commit | b6c87c555f3b664f558d137d5f7696a07488157e | [log] [tgz] |
---|---|---|
author | Jack Huey <31162821+jackh726@users.noreply.github.com> | Fri Jan 21 23:50:54 2022 -0500 |
committer | Jack Huey <31162821+jackh726@users.noreply.github.com> | Sat Apr 16 02:26:56 2022 -0400 |
tree | 573e046694217ea40ca8278ca1676bec16ac1819 | |
parent | e7575f9670f3c837def3d186ae09366c75c7632e [diff] |
Implementation for 65853 This attempts to bring better error messages to invalid method calls, by applying some heuristics to identify common mistakes. The algorithm is inspired by Levenshtein distance and longest common sub-sequence. In essence, we treat the types of the function, and the types of the arguments you provided as two "words" and compute the edits to get from one to the other. We then modify that algorithm to detect 4 cases: - A function input is missing - An extra argument was provided - The type of an argument is straight up invalid - Two arguments have been swapped - A subset of the arguments have been shuffled (We detect the last two as separate cases so that we can detect two swaps, instead of 4 parameters permuted.) It helps to understand this argument by paying special attention to terminology: "inputs" refers to the inputs being *expected* by the function, and "arguments" refers to what has been provided at the call site. The basic sketch of the algorithm is as follows: - Construct a boolean grid, with a row for each argument, and a column for each input. The cell [i, j] is true if the i'th argument could satisfy the j'th input. - If we find an argument that could satisfy no inputs, provided for an input that can't be satisfied by any other argument, we consider this an "invalid type". - Extra arguments are those that can't satisfy any input, provided for an input that *could* be satisfied by another argument. - Missing inputs are inputs that can't be satisfied by any argument, where the provided argument could satisfy another input - Swapped / Permuted arguments are identified with a cycle detection algorithm. As each issue is found, we remove the relevant inputs / arguments and check for more issues. If we find no issues, we match up any "valid" arguments, and start again. Note that there's a lot of extra complexity: - We try to stay efficient on the happy path, only computing the diagonal until we find a problem, and then filling in the rest of the matrix. - Closure arguments are wrapped in a tuple and need to be unwrapped - We need to resolve closure types after the rest, to allow the most specific type constraints - We need to handle imported C functions that might be variadic in their inputs. I tried to document a lot of this in comments in the code and keep the naming clear.
This is the main source code repository for Rust. It contains the compiler, standard library, and documentation.
Note: this README is for users rather than contributors. If you wish to contribute to the compiler, you should read the Getting Started section of the rustc-dev-guide instead. You can ask for help in the #new members Zulip stream.
Read “Installation” from The Book.
The Rust build system uses a Python script called x.py
to build the compiler, which manages the bootstrapping process. It lives in the root of the project.
The x.py
command can be run directly on most systems in the following format:
./x.py <subcommand> [flags]
This is how the documentation and examples assume you are running x.py
.
Systems such as Ubuntu 20.04 LTS do not create the necessary python
command by default when Python is installed that allows x.py
to be run directly. In that case you can either create a symlink for python
(Ubuntu provides the python-is-python3
package for this), or run x.py
using Python itself:
# Python 3 python3 x.py <subcommand> [flags] # Python 2.7 python2.7 x.py <subcommand> [flags]
More information about x.py
can be found by running it with the --help
flag or reading the rustc dev guide.
Make sure you have installed the dependencies:
g++
5.1 or later or clang++
3.5 or laterpython
3 or 2.7make
3.81 or latercmake
3.13.4 or laterninja
curl
git
ssl
which comes in libssl-dev
or openssl-devel
pkg-config
if you are compiling on Linux and targeting LinuxClone the source with git
:
git clone https://github.com/rust-lang/rust.git cd rust
Configure the build settings:
The Rust build system uses a file named config.toml
in the root of the source tree to determine various configuration settings for the build. Copy the default config.toml.example
to config.toml
to get started.
cp config.toml.example config.toml
If you plan to use x.py install
to create an installation, it is recommended that you set the prefix
value in the [install]
section to a directory.
Create install directory if you are not installing in default directory
Build and install:
./x.py build && ./x.py install
When complete, ./x.py install
will place several programs into $PREFIX/bin
: rustc
, the Rust compiler, and rustdoc
, the API-documentation tool. This install does not include Cargo, Rust's package manager. To build and install Cargo, you may run ./x.py install cargo
or set the build.extended
key in config.toml
to true
to build and install all tools.
