blob: 47a9f45a24d27e194310112bc70b37516f760490 [file] [log] [blame]
// Copyright (C) 2018-2019, Cloudflare, Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
use std::mem::MaybeUninit;
use ring::aead;
use ring::hkdf;
use libc::c_int;
use libc::c_void;
use crate::Error;
use crate::Result;
use crate::packet;
#[repr(C)]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Level {
Initial = 0,
ZeroRTT = 1,
Handshake = 2,
OneRTT = 3,
}
impl Level {
pub fn from_epoch(e: packet::Epoch) -> Level {
match e {
packet::Epoch::Initial => Level::Initial,
packet::Epoch::Handshake => Level::Handshake,
packet::Epoch::Application => Level::OneRTT,
}
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Algorithm {
#[allow(non_camel_case_types)]
AES128_GCM,
#[allow(non_camel_case_types)]
AES256_GCM,
#[allow(non_camel_case_types)]
ChaCha20_Poly1305,
}
impl Algorithm {
fn get_evp_aead(self) -> *const EVP_AEAD {
match self {
Algorithm::AES128_GCM => unsafe { EVP_aes_128_gcm() },
Algorithm::AES256_GCM => unsafe { EVP_aes_256_gcm() },
Algorithm::ChaCha20_Poly1305 => unsafe {
EVP_chacha20_poly1305()
},
}
}
fn get_ring_hp(self) -> &'static aead::quic::Algorithm {
match self {
Algorithm::AES128_GCM => &aead::quic::AES_128,
Algorithm::AES256_GCM => &aead::quic::AES_256,
Algorithm::ChaCha20_Poly1305 => &aead::quic::CHACHA20,
}
}
fn get_ring_digest(self) -> hkdf::Algorithm {
match self {
Algorithm::AES128_GCM => hkdf::HKDF_SHA256,
Algorithm::AES256_GCM => hkdf::HKDF_SHA384,
Algorithm::ChaCha20_Poly1305 => hkdf::HKDF_SHA256,
}
}
pub fn key_len(self) -> usize {
match self {
Algorithm::AES128_GCM => 16,
Algorithm::AES256_GCM => 32,
Algorithm::ChaCha20_Poly1305 => 32,
}
}
pub fn tag_len(self) -> usize {
if cfg!(feature = "fuzzing") {
return 0;
}
match self {
Algorithm::AES128_GCM => 16,
Algorithm::AES256_GCM => 16,
Algorithm::ChaCha20_Poly1305 => 16,
}
}
pub fn nonce_len(self) -> usize {
match self {
Algorithm::AES128_GCM => 12,
Algorithm::AES256_GCM => 12,
Algorithm::ChaCha20_Poly1305 => 12,
}
}
}
pub struct Open {
alg: Algorithm,
ctx: EVP_AEAD_CTX,
hp_key: aead::quic::HeaderProtectionKey,
nonce: Vec<u8>,
}
impl Open {
pub fn new(
alg: Algorithm, key: &[u8], iv: &[u8], hp_key: &[u8],
) -> Result<Open> {
Ok(Open {
alg,
ctx: make_aead_ctx(alg, key)?,
hp_key: aead::quic::HeaderProtectionKey::new(
alg.get_ring_hp(),
hp_key,
)
.map_err(|_| Error::CryptoFail)?,
nonce: Vec::from(iv),
})
}
pub fn from_secret(aead: Algorithm, secret: &[u8]) -> Result<Open> {
let key_len = aead.key_len();
let nonce_len = aead.nonce_len();
let mut key = vec![0; key_len];
let mut iv = vec![0; nonce_len];
let mut pn_key = vec![0; key_len];
derive_pkt_key(aead, secret, &mut key)?;
derive_pkt_iv(aead, secret, &mut iv)?;
derive_hdr_key(aead, secret, &mut pn_key)?;
Open::new(aead, &key, &iv, &pn_key)
}
pub fn open_with_u64_counter(
&self, counter: u64, ad: &[u8], buf: &mut [u8],
) -> Result<usize> {
if cfg!(feature = "fuzzing") {
return Ok(buf.len());
}
let tag_len = self.alg().tag_len();
let mut out_len = match buf.len().checked_sub(tag_len) {
Some(n) => n,
None => return Err(Error::CryptoFail),
};
let max_out_len = out_len;
