Rollup merge of #109084 - dekrain:fix-panic-arg0-expansion, r=petrochenkov

rustc driver: Remove argument 0 before at-expansion to prevent ICE

Under Unix-based operating systems, when I execute rustc by setting argv0 to ``@/dev/null`,` it will expand command-line arguments from this file, leading to an empty arglist, which then triggers an ICE by trying to remove first argument.

The panic message is this:
```
thread 'main' panicked at 'range start index 1 out of range for slice of length 0', compiler/rustc_driver/src/lib.rs:972:17
```

My fix is to remove the first argument before expanding arguments.

<details>
<summary>Full backtrace</summary>

```sh
% (exec -a `@/dev/null` `rustup which rustc`)
thread 'main' panicked at 'range start index 1 out of range for slice of length 0', compiler/rustc_driver/src/lib.rs:972:17
stack backtrace:
   0:     0x7fcec776659a - std::backtrace_rs::backtrace::libunwind::trace::h595f06c70adcc478
                               at /rustc/2c8cc343237b8f7d5a3c3703e3a87f2eb2c54a74/library/std/src/../../backtrace/src/backtrace/libunwind.rs:93:5
   1:     0x7fcec776659a - std::backtrace_rs::backtrace::trace_unsynchronized::h177a0149c76cdde9
                               at /rustc/2c8cc343237b8f7d5a3c3703e3a87f2eb2c54a74/library/std/src/../../backtrace/src/backtrace/mod.rs:66:5
   2:     0x7fcec776659a - std::sys_common::backtrace::_print_fmt::hc0701fd2c3530c58
                               at /rustc/2c8cc343237b8f7d5a3c3703e3a87f2eb2c54a74/library/std/src/sys_common/backtrace.rs:65:5
   3:     0x7fcec776659a - <std::sys_common::backtrace::_print::DisplayBacktrace as core::fmt::Display>::fmt::hd4cd115d8750fd6c
                               at /rustc/2c8cc343237b8f7d5a3c3703e3a87f2eb2c54a74/library/std/src/sys_common/backtrace.rs:44:22
   4:     0x7fcec77c839e - core::fmt::write::h93e2f5923c7eca08
                               at /rustc/2c8cc343237b8f7d5a3c3703e3a87f2eb2c54a74/library/core/src/fmt/mod.rs:1213:17
   5:     0x7fcec7756be5 - std::io::Write::write_fmt::h8162dbb45f0b9e62
                               at /rustc/2c8cc343237b8f7d5a3c3703e3a87f2eb2c54a74/library/std/src/io/mod.rs:1682:15
   6:     0x7fcec7766365 - std::sys_common::backtrace::_print::h1835ef8a8f9066da
                               at /rustc/2c8cc343237b8f7d5a3c3703e3a87f2eb2c54a74/library/std/src/sys_common/backtrace.rs:47:5
   7:     0x7fcec7766365 - std::sys_common::backtrace::print::hcb5e6388b9235f41
                               at /rustc/2c8cc343237b8f7d5a3c3703e3a87f2eb2c54a74/library/std/src/sys_common/backtrace.rs:34:9
   8:     0x7fcec776912f - std::panicking::default_hook::{{closure}}::h9c084969ccf9a722
                               at /rustc/2c8cc343237b8f7d5a3c3703e3a87f2eb2c54a74/library/std/src/panicking.rs:267:22
   9:     0x7fcec7768e6b - std::panicking::default_hook::h68fa2ba3c3c6c12f
                               at /rustc/2c8cc343237b8f7d5a3c3703e3a87f2eb2c54a74/library/std/src/panicking.rs:286:9
  10:     0x7fcecaab56e4 - <rustc_driver[f4ad927b3c57833d]::DEFAULT_HOOK::{closure#0}::{closure#0} as core[d16e85342ea223d9]::ops::function::FnOnce<(&core[d16e85342ea223d9]::panic::panic_info::PanicInfo,)>>::call_once::{shim:vtable#0}
  11:     0x7fcec776996a - <alloc::boxed::Box<F,A> as core::ops::function::Fn<Args>>::call::h4e6ced11e07d8b24
                               at /rustc/2c8cc343237b8f7d5a3c3703e3a87f2eb2c54a74/library/alloc/src/boxed.rs:2002:9
  12:     0x7fcec776996a - std::panicking::rust_panic_with_hook::h8d5c434518ef298c
                               at /rustc/2c8cc343237b8f7d5a3c3703e3a87f2eb2c54a74/library/std/src/panicking.rs:692:13
  13:     0x7fcec77696e9 - std::panicking::begin_panic_handler::{{closure}}::hf33414f5dabf6faf
                               at /rustc/2c8cc343237b8f7d5a3c3703e3a87f2eb2c54a74/library/std/src/panicking.rs:579:13
  14:     0x7fcec7766a4c - std::sys_common::backtrace::__rust_end_short_backtrace::hc50389427413bb75
