commit | 24bf40456f61734eb112c3161837b90d1911139a | [log] [tgz] |
---|---|---|
author | Matthias Krüger <476013+matthiaskrgr@users.noreply.github.com> | Fri Mar 07 19:15:34 2025 +0100 |
committer | GitHub <noreply@github.com> | Fri Mar 07 19:15:34 2025 +0100 |
tree | bbf80e7fe1a11c8d092e8b41859cc0d61151d1bc | |
parent | ab1780693ef61b5ed1f62dbf0c4b98e6f0c07830 [diff] | |
parent | 334eb82117cddee4813e860e54d1aa9db91da461 [diff] |
Rollup merge of #137549 - oli-obk:llvm-ffi, r=davidtwco Clean up various LLVM FFI things in codegen_llvm cc ```@ZuseZ4``` I touched some autodiff parts The major change of this PR is [bfd88ce](https://github.com/rust-lang/rust/pull/137549/commits/bfd88cead0dd79717f123ad7e9a26ecad88653cb) which makes `CodegenCx` generic just like `GenericBuilder` The other commits mostly took advantage of the new feature of making extern functions safe, but also just used some wrappers that were already there and shrunk unsafe blocks. best reviewed commit-by-commit
This is a GCC codegen for rustc, which means it can be loaded by the existing rustc frontend, but benefits from GCC: more architectures are supported and GCC's optimizations are used.
Despite its name, libgccjit can be used for ahead-of-time compilation, as is used here.
The primary goal of this project is to be able to compile Rust code on platforms unsupported by LLVM. A secondary goal is to check if using the gcc backend will provide any run-time speed improvement for the programs compiled using rustc.
rustup: Follow the instructions on the official website
DejaGnu: Consider to install DejaGnu which is necessary for running the libgccjit test suite. website
This requires a patched libgccjit in order to work. You need to use my fork of gcc which already includes these patches.
$ cp config.example.toml config.toml
If don't need to test GCC patches you wrote in our GCC fork, then the default configuration should be all you need. You can update the rustc_codegen_gcc
without worrying about GCC.
If you wrote a patch for GCC and want to test it without this backend, you will need to do a few more things.
To build it (most of these instructions come from here, so don't hesitate to take a look there if you encounter an issue):
$ git clone https://github.com/antoyo/gcc $ sudo apt install flex libmpfr-dev libgmp-dev libmpc3 libmpc-dev $ mkdir gcc-build gcc-install $ cd gcc-build $ ../gcc/configure \ --enable-host-shared \ --enable-languages=jit \ --enable-checking=release \ # it enables extra checks which allow to find bugs --disable-bootstrap \ --disable-multilib \ --prefix=$(pwd)/../gcc-install $ make -j4 # You can replace `4` with another number depending on how many cores you have.
If you want to run libgccjit tests, you will need to also enable the C++ language in the configure
:
--enable-languages=jit,c++
Then to run libgccjit tests:
$ cd gcc # from the `gcc-build` folder $ make check-jit # To run one specific test: $ make check-jit RUNTESTFLAGS="-v -v -v jit.exp=jit.dg/test-asm.cc"
Put the path to your custom build of libgccjit in the file config.toml
.
You now need to set the gcc-path
value in config.toml
with the result of this command:
$ dirname $(readlink -f `find . -name libgccjit.so`)
and to comment the download-gccjit
setting:
gcc-path = "[MY PATH]" # download-gccjit = true
Then you can run commands like this:
$ ./y.sh prepare # download and patch sysroot src and install hyperfine for benchmarking $ ./y.sh build --sysroot --release
To run the tests:
$ ./y.sh test --release
You have to run these commands, in the corresponding order:
$ ./y.sh prepare $ ./y.sh build --sysroot
To check if all is working correctly, run:
$ ./y.sh cargo build --manifest-path tests/hello-world/Cargo.toml
$ CHANNEL="release" $CG_GCCJIT_DIR/y.sh cargo run
If you compiled cg_gccjit in debug mode (aka you didn't pass --release
to ./y.sh test
) you should use CHANNEL="debug"
instead or omit CHANNEL="release"
completely.
To use LTO, you need to set the variable EMBED_LTO_BITCODE=1
in addition to setting lto = "fat"
in the Cargo.toml
.
Failing to set EMBED_LTO_BITCODE
will give you the following error:
error: failed to copy bitcode to object file: No such file or directory (os error 2)
If you want to run rustc
directly, you can do so with:
$ ./y.sh rustc my_crate.rs
You can do the same manually (although we don't recommend it):
$ LIBRARY_PATH="[gcc-path value]" LD_LIBRARY_PATH="[gcc-path value]" rustc +$(cat $CG_GCCJIT_DIR/rust-toolchain | grep 'channel' | cut -d '=' -f 2 | sed 's/"//g' | sed 's/ //g') -Cpanic=abort -Zcodegen-backend=$CG_GCCJIT_DIR/target/release/librustc_codegen_gcc.so --sysroot $CG_GCCJIT_DIR/build_sysroot/sysroot my_crate.rs
/tmp/reproducers/
.CG_GCCJIT_DUMP_MODULE=module_name
, a dump of that specific module is created in /tmp/reproducers/
.CG_RUSTFLAGS=-Cpanic=abort
.More specific documentation is available in the doc
folder:
While this crate is licensed under a dual Apache/MIT license, it links to libgccjit
which is under the GPLv3+ and thus, the resulting toolchain (rustc + GCC codegen) will need to be released under the GPL license.
However, programs compiled with rustc_codegen_gcc
do not need to be released under a GPL license.