blob: 579c30f9bd4372cd7a846bd920c5d2c99a7edb53 [file] [log] [blame]
// Copyright 2013-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// https://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Interfaces to the operating system provided random number
//! generators.
use std::fmt;
use rand_core::{RngCore, Error, impls};
/// A random number generator that retrieves randomness straight from the
/// operating system. This is the preferred external source of entropy for most
/// applications. Commonly it is used to initialize a user-space RNG, which can
/// then be used to generate random values with much less overhead than `OsRng`.
///
/// You may prefer to use [`EntropyRng`] instead of `OsRng`. Is is unlikely, but
/// not entirely theoretical, for `OsRng` to fail. In such cases `EntropyRng`
/// falls back on a good alternative entropy source.
///
/// `OsRng` usually does not block. On some systems, and notably virtual
/// machines, it may block very early in the init process, when the OS CSPRNG
/// has not yet been seeded.
///
/// `OsRng::new()` is guaranteed to be very cheap (after first call), and will
/// never consume more than one file handle per process.
///
/// ## Platform sources:
///
/// - Linux, Android: reads from the `getrandom(2)` system call if available,
/// otherwise from `/dev/urandom`.
/// - macOS, iOS: calls `SecRandomCopyBytes`.
/// - Windows: calls `RtlGenRandom`.
/// - WASM: calls `window.crypto.getRandomValues` in browsers,
/// and in Node.js `require("crypto").randomBytes`.
/// - OpenBSD: calls `getentropy(2)`.
/// - FreeBSD: uses the `kern.arandom` `sysctl(2)` mib.
/// - Fuchsia: calls `cprng_draw`.
/// - Redox: reads from `rand:` device.
/// - CloudABI: calls `random_get`.
/// - Other Unix-like systems: reads directly from `/dev/urandom`.
/// Note: many Unix systems provide `/dev/random` as well as `/dev/urandom`.
/// On all modern systems these two interfaces offer identical quality, with
/// the difference that on some systems `/dev/random` may block. This is a
/// dated design, and `/dev/urandom` is preferred by cryptography experts. [1]
///
/// [1] See [Myths about urandom](https://www.2uo.de/myths-about-urandom/).
///
/// [`EntropyRng`]: struct.EntropyRng.html
#[allow(unused)] // not used by all targets
pub struct OsRng(imp::OsRng);
impl fmt::Debug for OsRng {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.0.fmt(f)
}
}
impl OsRng {
/// Create a new `OsRng`.
pub fn new() -> Result<OsRng, Error> {
imp::OsRng::new().map(OsRng)
}
}
impl RngCore for OsRng {
fn next_u32(&mut self) -> u32 {
impls::next_u32_via_fill(self)
}
fn next_u64(&mut self) -> u64 {
impls::next_u64_via_fill(self)
}
fn fill_bytes(&mut self, dest: &mut [u8]) {
use std::{time, thread};
// We cannot return Err(..), so we try to handle before panicking.
