn.length === 0) {
return false;
}
const ql = queryElems.length;
const fl = fnTypesIn.length;
// One element fast path / base case
if (ql === 1 && queryElems[0].generics.length === 0
&& queryElems[0].bindings.size === 0) {
const queryElem = queryElems[0];
for (const fnType of fnTypesIn) {
if (!unifyFunctionTypeIsMatchCandidate(fnType, queryElem, mgens)) {
continue;
}
if (fnType.id < 0 && queryElem.id < 0) {
if (mgens && mgens.has(fnType.id) &&
mgens.get(fnType.id) !== queryElem.id) {
continue;
}
const mgensScratch = new Map(mgens);
mgensScratch.set(fnType.id, queryElem.id);
if (!solutionCb || solutionCb(mgensScratch)) {
return true;
}
} else if (!solutionCb || solutionCb(mgens ? new Map(mgens) : null)) {
// unifyFunctionTypeIsMatchCandidate already checks that ids match
return true;
}
}
for (const fnType of fnTypesIn) {
if (!unifyFunctionTypeIsUnboxCandidate(
fnType,
queryElem,
whereClause,
mgens,
unboxingDepth + 1,
)) {
continue;
}
if (fnType.id < 0) {
if (mgens && mgens.has(fnType.id) &&
mgens.get(fnType.id) !== 0) {
continue;
}
const mgensScratch = new Map(mgens);
mgensScratch.set(fnType.id, 0);
if (unifyFunctionTypes(
whereClause[(-fnType.id) - 1],
queryElems,
whereClause,
mgensScratch,
solutionCb,
unboxingDepth + 1,
)) {
return true;
}
} else if (unifyFunctionTypes(
[...fnType.generics, ...Array.from(fnType.bindings.values()).flat() ],
queryElems,
whereClause,
mgens ? new Map(mgens) : null,
solutionCb,
unboxingDepth + 1,
)) {
return true;
}
}
return false;
}
// Multiple element recursive case
/**
* @type Array<FunctionType>
*/
const fnTypes = fnTypesIn.slice();
/**
* Algorithm works by building up a solution set in the working arrays
* fnTypes gets mutated in place to make this work, while queryElems
* is left alone.
*
* It works backwards, because arrays can be cheaply truncated that way.
*
* vvvvvvv `queryElem`
* queryElems = [ unknown, unknown, good, good, good ]
* fnTypes = [ unknown, unknown, good, good, good ]
* ^^^^^^^^^^^^^^^^ loop over these elements to find candidates
*
* Everything in the current working solution is known to be a good
* match, but it might not be the match we wind up going with, because
* there might be more than one candidate match, and we need to try them all
* before giving up. So, to handle this, it backtracks on failure.
*/
const flast = fl - 1;
const qlast = ql - 1;
const queryElem = queryElems[qlast];
let queryElemsTmp = null;
for (let i = flast; i >= 0; i -= 1) {
const fnType = fnTypes[i];
if (!unifyFunctionTypeIsMatchCandidate(fnType, queryElem, mgens)) {
continue;
}
let mgensScratch;
if (fnType.id < 0) {
mgensScratch = new Map(mgens);
if (mgensScratch.has(fnType.id)
&& mgensScratch.get(fnType.id) !== queryElem.id) {
continue;
}
mgensScratch.set(fnType.id, queryElem.id);
} else {
mgensScratch = mgens;
}
// fnTypes[i] is a potential match
// fnTypes[flast] is the last item in the list
// swap them, and drop the potential match from the list
// check if the remaining function types also match
fnTypes[i] = fnTypes[flast];
fnTypes.length = flast;
if (!queryElemsTmp) {
queryElemsTmp = queryElems.slice(0, qlast);
}
const passesUnification = unifyFunctionTypes(
fnTypes,
queryElemsTmp,
whereClause,
mgensScratch,
mgensScratch => {
if (fnType.generics.length === 0 && queryElem.generics.length === 0
&& fnType.bindings.size === 0 && queryElem.bindings.size === 0) {
return !solutionCb || solutionCb(mgensScratch);
}
const solution = unifyFunctionTypeCheckBindings(
fnType,
queryElem,
whereClause,
mgensScratch,
unboxingDepth,
);
if (!solution) {
return false;
}
const simplifiedGenerics = solution.simplifiedGenerics;
for (const simplifiedMgens of solution.mgens) {
const passesUnification = unifyFunctionTypes(
simplifiedGenerics,
queryElem.generics,
whereClause,
simplifiedMgens,
solutionCb,
unboxingDepth,
);
if (passesUnification) {
return true;
}
}
return false;
},
unboxingDepth,
);
if (passesUnification) {
return true;
}
// backtrack
fnTypes[flast] = fnTypes[i];
fnTypes[i] = fnType;
fnTypes.length = fl;
}
for (let i = flast; i >= 0; i -= 1) {
const fnType = fnTypes[i];
if (!unifyFunctionTypeIsUnboxCandidate(
fnType,
queryElem,
whereClause,
mgens,
unboxingDepth + 1,
)) {
continue;
}
let mgensScratch;
if (fnType.id < 0) {
mgensScratch = new Map(mgens);
if (mgensScratch.has(fnType.id) && mgensScratch.get(fnType.id) !== 0) {
continue;
}
mgensScratch.set(fnType.id, 0);
} else {
mgensScratch = mgens;
}
const generics = fnType.id < 0 ?
whereClause[(-fnType.id) - 1] :
fnType.generics;
const bindings = fnType.bindings ?
Array.from(fnType.bindings.values()).flat() :
[];
const passesUnification = unifyFunctionTypes(
fnTypes.toSpliced(i, 1, ...generics, ...bindings),
queryElems,
whereClause,
mgensScratch,
solutionCb,
unboxingDepth + 1,
);
if (passesUnification) {
return true;
}
}
return false;
}
/**
* Check if this function is a match candidate.
*
* This function is all the fast checks that don't require backtracking.
* It checks that two items are not named differently, and is load-bearing for that.
* It also checks that, if the query has generics, the function type must have generics
* or associated type bindings: that's not load-bearing, but it prevents unnecessary
* backtracking later.
*
* @param {FunctionType} fnType
* @param {QueryElement} queryElem
* @param {Map<number,number>|null} mgensIn - Map functions generics to query generics.
* @returns {boolean}
*/
function unifyFunctionTypeIsMatchCandidate(fnType, queryElem, mgensIn) {
// type filters look like `trait:Read` or `enum:Result`
if (!typePassesFilter(queryElem.typeFilter, fnType.ty)) {
return false;
}
// fnType.id < 0 means generic
// queryElem.id < 0 does too
// mgensIn[fnType.id] = queryElem.id
// or, if mgensIn[fnType.id] = 0, then we've matched this generic with a bare trait
// and should make that same decision everywhere it appears
if (fnType.id < 0 && queryElem.id < 0) {
if (mgensIn) {
if (mgensIn.has(fnType.id) && mgensIn.get(fnType.id) !== queryElem.id) {
return false;
}
for (const [fid, qid] of mgensIn.entries()) {
if (fnType.id !== fid && queryElem.id === qid) {
return false;
}
if (fnType.id === fid && queryElem.id !== qid) {
return false;
}
}
}
return true;
} else {
if (queryElem.id === typeNameIdOfArrayOrSlice &&
(fnType.id === typeNameIdOfSlice || fnType.id === typeNameIdOfArray)
) {
// [] matches primitive:array or primitive:slice
// if it matches, then we're fine, and this is an appropriate match candidate
} else if (queryElem.id === typeNameIdOfTupleOrUnit &&
(fnType.id === typeNameIdOfTuple || fnType.id === typeNameIdOfUnit)
) {
// () matches primitive:tuple or primitive:unit
// if it matches, then we're fine, and this is an appropriate match candidate
} else if (queryElem.id === typeNameIdOfHof &&
(fnType.id === typeNameIdOfFn || fnType.id === typeNameIdOfFnMut ||
fnType.id === typeNameIdOfFnOnce)
) {
// -> matches fn, fnonce, and fnmut
// if it matches, then we're fine, and this is an appropriate match candidate
} else if (fnType.id !== queryElem.id || queryElem.id === null) {
return false;
}
// If the query elem has generics, and the function doesn't,
// it can't match.
if ((fnType.generics.length + fnType.bindings.size) === 0 &&
queryElem.generics.length !== 0
) {
return false;
}
if (fnType.bindings.size < queryElem.bindings.size) {
return false;
}
// If the query element is a path (it contains `::`), we need to check if this
// path is compatible with the target type.
const queryElemPathLength = queryElem.pathWithoutLast.length;
if (queryElemPathLength > 0) {
const fnTypePath = fnType.path !== undefined && fnType.path !== null ?
fnType.path.split("::") : [];
// If the path provided in the query element is longer than this type,
// no need to check it since it won't match in any case.
if (queryElemPathLength > fnTypePath.length) {
return false;
}
let i = 0;
for (const path of fnTypePath) {
if (path === queryElem.pathWithoutLast[i]) {
i += 1;
if (i >= queryElemPathLength) {
break;
}
}
}
if (i < queryElemPathLength) {
// If we didn't find all parts of the path of the query element inside
// the fn type, then it's not the right one.
return false;
}
}
return true;
}
}
/**
* This function checks the associated type bindings. Any that aren't matched get converted
* to generics, and this function returns an array of the function's generics with these
* simplified bindings added to them. That is, it takes a path like this:
*
* Iterator<Item=u32>
*
* ... if queryElem itself has an `Item=` in it, then this function returns an empty array.
