blob: b18e4ee2b8f3ebdf0107422c296e49f4ca513e30 [file] [log] [blame]
// Copyright 2007 The RE2 Authors. All Rights Reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#ifndef RE2_PROG_H_
#define RE2_PROG_H_
// Compiled representation of regular expressions.
// See regexp.h for the Regexp class, which represents a regular
// expression symbolically.
#include <atomic>
#include <mutex>
#include <string>
#include <vector>
#include "util/util.h"
#include "util/sparse_array.h"
#include "util/sparse_set.h"
#include "re2/re2.h"
namespace re2 {
// Opcodes for Inst
enum InstOp {
kInstAlt = 0, // choose between out_ and out1_
kInstAltMatch, // Alt: out_ is [00-FF] and back, out1_ is match; or vice versa.
kInstByteRange, // next (possible case-folded) byte must be in [lo_, hi_]
kInstCapture, // capturing parenthesis number cap_
kInstEmptyWidth, // empty-width special (^ $ ...); bit(s) set in empty_
kInstMatch, // found a match!
kInstNop, // no-op; occasionally unavoidable
kInstFail, // never match; occasionally unavoidable
kNumInst,
};
// Bit flags for empty-width specials
enum EmptyOp {
kEmptyBeginLine = 1<<0, // ^ - beginning of line
kEmptyEndLine = 1<<1, // $ - end of line
kEmptyBeginText = 1<<2, // \A - beginning of text
kEmptyEndText = 1<<3, // \z - end of text
kEmptyWordBoundary = 1<<4, // \b - word boundary
kEmptyNonWordBoundary = 1<<5, // \B - not \b
kEmptyAllFlags = (1<<6)-1,
};
class DFA;
class Regexp;
// Compiled form of regexp program.
class Prog {
public:
Prog();
~Prog();
// Single instruction in regexp program.
class Inst {
public:
Inst() : out_opcode_(0), out1_(0) {}
// Copyable.
Inst(const Inst&) = default;
Inst& operator=(const Inst&) = default;
// Constructors per opcode
void InitAlt(uint32 out, uint32 out1);
void InitByteRange(int lo, int hi, int foldcase, uint32 out);
void InitCapture(int cap, uint32 out);
void InitEmptyWidth(EmptyOp empty, uint32 out);
void InitMatch(int id);
void InitNop(uint32 out);
void InitFail();
// Getters
int id(Prog* p) { return static_cast<int>(this - p->inst_); }
InstOp opcode() { return static_cast<InstOp>(out_opcode_&7); }
int last() { return (out_opcode_>>3)&1; }
int out() { return out_opcode_>>4; }
int out1() { DCHECK(opcode() == kInstAlt || opcode() == kInstAltMatch); return out1_; }
int cap() { DCHECK_EQ(opcode(), kInstCapture); return cap_; }
int lo() { DCHECK_EQ(opcode(), kInstByteRange); return lo_; }
int hi() { DCHECK_EQ(opcode(), kInstByteRange); return hi_; }
int foldcase() { DCHECK_EQ(opcode(), kInstByteRange); return foldcase_; }
int match_id() { DCHECK_EQ(opcode(), kInstMatch); return match_id_; }
EmptyOp empty() { DCHECK_EQ(opcode(), kInstEmptyWidth); return empty_; }
bool greedy(Prog* p) {
DCHECK_EQ(opcode(), kInstAltMatch);
return p->inst(out())->opcode() == kInstByteRange ||
(p->inst(out())->opcode() == kInstNop &&
p->inst(p->inst(out())->out())->opcode() == kInstByteRange);
}
// Does this inst (an kInstByteRange) match c?
inline bool Matches(int c) {
DCHECK_EQ(opcode(), kInstByteRange);
if (foldcase_ && 'A' <= c && c <= 'Z')
c += 'a' - 'A';
return lo_ <= c && c <= hi_;
}
// Returns string representation for debugging.
string Dump();
// Maximum instruction id.
// (Must fit in out_opcode_. PatchList/last steal another bit.)
static const int kMaxInst = (1<<28) - 1;
private:
void set_opcode(InstOp opcode) {
out_opcode_ = (out()<<4) | (last()<<3) | opcode;
}
void set_last() {
out_opcode_ = (out()<<4) | (1<<3) | opcode();
}
void set_out(int out) {
out_opcode_ = (out<<4) | (last()<<3) | opcode();
}
void set_out_opcode(int out, InstOp opcode) {
out_opcode_ = (out<<4) | (last()<<3) | opcode;
}
uint32 out_opcode_; // 28 bits of out, 1 bit for last, 3 (low) bits opcode
union { // additional instruction arguments:
uint32 out1_; // opcode == kInstAlt
// alternate next instruction
int32 cap_; // opcode == kInstCapture
// Index of capture register (holds text
// position recorded by capturing parentheses).