const MAX_RETRY_PERIOD: u32 = 10; // max 10s
const WAIT_DUR_MS: u32 = 100; // retry every 100ms
let wait_dur = time::Duration::from_millis(WAIT_DUR_MS as u64);
const RETRY_LIMIT: u32 = (MAX_RETRY_PERIOD * 1000) / WAIT_DUR_MS;
const TRANSIENT_RETRIES: u32 = 8;
let mut err_count = 0;
let mut error_logged = false;
loop {
if let Err(e) = self.try_fill_bytes(dest) {
if err_count >= RETRY_LIMIT {
error!("OsRng failed too many times; last error: {}", e);
panic!("OsRng failed too many times; last error: {}", e);
}
if e.kind.should_wait() {
if !error_logged {
warn!("OsRng failed; waiting up to {}s and retrying. Error: {}",
MAX_RETRY_PERIOD, e);
error_logged = true;
}
err_count += 1;
thread::sleep(wait_dur);
continue;
} else if e.kind.should_retry() {
if !error_logged {
warn!("OsRng failed; retrying up to {} times. Error: {}",
TRANSIENT_RETRIES, e);
error_logged = true;
}
err_count += (RETRY_LIMIT + TRANSIENT_RETRIES - 1)
/ TRANSIENT_RETRIES; // round up
continue;
} else {
error!("OsRng failed: {}", e);
panic!("OsRng fatal error: {}", e);
}
}
break;
}
}
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
self.0.try_fill_bytes(dest)
}
}
#[cfg(all(unix,
not(target_os = "cloudabi"),
not(target_os = "freebsd"),
not(target_os = "fuchsia"),
not(target_os = "ios"),
not(target_os = "macos"),
not(target_os = "openbsd"),
not(target_os = "redox")))]
mod imp {
extern crate libc;
use {Error, ErrorKind};
use std::fs::{OpenOptions, File};
use std::os::unix::fs::OpenOptionsExt;
use std::io;
use std::io::Read;
use std::sync::{Once, Mutex, ONCE_INIT};
#[derive(Debug)]
pub struct OsRng(OsRngMethod);
#[derive(Debug)]
enum OsRngMethod {
GetRandom,
RandomDevice,
}
impl OsRng {
pub fn new() -> Result<OsRng, Error> {
if is_getrandom_available() {
return Ok(OsRng(OsRngMethod::GetRandom));
}
open_dev_random()?;
Ok(OsRng(OsRngMethod::RandomDevice))
}
pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
match self.0 {
OsRngMethod::GetRandom => getrandom_try_fill(dest),
OsRngMethod::RandomDevice => dev_random_try_fill(dest),
}
}
}
#[cfg(all(any(target_os = "linux", target_os = "android"),
any(target_arch = "x86_64", target_arch = "x86",
target_arch = "arm", target_arch = "aarch64",
target_arch = "s390x", target_arch = "powerpc",
target_arch = "mips", target_arch = "mips64")))]
fn getrandom(buf: &mut [u8]) -> libc::c_long {
extern "C" {
fn syscall(number: libc::c_long, ...) -> libc::c_long;
}
#[cfg(target_arch = "x86_64")]
const NR_GETRANDOM: libc::c_long = 318;
#[cfg(target_arch = "x86")]
const NR_GETRANDOM: libc::c_long = 355;
#[cfg(target_arch = "arm")]
const NR_GETRANDOM: libc::c_long = 384;
#[cfg(target_arch = "aarch64")]
const NR_GETRANDOM: libc::c_long = 278;
#[cfg(target_arch = "s390x")]
const NR_GETRANDOM: libc::c_long = 349;
#[cfg(target_arch = "powerpc")]
const NR_GETRANDOM: libc::c_long = 359;
#[cfg(target_arch = "mips")] // old ABI
const NR_GETRANDOM: libc::c_long = 4353;
#[cfg(target_arch = "mips64")]
const NR_GETRANDOM: libc::c_long = 5313;
const GRND_NONBLOCK: libc::c_uint = 0x0001;
unsafe {
syscall(NR_GETRANDOM, buf.as_mut_ptr(), buf.len(), GRND_NONBLOCK)
}
}
#[cfg(not(all(any(target_os = "linux", target_os = "android"),
any(target_arch = "x86_64", target_arch = "x86",
target_arch = "arm", target_arch = "aarch64",
target_arch = "s390x", target_arch = "powerpc",
target_arch = "mips", target_arch = "mips64"))))]
fn getrandom(_buf: &mut [u8]) -> libc::c_long { -1 }
fn getrandom_try_fill(dest: &mut [u8]) -> Result<(), Error> {
trace!("OsRng: reading {} bytes via getrandom", dest.len());
let mut read = 0;
let len = dest.len();
while read < len {
let result = getrandom(&mut dest[read..]);
if result == -1 {
let err = io::Error::last_os_error();
let kind = err.kind();
if kind == io::ErrorKind::Interrupted {
continue;
} else if kind == io::ErrorKind::WouldBlock {
// Potentially this would waste bytes, but since we use
// /dev/urandom blocking only happens if not initialised.