let nonce = make_nonce(&self.nonce, counter);
let rc = unsafe {
EVP_AEAD_CTX_open(
&self.ctx, // ctx
buf.as_mut_ptr(), // out
&mut out_len, // out_len
max_out_len, // max_out_len
nonce[..].as_ptr(), // nonce
nonce.len(), // nonce_len
buf.as_ptr(), // inp
buf.len(), // in_len
ad.as_ptr(), // ad
ad.len(), // ad_len
)
};
if rc != 1 {
return Err(Error::CryptoFail);
}
Ok(out_len)
}
pub fn new_mask(&self, sample: &[u8]) -> Result<[u8; 5]> {
if cfg!(feature = "fuzzing") {
return Ok(<[u8; 5]>::default());
}
let mask = self
.hp_key
.new_mask(sample)
.map_err(|_| Error::CryptoFail)?;
Ok(mask)
}
pub fn alg(&self) -> Algorithm {
self.alg
}
}
pub struct Seal {
alg: Algorithm,
ctx: EVP_AEAD_CTX,
hp_key: aead::quic::HeaderProtectionKey,
nonce: Vec<u8>,
}
impl Seal {
pub fn new(
alg: Algorithm, key: &[u8], iv: &[u8], hp_key: &[u8],
) -> Result<Seal> {
Ok(Seal {
alg,
ctx: make_aead_ctx(alg, key)?,
hp_key: aead::quic::HeaderProtectionKey::new(
alg.get_ring_hp(),
hp_key,
)
.map_err(|_| Error::CryptoFail)?,
nonce: Vec::from(iv),
})
}
pub fn from_secret(aead: Algorithm, secret: &[u8]) -> Result<Seal> {
let key_len = aead.key_len();
let nonce_len = aead.nonce_len();
let mut key = vec![0; key_len];
let mut iv = vec![0; nonce_len];
let mut pn_key = vec![0; key_len];
derive_pkt_key(aead, secret, &mut key)?;
derive_pkt_iv(aead, secret, &mut iv)?;
derive_hdr_key(aead, secret, &mut pn_key)?;
Seal::new(aead, &key, &iv, &pn_key)
}
pub fn seal_with_u64_counter(
&self, counter: u64, ad: &[u8], buf: &mut [u8], in_len: usize,
extra_in: Option<&[u8]>,
) -> Result<usize> {
if cfg!(feature = "fuzzing") {
if let Some(extra) = extra_in {
buf[in_len..in_len + extra.len()].copy_from_slice(extra);
return Ok(in_len + extra.len());
}
return Ok(in_len);
}
let tag_len = self.alg().tag_len();
let mut out_tag_len = tag_len;
let (extra_in_ptr, extra_in_len) = match extra_in {
Some(v) => (v.as_ptr(), v.len()),
None => (std::ptr::null(), 0),
};
// Make sure all the outputs combined fit in the buffer.
if in_len + tag_len + extra_in_len > buf.len() {
return Err(Error::CryptoFail);
}
let nonce = make_nonce(&self.nonce, counter);
let rc = unsafe {
EVP_AEAD_CTX_seal_scatter(
&self.ctx, // ctx
buf.as_mut_ptr(), // out
buf[in_len..].as_mut_ptr(), // out_tag
&mut out_tag_len, // out_tag_len
tag_len + extra_in_len, // max_out_tag_len
nonce[..].as_ptr(), // nonce
nonce.len(), // nonce_len
buf.as_ptr(), // inp
in_len, // in_len
extra_in_ptr, // extra_in
extra_in_len, // extra_in_len
ad.as_ptr(), // ad
ad.len(), // ad_len
)
};
if rc != 1 {
return Err(Error::CryptoFail);
}
Ok(in_len + out_tag_len)
}
pub fn new_mask(&self, sample: &[u8]) -> Result<[u8; 5]> {
if cfg!(feature = "fuzzing") {
return Ok(<[u8; 5]>::default());
}
let mask = self
.hp_key
.new_mask(sample)
.map_err(|_| Error::CryptoFail)?;
Ok(mask)
}
pub fn alg(&self) -> Algorithm {
self.alg
}
}
pub fn derive_initial_key_material(
cid: &[u8], version: u32, is_server: bool,
) -> Result<(Open, Seal)> {
let mut secret = [0; 32];
let aead = Algorithm::AES128_GCM;
let key_len = aead.key_len();
let nonce_len = aead.nonce_len();
let initial_secret = derive_initial_secret(cid, version);
// Client.