* But if queryElem contains no Item=, then this function returns a one-item array with the
* ID of u32 in it, and the rest of the matching engine acts as if `Iterator<u32>` were
* the type instead.
*
* @param {FunctionType} fnType
* @param {QueryElement} queryElem
* @param {[FunctionType]} whereClause - Trait bounds for generic items.
* @param {Map<number,number>} mgensIn - Map functions generics to query generics.
* Never modified.
* @param {number} unboxingDepth
* @returns {false|{mgens: [Map<number,number>], simplifiedGenerics: [FunctionType]}}
*/
function unifyFunctionTypeCheckBindings(
fnType,
queryElem,
whereClause,
mgensIn,
unboxingDepth,
) {
if (fnType.bindings.size < queryElem.bindings.size) {
return false;
}
let simplifiedGenerics = fnType.generics || [];
if (fnType.bindings.size > 0) {
let mgensSolutionSet = [mgensIn];
for (const [name, constraints] of queryElem.bindings.entries()) {
if (mgensSolutionSet.length === 0) {
return false;
}
if (!fnType.bindings.has(name)) {
return false;
}
const fnTypeBindings = fnType.bindings.get(name);
mgensSolutionSet = mgensSolutionSet.flatMap(mgens => {
const newSolutions = [];
unifyFunctionTypes(
fnTypeBindings,
constraints,
whereClause,
mgens,
newMgens => {
newSolutions.push(newMgens);
// return `false` makes unifyFunctionTypes return the full set of
// possible solutions
return false;
},
unboxingDepth,
);
return newSolutions;
});
}
if (mgensSolutionSet.length === 0) {
return false;
}
const binds = Array.from(fnType.bindings.entries()).flatMap(entry => {
const [name, constraints] = entry;
if (queryElem.bindings.has(name)) {
return [];
} else {
return constraints;
}
});
if (simplifiedGenerics.length > 0) {
simplifiedGenerics = [...simplifiedGenerics, ...binds];
} else {
simplifiedGenerics = binds;
}
return { simplifiedGenerics, mgens: mgensSolutionSet };
}
return { simplifiedGenerics, mgens: [mgensIn] };
}
/**
* @param {FunctionType} fnType
* @param {QueryElement} queryElem
* @param {[FunctionType]} whereClause - Trait bounds for generic items.
* @param {Map<number,number>|null} mgens - Map functions generics to query generics.
* @param {number} unboxingDepth
* @returns {boolean}
*/
function unifyFunctionTypeIsUnboxCandidate(
fnType,
queryElem,
whereClause,
mgens,
unboxingDepth,
) {
if (unboxingDepth >= UNBOXING_LIMIT) {
return false;
}
if (fnType.id < 0 && queryElem.id >= 0) {
if (!whereClause) {
return false;
}
// mgens[fnType.id] === 0 indicates that we committed to unboxing this generic
// mgens[fnType.id] === null indicates that we haven't decided yet
if (mgens && mgens.has(fnType.id) && mgens.get(fnType.id) !== 0) {
return false;
}
// Where clauses can represent cyclical data.
// `null` prevents it from trying to unbox in an infinite loop
const mgensTmp = new Map(mgens);
mgensTmp.set(fnType.id, null);
// This is only a potential unbox if the search query appears in the where clause
// for example, searching `Read -> usize` should find
// `fn read_all<R: Read>(R) -> Result<usize>`
// generic `R` is considered "unboxed"
return checkIfInList(
whereClause[(-fnType.id) - 1],
queryElem,
whereClause,
mgensTmp,
unboxingDepth,
);
} else if (fnType.generics.length > 0 || fnType.bindings.size > 0) {
const simplifiedGenerics = [
...fnType.generics,
...Array.from(fnType.bindings.values()).flat(),
];
return checkIfInList(
simplifiedGenerics,
queryElem,
whereClause,
mgens,
unboxingDepth,
);
}
return false;
}
/**
* This function checks if the object (`row`) matches the given type (`elem`) and its
* generics (if any).
*
* @param {Array<FunctionType>} list
* @param {QueryElement} elem - The element from the parsed query.
* @param {[FunctionType]} whereClause - Trait bounds for generic items.
* @param {Map<number,number>|null} mgens - Map functions generics to query generics.
* @param {number} unboxingDepth
*
* @return {boolean} - Returns true if found, false otherwise.
*/
function checkIfInList(list, elem, whereClause, mgens, unboxingDepth) {
for (const entry of list) {
if (checkType(entry, elem, whereClause, mgens, unboxingDepth)) {
return true;
}
}
return false;
}
/**
* This function checks if the object (`row`) matches the given type (`elem`) and its
* generics (if any).
*
* @param {Row} row
* @param {QueryElement} elem - The element from the parsed query.
* @param {[FunctionType]} whereClause - Trait bounds for generic items.
* @param {Map<number,number>|null} mgens - Map functions generics to query generics.
*
* @return {boolean} - Returns true if the type matches, false otherwise.
*/
function checkType(row, elem, whereClause, mgens, unboxingDepth) {
if (unboxingDepth >= UNBOXING_LIMIT) {
return false;
}
if (row.bindings.size === 0 && elem.bindings.size === 0) {
if (elem.id < 0 && mgens === null) {
return row.id < 0 || checkIfInList(
row.generics,
elem,
whereClause,
mgens,
unboxingDepth + 1,
);
}
if (row.id > 0 && elem.id > 0 && elem.pathWithoutLast.length === 0 &&
typePassesFilter(elem.typeFilter, row.ty) && elem.generics.length === 0 &&
// special case
elem.id !== typeNameIdOfArrayOrSlice && elem.id !== typeNameIdOfTupleOrUnit
&& elem.id !== typeNameIdOfHof
) {
return row.id === elem.id || checkIfInList(
row.generics,
elem,
whereClause,
mgens,
unboxingDepth,
);
}
}
return unifyFunctionTypes([row], [elem], whereClause, mgens, null, unboxingDepth);
}
/**
* Compute an "edit distance" that ignores missing path elements.
* @param {string[]} contains search query path
* @param {Row} ty indexed item
* @returns {null|number} edit distance
*/
function checkPath(contains, ty) {
if (contains.length === 0) {
return 0;
}
const maxPathEditDistance = Math.floor(
contains.reduce((acc, next) => acc + next.length, 0) / 3,
);
let ret_dist = maxPathEditDistance + 1;
const path = ty.path.split("::");
if (ty.parent && ty.parent.name) {
path.push(ty.parent.name.toLowerCase());
}
const length = path.length;
const clength = contains.length;
pathiter: for (let i = length - clength; i >= 0; i -= 1) {
let dist_total = 0;
for (let x = 0; x < clength; ++x) {
const [p, c] = [path[i + x], contains[x]];
if (Math.floor((p.length - c.length) / 3) <= maxPathEditDistance &&
p.indexOf(c) !== -1
) {
// discount distance on substring match
dist_total += Math.floor((p.length - c.length) / 3);
} else {
const dist = editDistance(p, c, maxPathEditDistance);
if (dist > maxPathEditDistance) {
continue pathiter;
}
dist_total += dist;
}
}
ret_dist = Math.min(ret_dist, Math.round(dist_total / clength));
}
return ret_dist > maxPathEditDistance ? null : ret_dist;
}
function typePassesFilter(filter, type) {
// No filter or Exact mach
if (filter <= NO_TYPE_FILTER || filter === type) return true;
// Match related items
const name = itemTypes[type];
switch (itemTypes[filter]) {
case "constant":
return name === "associatedconstant";
case "fn":
return name === "method" || name === "tymethod";
case "type":
return name === "primitive" || name === "associatedtype";
case "trait":
return name === "traitalias";
}
// No match
return false;
}
function createAliasFromItem(item) {
return {
crate: item.crate,
name: item.name,
path: item.path,
descShard: item.descShard,
descIndex: item.descIndex,
exactPath: item.exactPath,
ty: item.ty,
parent: item.parent,
type: item.type,
is_alias: true,
bitIndex: item.bitIndex,
implDisambiguator: item.implDisambiguator,
};
}
async function handleAliases(ret, query, filterCrates, currentCrate) {
const lowerQuery = query.toLowerCase();
// We separate aliases and crate aliases because we want to have current crate
// aliases to be before the others in the displayed results.
const aliases = [];
const crateAliases = [];
if (filterCrates !== null) {
if (ALIASES.has(filterCrates) && ALIASES.get(filterCrates).has(lowerQuery)) {
const query_aliases = ALIASES.get(filterCrates).get(lowerQuery);
for (const alias of query_aliases) {
aliases.push(createAliasFromItem(searchIndex[alias]));
}
}
} else {
for (const [crate, crateAliasesIndex] of ALIASES) {
if (crateAliasesIndex.has(lowerQuery)) {
const pushTo = crate === currentCrate ? crateAliases : aliases;
const query_aliases = crateAliasesIndex.get(lowerQuery);
for (const alias of query_aliases) {
pushTo.push(createAliasFromItem(searchIndex[alias]));
}
}
}
}
const sortFunc = (aaa, bbb) => {
if (aaa.path < bbb.path) {
return 1;
} else if (aaa.path === bbb.path) {
return 0;
}
return -1;
};
crateAliases.sort(sortFunc);
aliases.sort(sortFunc);
const fetchDesc = alias => {
return searchIndexEmptyDesc.get(alias.crate).contains(alias.bitIndex) ?