// Also, wasting the bytes in dest doesn't matter very much.
return Err(Error::with_cause(
ErrorKind::NotReady,
"getrandom not ready",
err,
));
} else {
return Err(Error::with_cause(
ErrorKind::Unavailable,
"unexpected getrandom error",
err,
));
}
} else {
read += result as usize;
}
}
Ok(())
}
#[cfg(all(any(target_os = "linux", target_os = "android"),
any(target_arch = "x86_64", target_arch = "x86",
target_arch = "arm", target_arch = "aarch64",
target_arch = "s390x", target_arch = "powerpc",
target_arch = "mips", target_arch = "mips64")))]
fn is_getrandom_available() -> bool {
use std::sync::atomic::{AtomicBool, ATOMIC_BOOL_INIT, Ordering};
use std::sync::{Once, ONCE_INIT};
static CHECKER: Once = ONCE_INIT;
static AVAILABLE: AtomicBool = ATOMIC_BOOL_INIT;
CHECKER.call_once(|| {
debug!("OsRng: testing getrandom");
let mut buf: [u8; 0] = [];
let result = getrandom(&mut buf);
let available = if result == -1 {
let err = io::Error::last_os_error().raw_os_error();
err != Some(libc::ENOSYS)
} else {
true
};
AVAILABLE.store(available, Ordering::Relaxed);
info!("OsRng: using {}", if available { "getrandom" } else { "/dev/urandom" });
});
AVAILABLE.load(Ordering::Relaxed)
}
#[cfg(not(all(any(target_os = "linux", target_os = "android"),
any(target_arch = "x86_64", target_arch = "x86",
target_arch = "arm", target_arch = "aarch64",
target_arch = "s390x", target_arch = "powerpc",
target_arch = "mips", target_arch = "mips64"))))]
fn is_getrandom_available() -> bool { false }
// TODO: remove outer Option when `Mutex::new(None)` is a constant expression
static mut READ_RNG_FILE: Option<Mutex<Option<File>>> = None;
static READ_RNG_ONCE: Once = ONCE_INIT;
// Note: all instances use a single internal file handle, to prevent
// possible exhaustion of file descriptors.
//
// On some systems reading from `/dev/urandom` "may return data prior to the
// to the entropy pool being initialized". I.e., early in the boot process,
// and especially on virtual machines, `/dev/urandom` may return data that
// is less random.
//
// As a countermeasure we try to do a single read from `/dev/random` in
// non-blocking mode. If the OS RNG is not yet properly seeded, we will get
// an error. Because we keep `/dev/urandom` open when succesful, this is
// only a small one-time cost.
fn open_dev_random() -> Result<(), Error> {
fn map_err(err: io::Error) -> Error {
match err.kind() {
io::ErrorKind::Interrupted =>
Error::new(ErrorKind::Transient, "interrupted"),
io::ErrorKind::WouldBlock =>
Error::with_cause(ErrorKind::NotReady,
"OS RNG not yet seeded", err),
_ => Error::with_cause(ErrorKind::Unavailable,
"error while opening random device", err)
}
}
READ_RNG_ONCE.call_once(|| {
unsafe { READ_RNG_FILE = Some(Mutex::new(None)) }
});
// We try opening the file outside the `call_once` fn because we cannot
// clone the error, thus we must retry on failure.
let mutex = unsafe { READ_RNG_FILE.as_ref().unwrap() };
let mut guard = mutex.lock().unwrap();
if (*guard).is_none() {
{
info!("OsRng: opening random device /dev/random");
let mut file = OpenOptions::new()
.read(true)
.custom_flags(libc::O_NONBLOCK)
.open("/dev/random")
.map_err(|err| map_err(err))?;
let mut buf = [0u8; 1];
file.read_exact(&mut buf).map_err(|err| map_err(err))?;
}
info!("OsRng: opening random device /dev/urandom");
let file = File::open("/dev/urandom").map_err(|err| map_err(err))?;
*guard = Some(file);
};
Ok(())
}
fn dev_random_try_fill(dest: &mut [u8]) -> Result<(), Error> {
if dest.len() == 0 { return Ok(()); }
trace!("OsRng: reading {} bytes from random device", dest.len());
// We expect this function only to be used after `open_dev_random` was
// succesful. Therefore we can assume that our memory was set with a
// valid object.
let mutex = unsafe { READ_RNG_FILE.as_ref().unwrap() };
let mut guard = mutex.lock().unwrap();
let file = (*guard).as_mut().unwrap();
// Use `std::io::read_exact`, which retries on `ErrorKind::Interrupted`.