let mut client_key = vec![0; key_len];
let mut client_iv = vec![0; nonce_len];
let mut client_hp_key = vec![0; key_len];
derive_client_initial_secret(&initial_secret, &mut secret)?;
derive_pkt_key(aead, &secret, &mut client_key)?;
derive_pkt_iv(aead, &secret, &mut client_iv)?;
derive_hdr_key(aead, &secret, &mut client_hp_key)?;
// Server.
let mut server_key = vec![0; key_len];
let mut server_iv = vec![0; nonce_len];
let mut server_hp_key = vec![0; key_len];
derive_server_initial_secret(&initial_secret, &mut secret)?;
derive_pkt_key(aead, &secret, &mut server_key)?;
derive_pkt_iv(aead, &secret, &mut server_iv)?;
derive_hdr_key(aead, &secret, &mut server_hp_key)?;
let (open, seal) = if is_server {
(
Open::new(aead, &client_key, &client_iv, &client_hp_key)?,
Seal::new(aead, &server_key, &server_iv, &server_hp_key)?,
)
} else {
(
Open::new(aead, &server_key, &server_iv, &server_hp_key)?,
Seal::new(aead, &client_key, &client_iv, &client_hp_key)?,
)
};
Ok((open, seal))
}
fn derive_initial_secret(secret: &[u8], version: u32) -> hkdf::Prk {
const INITIAL_SALT: [u8; 20] = [
0x38, 0x76, 0x2c, 0xf7, 0xf5, 0x59, 0x34, 0xb3, 0x4d, 0x17, 0x9a, 0xe6,
0xa4, 0xc8, 0x0c, 0xad, 0xcc, 0xbb, 0x7f, 0x0a,
];
const INITIAL_SALT_DRAFT29: [u8; 20] = [
0xaf, 0xbf, 0xec, 0x28, 0x99, 0x93, 0xd2, 0x4c, 0x9e, 0x97, 0x86, 0xf1,
0x9c, 0x61, 0x11, 0xe0, 0x43, 0x90, 0xa8, 0x99,
];
const INITIAL_SALT_DRAFT27: [u8; 20] = [
0xc3, 0xee, 0xf7, 0x12, 0xc7, 0x2e, 0xbb, 0x5a, 0x11, 0xa7, 0xd2, 0x43,
0x2b, 0xb4, 0x63, 0x65, 0xbe, 0xf9, 0xf5, 0x02,
];
let salt = match version {
crate::PROTOCOL_VERSION_DRAFT27 | crate::PROTOCOL_VERSION_DRAFT28 =>
&INITIAL_SALT_DRAFT27,
crate::PROTOCOL_VERSION_DRAFT29 => &INITIAL_SALT_DRAFT29,
_ => &INITIAL_SALT,
};
let salt = hkdf::Salt::new(hkdf::HKDF_SHA256, salt);
salt.extract(secret)
}
fn derive_client_initial_secret(prk: &hkdf::Prk, out: &mut [u8]) -> Result<()> {
const LABEL: &[u8] = b"client in";
hkdf_expand_label(prk, LABEL, out)
}
fn derive_server_initial_secret(prk: &hkdf::Prk, out: &mut [u8]) -> Result<()> {
const LABEL: &[u8] = b"server in";
hkdf_expand_label(prk, LABEL, out)
}
pub fn derive_hdr_key(
aead: Algorithm, secret: &[u8], out: &mut [u8],
) -> Result<()> {
const LABEL: &[u8] = b"quic hp";
let key_len = aead.key_len();
if key_len > out.len() {
return Err(Error::CryptoFail);
}
let secret = hkdf::Prk::new_less_safe(aead.get_ring_digest(), secret);
hkdf_expand_label(&secret, LABEL, &mut out[..key_len])
}
pub fn derive_pkt_key(
aead: Algorithm, secret: &[u8], out: &mut [u8],
) -> Result<()> {
const LABEL: &[u8] = b"quic key";
let key_len = aead.key_len();
if key_len > out.len() {
return Err(Error::CryptoFail);
}
