blob: 9c0482f328ee632497a73ba423531e149e8b2dda [file] [log] [blame]
// Copyright 2018 Developers of the Rand project.
// Copyright 2013-2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Utilities for random number generation
//!
//! Rand provides utilities to generate random numbers, to convert them to
//! useful types and distributions, and some randomness-related algorithms.
//!
//! # Quick Start
//!
//! To get you started quickly, the easiest and highest-level way to get
//! a random value is to use [`random()`]; alternatively you can use
//! [`thread_rng()`]. The [`Rng`] trait provides a useful API on all RNGs, while
//! the [`distributions`] and [`seq`] modules provide further
//! functionality on top of RNGs.
//!
//! ```
//! use rand::prelude::*;
//!
//! if rand::random() { // generates a boolean
//! // Try printing a random unicode code point (probably a bad idea)!
//! println!("char: {}", rand::random::<char>());
//! }
//!
//! let mut rng = rand::thread_rng();
//! let y: f64 = rng.gen(); // generates a float between 0 and 1
//!
//! let mut nums: Vec<i32> = (1..100).collect();
//! nums.shuffle(&mut rng);
//! ```
//!
//! # The Book
//!
//! For the user guide and futher documentation, please read
//! [The Rust Rand Book](https://rust-random.github.io/book).
#![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png",
html_favicon_url = "https://www.rust-lang.org/favicon.ico",
html_root_url = "https://rust-random.github.io/rand/")]
#![deny(missing_docs)]
#![deny(missing_debug_implementations)]
#![doc(test(attr(allow(unused_variables), deny(warnings))))]
#![cfg_attr(not(feature="std"), no_std)]
#![cfg_attr(all(feature="alloc", not(feature="std")), feature(alloc))]
#![cfg_attr(all(feature="simd_support", feature="nightly"), feature(stdsimd))]
#[cfg(feature = "std")] extern crate core;
#[cfg(all(feature = "alloc", not(feature="std")))] #[macro_use] extern crate alloc;
#[cfg(feature="simd_support")] extern crate packed_simd;
extern crate rand_jitter;
#[cfg(feature = "rand_os")]
extern crate rand_os;
extern crate rand_core;
extern crate rand_isaac; // only for deprecations
extern crate rand_chacha; // only for deprecations
extern crate rand_hc;
extern crate rand_pcg;
extern crate rand_xorshift;
#[cfg(feature = "log")] #[macro_use] extern crate log;
#[allow(unused)]
#[cfg(not(feature = "log"))] macro_rules! trace { ($($x:tt)*) => () }
#[allow(unused)]
#[cfg(not(feature = "log"))] macro_rules! debug { ($($x:tt)*) => () }
#[allow(unused)]
#[cfg(not(feature = "log"))] macro_rules! info { ($($x:tt)*) => () }
#[allow(unused)]
#[cfg(not(feature = "log"))] macro_rules! warn { ($($x:tt)*) => () }
#[allow(unused)]
#[cfg(not(feature = "log"))] macro_rules! error { ($($x:tt)*) => () }
// Re-exports from rand_core
pub use rand_core::{RngCore, CryptoRng, SeedableRng};
pub use rand_core::{ErrorKind, Error};
// Public exports
#[cfg(feature="std")] pub use rngs::thread::thread_rng;
// Public modules
pub mod distributions;
pub mod prelude;
#[deprecated(since="0.6.0")]
pub mod prng;
pub mod rngs;
pub mod seq;
////////////////////////////////////////////////////////////////////////////////
// Compatibility re-exports. Documentation is hidden; will be removed eventually.