                               at /rustc/2c8cc343237b8f7d5a3c3703e3a87f2eb2c54a74/library/std/src/sys_common/backtrace.rs:137:18
  15:     0x7fcec77693f2 - rust_begin_unwind
                               at /rustc/2c8cc343237b8f7d5a3c3703e3a87f2eb2c54a74/library/std/src/panicking.rs:575:5
  16:     0x7fcec77c4d43 - core::panicking::panic_fmt::h2de7a7938f816de8
                               at /rustc/2c8cc343237b8f7d5a3c3703e3a87f2eb2c54a74/library/core/src/panicking.rs:64:14
  17:     0x7fcec77cb492 - core::slice::index::slice_start_index_len_fail_rt::h0c87d85ce11d10f6
                               at /rustc/2c8cc343237b8f7d5a3c3703e3a87f2eb2c54a74/library/core/src/slice/index.rs:53:5
  18:     0x7fcec77cb416 - core::slice::index::slice_start_index_len_fail::h504609f2a6b168d1
                               at /rustc/2c8cc343237b8f7d5a3c3703e3a87f2eb2c54a74/library/core/src/slice/index.rs:41:9
  19:     0x7fceca0eca1f - rustc_driver[f4ad927b3c57833d]::handle_options
  20:     0x7fceca0e037f - <rustc_driver[f4ad927b3c57833d]::RunCompiler>::run
  21:     0x7fceca0dfd0d - <core[d16e85342ea223d9]::panic::unwind_safe::AssertUnwindSafe<rustc_driver[f4ad927b3c57833d]::main::{closure#0}> as core[d16e85342ea223d9]::ops::function::FnOnce<()>>::call_once
  22:     0x7fceca17ce89 - rustc_driver[f4ad927b3c57833d]::main
  23:     0x564f5f008a87 - rustc_main[f164605d1302e295]::main
  24:     0x564f5f008973 - std[3da461b304582a2c]::sys_common::backtrace::__rust_begin_short_backtrace::<fn(), ()>
  25:     0x564f5f008969 - <std[3da461b304582a2c]::rt::lang_start<()>::{closure#0} as core[d16e85342ea223d9]::ops::function::FnOnce<()>>::call_once::{shim:vtable#0}
  26:     0x7fcec774795c - core::ops::function::impls::<impl core::ops::function::FnOnce<A> for &F>::call_once::h699977d052768608
                               at /rustc/2c8cc343237b8f7d5a3c3703e3a87f2eb2c54a74/library/core/src/ops/function.rs:287:13
  27:     0x7fcec774795c - std::panicking::try::do_call::h4e121e623c70f903
                               at /rustc/2c8cc343237b8f7d5a3c3703e3a87f2eb2c54a74/library/std/src/panicking.rs:483:40
  28:     0x7fcec774795c - std::panicking::try::hf9d919e062bc178a
                               at /rustc/2c8cc343237b8f7d5a3c3703e3a87f2eb2c54a74/library/std/src/panicking.rs:447:19
  29:     0x7fcec774795c - std::panic::catch_unwind::h7a7b12272684cb97
                               at /rustc/2c8cc343237b8f7d5a3c3703e3a87f2eb2c54a74/library/std/src/panic.rs:140:14
  30:     0x7fcec774795c - std::rt::lang_start_internal::{{closure}}::hd96b0eb4844b8762
                               at /rustc/2c8cc343237b8f7d5a3c3703e3a87f2eb2c54a74/library/std/src/rt.rs:148:48
  31:     0x7fcec774795c - std::panicking::try::do_call::h1af1f88f4f92a22c
                               at /rustc/2c8cc343237b8f7d5a3c3703e3a87f2eb2c54a74/library/std/src/panicking.rs:483:40
  32:     0x7fcec774795c - std::panicking::try::hf20d7abea7f0f097
                               at /rustc/2c8cc343237b8f7d5a3c3703e3a87f2eb2c54a74/library/std/src/panicking.rs:447:19
  33:     0x7fcec774795c - std::panic::catch_unwind::hb0e084c3a9c042e4
                               at /rustc/2c8cc343237b8f7d5a3c3703e3a87f2eb2c54a74/library/std/src/panic.rs:140:14
  34:     0x7fcec774795c - std::rt::lang_start_internal::hca9d5c7277f5b67c
                               at /rustc/2c8cc343237b8f7d5a3c3703e3a87f2eb2c54a74/library/std/src/rt.rs:148:20
  35:     0x564f5f008ab7 - main
  36:     0x7fcec74a1790 - <unknown>
  37:     0x7fcec74a184a - __libc_start_main
  38:     0x564f5f00899e - <unknown>
  39:                0x0 - <unknown>

error: internal compiler error: unexpected panic

note: the compiler unexpectedly panicked. this is a bug.

note: we would appreciate a bug report: https://github.com/rust-lang/rust/issues/new?labels=C-bug%2C+I-ICE%2C+T-compiler&template=ice.md

note: rustc 1.68.0 (2c8cc3432 2023-03-06) running on x86_64-unknown-linux-gnu

query stack during panic:
end of query stack
```
</details>