let secret = hkdf::Prk::new_less_safe(aead.get_ring_digest(), secret);
hkdf_expand_label(&secret, LABEL, &mut out[..key_len])
}
pub fn derive_pkt_iv(
aead: Algorithm, secret: &[u8], out: &mut [u8],
) -> Result<()> {
const LABEL: &[u8] = b"quic iv";
let nonce_len = aead.nonce_len();
if nonce_len > out.len() {
return Err(Error::CryptoFail);
}
let secret = hkdf::Prk::new_less_safe(aead.get_ring_digest(), secret);
hkdf_expand_label(&secret, LABEL, &mut out[..nonce_len])
}
fn make_aead_ctx(alg: Algorithm, key: &[u8]) -> Result<EVP_AEAD_CTX> {
let mut ctx = MaybeUninit::uninit();
let ctx = unsafe {
let aead = alg.get_evp_aead();
let rc = EVP_AEAD_CTX_init(
ctx.as_mut_ptr(),
aead,
key.as_ptr(),
alg.key_len(),
alg.tag_len(),
std::ptr::null_mut(),
);
if rc != 1 {
return Err(Error::CryptoFail);
}
ctx.assume_init()
};
Ok(ctx)
}
fn make_evp_cipher_ctx(alg: Algorithm, key: &[u8], enc: u32) -> Result<EVP_CIPHER_CTX> {
let ctx = unsafe {
let aead = alg.get_evp_aead();
let ctx = EVP_CIPHER_CTX_new();
// TagLength = CXPLAT_IV_LENGTH;
// AlgParam[0] = OSSL_PARAM_construct_size_t("ivlen", &TagLength);
// AlgParam[1] = OSSL_PARAM_construct_end();
// let rc = EVP_CipherInit_ex2(ctx, aead, key, ptr::null(), enc, AlgParam);
// if rc != 1 {
// return Err(Error::CryptoFail);
// }
EVP_CIPHER_CTX(ctx)
};
Ok(ctx)
}
fn hkdf_expand_label(
prk: &hkdf::Prk, label: &[u8], out: &mut [u8],
) -> Result<()> {
const LABEL_PREFIX: &[u8] = b"tls13 ";
let out_len = (out.len() as u16).to_be_bytes();
let label_len = (LABEL_PREFIX.len() + label.len()) as u8;
let info = [&out_len, &[label_len][..], LABEL_PREFIX, label, &[0][..]];
prk.expand(&info, ArbitraryOutputLen(out.len()))
.map_err(|_| Error::CryptoFail)?
.fill(out)
.map_err(|_| Error::CryptoFail)?;
Ok(())
}
fn make_nonce(iv: &[u8], counter: u64) -> [u8; aead::NONCE_LEN] {
let mut nonce = [0; aead::NONCE_LEN];
nonce.copy_from_slice(iv);
// XOR the last bytes of the IV with the counter. This is equivalent to
// left-padding the counter with zero bytes.
for (a, b) in nonce[4..].iter_mut().zip(counter.to_be_bytes().iter()) {
*a ^= b;
}
nonce
}
// The ring HKDF expand() API does not accept an arbitrary output length, so we
// need to hide the `usize` length as part of a type that implements the trait
// `ring::hkdf::KeyType` in order to trick ring into accepting it.
struct ArbitraryOutputLen(usize);
impl hkdf::KeyType for ArbitraryOutputLen {
fn len(&self) -> usize {
self.0
}
}
#[allow(non_camel_case_types)]
#[repr(transparent)]
struct EVP_AEAD(c_void);
// NOTE: This structure is copied from <openssl/aead.h> in order to be able to
// statically allocate it. While it is not often modified upstream, it needs to
// be kept in sync.