#[doc(hidden)] mod deprecated;
#[allow(deprecated)]
#[doc(hidden)] pub use deprecated::ReseedingRng;
#[allow(deprecated)]
#[cfg(feature="std")] #[doc(hidden)] pub use deprecated::EntropyRng;
#[allow(deprecated)]
#[cfg(feature="rand_os")]
#[doc(hidden)]
pub use deprecated::OsRng;
#[allow(deprecated)]
#[doc(hidden)] pub use deprecated::{ChaChaRng, IsaacRng, Isaac64Rng, XorShiftRng};
#[allow(deprecated)]
#[doc(hidden)] pub use deprecated::StdRng;
#[allow(deprecated)]
#[doc(hidden)]
pub mod jitter {
pub use deprecated::JitterRng;
pub use rngs::TimerError;
}
#[allow(deprecated)]
#[cfg(feature="rand_os")]
#[doc(hidden)]
pub mod os {
pub use deprecated::OsRng;
}
#[allow(deprecated)]
#[doc(hidden)]
pub mod chacha {
pub use deprecated::ChaChaRng;
}
#[allow(deprecated)]
#[doc(hidden)]
pub mod isaac {
pub use deprecated::{IsaacRng, Isaac64Rng};
}
#[allow(deprecated)]
#[cfg(feature="std")]
#[doc(hidden)]
pub mod read {
pub use deprecated::ReadRng;
}
#[allow(deprecated)]
#[cfg(feature="std")] #[doc(hidden)] pub use deprecated::ThreadRng;
////////////////////////////////////////////////////////////////////////////////
use core::{mem, slice};
use distributions::{Distribution, Standard};
use distributions::uniform::{SampleUniform, UniformSampler, SampleBorrow};
/// An automatically-implemented extension trait on [`RngCore`] providing high-level
/// generic methods for sampling values and other convenience methods.
///
/// This is the primary trait to use when generating random values.
///
/// # Generic usage
///
/// The basic pattern is `fn foo<R: Rng + ?Sized>(rng: &mut R)`. Some
/// things are worth noting here:
///
/// - Since `Rng: RngCore` and every `RngCore` implements `Rng`, it makes no
/// difference whether we use `R: Rng` or `R: RngCore`.
/// - The `+ ?Sized` un-bounding allows functions to be called directly on
/// type-erased references; i.e. `foo(r)` where `r: &mut RngCore`. Without
/// this it would be necessary to write `foo(&mut r)`.
///
/// An alternative pattern is possible: `fn foo<R: Rng>(rng: R)`. This has some
/// trade-offs. It allows the argument to be consumed directly without a `&mut`
/// (which is how `from_rng(thread_rng())` works); also it still works directly
/// on references (including type-erased references). Unfortunately within the
/// function `foo` it is not known whether `rng` is a reference type or not,
/// hence many uses of `rng` require an extra reference, either explicitly
/// (`distr.sample(&mut rng)`) or implicitly (`rng.gen()`); one may hope the
/// optimiser can remove redundant references later.
///
/// Example:
///
/// ```
/// # use rand::thread_rng;
/// use rand::Rng;
///
/// fn foo<R: Rng + ?Sized>(rng: &mut R) -> f32 {
/// rng.gen()
/// }
///
/// # let v = foo(&mut thread_rng());
/// ```
pub trait Rng: RngCore {
/// Return a random value supporting the [`Standard`] distribution.
///
/// [`Standard`]: distributions::Standard
///
/// # Example
///
/// ```
/// use rand::{thread_rng, Rng};
///
/// let mut rng = thread_rng();
/// let x: u32 = rng.gen();
/// println!("{}", x);
/// println!("{:?}", rng.gen::<(f64, bool)>());
/// ```
#[inline]
fn gen<T>(&mut self) -> T where Standard: Distribution<T> {
Standard.sample(self)
}
/// Generate a random value in the range [`low`, `high`), i.e. inclusive of
/// `low` and exclusive of `high`.
///
/// This function is optimised for the case that only a single sample is
/// made from the given range. See also the [`Uniform`] distribution
/// type which may be faster if sampling from the same range repeatedly.
///
/// # Panics
///
/// Panics if `low >= high`.