I also checked if I can trigger a similar problem by passing empty argument list to `execve`, but at least under Linux, it seems to always insert an empty first argument if there are none.
tree: f987c3bac2b1e10a5a106eea7a18b2b4bf516d43
  1. .github/
  2. .reuse/
  3. compiler/
  4. library/
  5. LICENSES/
  6. src/
  7. tests/
  8. .editorconfig
  9. .git-blame-ignore-revs
  10. .gitattributes
  11. .gitignore
  12. .gitmodules
  13. .mailmap
  14. Cargo.lock
  15. Cargo.toml
  16. CODE_OF_CONDUCT.md
  17. config.example.toml
  18. configure
  19. CONTRIBUTING.md
  20. COPYRIGHT
  21. LICENSE-APACHE
  22. LICENSE-MIT
  23. README.md
  24. RELEASES.md
  25. rustfmt.toml
  26. triagebot.toml
  27. x
  28. x.ps1
  29. x.py
README.md

The Rust Programming Language

Rust Community

This is the main source code repository for Rust. It contains the compiler, standard library, and documentation.

Note: this README is for users rather than contributors. If you wish to contribute to the compiler, you should read CONTRIBUTING.md instead.

Quick Start

Read “Installation” from The Book.

Installing from Source

The Rust build system uses a Python script called x.py to build the compiler, which manages the bootstrapping process. It lives at the root of the project. It also uses a file named config.toml to determine various configuration settings for the build. You can see a full list of options in config.example.toml.

The x.py command can be run directly on most Unix systems in the following format:

./x.py <subcommand> [flags]

This is how the documentation and examples assume you are running x.py. Some alternative ways are:

# On a Unix shell if you don't have the necessary `python3` command
./x <subcommand> [flags]

# On the Windows Command Prompt (if .py files are configured to run Python)
x.py <subcommand> [flags]

# You can also run Python yourself, e.g.:
python x.py <subcommand> [flags]

More information about x.py can be found by running it with the --help flag or reading the rustc dev guide.

Dependencies

Make sure you have installed the dependencies:

  • python 3 or 2.7
  • git
  • A C compiler (when building for the host, cc is enough; cross-compiling may need additional compilers)
  • curl (not needed on Windows)
  • pkg-config if you are compiling on Linux and targeting Linux
  • libiconv (already included with glibc on Debian-based distros)

To build Cargo, you'll also need OpenSSL (libssl-dev or openssl-devel on most Unix distros).

If building LLVM from source, you'll need additional tools:

  • g++, clang++, or MSVC with versions listed on LLVM's documentation
  • ninja, or GNU make 3.81 or later (Ninja is recommended, especially on Windows)
  • cmake 3.13.4 or later
  • libstdc++-static may be required on some Linux distributions such as Fedora and Ubuntu

On tier 1 or tier 2 with host tools platforms, you can also choose to download LLVM by setting llvm.download-ci-llvm = true. Otherwise, you'll need LLVM installed and llvm-config in your path. See the rustc-dev-guide for more info.

Building on a Unix-like system

Build steps

  1. Clone the source with git:

    git clone https://github.com/rust-lang/rust.git
    cd rust
    
  1. Configure the build settings:

    ./configure
    

    If you plan to use x.py install to create an installation, it is recommended that you set the prefix value in the [install] section to a directory: ./configure --set install.prefix=<path>

  2. Build and install:

    ./x.py build && ./x.py install
    

    When complete, ./x.py install will place several programs into $PREFIX/bin: rustc, the Rust compiler, and rustdoc, the API-documentation tool. By default, it will also include Cargo, Rust's package manager. You can disable this behavior by passing --set build.extended=false to ./configure.

Configure and Make

This project provides a configure script and makefile (the latter of which just invokes x.py). ./configure is the recommended way to programatically generate a config.toml. make is not recommended (we suggest using x.py directly), but it is supported and we try not to break it unnecessarily.

./configure
make && sudo make install

configure generates a config.toml which can also be used with normal x.py invocations.

