Replace rand_core 0.3 with shim around version 0.4

Also disable doctests (see #619)
diff --git a/.travis.yml b/.travis.yml
index 2360b23..671d6d6 100644
--- a/.travis.yml
+++ b/.travis.yml
@@ -66,8 +66,8 @@
         # TODO: add simd_support feature:
         - cargo test --features=serde1,log
         - cargo test --examples
-        - cargo test --manifest-path rand_core/Cargo.toml
-        - cargo test --manifest-path rand_core/Cargo.toml --no-default-features
+        - cargo test --manifest-path rand_core/Cargo.toml --tests
+        - cargo test --manifest-path rand_core/Cargo.toml --no-default-features --tests
         - cargo test --manifest-path rand_isaac/Cargo.toml --features=serde1
         # TODO: cannot test rand_pcg due to explicit dependency on i128
         - cargo test --manifest-path rand_xorshift/Cargo.toml --features=serde1
@@ -88,8 +88,8 @@
         # TODO: add simd_support feature:
         - cargo test --features=serde1,log
         - cargo test --examples
-        - cargo test --manifest-path rand_core/Cargo.toml
-        - cargo test --manifest-path rand_core/Cargo.toml --no-default-features
+        - cargo test --manifest-path rand_core/Cargo.toml --tests
+        - cargo test --manifest-path rand_core/Cargo.toml --no-default-features --tests
         - cargo test --manifest-path rand_isaac/Cargo.toml --features=serde1
         - cargo test --manifest-path rand_pcg/Cargo.toml --features=serde1
         - cargo test --manifest-path rand_xorshift/Cargo.toml --features=serde1
@@ -116,8 +116,8 @@
         - cargo test --all-features
         - cargo test --benches --features=nightly
         - cargo test --examples
-        - cargo test --manifest-path rand_core/Cargo.toml
-        - cargo test --manifest-path rand_core/Cargo.toml --no-default-features --features=alloc
+        - cargo test --manifest-path rand_core/Cargo.toml --tests
+        - cargo test --manifest-path rand_core/Cargo.toml --no-default-features --features=alloc --tests
         - cargo test --manifest-path rand_isaac/Cargo.toml --features=serde1
         - cargo test --manifest-path rand_pcg/Cargo.toml --features=serde1
         - cargo test --manifest-path rand_xorshift/Cargo.toml --features=serde1
@@ -209,8 +209,8 @@
   # TODO: add simd_support feature:
   - cargo test --features=serde1,log
   - cargo test --examples
-  - cargo test --manifest-path rand_core/Cargo.toml
-  - cargo test --manifest-path rand_core/Cargo.toml --no-default-features
+  - cargo test --manifest-path rand_core/Cargo.toml --tests
+  - cargo test --manifest-path rand_core/Cargo.toml --no-default-features --tests
   - cargo test --manifest-path rand_isaac/Cargo.toml --features=serde1
   - cargo test --manifest-path rand_pcg/Cargo.toml --features=serde1
   - cargo test --manifest-path rand_xorshift/Cargo.toml --features=serde1
diff --git a/appveyor.yml b/appveyor.yml
index 70e4326..0c72a27 100644
--- a/appveyor.yml
+++ b/appveyor.yml
@@ -37,15 +37,8 @@
   - cargo test --features=serde1,log
   - cargo test --benches --features=nightly
   - cargo test --examples
-  - cargo test --package rand_core
-  - cargo test --package rand_core --no-default-features --features=alloc
-  - cargo test --package rand_isaac --features=serde1
-  - cargo test --package rand_xorshift --features=serde1
-  - cargo test --package rand_xoshiro
-  - cargo test --package rand_chacha
-  - cargo test --package rand_hc
-  - cargo test --manifest-path rand_core/Cargo.toml
-  - cargo test --manifest-path rand_core/Cargo.toml --no-default-features --features=alloc
+  - cargo test --manifest-path rand_core/Cargo.toml --tests
+  - cargo test --manifest-path rand_core/Cargo.toml --no-default-features --features=alloc --tests
   - cargo test --manifest-path rand_isaac/Cargo.toml --features=serde1
