blob: b98a5cb78b1381bd6d94b98d9273ea3cdc0b46d7 [file] [log] [blame]
// Copyright 2017 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// https://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Xorshift generators
use core::num::Wrapping as w;
use core::{fmt, slice};
use rand_core::{RngCore, SeedableRng, Error, impls, le};
/// An Xorshift[1] random number
/// generator.
///
/// The Xorshift algorithm is not suitable for cryptographic purposes
/// but is very fast. If you do not know for sure that it fits your
/// requirements, use a more secure one such as `IsaacRng` or `OsRng`.
///
/// [1]: Marsaglia, George (July 2003). ["Xorshift
/// RNGs"](https://www.jstatsoft.org/v08/i14/paper). *Journal of
/// Statistical Software*. Vol. 8 (Issue 14).
#[derive(Clone)]
#[cfg_attr(feature="serde-1", derive(Serialize,Deserialize))]
pub struct XorShiftRng {
x: w<u32>,
y: w<u32>,
z: w<u32>,
w: w<u32>,
}
// Custom Debug implementation that does not expose the internal state
impl fmt::Debug for XorShiftRng {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "XorShiftRng {{}}")
}
}
impl XorShiftRng {
/// Creates a new XorShiftRng instance which is not seeded.
///
/// The initial values of this RNG are constants, so all generators created
/// by this function will yield the same stream of random numbers. It is
/// highly recommended that this is created through `SeedableRng` instead of
/// this function
pub fn new_unseeded() -> XorShiftRng {
XorShiftRng {
x: w(0x193a6754),
y: w(0xa8a7d469),
z: w(0x97830e05),
w: w(0x113ba7bb),
}
}
}
impl RngCore for XorShiftRng {
#[inline]
fn next_u32(&mut self) -> u32 {
let x = self.x;
let t = x ^ (x << 11);
self.x = self.y;
self.y = self.z;
self.z = self.w;
let w_ = self.w;
self.w = w_ ^ (w_ >> 19) ^ (t ^ (t >> 8));
self.w.0
}
fn next_u64(&mut self) -> u64 {
impls::next_u64_via_u32(self)
}
fn fill_bytes(&mut self, dest: &mut [u8]) {
impls::fill_bytes_via_u32(self, dest)
}
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
Ok(self.fill_bytes(dest))
}
}
impl SeedableRng for XorShiftRng {
type Seed = [u8; 16];
fn from_seed(seed: Self::Seed) -> Self {
let mut seed_u32 = [0u32; 4];
le::read_u32_into(&seed, &mut seed_u32);
// Xorshift cannot be seeded with 0 and we cannot return an Error, but
// also do not wish to panic (because a random seed can legitimately be
// 0); our only option is therefore to use a preset value.
if seed_u32.iter().all(|&x| x == 0) {
seed_u32 = [0xBAD_5EED, 0xBAD_5EED, 0xBAD_5EED, 0xBAD_5EED];
}
XorShiftRng {
x: w(seed_u32[0]),
y: w(seed_u32[1]),
z: w(seed_u32[2]),
w: w(seed_u32[3]),
}
}
fn from_rng<R: RngCore>(mut rng: R) -> Result<Self, Error> {
let mut seed_u32 = [0u32; 4];
loop {
unsafe {
let ptr = seed_u32.as_mut_ptr() as *mut u8;
let slice = slice::from_raw_parts_mut(ptr, 4 * 4);
rng.try_fill_bytes(slice)?;
}
if !seed_u32.iter().all(|&x| x == 0) { break; }
}
Ok(XorShiftRng {
x: w(seed_u32[0]),
y: w(seed_u32[1]),
z: w(seed_u32[2]),
w: w(seed_u32[3]),
})
}
}
#[cfg(test)]
mod tests {
use {RngCore, SeedableRng};
use super::XorShiftRng;
#[test]
fn test_xorshift_construction() {
// Test that various construction techniques produce a working RNG.
let seed = [1,2,3,4, 5,6,7,8, 9,10,11,12, 13,14,15,16];
let mut rng1 = XorShiftRng::from_seed(seed);
assert_eq!(rng1.next_u64(), 4325440999699518727);
let _rng2 = XorShiftRng::from_rng(rng1).unwrap();
// Note: we cannot test the state of _rng2 because from_rng does not
// fix Endianness. This is allowed in the trait specification.
}
#[test]
fn test_xorshift_true_values() {
let seed = [16,15,14,13, 12,11,10,9, 8,7,6,5, 4,3,2,1];
let mut rng = XorShiftRng::from_seed(seed);
let mut results = [0u32; 9];
for i in results.iter_mut() { *i = rng.next_u32(); }
let expected: [u32; 9] = [
2081028795, 620940381, 269070770, 16943764, 854422573, 29242889,
1550291885, 1227154591, 271695242];
assert_eq!(results, expected);
let mut results = [0u64; 9];
for i in results.iter_mut() { *i = rng.next_u64(); }
let expected: [u64; 9] = [
9247529084182843387, 8321512596129439293, 14104136531997710878,
6848554330849612046, 343577296533772213, 17828467390962600268,
9847333257685787782, 7717352744383350108, 1133407547287910111];
assert_eq!(results, expected);
let mut results = [0u8; 32];
rng.fill_bytes(&mut results);
let expected = [102, 57, 212, 16, 233, 130, 49, 183,
158, 187, 44, 203, 63, 149, 45, 17,
117, 129, 131, 160, 70, 121, 158, 155,
224, 209, 192, 53, 10, 62, 57, 72];
assert_eq!(results, expected);
}
#[test]
fn test_xorshift_zero_seed() {
// Xorshift does not work with an all zero seed.
// Assert it does not panic.
let seed = [0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0];
let mut rng = XorShiftRng::from_seed(seed);
let a = rng.next_u64();
let b = rng.next_u64();
assert!(a != 0);
assert!(b != a);
}
#[test]
fn test_xorshift_clone() {
let seed = [1,2,3,4, 5,5,7,8, 8,7,6,5, 4,3,2,1];
let mut rng1 = XorShiftRng::from_seed(seed);
let mut rng2 = rng1.clone();
for _ in 0..16 {
assert_eq!(rng1.next_u64(), rng2.next_u64());
}
}
#[cfg(all(feature="serde-1", feature="std"))]
#[test]
fn test_xorshift_serde() {
use bincode;
use std::io::{BufWriter, BufReader};
let seed = [1,2,3,4, 5,6,7,8, 9,10,11,12, 13,14,15,16];
let mut rng = XorShiftRng::from_seed(seed);
let buf: Vec<u8> = Vec::new();
let mut buf = BufWriter::new(buf);
bincode::serialize_into(&mut buf, &rng).expect("Could not serialize");
let buf = buf.into_inner().unwrap();
let mut read = BufReader::new(&buf[..]);
let mut deserialized: XorShiftRng = bincode::deserialize_from(&mut read).expect("Could not deserialize");
assert_eq!(rng.x, deserialized.x);
assert_eq!(rng.y, deserialized.y);
assert_eq!(rng.z, deserialized.z);
assert_eq!(rng.w, deserialized.w);
for _ in 0..16 {
assert_eq!(rng.next_u64(), deserialized.next_u64());
}
}
}