#[repr(C)]
struct EVP_AEAD_CTX {
aead: libc::uintptr_t,
opaque: [u8; 580],
alignment: u64,
tag_len: u8,
}
extern {
// EVP_AEAD
fn EVP_aes_128_gcm() -> *const EVP_AEAD;
fn EVP_aes_256_gcm() -> *const EVP_AEAD;
fn EVP_chacha20_poly1305() -> *const EVP_AEAD;
// EVP_AEAD_CTX
fn EVP_AEAD_CTX_init(
ctx: *mut EVP_AEAD_CTX, aead: *const EVP_AEAD, key: *const u8,
key_len: usize, tag_len: usize, engine: *mut c_void,
) -> c_int;
fn EVP_AEAD_CTX_open(
ctx: *const EVP_AEAD_CTX, out: *mut u8, out_len: *mut usize,
max_out_len: usize, nonce: *const u8, nonce_len: usize, inp: *const u8,
in_len: usize, ad: *const u8, ad_len: usize,
) -> c_int;
fn EVP_AEAD_CTX_seal_scatter(
ctx: *const EVP_AEAD_CTX, out: *mut u8, out_tag: *mut u8,
out_tag_len: *mut usize, max_out_tag_len: usize, nonce: *const u8,
nonce_len: usize, inp: *const u8, in_len: usize, extra_in: *const u8,
extra_in_len: usize, ad: *const u8, ad_len: usize,
) -> c_int;
}
#[allow(non_camel_case_types)]
#[repr(transparent)]
struct EVP_CIPHER_CTX(c_void);
impl Drop for EVP_CIPHER_CTX {
fn drop(&mut self) {
unsafe { EVP_CIPHER_CTX_free(self) }
}
}
extern {
// EVP_CIPHER_CTX
fn EVP_CIPHER_CTX_new() -> *mut EVP_CIPHER_CTX;
fn EVP_CIPHER_CTX_free(ctx: *mut EVP_CIPHER_CTX);
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn derive_initial_secrets_v1() {
let dcid = [0x83, 0x94, 0xc8, 0xf0, 0x3e, 0x51, 0x57, 0x08];
let mut secret = [0; 32];
let mut pkt_key = [0; 16];
let mut pkt_iv = [0; 12];
let mut hdr_key = [0; 16];
let aead = Algorithm::AES128_GCM;
let initial_secret =
derive_initial_secret(&dcid, crate::PROTOCOL_VERSION_V1);
// Client.
assert!(
derive_client_initial_secret(&initial_secret, &mut secret).is_ok()
);
let expected_client_initial_secret = [
0xc0, 0x0c, 0xf1, 0x51, 0xca, 0x5b, 0xe0, 0x75, 0xed, 0x0e, 0xbf,
0xb5, 0xc8, 0x03, 0x23, 0xc4, 0x2d, 0x6b, 0x7d, 0xb6, 0x78, 0x81,
0x28, 0x9a, 0xf4, 0x00, 0x8f, 0x1f, 0x6c, 0x35, 0x7a, 0xea,
];
assert_eq!(&secret, &expected_client_initial_secret);
assert!(derive_pkt_key(aead, &secret, &mut pkt_key).is_ok());
let expected_client_pkt_key = [
0x1f, 0x36, 0x96, 0x13, 0xdd, 0x76, 0xd5, 0x46, 0x77, 0x30, 0xef,
0xcb, 0xe3, 0xb1, 0xa2, 0x2d,
];
assert_eq!(&pkt_key, &expected_client_pkt_key);
assert!(derive_pkt_iv(aead, &secret, &mut pkt_iv).is_ok());
let expected_client_pkt_iv = [
0xfa, 0x04, 0x4b, 0x2f, 0x42, 0xa3, 0xfd, 0x3b, 0x46, 0xfb, 0x25,
0x5c,
];
assert_eq!(&pkt_iv, &expected_client_pkt_iv);
assert!(derive_hdr_key(aead, &secret, &mut hdr_key).is_ok());
let expected_client_hdr_key = [
0x9f, 0x50, 0x44, 0x9e, 0x04, 0xa0, 0xe8, 0x10, 0x28, 0x3a, 0x1e,
0x99, 0x33, 0xad, 0xed, 0xd2,
];
assert_eq!(&hdr_key, &expected_client_hdr_key);
// Server.