   - cargo test --manifest-path rand_pcg/Cargo.toml --features=serde1
   - cargo test --manifest-path rand_xorshift/Cargo.toml --features=serde1
diff --git a/rand_core/Cargo.toml b/rand_core/Cargo.toml
index 1678773..7a0e414 100644
--- a/rand_core/Cargo.toml
+++ b/rand_core/Cargo.toml
@@ -19,10 +19,9 @@
 
 [features]
 default = ["std"]
-std = ["alloc"]    # use std library; should be default but for above bug
-alloc = []  # enables Vec and Box support without std
-serde1 = ["serde", "serde_derive"] # enables serde for BlockRng wrapper
+std = ["rand_core/std"]    # use std library; should be default but for above bug
+alloc = ["rand_core/alloc"]  # enables Vec and Box support without std
+serde1 = ["rand_core/serde1"] # enables serde for BlockRng wrapper
 
 [dependencies]
-serde = { version = "1", optional = true }
-serde_derive = { version = "^1.0.38", optional = true }
+rand_core = { version = "0.4" }
diff --git a/rand_core/src/lib.rs b/rand_core/src/lib.rs
index 4b0e6e4..8923142 100644
--- a/rand_core/src/lib.rs
+++ b/rand_core/src/lib.rs
@@ -9,6 +9,8 @@
 
 //! Random number generation traits
 //!
+//! This version of `rand_core` is a compatibility shim around version 0.3.
+//!
 //! This crate is mainly of interest to crates publishing implementations of
 //! [`RngCore`]. Other users are encouraged to use the [`rand`] crate instead
 //! which re-exports the main traits and error types.
@@ -35,443 +37,10 @@
 #![deny(missing_debug_implementations)]
 #![doc(test(attr(allow(unused_variables), deny(warnings))))]
 
-#![cfg_attr(not(feature="std"), no_std)]
-#![cfg_attr(all(feature="alloc", not(feature="std")), feature(alloc))]
+#![no_std]
 
-#[cfg(feature="std")] extern crate core;
-#[cfg(all(feature = "alloc", not(feature="std")))] extern crate alloc;
-#[cfg(feature="serde1")] extern crate serde;
-#[cfg(feature="serde1")] #[macro_use] extern crate serde_derive;
+extern crate rand_core as core4;
 
-
-use core::default::Default;
-use core::convert::AsMut;
-use core::ptr::copy_nonoverlapping;
-
-#[cfg(all(feature="alloc", not(feature="std")))] use alloc::boxed::Box;
-
-pub use error::{ErrorKind, Error};
-
-
-mod error;
-pub mod block;
-pub mod impls;
-pub mod le;
-
-
-/// The core of a random number generator.
-///
-/// This trait encapsulates the low-level functionality common to all
-/// generators, and is the "back end", to be implemented by generators.
-/// End users should normally use the `Rng` trait from the [`rand`] crate,
-/// which is automatically implemented for every type implementing `RngCore`.
-///
-/// Three different methods for generating random data are provided since the
-/// optimal implementation of each is dependent on the type of generator. There
-/// is no required relationship between the output of each; e.g. many
-/// implementations of [`fill_bytes`] consume a whole number of `u32` or `u64`
-/// values and drop any remaining unused bytes.
-///
-/// The [`try_fill_bytes`] method is a variant of [`fill_bytes`] allowing error
-/// handling; it is not deemed sufficiently useful to add equivalents for
-/// [`next_u32`] or [`next_u64`] since the latter methods are almost always used
-/// with algorithmic generators (PRNGs), which are normally infallible.
-///
-/// Algorithmic generators implementing [`SeedableRng`] should normally have
-/// *portable, reproducible* output, i.e. fix Endianness when converting values
-/// to avoid platform differences, and avoid making any changes which affect
-/// output (except by communicating that the release has breaking changes).
-///
-/// Typically implementators will implement only one of the methods available
-/// in this trait directly, then use the helper functions from the
-/// [`impls`] module to implement the other methods.