///
/// # Example
///
/// ```
/// use rand::{thread_rng, Rng};
///
/// let mut rng = thread_rng();
/// let n: u32 = rng.gen_range(0, 10);
/// println!("{}", n);
/// let m: f64 = rng.gen_range(-40.0f64, 1.3e5f64);
/// println!("{}", m);
/// ```
///
/// [`Uniform`]: distributions::uniform::Uniform
fn gen_range<T: SampleUniform, B1, B2>(&mut self, low: B1, high: B2) -> T
where B1: SampleBorrow<T> + Sized,
B2: SampleBorrow<T> + Sized {
T::Sampler::sample_single(low, high, self)
}
/// Sample a new value, using the given distribution.
///
/// ### Example
///
/// ```
/// use rand::{thread_rng, Rng};
/// use rand::distributions::Uniform;
///
/// let mut rng = thread_rng();
/// let x = rng.sample(Uniform::new(10u32, 15));
/// // Type annotation requires two types, the type and distribution; the
/// // distribution can be inferred.
/// let y = rng.sample::<u16, _>(Uniform::new(10, 15));
/// ```
fn sample<T, D: Distribution<T>>(&mut self, distr: D) -> T {
distr.sample(self)
}
/// Create an iterator that generates values using the given distribution.
///
/// # Example
///
/// ```
/// use rand::{thread_rng, Rng};
/// use rand::distributions::{Alphanumeric, Uniform, Standard};
///
/// let mut rng = thread_rng();
///
/// // Vec of 16 x f32:
/// let v: Vec<f32> = thread_rng().sample_iter(&Standard).take(16).collect();
///
/// // String:
/// let s: String = rng.sample_iter(&Alphanumeric).take(7).collect();
///
/// // Combined values
/// println!("{:?}", thread_rng().sample_iter(&Standard).take(5)
/// .collect::<Vec<(f64, bool)>>());
///
/// // Dice-rolling:
/// let die_range = Uniform::new_inclusive(1, 6);
/// let mut roll_die = rng.sample_iter(&die_range);
/// while roll_die.next().unwrap() != 6 {
/// println!("Not a 6; rolling again!");
/// }
/// ```
fn sample_iter<'a, T, D: Distribution<T>>(&'a mut self, distr: &'a D)
-> distributions::DistIter<'a, D, Self, T> where Self: Sized
{
distr.sample_iter(self)
}
/// Fill `dest` entirely with random bytes (uniform value distribution),
/// where `dest` is any type supporting [`AsByteSliceMut`], namely slices
/// and arrays over primitive integer types (`i8`, `i16`, `u32`, etc.).
///
/// On big-endian platforms this performs byte-swapping to ensure
/// portability of results from reproducible generators.
///
/// This uses [`fill_bytes`] internally which may handle some RNG errors
/// implicitly (e.g. waiting if the OS generator is not ready), but panics
/// on other errors. See also [`try_fill`] which returns errors.
///
/// # Example
///
/// ```
/// use rand::{thread_rng, Rng};
///
/// let mut arr = [0i8; 20];
/// thread_rng().fill(&mut arr[..]);
/// ```
///
/// [`fill_bytes`]: RngCore::fill_bytes
/// [`try_fill`]: Rng::try_fill
fn fill<T: AsByteSliceMut + ?Sized>(&mut self, dest: &mut T) {
self.fill_bytes(dest.as_byte_slice_mut());
dest.to_le();
}
/// Fill `dest` entirely with random bytes (uniform value distribution),
/// where `dest` is any type supporting [`AsByteSliceMut`], namely slices
/// and arrays over primitive integer types (`i8`, `i16`, `u32`, etc.).
///
/// On big-endian platforms this performs byte-swapping to ensure
/// portability of results from reproducible generators.