assert!(
derive_server_initial_secret(&initial_secret, &mut secret).is_ok()
);
let expected_server_initial_secret = [
0x3c, 0x19, 0x98, 0x28, 0xfd, 0x13, 0x9e, 0xfd, 0x21, 0x6c, 0x15,
0x5a, 0xd8, 0x44, 0xcc, 0x81, 0xfb, 0x82, 0xfa, 0x8d, 0x74, 0x46,
0xfa, 0x7d, 0x78, 0xbe, 0x80, 0x3a, 0xcd, 0xda, 0x95, 0x1b,
];
assert_eq!(&secret, &expected_server_initial_secret);
assert!(derive_pkt_key(aead, &secret, &mut pkt_key).is_ok());
let expected_server_pkt_key = [
0xcf, 0x3a, 0x53, 0x31, 0x65, 0x3c, 0x36, 0x4c, 0x88, 0xf0, 0xf3,
0x79, 0xb6, 0x06, 0x7e, 0x37,
];
assert_eq!(&pkt_key, &expected_server_pkt_key);
assert!(derive_pkt_iv(aead, &secret, &mut pkt_iv).is_ok());
let expected_server_pkt_iv = [
0x0a, 0xc1, 0x49, 0x3c, 0xa1, 0x90, 0x58, 0x53, 0xb0, 0xbb, 0xa0,
0x3e,
];
assert_eq!(&pkt_iv, &expected_server_pkt_iv);
assert!(derive_hdr_key(aead, &secret, &mut hdr_key).is_ok());
let expected_server_hdr_key = [
0xc2, 0x06, 0xb8, 0xd9, 0xb9, 0xf0, 0xf3, 0x76, 0x44, 0x43, 0x0b,
0x49, 0x0e, 0xea, 0xa3, 0x14,
];
assert_eq!(&hdr_key, &expected_server_hdr_key);
}
#[test]
fn derive_initial_secrets_draft29() {
let dcid = [0x83, 0x94, 0xc8, 0xf0, 0x3e, 0x51, 0x57, 0x08];
let mut secret = [0; 32];
let mut pkt_key = [0; 16];
let mut pkt_iv = [0; 12];
let mut hdr_key = [0; 16];
let aead = Algorithm::AES128_GCM;
let initial_secret =
derive_initial_secret(&dcid, crate::PROTOCOL_VERSION_DRAFT29);
// Client.
assert!(
derive_client_initial_secret(&initial_secret, &mut secret).is_ok()
);
let expected_client_initial_secret = [
0x00, 0x88, 0x11, 0x92, 0x88, 0xf1, 0xd8, 0x66, 0x73, 0x3c, 0xee,
0xed, 0x15, 0xff, 0x9d, 0x50, 0x90, 0x2c, 0xf8, 0x29, 0x52, 0xee,
0xe2, 0x7e, 0x9d, 0x4d, 0x49, 0x18, 0xea, 0x37, 0x1d, 0x87,
];
assert_eq!(&secret, &expected_client_initial_secret);
assert!(derive_pkt_key(aead, &secret, &mut pkt_key).is_ok());
let expected_client_pkt_key = [
0x17, 0x52, 0x57, 0xa3, 0x1e, 0xb0, 0x9d, 0xea, 0x93, 0x66, 0xd8,
0xbb, 0x79, 0xad, 0x80, 0xba,
];
assert_eq!(&pkt_key, &expected_client_pkt_key);
assert!(derive_pkt_iv(aead, &secret, &mut pkt_iv).is_ok());
let expected_client_pkt_iv = [
0x6b, 0x26, 0x11, 0x4b, 0x9c, 0xba, 0x2b, 0x63, 0xa9, 0xe8, 0xdd,
0x4f,
];
assert_eq!(&pkt_iv, &expected_client_pkt_iv);
assert!(derive_hdr_key(aead, &secret, &mut hdr_key).is_ok());
let expected_client_hdr_key = [
0x9d, 0xdd, 0x12, 0xc9, 0x94, 0xc0, 0x69, 0x8b, 0x89, 0x37, 0x4a,
0x9c, 0x07, 0x7a, 0x30, 0x77,
];
assert_eq!(&hdr_key, &expected_client_hdr_key);
// Server.