-///
-/// It is recommended that implementations also implement:
-///
-/// - `Debug` with a custom implementation which *does not* print any internal
-///   state (at least, [`CryptoRng`]s should not risk leaking state through
-///   `Debug`).
-/// - `Serialize` and `Deserialize` (from Serde), preferably making Serde
-///   support optional at the crate level in PRNG libs.
-/// - `Clone`, if possible.
-/// - *never* implement `Copy` (accidental copies may cause repeated values).
-/// - *do not* implement `Default` for pseudorandom generators, but instead
-///   implement [`SeedableRng`], to guide users towards proper seeding.
-///   External / hardware RNGs can choose to implement `Default`.
-/// - `Eq` and `PartialEq` could be implemented, but are probably not useful.
-///
-/// # Example
-///
-/// A simple example, obviously not generating very *random* output:
-///
-/// ```
-/// #![allow(dead_code)]
-/// use rand_core::{RngCore, Error, impls};
-///
-/// struct CountingRng(u64);
-///
-/// impl RngCore for CountingRng {
-///     fn next_u32(&mut self) -> u32 {
-///         self.next_u64() as u32
-///     }
-///
-///     fn next_u64(&mut self) -> u64 {
-///         self.0 += 1;
-///         self.0
-///     }
-///
-///     fn fill_bytes(&mut self, dest: &mut [u8]) {
-///         impls::fill_bytes_via_next(self, dest)
-///     }
-///
-///     fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
-///         Ok(self.fill_bytes(dest))
-///     }
-/// }
-/// ```
-///
-/// [`rand`]: https://docs.rs/rand
-/// [`try_fill_bytes`]: RngCore::try_fill_bytes
-/// [`fill_bytes`]: RngCore::fill_bytes
-/// [`next_u32`]: RngCore::next_u32
-/// [`next_u64`]: RngCore::next_u64
-pub trait RngCore {
-    /// Return the next random `u32`.
-    ///
-    /// RNGs must implement at least one method from this trait directly. In
-    /// the case this method is not implemented directly, it can be implemented
-    /// using `self.next_u64() as u32` or via
-    /// [`fill_bytes`][impls::next_u32_via_fill].
-    fn next_u32(&mut self) -> u32;
-
-    /// Return the next random `u64`.
-    ///
-    /// RNGs must implement at least one method from this trait directly. In
-    /// the case this method is not implemented directly, it can be implemented
-    /// via [`next_u32`][impls::next_u64_via_u32] or via
-    /// [`fill_bytes`][impls::next_u64_via_fill].
-    fn next_u64(&mut self) -> u64;
-
-    /// Fill `dest` with random data.
-    ///
-    /// RNGs must implement at least one method from this trait directly. In
-    /// the case this method is not implemented directly, it can be implemented
-    /// via [`next_u*`][impls::fill_bytes_via_next] or
-    /// via [`try_fill_bytes`][RngCore::try_fill_bytes]; if this generator can
-    /// fail the implementation must choose how best to handle errors here
-    /// (e.g. panic with a descriptive message or log a warning and retry a few
-    /// times).
-    ///
-    /// This method should guarantee that `dest` is entirely filled
-    /// with new data, and may panic if this is impossible
-    /// (e.g. reading past the end of a file that is being used as the
-    /// source of randomness).
-    fn fill_bytes(&mut self, dest: &mut [u8]);
-
-    /// Fill `dest` entirely with random data.
-    ///
-    /// This is the only method which allows an RNG to report errors while
-    /// generating random data thus making this the primary method implemented
-    /// by external (true) RNGs (e.g. `OsRng`) which can fail. It may be used
-    /// directly to generate keys and to seed (infallible) PRNGs.
-    ///
-    /// Other than error handling, this method is identical to [`fill_bytes`];
-    /// thus this may be implemented using `Ok(self.fill_bytes(dest))` or
-    /// `fill_bytes` may be implemented with
-    /// `self.try_fill_bytes(dest).unwrap()` or more specific error handling.
-    ///
-    /// [`fill_bytes`]: RngCore::fill_bytes
-    fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error>;
-}
-
-/// A marker trait used to indicate that an [`RngCore`] or [`BlockRngCore`]
-/// implementation is supposed to be cryptographically secure.