"" : searchState.loadDesc(alias);
};
const [crateDescs, descs] = await Promise.all([
Promise.all(crateAliases.map(fetchDesc)),
Promise.all(aliases.map(fetchDesc))
]);
const pushFunc = alias => {
alias.alias = query;
const res = buildHrefAndPath(alias);
alias.displayPath = pathSplitter(res[0]);
alias.fullPath = alias.displayPath + alias.name;
alias.href = res[1];
ret.others.unshift(alias);
if (ret.others.length > MAX_RESULTS) {
ret.others.pop();
}
};
aliases.forEach((alias, i) => alias.desc = descs[i]);
aliases.forEach(pushFunc);
crateAliases.forEach((alias, i) => alias.desc = crateDescs[i]);
crateAliases.forEach(pushFunc);
}
/**
* This function adds the given result into the provided `results` map if it matches the
* following condition:
*
* * If it is a "literal search" (`parsedQuery.literalSearch`), then `dist` must be 0.
* * If it is not a "literal search", `dist` must be <= `maxEditDistance`.
*
* The `results` map contains information which will be used to sort the search results:
*
* * `fullId` is a `string`` used as the key of the object we use for the `results` map.
* * `id` is the index in the `searchIndex` array for this element.
* * `index` is an `integer`` used to sort by the position of the word in the item's name.
* * `dist` is the main metric used to sort the search results.
* * `path_dist` is zero if a single-component search query is used, otherwise it's the
* distance computed for everything other than the last path component.
*
* @param {Results} results
* @param {string} fullId
* @param {integer} id
* @param {integer} index
* @param {integer} dist
* @param {integer} path_dist
*/
function addIntoResults(results, fullId, id, index, dist, path_dist, maxEditDistance) {
if (dist <= maxEditDistance || index !== -1) {
if (results.has(fullId)) {
const result = results.get(fullId);
if (result.dontValidate || result.dist <= dist) {
return;
}
}
results.set(fullId, {
id: id,
index: index,
dontValidate: parsedQuery.literalSearch,
dist: dist,
path_dist: path_dist,
});
}
}
/**
* This function is called in case the query is only one element (with or without generics).
* This element will be compared to arguments' and returned values' items and also to items.
*
* Other important thing to note: since there is only one element, we use edit
* distance for name comparisons.
*
* @param {Row} row
* @param {integer} pos - Position in the `searchIndex`.
* @param {QueryElement} elem - The element from the parsed query.
* @param {Results} results_others - Unqualified results (not in arguments nor in
* returned values).
* @param {Results} results_in_args - Matching arguments results.
* @param {Results} results_returned - Matching returned arguments results.
*/
function handleSingleArg(
row,
pos,
elem,
results_others,
results_in_args,
results_returned,
maxEditDistance,
) {
if (!row || (filterCrates !== null && row.crate !== filterCrates)) {
return;
}
let path_dist = 0;
const fullId = row.id;
// fpDist is a minimum possible type distance, where "type distance" is the number of
// atoms in the function not present in the query
const tfpDist = compareTypeFingerprints(
fullId,
parsedQuery.typeFingerprint,
);
if (tfpDist !== null) {
const in_args = row.type && row.type.inputs
&& checkIfInList(row.type.inputs, elem, row.type.where_clause, null, 0);
const returned = row.type && row.type.output
&& checkIfInList(row.type.output, elem, row.type.where_clause, null, 0);
if (in_args) {
results_in_args.max_dist = Math.max(results_in_args.max_dist || 0, tfpDist);
const maxDist = results_in_args.size < MAX_RESULTS ?
(tfpDist + 1) :
results_in_args.max_dist;
addIntoResults(results_in_args, fullId, pos, -1, tfpDist, 0, maxDist);
}
if (returned) {
results_returned.max_dist = Math.max(results_returned.max_dist || 0, tfpDist);
const maxDist = results_returned.size < MAX_RESULTS ?
(tfpDist + 1) :
results_returned.max_dist;
addIntoResults(results_returned, fullId, pos, -1, tfpDist, 0, maxDist);
}
}
if (!typePassesFilter(elem.typeFilter, row.ty)) {
return;
}
let index = row.word.indexOf(elem.pathLast);
const normalizedIndex = row.normalizedName.indexOf(elem.pathLast);
if (index === -1 || (index > normalizedIndex && normalizedIndex !== -1)) {
index = normalizedIndex;
}
if (elem.fullPath.length > 1) {
path_dist = checkPath(elem.pathWithoutLast, row);
if (path_dist === null) {
return;
}
}
if (parsedQuery.literalSearch) {
if (row.word === elem.pathLast) {
addIntoResults(results_others, fullId, pos, index, 0, path_dist);
}
return;
}
const dist = editDistance(row.normalizedName, elem.normalizedPathLast, maxEditDistance);
if (index === -1 && dist > maxEditDistance) {
return;
}
addIntoResults(results_others, fullId, pos, index, dist, path_dist, maxEditDistance);
}
/**
* This function is called in case the query has more than one element. In this case, it'll
* try to match the items which validates all the elements. For `aa -> bb` will look for
* functions which have a parameter `aa` and has `bb` in its returned values.
*
* @param {Row} row
* @param {integer} pos - Position in the `searchIndex`.
* @param {Object} results
*/
function handleArgs(row, pos, results) {
if (!row || (filterCrates !== null && row.crate !== filterCrates) || !row.type) {
return;
}
const tfpDist = compareTypeFingerprints(
row.id,
parsedQuery.typeFingerprint,
);
if (tfpDist === null) {
return;
}
if (results.size >= MAX_RESULTS && tfpDist > results.max_dist) {
return;
}
// If the result is too "bad", we return false and it ends this search.
if (!unifyFunctionTypes(
row.type.inputs,
parsedQuery.elems,
row.type.where_clause,
null,
mgens => {
return unifyFunctionTypes(
row.type.output,
parsedQuery.returned,
row.type.where_clause,
mgens,
null,
0, // unboxing depth
);
},
0, // unboxing depth
)) {
return;
}
results.max_dist = Math.max(results.max_dist || 0, tfpDist);
addIntoResults(results, row.id, pos, 0, tfpDist, 0, Number.MAX_VALUE);
}
function innerRunQuery() {
const queryLen =
parsedQuery.elems.reduce((acc, next) => acc + next.pathLast.length, 0) +
parsedQuery.returned.reduce((acc, next) => acc + next.pathLast.length, 0);
const maxEditDistance = Math.floor(queryLen / 3);
/**
* @type {Map<string, integer>}
*/
const genericSymbols = new Map();
/**
* Convert names to ids in parsed query elements.
* This is not used for the "In Names" tab, but is used for the
* "In Params", "In Returns", and "In Function Signature" tabs.
*
* If there is no matching item, but a close-enough match, this
* function also that correction.
*
* See `buildTypeMapIndex` for more information.
*
* @param {QueryElement} elem
* @param {boolean} isAssocType
*/
function convertNameToId(elem, isAssocType) {
if (typeNameIdMap.has(elem.normalizedPathLast) &&
(isAssocType || !typeNameIdMap.get(elem.normalizedPathLast).assocOnly)) {
elem.id = typeNameIdMap.get(elem.normalizedPathLast).id;
} else if (!parsedQuery.literalSearch) {
let match = null;
let matchDist = maxEditDistance + 1;
let matchName = "";
for (const [name, {id, assocOnly}] of typeNameIdMap) {
const dist = editDistance(name, elem.normalizedPathLast, maxEditDistance);
if (dist <= matchDist && dist <= maxEditDistance &&
(isAssocType || !assocOnly)) {
if (dist === matchDist && matchName > name) {
continue;
}
match = id;
matchDist = dist;
matchName = name;
}
}
if (match !== null) {
parsedQuery.correction = matchName;
}
elem.id = match;
}
if ((elem.id === null && parsedQuery.totalElems > 1 && elem.typeFilter === -1
&& elem.generics.length === 0 && elem.bindings.size === 0)
|| elem.typeFilter === TY_GENERIC) {
if (genericSymbols.has(elem.name)) {
elem.id = genericSymbols.get(elem.name);
} else {
elem.id = -(genericSymbols.size + 1);
genericSymbols.set(elem.name, elem.id);
}
if (elem.typeFilter === -1 && elem.name.length >= 3) {
// Silly heuristic to catch if the user probably meant
// to not write a generic parameter. We don't use it,
// just bring it up.