assert!(
derive_server_initial_secret(&initial_secret, &mut secret).is_ok()
);
let expected_server_initial_secret = [
0x00, 0x6f, 0x88, 0x13, 0x59, 0x24, 0x4d, 0xd9, 0xad, 0x1a, 0xcf,
0x85, 0xf5, 0x95, 0xba, 0xd6, 0x7c, 0x13, 0xf9, 0xf5, 0x58, 0x6f,
0x5e, 0x64, 0xe1, 0xac, 0xae, 0x1d, 0x9e, 0xa8, 0xf6, 0x16,
];
assert_eq!(&secret, &expected_server_initial_secret);
assert!(derive_pkt_key(aead, &secret, &mut pkt_key).is_ok());
let expected_server_pkt_key = [
0x14, 0x9d, 0x0b, 0x16, 0x62, 0xab, 0x87, 0x1f, 0xbe, 0x63, 0xc4,
0x9b, 0x5e, 0x65, 0x5a, 0x5d,
];
assert_eq!(&pkt_key, &expected_server_pkt_key);
assert!(derive_pkt_iv(aead, &secret, &mut pkt_iv).is_ok());
let expected_server_pkt_iv = [
0xba, 0xb2, 0xb1, 0x2a, 0x4c, 0x76, 0x01, 0x6a, 0xce, 0x47, 0x85,
0x6d,
];
assert_eq!(&pkt_iv, &expected_server_pkt_iv);
assert!(derive_hdr_key(aead, &secret, &mut hdr_key).is_ok());
let expected_server_hdr_key = [
0xc0, 0xc4, 0x99, 0xa6, 0x5a, 0x60, 0x02, 0x4a, 0x18, 0xa2, 0x50,
0x97, 0x4e, 0xa0, 0x1d, 0xfa,
];
assert_eq!(&hdr_key, &expected_server_hdr_key);
}
#[test]
fn derive_initial_secrets_draft27() {
let dcid = [0x83, 0x94, 0xc8, 0xf0, 0x3e, 0x51, 0x57, 0x08];
let mut secret = [0; 32];
let mut pkt_key = [0; 16];
let mut pkt_iv = [0; 12];
let mut hdr_key = [0; 16];
let aead = Algorithm::AES128_GCM;
let initial_secret =
derive_initial_secret(&dcid, crate::PROTOCOL_VERSION_DRAFT27);
// Client.
assert!(
derive_client_initial_secret(&initial_secret, &mut secret).is_ok()
);
let expected_client_initial_secret = [
0xfd, 0xa3, 0x95, 0x3a, 0xec, 0xc0, 0x40, 0xe4, 0x8b, 0x34, 0xe2,
0x7e, 0xf8, 0x7d, 0xe3, 0xa6, 0x09, 0x8e, 0xcf, 0x0e, 0x38, 0xb7,
0xe0, 0x32, 0xc5, 0xc5, 0x7b, 0xcb, 0xd5, 0x97, 0x5b, 0x84,
];
assert_eq!(&secret, &expected_client_initial_secret);
assert!(derive_pkt_key(aead, &secret, &mut pkt_key).is_ok());
let expected_client_pkt_key = [
0xaf, 0x7f, 0xd7, 0xef, 0xeb, 0xd2, 0x18, 0x78, 0xff, 0x66, 0x81,
0x12, 0x48, 0x98, 0x36, 0x94,
];
assert_eq!(&pkt_key, &expected_client_pkt_key);
assert!(derive_pkt_iv(aead, &secret, &mut pkt_iv).is_ok());
let expected_client_pkt_iv = [
0x86, 0x81, 0x35, 0x94, 0x10, 0xa7, 0x0b, 0xb9, 0xc9, 0x2f, 0x04,
0x20,
];
assert_eq!(&pkt_iv, &expected_client_pkt_iv);
assert!(derive_hdr_key(aead, &secret, &mut hdr_key).is_ok());
let expected_client_hdr_key = [
0xa9, 0x80, 0xb8, 0xb4, 0xfb, 0x7d, 0x9f, 0xbc, 0x13, 0xe8, 0x14,
0xc2, 0x31, 0x64, 0x25, 0x3d,
];
assert_eq!(&hdr_key, &expected_client_hdr_key);
// Server.