-///
-/// *Cryptographically secure generators*, also known as *CSPRNGs*, should
-/// satisfy an additional properties over other generators: given the first
-/// *k* bits of an algorithm's output
-/// sequence, it should not be possible using polynomial-time algorithms to
-/// predict the next bit with probability significantly greater than 50%.
-///
-/// Some generators may satisfy an additional property, however this is not
-/// required by this trait: if the CSPRNG's state is revealed, it should not be
-/// computationally-feasible to reconstruct output prior to this. Some other
-/// generators allow backwards-computation and are consided *reversible*.
-///
-/// Note that this trait is provided for guidance only and cannot guarantee
-/// suitability for cryptographic applications. In general it should only be
-/// implemented for well-reviewed code implementing well-regarded algorithms.
-///
-/// Note also that use of a `CryptoRng` does not protect against other
-/// weaknesses such as seeding from a weak entropy source or leaking state.
-///
-/// [`BlockRngCore`]: block::BlockRngCore
-pub trait CryptoRng {}
-
-/// A random number generator that can be explicitly seeded.
-///
-/// This trait encapsulates the low-level functionality common to all
-/// pseudo-random number generators (PRNGs, or algorithmic generators).
-///
-/// The `FromEntropy` trait from the [`rand`] crate is automatically
-/// implemented for every type implementing `SeedableRng`, providing
-/// a convenient `from_entropy()` constructor.
-///
-/// [`rand`]: https://docs.rs/rand
-pub trait SeedableRng: Sized {
-    /// Seed type, which is restricted to types mutably-dereferencable as `u8`
-    /// arrays (we recommend `[u8; N]` for some `N`).
-    ///
-    /// It is recommended to seed PRNGs with a seed of at least circa 100 bits,
-    /// which means an array of `[u8; 12]` or greater to avoid picking RNGs with
-    /// partially overlapping periods.
-    ///
-    /// For cryptographic RNG's a seed of 256 bits is recommended, `[u8; 32]`.
-    ///
-    ///
-    /// # Implementing `SeedableRng` for RNGs with large seeds
-    ///
-    /// Note that the required traits `core::default::Default` and
-    /// `core::convert::AsMut<u8>` are not implemented for large arrays
-    /// `[u8; N]` with `N` > 32. To be able to implement the traits required by
-    /// `SeedableRng` for RNGs with such large seeds, the newtype pattern can be
-    /// used:
-    ///
-    /// ```
-    /// use rand_core::SeedableRng;
-    ///
-    /// const N: usize = 64;
-    /// pub struct MyRngSeed(pub [u8; N]);
-    /// pub struct MyRng(MyRngSeed);
-    ///
-    /// impl Default for MyRngSeed {
-    ///     fn default() -> MyRngSeed {
-    ///         MyRngSeed([0; N])
-    ///     }
-    /// }
-    ///
-    /// impl AsMut<[u8]> for MyRngSeed {
-    ///     fn as_mut(&mut self) -> &mut [u8] {
-    ///         &mut self.0
-    ///     }
-    /// }
-    ///
-    /// impl SeedableRng for MyRng {
-    ///     type Seed = MyRngSeed;
-    ///
-    ///     fn from_seed(seed: MyRngSeed) -> MyRng {
-    ///         MyRng(seed)
-    ///     }
-    /// }
-    /// ```
-    type Seed: Sized + Default + AsMut<[u8]>;
-
-    /// Create a new PRNG using the given seed.
-    ///
-    /// PRNG implementations are allowed to assume that bits in the seed are
-    /// well distributed. That means usually that the number of one and zero
-    /// bits are about equal, and values like 0, 1 and (size - 1) are unlikely.
-    ///
-    /// PRNG implementations are recommended to be reproducible. A PRNG seeded
-    /// using this function with a fixed seed should produce the same sequence
-    /// of output in the future and on different architectures (with for example
-    /// different endianness).
-    ///
-    /// It is however not required that this function yield the same state as a
-    /// reference implementation of the PRNG given equivalent seed; if necessary
-    /// another constructor replicating behaviour from a reference
-    /// implementation can be added.