Building on Windows

On Windows, we suggest using winget to install dependencies by running the following in a terminal:

winget install -e Python.Python.3
winget install -e Kitware.CMake
winget install -e Git.Git

Then edit your system's PATH variable and add: C:\Program Files\CMake\bin. See this guide on editing the system PATH from the Java documentation.

There are two prominent ABIs in use on Windows: the native (MSVC) ABI used by Visual Studio and the GNU ABI used by the GCC toolchain. Which version of Rust you need depends largely on what C/C++ libraries you want to interoperate with. Use the MSVC build of Rust to interop with software produced by Visual Studio and the GNU build to interop with GNU software built using the MinGW/MSYS2 toolchain.

MinGW

MSYS2 can be used to easily build Rust on Windows:

  1. Download the latest MSYS2 installer and go through the installer.

  2. Run mingw32_shell.bat or mingw64_shell.bat from the MSYS2 installation directory (e.g. C:\msys64), depending on whether you want 32-bit or 64-bit Rust. (As of the latest version of MSYS2 you have to run msys2_shell.cmd -mingw32 or msys2_shell.cmd -mingw64 from the command line instead.)

  3. From this terminal, install the required tools:

    # Update package mirrors (may be needed if you have a fresh install of MSYS2)
    pacman -Sy pacman-mirrors
    
    # Install build tools needed for Rust. If you're building a 32-bit compiler,
    # then replace "x86_64" below with "i686". If you've already got Git, Python,
    # or CMake installed and in PATH you can remove them from this list.
    # Note that it is important that you do **not** use the 'python2', 'cmake',
    # and 'ninja' packages from the 'msys2' subsystem.
    # The build has historically been known to fail with these packages.
    pacman -S git \
                make \
                diffutils \
                tar \
                mingw-w64-x86_64-python \
                mingw-w64-x86_64-cmake \
                mingw-w64-x86_64-gcc \
                mingw-w64-x86_64-ninja
    
  4. Navigate to Rust's source code (or clone it), then build it:

    python x.py setup user && python x.py build && python x.py install
    

MSVC

MSVC builds of Rust additionally require an installation of Visual Studio 2017 (or later) so rustc can use its linker. The simplest way is to get Visual Studio, check the “C++ build tools” and “Windows 10 SDK” workload.

(If you‘re installing CMake yourself, be careful that “C++ CMake tools for Windows” doesn’t get included under “Individual components”.)

With these dependencies installed, you can build the compiler in a cmd.exe shell with:

python x.py setup user
python x.py build

Right now, building Rust only works with some known versions of Visual Studio. If you have a more recent version installed and the build system doesn't understand, you may need to force rustbuild to use an older version. This can be done by manually calling the appropriate vcvars file before running the bootstrap.

CALL "C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Auxiliary\Build\vcvars64.bat"
python x.py build

Specifying an ABI

Each specific ABI can also be used from either environment (for example, using the GNU ABI in PowerShell) by using an explicit build triple. The available Windows build triples are:

  • GNU ABI (using GCC)
    • i686-pc-windows-gnu
    • x86_64-pc-windows-gnu
  • The MSVC ABI
    • i686-pc-windows-msvc
    • x86_64-pc-windows-msvc

The build triple can be specified by either specifying --build=<triple> when invoking x.py commands, or by creating a config.toml file (as described in Building on a Unix-like system), and passing --set build.build=<triple> to ./configure.

Building Documentation

If you‘d like to build the documentation, it’s almost the same:

./x.py doc

The generated documentation will appear under doc in the build directory for the ABI used. That is, if the ABI was x86_64-pc-windows-msvc, the directory will be build\x86_64-pc-windows-msvc\doc.

Notes

Since the Rust compiler is written in Rust, it must be built by a precompiled “snapshot” version of itself (made in an earlier stage of development). As such, source builds require an Internet connection to fetch snapshots, and an OS that can execute the available snapshot binaries.

See https://doc.rust-lang.org/nightly/rustc/platform-support.html for a list of supported platforms. Only “host tools” platforms have a pre-compiled snapshot binary available; to compile for a platform without host tools you must cross-compile.

You may find that other platforms work, but these are our officially supported build environments that are most likely to work.

Getting Help

See https://www.rust-lang.org/community for a list of chat platforms and forums.

Contributing

See CONTRIBUTING.md.

License

Rust is primarily distributed under the terms of both the MIT license and the Apache License (Version 2.0), with portions covered by various BSD-like licenses.

See LICENSE-APACHE, LICENSE-MIT, and COPYRIGHT for details.

Trademark

The Rust Foundation owns and protects the Rust and Cargo trademarks and logos (the “Rust Trademarks”).

If you want to use these names or brands, please read the media guide.

Third-party logos may be subject to third-party copyrights and trademarks. See Licenses for details.