///
/// This uses [`try_fill_bytes`] internally and forwards all RNG errors. In
/// some cases errors may be resolvable; see [`ErrorKind`] and
/// documentation for the RNG in use. If you do not plan to handle these
/// errors you may prefer to use [`fill`].
///
/// # Example
///
/// ```
/// # use rand::Error;
/// use rand::{thread_rng, Rng};
///
/// # fn try_inner() -> Result<(), Error> {
/// let mut arr = [0u64; 4];
/// thread_rng().try_fill(&mut arr[..])?;
/// # Ok(())
/// # }
///
/// # try_inner().unwrap()
/// ```
///
/// [`try_fill_bytes`]: RngCore::try_fill_bytes
/// [`fill`]: Rng::fill
fn try_fill<T: AsByteSliceMut + ?Sized>(&mut self, dest: &mut T) -> Result<(), Error> {
self.try_fill_bytes(dest.as_byte_slice_mut())?;
dest.to_le();
Ok(())
}
/// Return a bool with a probability `p` of being true.
///
/// See also the [`Bernoulli`] distribution, which may be faster if
/// sampling from the same probability repeatedly.
///
/// # Example
///
/// ```
/// use rand::{thread_rng, Rng};
///
/// let mut rng = thread_rng();
/// println!("{}", rng.gen_bool(1.0 / 3.0));
/// ```
///
/// # Panics
///
/// If `p < 0` or `p > 1`.
///
/// [`Bernoulli`]: distributions::bernoulli::Bernoulli
#[inline]
fn gen_bool(&mut self, p: f64) -> bool {
let d = distributions::Bernoulli::new(p);
self.sample(d)
}
/// Return a bool with a probability of `numerator/denominator` of being
/// true. I.e. `gen_ratio(2, 3)` has chance of 2 in 3, or about 67%, of
/// returning true. If `numerator == denominator`, then the returned value
/// is guaranteed to be `true`. If `numerator == 0`, then the returned
/// value is guaranteed to be `false`.
///
/// See also the [`Bernoulli`] distribution, which may be faster if
/// sampling from the same `numerator` and `denominator` repeatedly.
///
/// # Panics
///
/// If `denominator == 0` or `numerator > denominator`.
///
/// # Example
///
/// ```
/// use rand::{thread_rng, Rng};
///
/// let mut rng = thread_rng();
/// println!("{}", rng.gen_ratio(2, 3));
/// ```
///
/// [`Bernoulli`]: distributions::bernoulli::Bernoulli
#[inline]
fn gen_ratio(&mut self, numerator: u32, denominator: u32) -> bool {
let d = distributions::Bernoulli::from_ratio(numerator, denominator);
self.sample(d)
}
/// Return a random element from `values`.
///
/// Deprecated: use [`seq::SliceRandom::choose`] instead.
#[deprecated(since="0.6.0", note="use SliceRandom::choose instead")]
fn choose<'a, T>(&mut self, values: &'a [T]) -> Option<&'a T> {
use seq::SliceRandom;
values.choose(self)
}
/// Return a mutable pointer to a random element from `values`.
///
/// Deprecated: use [`seq::SliceRandom::choose_mut`] instead.
#[deprecated(since="0.6.0", note="use SliceRandom::choose_mut instead")]
fn choose_mut<'a, T>(&mut self, values: &'a mut [T]) -> Option<&'a mut T> {
use seq::SliceRandom;
values.choose_mut(self)
}
/// Shuffle a mutable slice in place.
///
/// Deprecated: use [`seq::SliceRandom::shuffle`] instead.