There are two prominent ABIs in use on Windows: the native (MSVC) ABI used by Visual Studio, and the GNU ABI used by the GCC toolchain. Which version of Rust you need depends largely on what C/C++ libraries you want to interoperate with: for interop with software produced by Visual Studio use the MSVC build of Rust; for interop with GNU software built using the MinGW/MSYS2 toolchain use the GNU build.
MSYS2 can be used to easily build Rust on Windows:
Grab the latest MSYS2 installer and go through the installer.
Run mingw32_shell.bat
or mingw64_shell.bat
from wherever you installed MSYS2 (i.e. C:\msys64
), depending on whether you want 32-bit or 64-bit Rust. (As of the latest version of MSYS2 you have to run msys2_shell.cmd -mingw32
or msys2_shell.cmd -mingw64
from the command line instead)
From this terminal, install the required tools:
# Update package mirrors (may be needed if you have a fresh install of MSYS2) pacman -Sy pacman-mirrors # Install build tools needed for Rust. If you're building a 32-bit compiler, # then replace "x86_64" below with "i686". If you've already got git, python, # or CMake installed and in PATH you can remove them from this list. Note # that it is important that you do **not** use the 'python2', 'cmake' and 'ninja' # packages from the 'msys2' subsystem. The build has historically been known # to fail with these packages. pacman -S git \ make \ diffutils \ tar \ mingw-w64-x86_64-python \ mingw-w64-x86_64-cmake \ mingw-w64-x86_64-gcc \ mingw-w64-x86_64-ninja
Navigate to Rust's source code (or clone it), then build it:
./x.py build && ./x.py install
MSVC builds of Rust additionally require an installation of Visual Studio 2017 (or later) so rustc
can use its linker. The simplest way is to get the Visual Studio, check the “C++ build tools” and “Windows 10 SDK” workload.
(If you‘re installing cmake yourself, be careful that “C++ CMake tools for Windows” doesn’t get included under “Individual components”.)
With these dependencies installed, you can build the compiler in a cmd.exe
shell with:
python x.py build
Currently, building Rust only works with some known versions of Visual Studio. If you have a more recent version installed and the build system doesn't understand, you may need to force rustbuild to use an older version. This can be done by manually calling the appropriate vcvars file before running the bootstrap.
CALL "C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Auxiliary\Build\vcvars64.bat" python x.py build
Each specific ABI can also be used from either environment (for example, using the GNU ABI in PowerShell) by using an explicit build triple. The available Windows build triples are:
i686-pc-windows-gnu
x86_64-pc-windows-gnu
i686-pc-windows-msvc
x86_64-pc-windows-msvc
The build triple can be specified by either specifying --build=<triple>
when invoking x.py
commands, or by copying the config.toml
file (as described in Installing From Source), and modifying the build
option under the [build]
section.
While it's not the recommended build system, this project also provides a configure script and makefile (the latter of which just invokes x.py
).
./configure make && sudo make install
When using the configure script, the generated config.mk
file may override the config.toml
file. To go back to the config.toml
file, delete the generated config.mk
file.
If you’d like to build the documentation, it’s almost the same:
./x.py doc
The generated documentation will appear under doc
in the build
directory for the ABI used. I.e., if the ABI was x86_64-pc-windows-msvc
, the directory will be build\x86_64-pc-windows-msvc\doc
.
Since the Rust compiler is written in Rust, it must be built by a precompiled “snapshot” version of itself (made in an earlier stage of development). As such, source builds require a connection to the Internet, to fetch snapshots, and an OS that can execute the available snapshot binaries.
Snapshot binaries are currently built and tested on several platforms:
Platform / Architecture | x86 | x86_64 |
---|---|---|
Windows (7, 8, 10, ...) | ✓ | ✓ |
Linux (kernel 2.6.32, glibc 2.11 or later) | ✓ | ✓ |
macOS (10.7 Lion or later) | (*) | ✓ |
(*): Apple dropped support for running 32-bit binaries starting from macOS 10.15 and iOS 11. Due to this decision from Apple, the targets are no longer useful to our users. Please read our blog post for more info.
You may find that other platforms work, but these are our officially supported build environments that are most likely to work.
The Rust community congregates in a few places:
If you are interested in contributing to the Rust project, please take a look at the Getting Started guide in the rustc-dev-guide.
Rust is primarily distributed under the terms of both the MIT license and the Apache License (Version 2.0), with portions covered by various BSD-like licenses.
See LICENSE-APACHE, LICENSE-MIT, and COPYRIGHT for details.
The Rust Foundation owns and protects the Rust and Cargo trademarks and logos (the “Rust Trademarks”).
If you want to use these names or brands, please read the media guide.
Third-party logos may be subject to third-party copyrights and trademarks. See Licenses for details.