const maxPartDistance = Math.floor(elem.name.length / 3);
let matchDist = maxPartDistance + 1;
let matchName = "";
for (const name of typeNameIdMap.keys()) {
const dist = editDistance(name, elem.name, maxPartDistance);
if (dist <= matchDist && dist <= maxPartDistance) {
if (dist === matchDist && matchName > name) {
continue;
}
matchDist = dist;
matchName = name;
}
}
if (matchName !== "") {
parsedQuery.proposeCorrectionFrom = elem.name;
parsedQuery.proposeCorrectionTo = matchName;
}
}
elem.typeFilter = TY_GENERIC;
}
if (elem.generics.length > 0 && elem.typeFilter === TY_GENERIC) {
// Rust does not have HKT
parsedQuery.error = [
"Generic type parameter ",
elem.name,
" does not accept generic parameters",
];
}
for (const elem2 of elem.generics) {
convertNameToId(elem2);
}
elem.bindings = new Map(Array.from(elem.bindings.entries())
.map(entry => {
const [name, constraints] = entry;
if (!typeNameIdMap.has(name)) {
parsedQuery.error = [
"Type parameter ",
name,
" does not exist",
];
return [null, []];
}
for (const elem2 of constraints) {
convertNameToId(elem2);
}
return [typeNameIdMap.get(name).id, constraints];
}),
);
}
const fps = new Set();
for (const elem of parsedQuery.elems) {
convertNameToId(elem);
buildFunctionTypeFingerprint(elem, parsedQuery.typeFingerprint, fps);
}
for (const elem of parsedQuery.returned) {
convertNameToId(elem);
buildFunctionTypeFingerprint(elem, parsedQuery.typeFingerprint, fps);
}
if (parsedQuery.foundElems === 1 && parsedQuery.returned.length === 0) {
if (parsedQuery.elems.length === 1) {
const elem = parsedQuery.elems[0];
for (let i = 0, nSearchIndex = searchIndex.length; i < nSearchIndex; ++i) {
// It means we want to check for this element everywhere (in names, args and
// returned).
handleSingleArg(
searchIndex[i],
i,
elem,
results_others,
results_in_args,
results_returned,
maxEditDistance,
);
}
}
} else if (parsedQuery.foundElems > 0) {
// Sort input and output so that generic type variables go first and
// types with generic parameters go last.
// That's because of the way unification is structured: it eats off
// the end, and hits a fast path if the last item is a simple atom.
const sortQ = (a, b) => {
const ag = a.generics.length === 0 && a.bindings.size === 0;
const bg = b.generics.length === 0 && b.bindings.size === 0;
if (ag !== bg) {
return ag - bg;
}
const ai = a.id > 0;
const bi = b.id > 0;
return ai - bi;
};
parsedQuery.elems.sort(sortQ);
parsedQuery.returned.sort(sortQ);
for (let i = 0, nSearchIndex = searchIndex.length; i < nSearchIndex; ++i) {
handleArgs(searchIndex[i], i, results_others);
}
}
}
if (parsedQuery.error === null) {
innerRunQuery();
}
const [sorted_in_args, sorted_returned, sorted_others] = await Promise.all([
sortResults(results_in_args, true, currentCrate),
sortResults(results_returned, true, currentCrate),
sortResults(results_others, false, currentCrate),
]);
const ret = createQueryResults(
sorted_in_args,
sorted_returned,
sorted_others,
parsedQuery);
await handleAliases(ret, parsedQuery.original.replace(/"/g, ""),
filterCrates, currentCrate);
await Promise.all([ret.others, ret.returned, ret.in_args].map(async list => {
const descs = await Promise.all(list.map(result => {
return searchIndexEmptyDesc.get(result.crate).contains(result.bitIndex) ?
"" :
searchState.loadDesc(result);
}));
for (const [i, result] of list.entries()) {
result.desc = descs[i];
}
}));
if (parsedQuery.error !== null && ret.others.length !== 0) {
// It means some doc aliases were found so let's "remove" the error!
ret.query.error = null;
}
return ret;
}
function nextTab(direction) {
const next = (searchState.currentTab + direction + 3) % searchState.focusedByTab.length;
searchState.focusedByTab[searchState.currentTab] = document.activeElement;
printTab(next);
focusSearchResult();
}
// Focus the first search result on the active tab, or the result that
// was focused last time this tab was active.
function focusSearchResult() {
const target = searchState.focusedByTab[searchState.currentTab] ||
document.querySelectorAll(".search-results.active a").item(0) ||
document.querySelectorAll("#search-tabs button").item(searchState.currentTab);
searchState.focusedByTab[searchState.currentTab] = null;
if (target) {
target.focus();
}
}
function buildHrefAndPath(item) {
let displayPath;
let href;
const type = itemTypes[item.ty];
const name = item.name;
let path = item.path;
let exactPath = item.exactPath;
if (type === "mod") {
displayPath = path + "::";
href = ROOT_PATH + path.replace(/::/g, "/") + "/" +
name + "/index.html";
} else if (type === "import") {
displayPath = item.path + "::";
href = ROOT_PATH + item.path.replace(/::/g, "/") + "/index.html#reexport." + name;
} else if (type === "primitive" || type === "keyword") {
displayPath = "";
href = ROOT_PATH + path.replace(/::/g, "/") +
"/" + type + "." + name + ".html";
} else if (type === "externcrate") {
displayPath = "";
href = ROOT_PATH + name + "/index.html";
} else if (item.parent !== undefined) {
const myparent = item.parent;
let anchor = type + "." + name;
const parentType = itemTypes[myparent.ty];
let pageType = parentType;
let pageName = myparent.name;
exactPath = `${myparent.exactPath}::${myparent.name}`;
if (parentType === "primitive") {
displayPath = myparent.name + "::";
} else if (type === "structfield" && parentType === "variant") {
// Structfields belonging to variants are special: the
// final path element is the enum name.
const enumNameIdx = item.path.lastIndexOf("::");
const enumName = item.path.substr(enumNameIdx + 2);
path = item.path.substr(0, enumNameIdx);
displayPath = path + "::" + enumName + "::" + myparent.name + "::";
anchor = "variant." + myparent.name + ".field." + name;
pageType = "enum";
pageName = enumName;
} else {
displayPath = path + "::" + myparent.name + "::";
}
if (item.implDisambiguator !== null) {
anchor = item.implDisambiguator + "/" + anchor;
}
href = ROOT_PATH + path.replace(/::/g, "/") +
"/" + pageType +
"." + pageName +
".html#" + anchor;
} else {
displayPath = item.path + "::";
href = ROOT_PATH + item.path.replace(/::/g, "/") +
"/" + type + "." + name + ".html";
}
return [displayPath, href, `${exactPath}::${name}`];
}
function pathSplitter(path) {
const tmp = "<span>" + path.replace(/::/g, "::</span><span>");
if (tmp.endsWith("<span>")) {
return tmp.slice(0, tmp.length - 6);
}
return tmp;
}
/**
* Render a set of search results for a single tab.
* @param {Array<?>} array - The search results for this tab
* @param {ParsedQuery} query
* @param {boolean} display - True if this is the active tab
*/
async function addTab(array, query, display) {
const extraClass = display ? " active" : "";
const output = document.createElement("div");
if (array.length > 0) {
output.className = "search-results " + extraClass;
for (const item of array) {
const name = item.name;
const type = itemTypes[item.ty];
const longType = longItemTypes[item.ty];
const typeName = longType.length !== 0 ? `${longType}` : "?";
const link = document.createElement("a");
link.className = "result-" + type;
link.href = item.href;
const resultName = document.createElement("div");
resultName.className = "result-name";
resultName.insertAdjacentHTML(
"beforeend",
`<span class="typename">${typeName}</span>`);
link.appendChild(resultName);
let alias = " ";
if (item.is_alias) {
alias = ` <div class="alias">\
<b>${item.alias}</b><i class="grey">&nbsp;- see&nbsp;</i>\
</div>`;
}
resultName.insertAdjacentHTML(
"beforeend",
`<div class="path">${alias}\
${item.displayPath}<span class="${type}">${name}</span>\
</div>`);
const description = document.createElement("div");
description.className = "desc";
description.insertAdjacentHTML("beforeend", item.desc);
link.appendChild(description);
output.appendChild(link);
}
} else if (query.error === null) {
output.className = "search-failed" + extraClass;
output.innerHTML = "No results :(<br/>" +
"Try on <a href=\"https://duckduckgo.com/?q=" +
encodeURIComponent("rust " + query.userQuery) +
"\">DuckDuckGo</a>?<br/><br/>" +
"Or try looking in one of these:<ul><li>The <a " +
"href=\"https://doc.rust-lang.org/reference/index.html\">Rust Reference</a> " +
" for technical details about the language.</li><li><a " +
"href=\"https://doc.rust-lang.org/rust-by-example/index.html\">Rust By " +
"Example</a> for expository code examples.</a></li><li>The <a " +
"href=\"https://doc.rust-lang.org/book/index.html\">Rust Book</a> for " +
"introductions to language features and the language itself.</li><li><a " +
"href=\"https://docs.rs\">Docs.rs</a> for documentation of crates released on" +
" <a href=\"https://crates.io/\">crates.io</a>.</li></ul>";
}
return [output, array.length];
}
function makeTabHeader(tabNb, text, nbElems) {
// https://blog.horizon-eda.org/misc/2020/02/19/ui.html
//
// CSS runs with `font-variant-numeric: tabular-nums` to ensure all
// digits are the same width. \u{2007} is a Unicode space character
// that is defined to be the same width as a digit.
const fmtNbElems =
nbElems < 10 ? `\u{2007}(${nbElems})\u{2007}\u{2007}` :
nbElems < 100 ? `\u{2007}(${nbElems})\u{2007}` :
`\u{2007}(${nbElems})`;
if (searchState.currentTab === tabNb) {
return "<button class=\"selected\">" + text +
"<span class=\"count\">" + fmtNbElems + "</span></button>";
}
return "<button>" + text + "<span class=\"count\">" + fmtNbElems + "</span></button>";
}
/**
* @param {ResultsTable} results
* @param {boolean} go_to_first
* @param {string} filterCrates
*/
async function showResults(results, go_to_first, filterCrates) {
const search = searchState.outputElement();
if (go_to_first || (results.others.length === 1
&& getSettingValue("go-to-only-result") === "true")
) {
// Needed to force re-execution of JS when coming back to a page. Let's take this
// scenario as example:
//
// 1. You have the "Directly go to item in search if there is only one result" option
// enabled.