#[deprecated(since="0.6.0", note="use SliceRandom::shuffle instead")]
fn shuffle<T>(&mut self, values: &mut [T]) {
use seq::SliceRandom;
values.shuffle(self)
}
}
impl<R: RngCore + ?Sized> Rng for R {}
/// Trait for casting types to byte slices
///
/// This is used by the [`Rng::fill`] and [`Rng::try_fill`] methods.
pub trait AsByteSliceMut {
/// Return a mutable reference to self as a byte slice
fn as_byte_slice_mut(&mut self) -> &mut [u8];
/// Call `to_le` on each element (i.e. byte-swap on Big Endian platforms).
fn to_le(&mut self);
}
impl AsByteSliceMut for [u8] {
fn as_byte_slice_mut(&mut self) -> &mut [u8] {
self
}
fn to_le(&mut self) {}
}
macro_rules! impl_as_byte_slice {
($t:ty) => {
impl AsByteSliceMut for [$t] {
fn as_byte_slice_mut(&mut self) -> &mut [u8] {
if self.len() == 0 {
unsafe {
// must not use null pointer
slice::from_raw_parts_mut(0x1 as *mut u8, 0)
}
} else {
unsafe {
slice::from_raw_parts_mut(&mut self[0]
as *mut $t
as *mut u8,
self.len() * mem::size_of::<$t>()
)
}
}
}
fn to_le(&mut self) {
for x in self {
*x = x.to_le();
}
}
}
}
}
impl_as_byte_slice!(u16);
impl_as_byte_slice!(u32);
impl_as_byte_slice!(u64);
#[cfg(all(rustc_1_26, not(target_os = "emscripten")))] impl_as_byte_slice!(u128);
impl_as_byte_slice!(usize);
impl_as_byte_slice!(i8);
impl_as_byte_slice!(i16);
impl_as_byte_slice!(i32);
impl_as_byte_slice!(i64);
#[cfg(all(rustc_1_26, not(target_os = "emscripten")))] impl_as_byte_slice!(i128);
impl_as_byte_slice!(isize);
macro_rules! impl_as_byte_slice_arrays {
($n:expr,) => {};
($n:expr, $N:ident, $($NN:ident,)*) => {
impl_as_byte_slice_arrays!($n - 1, $($NN,)*);
impl<T> AsByteSliceMut for [T; $n] where [T]: AsByteSliceMut {
fn as_byte_slice_mut(&mut self) -> &mut [u8] {
self[..].as_byte_slice_mut()
}
fn to_le(&mut self) {
self[..].to_le()
}
}
};
(!div $n:expr,) => {};
(!div $n:expr, $N:ident, $($NN:ident,)*) => {
impl_as_byte_slice_arrays!(!div $n / 2, $($NN,)*);
impl<T> AsByteSliceMut for [T; $n] where [T]: AsByteSliceMut {
fn as_byte_slice_mut(&mut self) -> &mut [u8] {
self[..].as_byte_slice_mut()
}
fn to_le(&mut self) {
self[..].to_le()
}
}
};
}
impl_as_byte_slice_arrays!(32, N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,);
impl_as_byte_slice_arrays!(!div 4096, N,N,N,N,N,N,N,);
/// A convenience extension to [`SeedableRng`] allowing construction from fresh
/// entropy. This trait is automatically implemented for any PRNG implementing
/// [`SeedableRng`] and is not intended to be implemented by users.
///
/// This is equivalent to using `SeedableRng::from_rng(EntropyRng::new())` then
/// unwrapping the result.
///
/// Since this is convenient and secure, it is the recommended way to create
/// PRNGs, though two alternatives may be considered:
///
/// * Deterministic creation using [`SeedableRng::from_seed`] with a fixed seed
/// * Seeding from `thread_rng`: `SeedableRng::from_rng(thread_rng())?`;
/// this will usually be faster and should also be secure, but requires
/// trusting one extra component.
///
/// ## Example
///
/// ```
/// use rand::{Rng, FromEntropy};
/// use rand::rngs::StdRng;
///
/// let mut rng = StdRng::from_entropy();
/// println!("Random die roll: {}", rng.gen_range(1, 7));
/// ```
///
/// [`EntropyRng`]: rngs::EntropyRng
#[cfg(feature="std")]
pub trait FromEntropy: SeedableRng {
/// Creates a new instance, automatically seeded with fresh entropy.