assert!(
derive_server_initial_secret(&initial_secret, &mut secret).is_ok()
);
let expected_server_initial_secret = [
0x55, 0x43, 0x66, 0xb8, 0x19, 0x12, 0xff, 0x90, 0xbe, 0x41, 0xf1,
0x7e, 0x80, 0x22, 0x21, 0x30, 0x90, 0xab, 0x17, 0xd8, 0x14, 0x91,
0x79, 0xbc, 0xad, 0xf2, 0x22, 0xf2, 0x9f, 0xf2, 0xdd, 0xd5,
];
assert_eq!(&secret, &expected_server_initial_secret);
assert!(derive_pkt_key(aead, &secret, &mut pkt_key).is_ok());
let expected_server_pkt_key = [
0x5d, 0x51, 0xda, 0x9e, 0xe8, 0x97, 0xa2, 0x1b, 0x26, 0x59, 0xcc,
0xc7, 0xe5, 0xbf, 0xa5, 0x77,
];
assert_eq!(&pkt_key, &expected_server_pkt_key);
assert!(derive_pkt_iv(aead, &secret, &mut pkt_iv).is_ok());
let expected_server_pkt_iv = [
0x5e, 0x5a, 0xe6, 0x51, 0xfd, 0x1e, 0x84, 0x95, 0xaf, 0x13, 0x50,
0x8b,
];
assert_eq!(&pkt_iv, &expected_server_pkt_iv);
assert!(derive_hdr_key(aead, &secret, &mut hdr_key).is_ok());
let expected_server_hdr_key = [
0xa8, 0xed, 0x82, 0xe6, 0x66, 0x4f, 0x86, 0x5a, 0xed, 0xf6, 0x10,
0x69, 0x43, 0xf9, 0x5f, 0xb8,
];
assert_eq!(&hdr_key, &expected_server_hdr_key);
}
#[test]
fn derive_chacha20_secrets() {
let secret = [
0x9a, 0xc3, 0x12, 0xa7, 0xf8, 0x77, 0x46, 0x8e, 0xbe, 0x69, 0x42,
0x27, 0x48, 0xad, 0x00, 0xa1, 0x54, 0x43, 0xf1, 0x82, 0x03, 0xa0,
0x7d, 0x60, 0x60, 0xf6, 0x88, 0xf3, 0x0f, 0x21, 0x63, 0x2b,
];
let aead = Algorithm::ChaCha20_Poly1305;
let mut pkt_key = [0; 32];
let mut pkt_iv = [0; 12];
let mut hdr_key = [0; 32];
assert!(derive_pkt_key(aead, &secret, &mut pkt_key).is_ok());
let expected_pkt_key = [
0xc6, 0xd9, 0x8f, 0xf3, 0x44, 0x1c, 0x3f, 0xe1, 0xb2, 0x18, 0x20,
0x94, 0xf6, 0x9c, 0xaa, 0x2e, 0xd4, 0xb7, 0x16, 0xb6, 0x54, 0x88,
0x96, 0x0a, 0x7a, 0x98, 0x49, 0x79, 0xfb, 0x23, 0xe1, 0xc8,
];
assert_eq!(&pkt_key, &expected_pkt_key);
assert!(derive_pkt_iv(aead, &secret, &mut pkt_iv).is_ok());
let expected_pkt_iv = [
0xe0, 0x45, 0x9b, 0x34, 0x74, 0xbd, 0xd0, 0xe4, 0x4a, 0x41, 0xc1,
0x44,
];
assert_eq!(&pkt_iv, &expected_pkt_iv);
assert!(derive_hdr_key(aead, &secret, &mut hdr_key).is_ok());
let expected_hdr_key = [
0x25, 0xa2, 0x82, 0xb9, 0xe8, 0x2f, 0x06, 0xf2, 0x1f, 0x48, 0x89,
0x17, 0xa4, 0xfc, 0x8f, 0x1b, 0x73, 0x57, 0x36, 0x85, 0x60, 0x85,
0x97, 0xd0, 0xef, 0xcb, 0x07, 0x6b, 0x0a, 0xb7, 0xa7, 0xa4,
];
assert_eq!(&hdr_key, &expected_hdr_key);
}
}