// For \n (the submatch for the nth parentheses),
// the left parenthesis captures into register 2*n
// and the right one captures into register 2*n+1.
int32 match_id_; // opcode == kInstMatch
// Match ID to identify this match (for re2::Set).
struct { // opcode == kInstByteRange
uint8 lo_; // byte range is lo_-hi_ inclusive
uint8 hi_; //
uint8 foldcase_; // convert A-Z to a-z before checking range.
};
EmptyOp empty_; // opcode == kInstEmptyWidth
// empty_ is bitwise OR of kEmpty* flags above.
};
friend class Compiler;
friend struct PatchList;
friend class Prog;
};
// Whether to anchor the search.
enum Anchor {
kUnanchored, // match anywhere
kAnchored, // match only starting at beginning of text
};
// Kind of match to look for (for anchor != kFullMatch)
//
// kLongestMatch mode finds the overall longest
// match but still makes its submatch choices the way
// Perl would, not in the way prescribed by POSIX.
// The POSIX rules are much more expensive to implement,
// and no one has needed them.
//
// kFullMatch is not strictly necessary -- we could use
// kLongestMatch and then check the length of the match -- but
// the matching code can run faster if it knows to consider only
// full matches.
enum MatchKind {
kFirstMatch, // like Perl, PCRE
kLongestMatch, // like egrep or POSIX
kFullMatch, // match only entire text; implies anchor==kAnchored
kManyMatch // for SearchDFA, records set of matches
};
Inst *inst(int id) { return &inst_[id]; }
int start() { return start_; }
int start_unanchored() { return start_unanchored_; }
void set_start(int start) { start_ = start; }
void set_start_unanchored(int start) { start_unanchored_ = start; }
int size() { return size_; }
bool reversed() { return reversed_; }
void set_reversed(bool reversed) { reversed_ = reversed; }
int list_count() { return list_count_; }
int inst_count(InstOp op) { return inst_count_[op]; }
void set_dfa_mem(int64 dfa_mem) { dfa_mem_ = dfa_mem; }
int64 dfa_mem() { return dfa_mem_; }
int flags() { return flags_; }
void set_flags(int flags) { flags_ = flags; }
bool anchor_start() { return anchor_start_; }
void set_anchor_start(bool b) { anchor_start_ = b; }
bool anchor_end() { return anchor_end_; }
void set_anchor_end(bool b) { anchor_end_ = b; }
int bytemap_range() { return bytemap_range_; }
const uint8* bytemap() { return bytemap_; }
// Lazily computed.
int first_byte();
// Returns string representation of program for debugging.
string Dump();
string DumpUnanchored();
string DumpByteMap();
// Returns the set of kEmpty flags that are in effect at
// position p within context.
static uint32 EmptyFlags(const StringPiece& context, const char* p);
// Returns whether byte c is a word character: ASCII only.
// Used by the implementation of \b and \B.
// This is not right for Unicode, but:
// - it's hard to get right in a byte-at-a-time matching world
// (the DFA has only one-byte lookahead).
// - even if the lookahead were possible, the Progs would be huge.
// This crude approximation is the same one PCRE uses.
static bool IsWordChar(uint8 c) {
return ('A' <= c && c <= 'Z') ||
('a' <= c && c <= 'z') ||
('0' <= c && c <= '9') ||
c == '_';
}
// Execution engines. They all search for the regexp (run the prog)
// in text, which is in the larger context (used for ^ $ \b etc).
// Anchor and kind control the kind of search.
// Returns true if match found, false if not.
// If match found, fills match[0..nmatch-1] with submatch info.
// match[0] is overall match, match[1] is first set of parens, etc.
// If a particular submatch is not matched during the regexp match,
// it is set to NULL.
//
// Matching text == StringPiece(NULL, 0) is treated as any other empty
// string, but note that on return, it will not be possible to distinguish
// submatches that matched that empty string from submatches that didn't
// match anything. Either way, match[i] == NULL.
// Search using NFA: can find submatches but kind of slow.
bool SearchNFA(const StringPiece& text, const StringPiece& context,
Anchor anchor, MatchKind kind,
StringPiece* match, int nmatch);
// Search using DFA: much faster than NFA but only finds
// end of match and can use a lot more memory.
// Returns whether a match was found.
// If the DFA runs out of memory, sets *failed to true and returns false.
// If matches != NULL and kind == kManyMatch and there is a match,
// SearchDFA fills matches with the match IDs of the final matching state.
bool SearchDFA(const StringPiece& text, const StringPiece& context,
Anchor anchor, MatchKind kind, StringPiece* match0,
bool* failed, std::vector<int>* matches);
// Build the entire DFA for the given match kind. FOR TESTING ONLY.
