blob: 882754fae4445ca97ef827d67b496c5f823e35d6 [file] [log] [blame]
// Copyright 2018 Developers of the Rand project.
// Copyright 2013 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The normal and derived distributions.
use rand::Rng;
use crate::{ziggurat_tables, Distribution, Open01};
use crate::utils::{ziggurat, Float};
/// Samples floating-point numbers according to the normal distribution
/// `N(0, 1)` (a.k.a. a standard normal, or Gaussian). This is equivalent to
/// `Normal::new(0.0, 1.0)` but faster.
///
/// See `Normal` for the general normal distribution.
///
/// Implemented via the ZIGNOR variant[^1] of the Ziggurat method.
///
/// [^1]: Jurgen A. Doornik (2005). [*An Improved Ziggurat Method to
/// Generate Normal Random Samples*](
/// https://www.doornik.com/research/ziggurat.pdf).
/// Nuffield College, Oxford
///
/// # Example
/// ```
/// use rand::prelude::*;
/// use rand_distr::StandardNormal;
///
/// let val: f64 = thread_rng().sample(StandardNormal);
/// println!("{}", val);
/// ```
#[derive(Clone, Copy, Debug)]
pub struct StandardNormal;
impl Distribution<f32> for StandardNormal {
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f32 {
// TODO: use optimal 32-bit implementation
let x: f64 = self.sample(rng);
x as f32
}
}
impl Distribution<f64> for StandardNormal {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
#[inline]
fn pdf(x: f64) -> f64 {
(-x*x/2.0).exp()
}
#[inline]
fn zero_case<R: Rng + ?Sized>(rng: &mut R, u: f64) -> f64 {
// compute a random number in the tail by hand
// strange initial conditions, because the loop is not
// do-while, so the condition should be true on the first
// run, they get overwritten anyway (0 < 1, so these are
// good).
let mut x = 1.0f64;
let mut y = 0.0f64;
while -2.0 * y < x * x {
let x_: f64 = rng.sample(Open01);
let y_: f64 = rng.sample(Open01);
x = x_.ln() / ziggurat_tables::ZIG_NORM_R;
y = y_.ln();
}
if u < 0.0 { x - ziggurat_tables::ZIG_NORM_R } else { ziggurat_tables::ZIG_NORM_R - x }
}
ziggurat(rng, true, // this is symmetric
&ziggurat_tables::ZIG_NORM_X,
&ziggurat_tables::ZIG_NORM_F,
pdf, zero_case)
}
}
/// The normal distribution `N(mean, std_dev**2)`.
///
/// This uses the ZIGNOR variant of the Ziggurat method, see [`StandardNormal`]
/// for more details.
///
/// Note that [`StandardNormal`] is an optimised implementation for mean 0, and
/// standard deviation 1.
///
/// # Example
///
/// ```
/// use rand_distr::{Normal, Distribution};
///
/// // mean 2, standard deviation 3
/// let normal = Normal::new(2.0, 3.0).unwrap();
/// let v = normal.sample(&mut rand::thread_rng());
/// println!("{} is from a N(2, 9) distribution", v)
/// ```
///
/// [`StandardNormal`]: crate::StandardNormal
#[derive(Clone, Copy, Debug)]
pub struct Normal<N> {
mean: N,
std_dev: N,
}
/// Error type returned from `Normal::new` and `LogNormal::new`.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Error {
/// `std_dev < 0` or `nan`.
StdDevTooSmall,
}
impl<N: Float> Normal<N>
where StandardNormal: Distribution<N>
{
/// Construct a new `Normal` distribution with the given mean and
/// standard deviation.
#[inline]
pub fn new(mean: N, std_dev: N) -> Result<Normal<N>, Error> {
if !(std_dev >= N::from(0.0)) {
return Err(Error::StdDevTooSmall);
}
Ok(Normal {
mean,
std_dev
})
}
}
impl<N: Float> Distribution<N> for Normal<N>
where StandardNormal: Distribution<N>
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> N {
let n: N = rng.sample(StandardNormal);
self.mean + self.std_dev * n
}
}
/// The log-normal distribution `ln N(mean, std_dev**2)`.
///
/// If `X` is log-normal distributed, then `ln(X)` is `N(mean, std_dev**2)`
/// distributed.
///
/// # Example
///
/// ```
/// use rand_distr::{LogNormal, Distribution};
///
/// // mean 2, standard deviation 3
/// let log_normal = LogNormal::new(2.0, 3.0).unwrap();
/// let v = log_normal.sample(&mut rand::thread_rng());
/// println!("{} is from an ln N(2, 9) distribution", v)
/// ```
#[derive(Clone, Copy, Debug)]
pub struct LogNormal<N> {
norm: Normal<N>
}
impl<N: Float> LogNormal<N>
where StandardNormal: Distribution<N>
{
/// Construct a new `LogNormal` distribution with the given mean
/// and standard deviation of the logarithm of the distribution.
#[inline]
pub fn new(mean: N, std_dev: N) -> Result<LogNormal<N>, Error> {
if !(std_dev >= N::from(0.0)) {
return Err(Error::StdDevTooSmall);
}
Ok(LogNormal { norm: Normal::new(mean, std_dev).unwrap() })
}
}
impl<N: Float> Distribution<N> for LogNormal<N>
where StandardNormal: Distribution<N>
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> N {
self.norm.sample(rng).exp()
}
}
#[cfg(test)]
mod tests {
use crate::Distribution;
use super::{Normal, LogNormal};
#[test]
fn test_normal() {
let norm = Normal::new(10.0, 10.0).unwrap();
let mut rng = crate::test::rng(210);
for _ in 0..1000 {
norm.sample(&mut rng);
}
}
#[test]
#[should_panic]
fn test_normal_invalid_sd() {
Normal::new(10.0, -1.0).unwrap();
}
#[test]
fn test_log_normal() {
let lnorm = LogNormal::new(10.0, 10.0).unwrap();
let mut rng = crate::test::rng(211);
for _ in 0..1000 {
lnorm.sample(&mut rng);
}
}
#[test]
#[should_panic]
fn test_log_normal_invalid_sd() {
LogNormal::new(10.0, -1.0).unwrap();
}
}