file.read_exact(dest).map_err(|err| {
match err.kind() {
::std::io::ErrorKind::WouldBlock => Error::with_cause(
ErrorKind::NotReady,
"reading from random device would block", err),
_ => Error::with_cause(ErrorKind::Unavailable,
"error reading random device", err)
}
})
}
}
#[cfg(target_os = "cloudabi")]
mod imp {
extern crate cloudabi;
use {Error, ErrorKind};
#[derive(Debug)]
pub struct OsRng;
impl OsRng {
pub fn new() -> Result<OsRng, Error> {
Ok(OsRng)
}
pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
trace!("OsRng: reading {} bytes via cloadabi::random_get", dest.len());
let errno = unsafe { cloudabi::random_get(dest) };
if errno == cloudabi::errno::SUCCESS {
Ok(())
} else {
// Cloudlibc provides its own `strerror` implementation so we
// can use `from_raw_os_error` here.
Err(Error::with_cause(
ErrorKind::Unavailable,
"random_get() system call failed",
io::Error::from_raw_os_error(errno),
))
}
}
}
}
#[cfg(any(target_os = "macos", target_os = "ios"))]
mod imp {
extern crate libc;
use {Error, ErrorKind};
use std::io;
use self::libc::{c_int, size_t};
#[derive(Debug)]
pub struct OsRng;
enum SecRandom {}
#[allow(non_upper_case_globals)]
const kSecRandomDefault: *const SecRandom = 0 as *const SecRandom;
#[link(name = "Security", kind = "framework")]
extern {
fn SecRandomCopyBytes(rnd: *const SecRandom,
count: size_t, bytes: *mut u8) -> c_int;
}
impl OsRng {
pub fn new() -> Result<OsRng, Error> {
Ok(OsRng)
}
pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
trace!("OsRng: reading {} bytes via SecRandomCopyBytes", dest.len());
let ret = unsafe {
SecRandomCopyBytes(kSecRandomDefault, dest.len() as size_t, dest.as_mut_ptr())
};
if ret == -1 {
Err(Error::with_cause(
ErrorKind::Unavailable,
"couldn't generate random bytes",
io::Error::last_os_error()))
} else {
Ok(())
}
}
}
}
#[cfg(target_os = "freebsd")]
mod imp {
extern crate libc;
use {Error, ErrorKind};
use std::ptr;
use std::io;
#[derive(Debug)]
pub struct OsRng;
impl OsRng {
pub fn new() -> Result<OsRng, Error> {
Ok(OsRng)
}
pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
let mib = [libc::CTL_KERN, libc::KERN_ARND];
trace!("OsRng: reading {} bytes via kern.arandom", dest.len());
// kern.arandom permits a maximum buffer size of 256 bytes
for s in dest.chunks_mut(256) {
let mut s_len = s.len();
let ret = unsafe {
libc::sysctl(mib.as_ptr(), mib.len() as libc::c_uint,
s.as_mut_ptr() as *mut _, &mut s_len,
ptr::null(), 0)
};
if ret == -1 || s_len != s.len() {
return Err(Error::with_cause(
ErrorKind::Unavailable,
"kern.arandom sysctl failed",
io::Error::last_os_error()));
}
}
Ok(())
}
}
}
#[cfg(target_os = "openbsd")]
mod imp {
extern crate libc;
use {Error, ErrorKind};
use std::io;
#[derive(Debug)]
pub struct OsRng;
impl OsRng {
pub fn new() -> Result<OsRng, Error> {
Ok(OsRng)
}
pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
// getentropy(2) permits a maximum buffer size of 256 bytes
for s in dest.chunks_mut(256) {
trace!("OsRng: reading {} bytes via getentropy", s.len());
let ret = unsafe {
libc::getentropy(s.as_mut_ptr() as *mut libc::c_void, s.len())
};
if ret == -1 {
return Err(Error::with_cause(
ErrorKind::Unavailable,
"getentropy failed",
io::Error::last_os_error()));
}
}
Ok(())
}
}
}
#[cfg(target_os = "redox")]
mod imp {
use {Error, ErrorKind};
use std::fs::File;
use std::io::Read;
use std::io::ErrorKind::*;
use std::sync::{Once, Mutex, ONCE_INIT};
#[derive(Debug)]
pub struct OsRng();
// TODO: remove outer Option when `Mutex::new(None)` is a constant expression
static mut READ_RNG_FILE: Option<Mutex<Option<File>>> = None;
static READ_RNG_ONCE: Once = ONCE_INIT;
impl OsRng {
pub fn new() -> Result<OsRng, Error> {
READ_RNG_ONCE.call_once(|| {
unsafe { READ_RNG_FILE = Some(Mutex::new(None)) }
});
// We try opening the file outside the `call_once` fn because we cannot
// clone the error, thus we must retry on failure.