// Usually the DFA is built out incrementally, as needed, which
// avoids lots of unnecessary work. This function is useful only
// for testing purposes. Returns number of states.
int BuildEntireDFA(MatchKind kind);
// Compute bytemap.
void ComputeByteMap();
// Computes whether all matches must begin with the same first
// byte, and if so, returns that byte. If not, returns -1.
int ComputeFirstByte();
// Run peep-hole optimizer on program.
void Optimize();
// One-pass NFA: only correct if IsOnePass() is true,
// but much faster than NFA (competitive with PCRE)
// for those expressions.
bool IsOnePass();
bool SearchOnePass(const StringPiece& text, const StringPiece& context,
Anchor anchor, MatchKind kind,
StringPiece* match, int nmatch);
// Bit-state backtracking. Fast on small cases but uses memory
// proportional to the product of the program size and the text size.
bool SearchBitState(const StringPiece& text, const StringPiece& context,
Anchor anchor, MatchKind kind,
StringPiece* match, int nmatch);
static const int kMaxOnePassCapture = 5; // $0 through $4
// Backtracking search: the gold standard against which the other
// implementations are checked. FOR TESTING ONLY.
// It allocates a ton of memory to avoid running forever.
// It is also recursive, so can't use in production (will overflow stacks).
// The name "Unsafe" here is supposed to be a flag that
// you should not be using this function.
bool UnsafeSearchBacktrack(const StringPiece& text,
const StringPiece& context,
Anchor anchor, MatchKind kind,
StringPiece* match, int nmatch);
// Computes range for any strings matching regexp. The min and max can in
// some cases be arbitrarily precise, so the caller gets to specify the
// maximum desired length of string returned.
//
// Assuming PossibleMatchRange(&min, &max, N) returns successfully, any
// string s that is an anchored match for this regexp satisfies
// min <= s && s <= max.
//
// Note that PossibleMatchRange() will only consider the first copy of an
// infinitely repeated element (i.e., any regexp element followed by a '*' or
// '+' operator). Regexps with "{N}" constructions are not affected, as those
// do not compile down to infinite repetitions.
//
// Returns true on success, false on error.
bool PossibleMatchRange(string* min, string* max, int maxlen);
// EXPERIMENTAL! SUBJECT TO CHANGE!
// Outputs the program fanout into the given sparse array.
void Fanout(SparseArray<int>* fanout);
// Compiles a collection of regexps to Prog. Each regexp will have
// its own Match instruction recording the index in the vector.
static Prog* CompileSet(const RE2::Options& options, RE2::Anchor anchor,
Regexp* re);
// Flattens the Prog from "tree" form to "list" form. This is an in-place
// operation in the sense that the old instructions are lost.
void Flatten();
// Marks the "roots" in the Prog: the outs of kInstByteRange, kInstCapture
// and kInstEmptyWidth instructions.
void MarkRoots(SparseArray<int>* rootmap, SparseSet* q,
std::vector<int>* stk);
// Emits one "list" via "tree" traversal from the given "root" instruction.
// The new instructions are appended to the given vector.
void EmitList(int root, SparseArray<int>* rootmap,
std::vector<Inst>* flat, SparseSet* q,
std::vector<int>* stk);
private:
friend class Compiler;
DFA* GetDFA(MatchKind kind);
void DeleteDFA(std::atomic<DFA*>* pdfa);
bool anchor_start_; // regexp has explicit start anchor
bool anchor_end_; // regexp has explicit end anchor
bool reversed_; // whether program runs backward over input
bool did_flatten_; // has Flatten been called?
bool did_onepass_; // has IsOnePass been called?
int start_; // entry point for program
int start_unanchored_; // unanchored entry point for program
int size_; // number of instructions
int bytemap_range_; // bytemap_[x] < bytemap_range_
int first_byte_; // required first byte for match, or -1 if none
int flags_; // regexp parse flags
int list_count_; // count of lists (see above)
int inst_count_[kNumInst]; // count of instructions by opcode
Inst* inst_; // pointer to instruction array
uint8* onepass_nodes_; // data for OnePass nodes
Mutex dfa_mutex_; // Protects dfa_first_, dfa_longest_
std::atomic<DFA*> dfa_first_; // DFA cached for kFirstMatch
std::atomic<DFA*> dfa_longest_; // DFA cached for kLongestMatch and kFullMatch
int64 dfa_mem_; // Maximum memory for DFAs.
uint8 bytemap_[256]; // map from input bytes to byte classes
std::once_flag first_byte_once_;
DISALLOW_COPY_AND_ASSIGN(Prog);
};
} // namespace re2
#endif // RE2_PROG_H_