blob: e260af9cb172ab821ba92f936cc793370487d795 [file] [log] [blame]
// Copyright 2018 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// https://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Entropy generator, or wrapper around external generators
use rand_core::{RngCore, CryptoRng, Error, impls};
use rngs::{OsRng, JitterRng};
/// An interface returning random data from external source(s), provided
/// specifically for securely seeding algorithmic generators (PRNGs).
///
/// Where possible, `EntropyRng` retrieves random data from the operating
/// system's interface for random numbers ([`OsRng`]); if that fails it will
/// fall back to the [`JitterRng`] entropy collector. In the latter case it will
/// still try to use [`OsRng`] on the next usage.
///
/// If no secure source of entropy is available `EntropyRng` will panic on use;
/// i.e. it should never output predictable data.
///
/// This is either a little slow ([`OsRng`] requires a system call) or extremely
/// slow ([`JitterRng`] must use significant CPU time to generate sufficient
/// jitter); for better performance it is common to seed a local PRNG from
/// external entropy then primarily use the local PRNG ([`thread_rng`] is
/// provided as a convenient, local, automatically-seeded CSPRNG).
///
/// # Panics
///
/// On most systems, like Windows, Linux, macOS and *BSD on common hardware, it
/// is highly unlikely for both [`OsRng`] and [`JitterRng`] to fail. But on
/// combinations like webassembly without Emscripten or stdweb both sources are
/// unavailable. If both sources fail, only [`try_fill_bytes`] is able to
/// report the error, and only the one from `OsRng`. The other [`RngCore`]
/// methods will panic in case of an error.
///
/// [`OsRng`]: struct.OsRng.html
/// [`JitterRng`]: jitter/struct.JitterRng.html
/// [`thread_rng`]: ../fn.thread_rng.html
/// [`RngCore`]: ../trait.RngCore.html
/// [`try_fill_bytes`]: ../trait.RngCore.html#method.tymethod.try_fill_bytes
#[derive(Debug)]
pub struct EntropyRng {
rng: EntropySource,
}
#[derive(Debug)]
enum EntropySource {
Os(OsRng),
Jitter(JitterRng),
None,
}
impl EntropyRng {
/// Create a new `EntropyRng`.
///
/// This method will do no system calls or other initialization routines,
/// those are done on first use. This is done to make `new` infallible,
/// and `try_fill_bytes` the only place to report errors.
pub fn new() -> Self {
EntropyRng { rng: EntropySource::None }
}
}
impl Default for EntropyRng {
fn default() -> Self {
EntropyRng::new()
}
}
impl RngCore for EntropyRng {
fn next_u32(&mut self) -> u32 {
impls::next_u32_via_fill(self)
}
fn next_u64(&mut self) -> u64 {
impls::next_u64_via_fill(self)
}
fn fill_bytes(&mut self, dest: &mut [u8]) {
self.try_fill_bytes(dest).unwrap_or_else(|err|
panic!("all entropy sources failed; first error: {}", err))
}
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
fn try_os_new(dest: &mut [u8]) -> Result<OsRng, Error>
{
let mut rng = OsRng::new()?;
rng.try_fill_bytes(dest)?;
Ok(rng)
}
fn try_jitter_new(dest: &mut [u8]) -> Result<JitterRng, Error>
{
let mut rng = JitterRng::new()?;
rng.try_fill_bytes(dest)?;
Ok(rng)
}
let mut switch_rng = None;
match self.rng {
EntropySource::None => {
let os_rng_result = try_os_new(dest);
match os_rng_result {
Ok(os_rng) => {
debug!("EntropyRng: using OsRng");
switch_rng = Some(EntropySource::Os(os_rng));
}
Err(os_rng_error) => {
warn!("EntropyRng: OsRng failed [falling back to JitterRng]: {}",
os_rng_error);
match try_jitter_new(dest) {
Ok(jitter_rng) => {
debug!("EntropyRng: using JitterRng");
switch_rng = Some(EntropySource::Jitter(jitter_rng));
}
Err(_jitter_error) => {
warn!("EntropyRng: JitterRng failed: {}",
_jitter_error);
return Err(os_rng_error);
}
}
}
}
}
EntropySource::Os(ref mut rng) => {
let os_rng_result = rng.try_fill_bytes(dest);
if let Err(os_rng_error) = os_rng_result {
warn!("EntropyRng: OsRng failed [falling back to JitterRng]: {}",
os_rng_error);
match try_jitter_new(dest) {
Ok(jitter_rng) => {
debug!("EntropyRng: using JitterRng");
switch_rng = Some(EntropySource::Jitter(jitter_rng));
}
Err(_jitter_error) => {
warn!("EntropyRng: JitterRng failed: {}",
_jitter_error);
return Err(os_rng_error);
}
}
}
}
EntropySource::Jitter(ref mut rng) => {
if let Ok(os_rng) = try_os_new(dest) {
debug!("EntropyRng: using OsRng");
switch_rng = Some(EntropySource::Os(os_rng));
} else {
return rng.try_fill_bytes(dest); // use JitterRng
}
}
}
if let Some(rng) = switch_rng {
self.rng = rng;
}
Ok(())
}
}
impl CryptoRng for EntropyRng {}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_entropy() {
let mut rng = EntropyRng::new();
let n = (rng.next_u32() ^ rng.next_u32()).count_ones();
assert!(n >= 2); // p(failure) approx 1e-7
}
}