-    ///
-    /// PRNG implementations should make sure `from_seed` never panics. In the
-    /// case that some special values (like an all zero seed) are not viable
-    /// seeds it is preferable to map these to alternative constant value(s),
-    /// for example `0xBAD5EEDu32` or `0x0DDB1A5E5BAD5EEDu64` ("odd biases? bad
-    /// seed"). This is assuming only a small number of values must be rejected.
-    fn from_seed(seed: Self::Seed) -> Self;
-
-    /// Create a new PRNG using a `u64` seed.
-    ///
-    /// This is a convenience-wrapper around `from_seed` to allow construction
-    /// of any `SeedableRng` from a simple `u64` value. It is designed such that
-    /// low Hamming Weight numbers like 0 and 1 can be used and should still
-    /// result in good, independent seeds to the PRNG which is returned.
-    ///
-    /// This **is not suitable for cryptography**, as should be clear given that
-    /// the input size is only 64 bits.
-    ///
-    /// Implementations for PRNGs *may* provide their own implementations of
-    /// this function, but the default implementation should be good enough for
-    /// all purposes. *Changing* the implementation of this function should be
-    /// considered a value-breaking change.
-    fn seed_from_u64(mut state: u64) -> Self {
-        // We use PCG32 to generate a u32 sequence, and copy to the seed
-        const MUL: u64 = 6364136223846793005;
-        const INC: u64 = 11634580027462260723;
-
-        let mut seed = Self::Seed::default();
-        for chunk in seed.as_mut().chunks_mut(4) {
-            // We advance the state first (to get away from the input value,
-            // in case it has low Hamming Weight).
-            state = state.wrapping_mul(MUL).wrapping_add(INC);
-
-            // Use PCG output function with to_le to generate x:
-            let xorshifted = (((state >> 18) ^ state) >> 27) as u32;
-            let rot = (state >> 59) as u32;
-            let x = xorshifted.rotate_right(rot).to_le();
-
-            unsafe {
-                let p = &x as *const u32 as *const u8;
-                copy_nonoverlapping(p, chunk.as_mut_ptr(), chunk.len());
-            }
-        }
-
-        Self::from_seed(seed)
-    }
-
-    /// Create a new PRNG seeded from another `Rng`.
-    ///
-    /// This is the recommended way to initialize PRNGs with fresh entropy. The
-    /// `FromEntropy` trait from the [`rand`] crate provides a convenient
-    /// `from_entropy` method based on `from_rng`.
-    ///
-    /// Usage of this method is not recommended when reproducibility is required
-    /// since implementing PRNGs are not required to fix Endianness and are
-    /// allowed to modify implementations in new releases.
-    ///
-    /// It is important to use a good source of randomness to initialize the
-    /// PRNG. Cryptographic PRNG may be rendered insecure when seeded from a
-    /// non-cryptographic PRNG or with insufficient entropy.
-    /// Many non-cryptographic PRNGs will show statistical bias in their first
-    /// results if their seed numbers are small or if there is a simple pattern
-    /// between them.
-    ///
-    /// Prefer to seed from a strong external entropy source like `OsRng` from
-    /// the [`rand_os`] crate or from a cryptographic PRNG; if creating a new
-    /// generator for cryptographic uses you *must* seed from a strong source.
-    ///
-    /// Seeding a small PRNG from another small PRNG is possible, but
-    /// something to be careful with. An extreme example of how this can go
-    /// wrong is seeding an Xorshift RNG from another Xorshift RNG, which
-    /// will effectively clone the generator. In general seeding from a
-    /// generator which is hard to predict is probably okay.
-    ///
-    /// PRNG implementations are allowed to assume that a good RNG is provided
-    /// for seeding, and that it is cryptographically secure when appropriate.
-    ///
-    /// [`rand`]: https://docs.rs/rand
-    /// [`rand_os`]: https://docs.rs/rand_os
-    fn from_rng<R: RngCore>(mut rng: R) -> Result<Self, Error> {
-        let mut seed = Self::Seed::default();
-        rng.try_fill_bytes(seed.as_mut())?;
-        Ok(Self::from_seed(seed))
-    }
-}
-
-// Implement `RngCore` for references to an `RngCore`.