///
/// Normally this will use `OsRng`, but if that fails `JitterRng` will be
/// used instead. Both should be suitable for cryptography. It is possible
/// that both entropy sources will fail though unlikely; failures would
/// almost certainly be platform limitations or build issues, i.e. most
/// applications targetting PC/mobile platforms should not need to worry
/// about this failing.
///
/// # Panics
///
/// If all entropy sources fail this will panic. If you need to handle
/// errors, use the following code, equivalent aside from error handling:
///
/// ```
/// # use rand::Error;
/// use rand::prelude::*;
/// use rand::rngs::EntropyRng;
///
/// # fn try_inner() -> Result<(), Error> {
/// // This uses StdRng, but is valid for any R: SeedableRng
/// let mut rng = StdRng::from_rng(EntropyRng::new())?;
///
/// println!("random number: {}", rng.gen_range(1, 10));
/// # Ok(())
/// # }
///
/// # try_inner().unwrap()
/// ```
fn from_entropy() -> Self;
}
#[cfg(feature="std")]
impl<R: SeedableRng> FromEntropy for R {
fn from_entropy() -> R {
R::from_rng(rngs::EntropyRng::new()).unwrap_or_else(|err|
panic!("FromEntropy::from_entropy() failed: {}", err))
}
}
/// Generates a random value using the thread-local random number generator.
///
/// This is simply a shortcut for `thread_rng().gen()`. See [`thread_rng`] for
/// documentation of the entropy source and [`Standard`] for documentation of
/// distributions and type-specific generation.
///
/// # Examples
///
/// ```
/// let x = rand::random::<u8>();
/// println!("{}", x);
///
/// let y = rand::random::<f64>();
/// println!("{}", y);
///
/// if rand::random() { // generates a boolean
/// println!("Better lucky than good!");
/// }
/// ```
///
/// If you're calling `random()` in a loop, caching the generator as in the
/// following example can increase performance.
///
/// ```
/// use rand::Rng;
///
/// let mut v = vec![1, 2, 3];
///
/// for x in v.iter_mut() {
/// *x = rand::random()
/// }
///
/// // can be made faster by caching thread_rng
///
/// let mut rng = rand::thread_rng();
///
/// for x in v.iter_mut() {
/// *x = rng.gen();
/// }
/// ```
///
/// [`Standard`]: distributions::Standard
#[cfg(feature="std")]
#[inline]
pub fn random<T>() -> T where Standard: Distribution<T> {
thread_rng().gen()
}
#[cfg(test)]
mod test {
use rngs::mock::StepRng;
use rngs::StdRng;
use super::*;
#[cfg(all(not(feature="std"), feature="alloc"))] use alloc::boxed::Box;
pub struct TestRng<R> { inner: R }
impl<R: RngCore> RngCore for TestRng<R> {
fn next_u32(&mut self) -> u32 {
self.inner.next_u32()
}
fn next_u64(&mut self) -> u64 {
self.inner.next_u64()
}
fn fill_bytes(&mut self, dest: &mut [u8]) {
self.inner.fill_bytes(dest)
}
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
self.inner.try_fill_bytes(dest)
}
}
pub fn rng(seed: u64) -> TestRng<StdRng> {
TestRng { inner: StdRng::seed_from_u64(seed) }
}
#[test]
fn test_fill_bytes_default() {
let mut r = StepRng::new(0x11_22_33_44_55_66_77_88, 0);
// check every remainder mod 8, both in small and big vectors.
let lengths = [0, 1, 2, 3, 4, 5, 6, 7,
80, 81, 82, 83, 84, 85, 86, 87];
for &n in lengths.iter() {
let mut buffer = [0u8; 87];
let v = &mut buffer[0..n];
r.fill_bytes(v);
// use this to get nicer error messages.