// 2. You make a search which results only one result, leading you automatically to
// this result.
// 3. You go back to previous page.
//
// Now, without the call below, the JS will not be re-executed and the previous state
// will be used, starting search again since the search input is not empty, leading you
// back to the previous page again.
window.onunload = () => {};
searchState.removeQueryParameters();
const elem = document.createElement("a");
elem.href = results.others[0].href;
removeClass(elem, "active");
// For firefox, we need the element to be in the DOM so it can be clicked.
document.body.appendChild(elem);
elem.click();
return;
}
if (results.query === undefined) {
results.query = parseQuery(searchState.input.value);
}
currentResults = results.query.userQuery;
const [ret_others, ret_in_args, ret_returned] = await Promise.all([
addTab(results.others, results.query, true),
addTab(results.in_args, results.query, false),
addTab(results.returned, results.query, false),
]);
// Navigate to the relevant tab if the current tab is empty, like in case users search
// for "-> String". If they had selected another tab previously, they have to click on
// it again.
let currentTab = searchState.currentTab;
if ((currentTab === 0 && ret_others[1] === 0) ||
(currentTab === 1 && ret_in_args[1] === 0) ||
(currentTab === 2 && ret_returned[1] === 0)) {
if (ret_others[1] !== 0) {
currentTab = 0;
} else if (ret_in_args[1] !== 0) {
currentTab = 1;
} else if (ret_returned[1] !== 0) {
currentTab = 2;
}
}
let crates = "";
if (rawSearchIndex.size > 1) {
crates = " in&nbsp;<div id=\"crate-search-div\"><select id=\"crate-search\">" +
"<option value=\"all crates\">all crates</option>";
for (const c of rawSearchIndex.keys()) {
crates += `<option value="${c}" ${c === filterCrates && "selected"}>${c}</option>`;
}
crates += "</select></div>";
}
let output = `<h1 class="search-results-title">Results${crates}</h1>`;
if (results.query.error !== null) {
const error = results.query.error;
error.forEach((value, index) => {
value = value.split("<").join("&lt;").split(">").join("&gt;");
if (index % 2 !== 0) {
error[index] = `<code>${value.replaceAll(" ", "&nbsp;")}</code>`;
} else {
error[index] = value;
}
});
output += `<h3 class="error">Query parser error: "${error.join("")}".</h3>`;
output += "<div id=\"search-tabs\">" +
makeTabHeader(0, "In Names", ret_others[1]) +
"</div>";
currentTab = 0;
} else if (results.query.foundElems <= 1 && results.query.returned.length === 0) {
output += "<div id=\"search-tabs\">" +
makeTabHeader(0, "In Names", ret_others[1]) +
makeTabHeader(1, "In Parameters", ret_in_args[1]) +
makeTabHeader(2, "In Return Types", ret_returned[1]) +
"</div>";
} else {
const signatureTabTitle =
results.query.elems.length === 0 ? "In Function Return Types" :
results.query.returned.length === 0 ? "In Function Parameters" :
"In Function Signatures";
output += "<div id=\"search-tabs\">" +
makeTabHeader(0, signatureTabTitle, ret_others[1]) +
"</div>";
currentTab = 0;
}
if (results.query.correction !== null) {
const orig = results.query.returned.length > 0
? results.query.returned[0].name
: results.query.elems[0].name;
output += "<h3 class=\"search-corrections\">" +
`Type "${orig}" not found. ` +
"Showing results for closest type name " +
`"${results.query.correction}" instead.</h3>`;
}
if (results.query.proposeCorrectionFrom !== null) {
const orig = results.query.proposeCorrectionFrom;
const targ = results.query.proposeCorrectionTo;
output += "<h3 class=\"search-corrections\">" +
`Type "${orig}" not found and used as generic parameter. ` +
`Consider searching for "${targ}" instead.</h3>`;
}
const resultsElem = document.createElement("div");
resultsElem.id = "results";
resultsElem.appendChild(ret_others[0]);
resultsElem.appendChild(ret_in_args[0]);
resultsElem.appendChild(ret_returned[0]);
search.innerHTML = output;
const crateSearch = document.getElementById("crate-search");
if (crateSearch) {
crateSearch.addEventListener("input", updateCrate);
}
search.appendChild(resultsElem);
// Reset focused elements.
searchState.showResults(search);
const elems = document.getElementById("search-tabs").childNodes;
searchState.focusedByTab = [];
let i = 0;
for (const elem of elems) {
const j = i;
elem.onclick = () => printTab(j);
searchState.focusedByTab.push(null);
i += 1;
}
printTab(currentTab);
}
function updateSearchHistory(url) {
if (!browserSupportsHistoryApi()) {
return;
}
const params = searchState.getQueryStringParams();
if (!history.state && !params.search) {
history.pushState(null, "", url);
} else {
history.replaceState(null, "", url);
}
}
/**
* Perform a search based on the current state of the search input element
* and display the results.
* @param {boolean} [forced]
*/
async function search(forced) {
const query = parseQuery(searchState.input.value.trim());
let filterCrates = getFilterCrates();
if (!forced && query.userQuery === currentResults) {
if (query.userQuery.length > 0) {
putBackSearch();
}
return;
}
searchState.setLoadingSearch();
const params = searchState.getQueryStringParams();
// In case we have no information about the saved crate and there is a URL query parameter,
// we override it with the URL query parameter.
if (filterCrates === null && params["filter-crate"] !== undefined) {
filterCrates = params["filter-crate"];
}
// Update document title to maintain a meaningful browser history
searchState.title = "Results for " + query.original + " - Rust";
// Because searching is incremental by character, only the most
// recent search query is added to the browser history.
updateSearchHistory(buildUrl(query.original, filterCrates));
await showResults(
await execQuery(query, filterCrates, window.currentCrate),
params.go_to_first,
filterCrates);
}
/**
* Convert a list of RawFunctionType / ID to object-based FunctionType.
*
* Crates often have lots of functions in them, and it's common to have a large number of
* functions that operate on a small set of data types, so the search index compresses them
* by encoding function parameter and return types as indexes into an array of names.
*
* Even when a general-purpose compression algorithm is used, this is still a win. I checked.
* https://github.com/rust-lang/rust/pull/98475#issue-1284395985
*
* The format for individual function types is encoded in
* librustdoc/html/render/mod.rs: impl Serialize for RenderType
*
* @param {null|Array<RawFunctionType>} types
* @param {Array<{name: string, ty: number}>} lowercasePaths
*
* @return {Array<FunctionSearchType>}
*/
function buildItemSearchTypeAll(types, lowercasePaths) {
return types.length > 0 ?
types.map(type => buildItemSearchType(type, lowercasePaths)) :
EMPTY_GENERICS_ARRAY;
}
/**
* Empty, immutable map used in item search types with no bindings.
*
* @type {Map<number, Array<FunctionType>>}
*/
const EMPTY_BINDINGS_MAP = new Map();
/**
* Empty, immutable map used in item search types with no bindings.
*
* @type {Array<FunctionType>}
*/
const EMPTY_GENERICS_ARRAY = [];
/**
* Object pool for function types with no bindings or generics.
* This is reset after loading the index.
*
* @type {Map<number|null, FunctionType>}
*/
let TYPES_POOL = new Map();
/**
* Converts a single type.
*
* @param {RawFunctionType} type
*/
function buildItemSearchType(type, lowercasePaths, isAssocType) {
const PATH_INDEX_DATA = 0;
const GENERICS_DATA = 1;
const BINDINGS_DATA = 2;
let pathIndex, generics, bindings;
if (typeof type === "number") {
pathIndex = type;
generics = EMPTY_GENERICS_ARRAY;
bindings = EMPTY_BINDINGS_MAP;
} else {
pathIndex = type[PATH_INDEX_DATA];
generics = buildItemSearchTypeAll(
type[GENERICS_DATA],
lowercasePaths,
);
if (type.length > BINDINGS_DATA && type[BINDINGS_DATA].length > 0) {
bindings = new Map(type[BINDINGS_DATA].map(binding => {
const [assocType, constraints] = binding;
// Associated type constructors are represented sloppily in rustdoc's
// type search, to make the engine simpler.