-// Force inlining all functions, so that it is up to the `RngCore`
-// implementation and the optimizer to decide on inlining.
-impl<'a, R: RngCore + ?Sized> RngCore for &'a mut R {
-    #[inline(always)]
-    fn next_u32(&mut self) -> u32 {
-        (**self).next_u32()
-    }
-
-    #[inline(always)]
-    fn next_u64(&mut self) -> u64 {
-        (**self).next_u64()
-    }
-
-    #[inline(always)]
-    fn fill_bytes(&mut self, dest: &mut [u8]) {
-        (**self).fill_bytes(dest)
-    }
-
-    #[inline(always)]
-    fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
-        (**self).try_fill_bytes(dest)
-    }
-}
-
-// Implement `RngCore` for boxed references to an `RngCore`.
-// Force inlining all functions, so that it is up to the `RngCore`
-// implementation and the optimizer to decide on inlining.
-#[cfg(feature="alloc")]
-impl<R: RngCore + ?Sized> RngCore for Box<R> {
-    #[inline(always)]
-    fn next_u32(&mut self) -> u32 {
-        (**self).next_u32()
-    }
-
-    #[inline(always)]
-    fn next_u64(&mut self) -> u64 {
-        (**self).next_u64()
-    }
-
-    #[inline(always)]
-    fn fill_bytes(&mut self, dest: &mut [u8]) {
-        (**self).fill_bytes(dest)
-    }
-
-    #[inline(always)]
-    fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
-        (**self).try_fill_bytes(dest)
-    }
-}
-
-#[cfg(feature="std")]
-impl std::io::Read for RngCore {
-    fn read(&mut self, buf: &mut [u8]) -> Result<usize, std::io::Error> {
-        self.try_fill_bytes(buf)?;
-        Ok(buf.len())
-    }
-}
-
-// Implement `CryptoRng` for references to an `CryptoRng`.
-impl<'a, R: CryptoRng + ?Sized> CryptoRng for &'a mut R {}
-
-// Implement `CryptoRng` for boxed references to an `CryptoRng`.
-#[cfg(feature="alloc")]
-impl<R: CryptoRng + ?Sized> CryptoRng for Box<R> {}
-
-#[cfg(test)]
-mod test {
-    use super::*;
-
-    #[test]
-    fn test_seed_from_u64() {
-        struct SeedableNum(u64);
-        impl SeedableRng for SeedableNum {
-            type Seed = [u8; 8];
-            fn from_seed(seed: Self::Seed) -> Self {
-                let mut x = [0u64; 1];
-                le::read_u64_into(&seed, &mut x);
-                SeedableNum(x[0])
-            }
-        }
-
-        const N: usize = 8;
-        const SEEDS: [u64; N] = [0u64, 1, 2, 3, 4, 8, 16, -1i64 as u64];
-        let mut results = [0u64; N];
-        for (i, seed) in SEEDS.iter().enumerate() {
-            let SeedableNum(x) = SeedableNum::seed_from_u64(*seed);
-            results[i] = x;
-        }
-
-        for (i1, r1) in results.iter().enumerate() {
-            let weight = r1.count_ones();
-            // This is the binomial distribution B(64, 0.5), so chance of
-            // weight < 20 is binocdf(19, 64, 0.5) = 7.8e-4, and same for
-            // weight > 44.
-            assert!(weight >= 20 && weight <= 44);
-
-            for (i2, r2) in results.iter().enumerate() {
-                if i1 == i2 { continue; }
-                let diff_weight = (r1 ^ r2).count_ones();
-                assert!(diff_weight >= 20);
-            }
-        }
-
-        // value-breakage test:
-        assert_eq!(results[0], 5029875928683246316);
-    }
-}
+pub use core4::{ErrorKind, Error};
+pub use core4::{block, impls, le};
+pub use core4::{RngCore, CryptoRng, SeedableRng};