for (i, &byte) in v.iter().enumerate() {
if byte == 0 {
panic!("byte {} of {} is zero", i, n)
}
}
}
}
#[test]
fn test_fill() {
let x = 9041086907909331047; // a random u64
let mut rng = StepRng::new(x, 0);
// Convert to byte sequence and back to u64; byte-swap twice if BE.
let mut array = [0u64; 2];
rng.fill(&mut array[..]);
assert_eq!(array, [x, x]);
assert_eq!(rng.next_u64(), x);
// Convert to bytes then u32 in LE order
let mut array = [0u32; 2];
rng.fill(&mut array[..]);
assert_eq!(array, [x as u32, (x >> 32) as u32]);
assert_eq!(rng.next_u32(), x as u32);
}
#[test]
fn test_fill_empty() {
let mut array = [0u32; 0];
let mut rng = StepRng::new(0, 1);
rng.fill(&mut array);
rng.fill(&mut array[..]);
}
#[test]
fn test_gen_range() {
let mut r = rng(101);
for _ in 0..1000 {
let a = r.gen_range(-4711, 17);
assert!(a >= -4711 && a < 17);
let a = r.gen_range(-3i8, 42);
assert!(a >= -3i8 && a < 42i8);
let a = r.gen_range(&10u16, 99);
assert!(a >= 10u16 && a < 99u16);
let a = r.gen_range(-100i32, &2000);
assert!(a >= -100i32 && a < 2000i32);
let a = r.gen_range(&12u32, &24u32);
assert!(a >= 12u32 && a < 24u32);
assert_eq!(r.gen_range(0u32, 1), 0u32);
assert_eq!(r.gen_range(-12i64, -11), -12i64);
assert_eq!(r.gen_range(3_000_000, 3_000_001), 3_000_000);
}
}
#[test]
#[should_panic]
fn test_gen_range_panic_int() {
let mut r = rng(102);
r.gen_range(5, -2);
}
#[test]
#[should_panic]
fn test_gen_range_panic_usize() {
let mut r = rng(103);
r.gen_range(5, 2);
}
#[test]
fn test_gen_bool() {
let mut r = rng(105);
for _ in 0..5 {
assert_eq!(r.gen_bool(0.0), false);
assert_eq!(r.gen_bool(1.0), true);
}
}
#[test]
fn test_rng_trait_object() {
use distributions::{Distribution, Standard};
let mut rng = rng(109);
let mut r = &mut rng as &mut RngCore;
r.next_u32();
r.gen::<i32>();
assert_eq!(r.gen_range(0, 1), 0);
let _c: u8 = Standard.sample(&mut r);
}
#[test]
#[cfg(feature="alloc")]
fn test_rng_boxed_trait() {
use distributions::{Distribution, Standard};
let rng = rng(110);
let mut r = Box::new(rng) as Box<RngCore>;
r.next_u32();
r.gen::<i32>();
assert_eq!(r.gen_range(0, 1), 0);
let _c: u8 = Standard.sample(&mut r);
}
#[test]
#[cfg(feature="std")]
fn test_random() {
// not sure how to test this aside from just getting some values
let _n : usize = random();
let _f : f32 = random();
let _o : Option<Option<i8>> = random();
let _many : ((),
(usize,
isize,
Option<(u32, (bool,))>),
(u8, i8, u16, i16, u32, i32, u64, i64),
(f32, (f64, (f64,)))) = random();
}
#[test]
fn test_gen_ratio_average() {
const NUM: u32 = 3;
const DENOM: u32 = 10;
const N: u32 = 100_000;
let mut sum: u32 = 0;
let mut rng = rng(111);
for _ in 0..N {
if rng.gen_ratio(NUM, DENOM) {
sum += 1;
}
}
// Have Binomial(N, NUM/DENOM) distribution
let expected = (NUM * N) / DENOM; // exact integer
assert!(((sum - expected) as i32).abs() < 500);
}
}