let mutex = unsafe { READ_RNG_FILE.as_ref().unwrap() };
let mut guard = mutex.lock().unwrap();
if (*guard).is_none() {
info!("OsRng: opening random device 'rand:'");
let file = File::open("rand:").map_err(|err| {
match err.kind() {
Interrupted => Error::new(ErrorKind::Transient, "interrupted"),
WouldBlock => Error::with_cause(ErrorKind::NotReady,
"opening random device would block", err),
_ => Error::with_cause(ErrorKind::Unavailable,
"error while opening random device", err)
}
})?;
*guard = Some(file);
};
Ok(OsRng())
}
pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
if dest.len() == 0 { return Ok(()); }
trace!("OsRng: reading {} bytes from random device", dest.len());
// Since we have an instance of Self, we can assume that our memory was
// set with a valid object.
let mutex = unsafe { READ_RNG_FILE.as_ref().unwrap() };
let mut guard = mutex.lock().unwrap();
let file = (*guard).as_mut().unwrap();
// Use `std::io::read_exact`, which retries on `ErrorKind::Interrupted`.
file.read_exact(dest).map_err(|err| {
Error::with_cause(ErrorKind::Unavailable,
"error reading random device", err)
})
}
}
}
#[cfg(target_os = "fuchsia")]
mod imp {
extern crate fuchsia_zircon;
use {Error, ErrorKind};
use std::io;
#[derive(Debug)]
pub struct OsRng;
impl OsRng {
pub fn new() -> Result<OsRng, Error> {
Ok(OsRng)
}
pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
for s in dest.chunks_mut(fuchsia_zircon::sys::ZX_CPRNG_DRAW_MAX_LEN) {
trace!("OsRng: reading {} bytes via cprng_draw", s.len());
let mut filled = 0;
while filled < s.len() {
match fuchsia_zircon::cprng_draw(&mut s[filled..]) {
Ok(actual) => filled += actual,
Err(e) => {
return Err(Error::with_cause(
ErrorKind::Unavailable,
"cprng_draw failed",
e));
}
};
}
}
Ok(())
}
}
}
#[cfg(windows)]
mod imp {
extern crate winapi;
use {Error, ErrorKind};
use std::io;
use self::winapi::shared::minwindef::ULONG;
use self::winapi::um::ntsecapi::RtlGenRandom;
use self::winapi::um::winnt::PVOID;
#[derive(Debug)]
pub struct OsRng;
impl OsRng {
pub fn new() -> Result<OsRng, Error> {
Ok(OsRng)
}
pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
// RtlGenRandom takes an ULONG (u32) for the length so we need to
// split up the buffer.