//
// MyType<Output<T>=Result<T>> is equivalent to MyType<Output<Result<T>>=T>
// and both are, essentially
// MyType<Output=(T, Result<T>)>, except the tuple isn't actually there.
// It's more like the value of a type binding is naturally an array,
// which rustdoc calls "constraints".
//
// As a result, the key should never have generics on it.
return [
buildItemSearchType(assocType, lowercasePaths, true).id,
buildItemSearchTypeAll(constraints, lowercasePaths),
];
}));
} else {
bindings = EMPTY_BINDINGS_MAP;
}
}
/**
* @type {FunctionType}
*/
let result;
if (pathIndex < 0) {
// types less than 0 are generic parameters
// the actual names of generic parameters aren't stored, since they aren't API
result = {
id: pathIndex,
ty: TY_GENERIC,
path: null,
exactPath: null,
generics,
bindings,
};
} else if (pathIndex === 0) {
// `0` is used as a sentinel because it's fewer bytes than `null`
result = {
id: null,
ty: null,
path: null,
exactPath: null,
generics,
bindings,
};
} else {
const item = lowercasePaths[pathIndex - 1];
result = {
id: buildTypeMapIndex(item.name, isAssocType),
ty: item.ty,
path: item.path,
exactPath: item.exactPath,
generics,
bindings,
};
}
const cr = TYPES_POOL.get(result.id);
if (cr) {
// Shallow equality check. Since this function is used
// to construct every type object, this should be mostly
// equivalent to a deep equality check, except if there's
// a conflict, we don't keep the old one around, so it's
// not a fully precise implementation of hashcons.
if (cr.generics.length === result.generics.length &&
cr.generics !== result.generics &&
cr.generics.every((x, i) => result.generics[i] === x)
) {
result.generics = cr.generics;
}
if (cr.bindings.size === result.bindings.size && cr.bindings !== result.bindings) {
let ok = true;
for (const [k, v] of cr.bindings.entries()) {
const v2 = result.bindings.get(v);
if (!v2) {
ok = false;
break;
}
if (v !== v2 && v.length === v2.length && v.every((x, i) => v2[i] === x)) {
result.bindings.set(k, v);
} else if (v !== v2) {
ok = false;
break;
}
}
if (ok) {
result.bindings = cr.bindings;
}
}
if (cr.ty === result.ty && cr.path === result.path
&& cr.bindings === result.bindings && cr.generics === result.generics
&& cr.ty === result.ty
) {
return cr;
}
}
TYPES_POOL.set(result.id, result);
return result;
}
/**
* Convert from RawFunctionSearchType to FunctionSearchType.
*
* Crates often have lots of functions in them, and function signatures are sometimes complex,
* so rustdoc uses a pretty tight encoding for them. This function converts it to a simpler,
* object-based encoding so that the actual search code is more readable and easier to debug.
*
* The raw function search type format is generated using serde in
* librustdoc/html/render/mod.rs: IndexItemFunctionType::write_to_string
*
* @param {Array<{name: string, ty: number}>} lowercasePaths
*
* @return {null|FunctionSearchType}
*/
function buildFunctionSearchTypeCallback(lowercasePaths) {
return functionSearchType => {
if (functionSearchType === 0) {
return null;
}
const INPUTS_DATA = 0;
const OUTPUT_DATA = 1;
let inputs, output;
if (typeof functionSearchType[INPUTS_DATA] === "number") {
inputs = [buildItemSearchType(functionSearchType[INPUTS_DATA], lowercasePaths)];
} else {
inputs = buildItemSearchTypeAll(
functionSearchType[INPUTS_DATA],
lowercasePaths,
);
}
if (functionSearchType.length > 1) {
if (typeof functionSearchType[OUTPUT_DATA] === "number") {
output = [buildItemSearchType(functionSearchType[OUTPUT_DATA], lowercasePaths)];
} else {
output = buildItemSearchTypeAll(
functionSearchType[OUTPUT_DATA],
lowercasePaths,
);
}
} else {
output = [];
}
const where_clause = [];
const l = functionSearchType.length;
for (let i = 2; i < l; ++i) {
where_clause.push(typeof functionSearchType[i] === "number"
? [buildItemSearchType(functionSearchType[i], lowercasePaths)]
: buildItemSearchTypeAll(functionSearchType[i], lowercasePaths));
}
return {
inputs, output, where_clause,
};
};
}
/**
* Type fingerprints allow fast, approximate matching of types.
*
* This algo creates a compact representation of the type set using a Bloom filter.
* This fingerprint is used three ways:
*
* - It accelerates the matching algorithm by checking the function fingerprint against the
* query fingerprint. If any bits are set in the query but not in the function, it can't
* match.
*
* - The fourth section has the number of distinct items in the set.
* This is the distance function, used for filtering and for sorting.
*
* [^1]: Distance is the relatively naive metric of counting the number of distinct items in
* the function that are not present in the query.
*
* @param {FunctionType|QueryElement} type - a single type
* @param {Uint32Array} output - write the fingerprint to this data structure: uses 128 bits
* @param {Set<number>} fps - Set of distinct items
*/
function buildFunctionTypeFingerprint(type, output, fps) {
let input = type.id;
// All forms of `[]`/`()`/`->` get collapsed down to one thing in the bloom filter.
// Differentiating between arrays and slices, if the user asks for it, is
// still done in the matching algorithm.
if (input === typeNameIdOfArray || input === typeNameIdOfSlice) {
input = typeNameIdOfArrayOrSlice;
}
if (input === typeNameIdOfTuple || input === typeNameIdOfUnit) {
input = typeNameIdOfTupleOrUnit;
}
if (input === typeNameIdOfFn || input === typeNameIdOfFnMut ||
input === typeNameIdOfFnOnce) {
input = typeNameIdOfHof;
}
// http://burtleburtle.net/bob/hash/integer.html
// ~~ is toInt32. It's used before adding, so
// the number stays in safe integer range.
const hashint1 = k => {
k = (~~k + 0x7ed55d16) + (k << 12);
k = (k ^ 0xc761c23c) ^ (k >>> 19);
k = (~~k + 0x165667b1) + (k << 5);
k = (~~k + 0xd3a2646c) ^ (k << 9);
k = (~~k + 0xfd7046c5) + (k << 3);
return (k ^ 0xb55a4f09) ^ (k >>> 16);
};
const hashint2 = k => {
k = ~k + (k << 15);
k ^= k >>> 12;
k += k << 2;
k ^= k >>> 4;
k = Math.imul(k, 2057);
return k ^ (k >> 16);
};
if (input !== null) {
const h0a = hashint1(input);
const h0b = hashint2(input);
// Less Hashing, Same Performance: Building a Better Bloom Filter
// doi=10.1.1.72.2442
const h1a = ~~(h0a + Math.imul(h0b, 2));
const h1b = ~~(h0a + Math.imul(h0b, 3));
const h2a = ~~(h0a + Math.imul(h0b, 4));
const h2b = ~~(h0a + Math.imul(h0b, 5));
output[0] |= (1 << (h0a % 32)) | (1 << (h1b % 32));
output[1] |= (1 << (h1a % 32)) | (1 << (h2b % 32));
output[2] |= (1 << (h2a % 32)) | (1 << (h0b % 32));
fps.add(input);
}
for (const g of type.generics) {
buildFunctionTypeFingerprint(g, output, fps);
}
const fb = {
id: null,
ty: 0,
generics: EMPTY_GENERICS_ARRAY,
bindings: EMPTY_BINDINGS_MAP,
};
for (const [k, v] of type.bindings.entries()) {
fb.id = k;
fb.generics = v;
buildFunctionTypeFingerprint(fb, output, fps);
}
output[3] = fps.size;
}
/**
* Compare the query fingerprint with the function fingerprint.
*
* @param {{number}} fullId - The function
* @param {{Uint32Array}} queryFingerprint - The query
* @returns {number|null} - Null if non-match, number if distance
* This function might return 0!
*/
function compareTypeFingerprints(fullId, queryFingerprint) {
const fh0 = functionTypeFingerprint[fullId * 4];
const fh1 = functionTypeFingerprint[(fullId * 4) + 1];
const fh2 = functionTypeFingerprint[(fullId * 4) + 2];
const [qh0, qh1, qh2] = queryFingerprint;
// Approximate set intersection with bloom filters.
// This can be larger than reality, not smaller, because hashes have
// the property that if they've got the same value, they hash to the
// same thing. False positives exist, but not false negatives.
const [in0, in1, in2] = [fh0 & qh0, fh1 & qh1, fh2 & qh2];
// Approximate the set of items in the query but not the function.
// This might be smaller than reality, but cannot be bigger.
//
// | in_ | qh_ | XOR | Meaning |
// | --- | --- | --- | ------------------------------------------------ |
// | 0 | 0 | 0 | Not present |
// | 1 | 0 | 1 | IMPOSSIBLE because `in_` is `fh_ & qh_` |
// | 1 | 1 | 0 | If one or both is false positive, false negative |
// | 0 | 1 | 1 | Since in_ has no false negatives, must be real |
if ((in0 ^ qh0) || (in1 ^ qh1) || (in2 ^ qh2)) {
return null;
}
return functionTypeFingerprint[(fullId * 4) + 3];
}
class VlqHexDecoder {
constructor(string, cons) {
this.string = string;
this.cons = cons;
this.offset = 0;
this.backrefQueue = [];
}
// call after consuming `{`
decodeList() {
const cb = "}".charCodeAt(0);
let c = this.string.charCodeAt(this.offset);
const ret = [];
while (c !== cb) {
ret.push(this.decode());
c = this.string.charCodeAt(this.offset);
}
this.offset += 1; // eat cb
return ret;
}
// consumes and returns a list or integer
decode() {
const [ob, la] = ["{", "`"].map(c => c.charCodeAt(0));
let n = 0;
let c = this.string.charCodeAt(this.offset);
if (c === ob) {
this.offset += 1;
return this.decodeList();
}
while (c < la) {
n = (n << 4) | (c & 0xF);
this.offset += 1;
c = this.string.charCodeAt(this.offset);
}
// last character >= la
n = (n << 4) | (c & 0xF);
const [sign, value] = [n & 1, n >> 1];
this.offset += 1;
return sign ? -value : value;
}
next() {
const c = this.string.charCodeAt(this.offset);
const [zero, ua, la] = ["0", "@", "`"].map(c => c.charCodeAt(0));
// sixteen characters after "0" are backref
if (c >= zero && c < ua) {
this.offset += 1;
return this.backrefQueue[c - zero];
}
// special exception: 0 doesn't use backref encoding
// it's already one character, and it's always nullish
if (c === la) {
this.offset += 1;
return this.cons(0);
}
const result = this.cons(this.decode());
this.backrefQueue.unshift(result);
if (this.backrefQueue.length > 16) {
this.backrefQueue.pop();
}
return result;
}
}
class RoaringBitmap {
constructor(str) {
const strdecoded = atob(str);
const u8array = new Uint8Array(strdecoded.length);
for (let j = 0; j < strdecoded.length; ++j) {
u8array[j] = strdecoded.charCodeAt(j);
}
const has_runs = u8array[0] === 0x3b;
const size = has_runs ?
((u8array[2] | (u8array[3] << 8)) + 1) :
((u8array[4] | (u8array[5] << 8) | (u8array[6] << 16) | (u8array[7] << 24)));
let i = has_runs ? 4 : 8;
let is_run;
if (has_runs) {
const is_run_len = Math.floor((size + 7) / 8);
is_run = u8array.slice(i, i + is_run_len);
i += is_run_len;
} else {
is_run = new Uint8Array();
}
this.keys = [];
this.cardinalities = [];
for (let j = 0; j < size; ++j) {
this.keys.push(u8array[i] | (u8array[i + 1] << 8));
i += 2;
this.cardinalities.push((u8array[i] | (u8array[i + 1] << 8)) + 1);
i += 2;
}
this.containers = [];
let offsets = null;
if (!has_runs || this.keys.length >= 4) {
offsets = [];
for (let j = 0; j < size; ++j) {
offsets.push(u8array[i] | (u8array[i + 1] << 8) | (u8array[i + 2] << 16) |
(u8array[i + 3] << 24));
i += 4;
}
}
for (let j = 0; j < size; ++j) {
if (offsets && offsets[j] !== i) {
console.log(this.containers);
throw new Error(`corrupt bitmap ${j}: ${i} / ${offsets[j]}`);
}
if (is_run[j >> 3] & (1 << (j & 0x7))) {
const runcount = (u8array[i] | (u8array[i + 1] << 8));
i += 2;
this.containers.push(new RoaringBitmapRun(
runcount,
u8array.slice(i, i + (runcount * 4)),
));
i += runcount * 4;
} else if (this.cardinalities[j] >= 4096) {
this.containers.push(new RoaringBitmapBits(u8array.slice(i, i + 8192)));
i += 8192;
} else {
const end = this.cardinalities[j] * 2;
this.containers.push(new RoaringBitmapArray(
this.cardinalities[j],
u8array.slice(i, i + end),
));
i += end;
}
}
}
contains(keyvalue) {
const key = keyvalue >> 16;
const value = keyvalue & 0xFFFF;
for (let i = 0; i < this.keys.length; ++i) {
if (this.keys[i] === key) {
return this.containers[i].contains(value);
}
}
return false;
}
}
class RoaringBitmapRun {
constructor(runcount, array) {
this.runcount = runcount;
this.array = array;
}
contains(value) {
const l = this.runcount * 4;
for (let i = 0; i < l; i += 4) {
const start = this.array[i] | (this.array[i + 1] << 8);
const lenm1 = this.array[i + 2] | (this.array[i + 3] << 8);
if (value >= start && value <= (start + lenm1)) {
return true;
}
}
return false;
}
}
class RoaringBitmapArray {
constructor(cardinality, array) {
this.cardinality = cardinality;
this.array = array;
}
contains(value) {
const l = this.cardinality * 2;
for (let i = 0; i < l; i += 2) {
const start = this.array[i] | (this.array[i + 1] << 8);
if (value === start) {
return true;
}
}
return false;
}
}
class RoaringBitmapBits {
constructor(array) {
this.array = array;
}
contains(value) {
return !!(this.array[value >> 3] & (1 << (value & 7)));
}
}
/**
* Convert raw search index into in-memory search index.
*
* @param {[string, RawSearchIndexCrate][]} rawSearchIndex
*/
function buildIndex(rawSearchIndex) {
searchIndex = [];
searchIndexDeprecated = new Map();
searchIndexEmptyDesc = new Map();
const charA = "A".charCodeAt(0);
let currentIndex = 0;
let id = 0;
// Function type fingerprints are 128-bit bloom filters that are used to
// estimate the distance between function and query.
// This loop counts the number of items to allocate a fingerprint for.
for (const crate of rawSearchIndex.values()) {
// Each item gets an entry in the fingerprint array, and the crate
// does, too
id += crate.t.length + 1;
}
functionTypeFingerprint = new Uint32Array((id + 1) * 4);
// This loop actually generates the search item indexes, including
// normalized names, type signature objects and fingerprints, and aliases.
id = 0;
for (const [crate, crateCorpus] of rawSearchIndex) {
// a string representing the lengths of each description shard
// a string representing the list of function types
const itemDescShardDecoder = new VlqHexDecoder(crateCorpus.D, noop => noop);
let descShard = {
crate,
shard: 0,
start: 0,
len: itemDescShardDecoder.next(),
promise: null,
resolve: null,
};
const descShardList = [ descShard ];
// Deprecated items and items with no description
searchIndexDeprecated.set(crate, new RoaringBitmap(crateCorpus.c));
searchIndexEmptyDesc.set(crate, new RoaringBitmap(crateCorpus.e));
let descIndex = 0;
// This object should have exactly the same set of fields as the "row"
// object defined below. Your JavaScript runtime will thank you.
// https://mathiasbynens.be/notes/shapes-ics
const crateRow = {
crate,
ty: 3, // == ExternCrate
name: crate,
path: "",
descShard,
descIndex,
exactPath: "",
desc: crateCorpus.doc,
parent: undefined,
type: null,
id,
word: crate,
normalizedName: crate.indexOf("_") === -1 ? crate : crate.replace(/_/g, ""),
bitIndex: 0,
implDisambiguator: null,
};
id += 1;
searchIndex.push(crateRow);
currentIndex += 1;
if (!searchIndexEmptyDesc.get(crate).contains(0)) {
descIndex += 1;
}
// a String of one character item type codes
const itemTypes = crateCorpus.t;
// an array of (String) item names
const itemNames = crateCorpus.n;
// an array of [(Number) item index,
// (String) full path]
// an item whose index is not present will fall back to the previous present path
// i.e. if indices 4 and 11 are present, but 5-10 and 12-13 are not present,
// 5-10 will fall back to the path for 4 and 12-13 will fall back to the path for 11
const itemPaths = new Map(crateCorpus.q);
// An array of [(Number) item index, (Number) path index]
// Used to de-duplicate inlined and re-exported stuff
const itemReexports = new Map(crateCorpus.r);
// an array of (Number) the parent path index + 1 to `paths`, or 0 if none
const itemParentIdxs = crateCorpus.i;
// a map Number, string for impl disambiguators
const implDisambiguator = new Map(crateCorpus.b);
// an array of [(Number) item type,
// (String) name]
const paths = crateCorpus.p;
// an array of [(String) alias name
// [Number] index to items]
const aliases = crateCorpus.a;
// an array of [{name: String, ty: Number}]
const lowercasePaths = [];
// a string representing the list of function types
const itemFunctionDecoder = new VlqHexDecoder(
crateCorpus.f,
buildFunctionSearchTypeCallback(lowercasePaths),
);
// convert `rawPaths` entries into object form
// generate normalizedPaths for function search mode
let len = paths.length;
let lastPath = itemPaths.get(0);
for (let i = 0; i < len; ++i) {
const elem = paths[i];
const ty = elem[0];
const name = elem[1];
let path = null;
if (elem.length > 2) {
path = itemPaths.has(elem[2]) ? itemPaths.get(elem[2]) : lastPath;
lastPath = path;
}
const exactPath = elem.length > 3 ? itemPaths.get(elem[3]) : path;
lowercasePaths.push({ty, name: name.toLowerCase(), path, exactPath});
paths[i] = {ty, name, path, exactPath};
}
// convert `item*` into an object form, and construct word indices.