for slice in dest.chunks_mut(<ULONG>::max_value() as usize) {
trace!("OsRng: reading {} bytes via RtlGenRandom", slice.len());
let ret = unsafe {
RtlGenRandom(slice.as_mut_ptr() as PVOID, slice.len() as ULONG)
};
if ret == 0 {
return Err(Error::with_cause(
ErrorKind::Unavailable,
"couldn't generate random bytes",
io::Error::last_os_error()));
}
}
Ok(())
}
}
}
#[cfg(all(target_arch = "wasm32",
not(target_os = "emscripten"),
not(feature = "stdweb")))]
mod imp {
use {Error, ErrorKind};
#[derive(Debug)]
pub struct OsRng;
impl OsRng {
pub fn new() -> Result<OsRng, Error> {
Err(Error::new(ErrorKind::Unavailable,
"not supported on WASM without stdweb"))
}
pub fn try_fill_bytes(&mut self, _v: &mut [u8]) -> Result<(), Error> {
Err(Error::new(ErrorKind::Unavailable,
"not supported on WASM without stdweb"))
}
}
}
#[cfg(all(target_arch = "wasm32",
not(target_os = "emscripten"),
feature = "stdweb"))]
mod imp {
use std::mem;
use stdweb::unstable::TryInto;
use stdweb::web::error::Error as WebError;
use {Error, ErrorKind};
#[derive(Debug)]
enum OsRngInner {
Browser,
Node
}
#[derive(Debug)]
pub struct OsRng(OsRngInner);
impl OsRng {
pub fn new() -> Result<OsRng, Error> {
let result = js! {
try {
if (
typeof window === "object" &&
typeof window.crypto === "object" &&
typeof window.crypto.getRandomValues === "function"
) {
return { success: true, ty: 1 };
}
if (typeof require("crypto").randomBytes === "function") {
return { success: true, ty: 2 };
}
return { success: false, error: new Error("not supported") };
} catch(err) {
return { success: false, error: err };
}
};
if js!{ return @{ result.as_ref() }.success } == true {
let ty = js!{ return @{ result }.ty };
if ty == 1 { Ok(OsRng(OsRngInner::Browser)) }
else if ty == 2 { Ok(OsRng(OsRngInner::Node)) }
else { unreachable!() }
} else {
let err: WebError = js!{ return @{ result }.error }.try_into().unwrap();
Err(Error::with_cause(ErrorKind::Unavailable, "WASM Error", err))
}
}
pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
assert_eq!(mem::size_of::<usize>(), 4);
let len = dest.len() as u32;
let ptr = dest.as_mut_ptr() as i32;
let result = match self.0 {
OsRngInner::Browser => js! {
try {
let array = new Uint8Array(@{ len });
window.crypto.getRandomValues(array);
HEAPU8.set(array, @{ ptr });
return { success: true };
} catch(err) {
return { success: false, error: err };
}
},
OsRngInner::Node => js! {
try {
let bytes = require("crypto").randomBytes(@{ len });
HEAPU8.set(new Uint8Array(bytes), @{ ptr });
return { success: true };
} catch(err) {
return { success: false, error: err };
}
}
};
if js!{ return @{ result.as_ref() }.success } == true {
Ok(())
} else {
let err: WebError = js!{ return @{ result }.error }.try_into().unwrap();
Err(Error::with_cause(ErrorKind::Unexpected, "WASM Error", err))
}
}
}
}
#[cfg(test)]
mod test {
use RngCore;
use OsRng;
#[test]
fn test_os_rng() {
let mut r = OsRng::new().unwrap();
r.next_u32();
r.next_u64();
let mut v1 = [0u8; 1000];
r.fill_bytes(&mut v1);
let mut v2 = [0u8; 1000];
r.fill_bytes(&mut v2);
let mut n_diff_bits = 0;
for i in 0..v1.len() {
n_diff_bits += (v1[i] ^ v2[i]).count_ones();
}
// Check at least 1 bit per byte differs. p(failure) < 1e-1000 with random input.
assert!(n_diff_bits >= v1.len() as u32);
}
#[cfg(not(any(target_arch = "wasm32", target_arch = "asmjs")))]
#[test]
fn test_os_rng_tasks() {
use std::sync::mpsc::channel;
use std::thread;
let mut txs = vec!();
for _ in 0..20 {
let (tx, rx) = channel();
txs.push(tx);
thread::spawn(move|| {
// wait until all the tasks are ready to go.
rx.recv().unwrap();
// deschedule to attempt to interleave things as much
// as possible (XXX: is this a good test?)
let mut r = OsRng::new().unwrap();
thread::yield_now();
let mut v = [0u8; 1000];
for _ in 0..100 {
r.next_u32();
thread::yield_now();
r.next_u64();
thread::yield_now();
r.fill_bytes(&mut v);
thread::yield_now();
}
});
}
// start all the tasks
for tx in txs.iter() {
tx.send(()).unwrap();
}
}
}