//
// before any analysis is performed lets gather the search terms to
// search against apart from the rest of the data. This is a quick
// operation that is cached for the life of the page state so that
// all other search operations have access to this cached data for
// faster analysis operations
lastPath = "";
len = itemTypes.length;
for (let i = 0; i < len; ++i) {
const bitIndex = i + 1;
if (descIndex >= descShard.len &&
!searchIndexEmptyDesc.get(crate).contains(bitIndex)) {
descShard = {
crate,
shard: descShard.shard + 1,
start: descShard.start + descShard.len,
len: itemDescShardDecoder.next(),
promise: null,
resolve: null,
};
descIndex = 0;
descShardList.push(descShard);
}
let word = "";
if (typeof itemNames[i] === "string") {
word = itemNames[i].toLowerCase();
}
const path = itemPaths.has(i) ? itemPaths.get(i) : lastPath;
const type = itemFunctionDecoder.next();
if (type !== null) {
if (type) {
const fp = functionTypeFingerprint.subarray(id * 4, (id + 1) * 4);
const fps = new Set();
for (const t of type.inputs) {
buildFunctionTypeFingerprint(t, fp, fps);
}
for (const t of type.output) {
buildFunctionTypeFingerprint(t, fp, fps);
}
for (const w of type.where_clause) {
for (const t of w) {
buildFunctionTypeFingerprint(t, fp, fps);
}
}
}
}
// This object should have exactly the same set of fields as the "crateRow"
// object defined above.
const row = {
crate,
ty: itemTypes.charCodeAt(i) - charA,
name: itemNames[i],
path,
descShard,
descIndex,
exactPath: itemReexports.has(i) ? itemPaths.get(itemReexports.get(i)) : path,
parent: itemParentIdxs[i] > 0 ? paths[itemParentIdxs[i] - 1] : undefined,
type,
id,
word,
normalizedName: word.indexOf("_") === -1 ? word : word.replace(/_/g, ""),
bitIndex,
implDisambiguator: implDisambiguator.has(i) ? implDisambiguator.get(i) : null,
};
id += 1;
searchIndex.push(row);
lastPath = row.path;
if (!searchIndexEmptyDesc.get(crate).contains(bitIndex)) {
descIndex += 1;
}
}
if (aliases) {
const currentCrateAliases = new Map();
ALIASES.set(crate, currentCrateAliases);
for (const alias_name in aliases) {
if (!Object.prototype.hasOwnProperty.call(aliases, alias_name)) {
continue;
}
let currentNameAliases;
if (currentCrateAliases.has(alias_name)) {
currentNameAliases = currentCrateAliases.get(alias_name);
} else {
currentNameAliases = [];
currentCrateAliases.set(alias_name, currentNameAliases);
}
for (const local_alias of aliases[alias_name]) {
currentNameAliases.push(local_alias + currentIndex);
}
}
}
currentIndex += itemTypes.length;
searchState.descShards.set(crate, descShardList);
}
// Drop the (rather large) hash table used for reusing function items
TYPES_POOL = new Map();
}
/**
* Callback for when the search form is submitted.
* @param {Event} [e] - The event that triggered this call, if any
*/
function onSearchSubmit(e) {
e.preventDefault();
searchState.clearInputTimeout();
search();
}
function putBackSearch() {
const search_input = searchState.input;
if (!searchState.input) {
return;
}
if (search_input.value !== "" && !searchState.isDisplayed()) {
searchState.showResults();
if (browserSupportsHistoryApi()) {
history.replaceState(null, "",
buildUrl(search_input.value, getFilterCrates()));
}
document.title = searchState.title;
}
}
function registerSearchEvents() {
const params = searchState.getQueryStringParams();
// Populate search bar with query string search term when provided,
// but only if the input bar is empty. This avoid the obnoxious issue
// where you start trying to do a search, and the index loads, and
// suddenly your search is gone!
if (searchState.input.value === "") {
searchState.input.value = params.search || "";
}
const searchAfter500ms = () => {
searchState.clearInputTimeout();
if (searchState.input.value.length === 0) {
searchState.hideResults();
} else {
searchState.timeout = setTimeout(search, 500);
}
};
searchState.input.onkeyup = searchAfter500ms;
searchState.input.oninput = searchAfter500ms;
document.getElementsByClassName("search-form")[0].onsubmit = onSearchSubmit;
searchState.input.onchange = e => {
if (e.target !== document.activeElement) {
// To prevent doing anything when it's from a blur event.
return;
}
// Do NOT e.preventDefault() here. It will prevent pasting.
searchState.clearInputTimeout();
// zero-timeout necessary here because at the time of event handler execution the
// pasted content is not in the input field yet. Shouldn’t make any difference for
// change, though.
setTimeout(search, 0);
};
searchState.input.onpaste = searchState.input.onchange;
searchState.outputElement().addEventListener("keydown", e => {
// We only handle unmodified keystrokes here. We don't want to interfere with,
// for instance, alt-left and alt-right for history navigation.
if (e.altKey || e.ctrlKey || e.shiftKey || e.metaKey) {
return;
}
// up and down arrow select next/previous search result, or the
// search box if we're already at the top.
if (e.which === 38) { // up
const previous = document.activeElement.previousElementSibling;
if (previous) {
previous.focus();
} else {
searchState.focus();
}
e.preventDefault();
} else if (e.which === 40) { // down
const next = document.activeElement.nextElementSibling;
if (next) {
next.focus();
}
const rect = document.activeElement.getBoundingClientRect();
if (window.innerHeight - rect.bottom < rect.height) {
window.scrollBy(0, rect.height);
}
e.preventDefault();
} else if (e.which === 37) { // left
nextTab(-1);
e.preventDefault();
} else if (e.which === 39) { // right
nextTab(1);
e.preventDefault();
}
});
searchState.input.addEventListener("keydown", e => {
if (e.which === 40) { // down
focusSearchResult();
e.preventDefault();
}
});
searchState.input.addEventListener("focus", () => {
putBackSearch();
});
searchState.input.addEventListener("blur", () => {
searchState.input.placeholder = searchState.input.origPlaceholder;
});
// Push and pop states are used to add search results to the browser
// history.
if (browserSupportsHistoryApi()) {
// Store the previous <title> so we can revert back to it later.
const previousTitle = document.title;
window.addEventListener("popstate", e => {
const params = searchState.getQueryStringParams();
// Revert to the previous title manually since the History
// API ignores the title parameter.
document.title = previousTitle;
// When browsing forward to search results the previous
// search will be repeated, so the currentResults are
// cleared to ensure the search is successful.
currentResults = null;
// Synchronize search bar with query string state and
// perform the search. This will empty the bar if there's
// nothing there, which lets you really go back to a
// previous state with nothing in the bar.
if (params.search && params.search.length > 0) {
searchState.input.value = params.search;
// Some browsers fire "onpopstate" for every page load
// (Chrome), while others fire the event only when actually
// popping a state (Firefox), which is why search() is
// called both here and at the end of the startSearch()
// function.
e.preventDefault();
search();
} else {
searchState.input.value = "";
// When browsing back from search results the main page
// visibility must be reset.
searchState.hideResults();
}
});
}
// This is required in firefox to avoid this problem: Navigating to a search result
// with the keyboard, hitting enter, and then hitting back would take you back to
// the doc page, rather than the search that should overlay it.
// This was an interaction between the back-forward cache and our handlers
// that try to sync state between the URL and the search input. To work around it,
// do a small amount of re-init on page show.
window.onpageshow = () => {
const qSearch = searchState.getQueryStringParams().search;
if (searchState.input.value === "" && qSearch) {
searchState.input.value = qSearch;
}
search();
};
}
function updateCrate(ev) {
if (ev.target.value === "all crates") {
// If we don't remove it from the URL, it'll be picked up again by the search.
const query = searchState.input.value.trim();
updateSearchHistory(buildUrl(query, null));
}
// In case you "cut" the entry from the search input, then change the crate filter
// before paste back the previous search, you get the old search results without
// the filter. To prevent this, we need to remove the previous results.
currentResults = null;
search(true);
}
buildIndex(rawSearchIndex);
if (typeof window !== "undefined") {
registerSearchEvents();
// If there's a search term in the URL, execute the search now.
if (window.searchState.getQueryStringParams().search) {
search();
}
}
if (typeof exports !== "undefined") {
exports.initSearch = initSearch;
exports.execQuery = execQuery;
exports.parseQuery = parseQuery;
}
}
if (typeof window !== "undefined") {
window.initSearch = initSearch;
if (window.searchIndex !== undefined) {
initSearch(window.searchIndex);
}
} else {
// Running in Node, not a browser. Run initSearch just to produce the
// exports.
initSearch(new Map());
}
})();