blob: 511e14b1809cb0256b03d1bf41b1068f6cb8c222 [file] [log] [blame]
/*
* Tiny Code Generator for QEMU
*
* Copyright (c) 2008 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "elf.h"
#include "../tcg-pool.c.inc"
#include "../tcg-ldst.c.inc"
/*
* Standardize on the _CALL_FOO symbols used by GCC:
* Apple XCode does not define _CALL_DARWIN.
* Clang defines _CALL_ELF (64-bit) but not _CALL_SYSV or _CALL_AIX.
*/
#if TCG_TARGET_REG_BITS == 64
# ifdef _CALL_AIX
/* ok */
# elif defined(_CALL_ELF) && _CALL_ELF == 1
# define _CALL_AIX
# elif defined(_CALL_ELF) && _CALL_ELF == 2
/* ok */
# else
# error "Unknown ABI"
# endif
#else
# if defined(_CALL_SYSV) || defined(_CALL_DARWIN)
/* ok */
# elif defined(__APPLE__)
# define _CALL_DARWIN
# elif defined(__ELF__)
# define _CALL_SYSV
# else
# error "Unknown ABI"
# endif
#endif
#if TCG_TARGET_REG_BITS == 64
# define TCG_TARGET_CALL_ARG_I32 TCG_CALL_ARG_EXTEND
# define TCG_TARGET_CALL_RET_I128 TCG_CALL_RET_NORMAL
#else
# define TCG_TARGET_CALL_ARG_I32 TCG_CALL_ARG_NORMAL
# define TCG_TARGET_CALL_RET_I128 TCG_CALL_RET_BY_REF
#endif
#ifdef _CALL_SYSV
# define TCG_TARGET_CALL_ARG_I64 TCG_CALL_ARG_EVEN
# define TCG_TARGET_CALL_ARG_I128 TCG_CALL_ARG_BY_REF
#else
# define TCG_TARGET_CALL_ARG_I64 TCG_CALL_ARG_NORMAL
# define TCG_TARGET_CALL_ARG_I128 TCG_CALL_ARG_NORMAL
#endif
/* For some memory operations, we need a scratch that isn't R0. For the AIX
calling convention, we can re-use the TOC register since we'll be reloading
it at every call. Otherwise R12 will do nicely as neither a call-saved
register nor a parameter register. */
#ifdef _CALL_AIX
# define TCG_REG_TMP1 TCG_REG_R2
#else
# define TCG_REG_TMP1 TCG_REG_R12
#endif
#define TCG_REG_TMP2 TCG_REG_R11
#define TCG_VEC_TMP1 TCG_REG_V0
#define TCG_VEC_TMP2 TCG_REG_V1
#define TCG_REG_TB TCG_REG_R31
#define USE_REG_TB (TCG_TARGET_REG_BITS == 64)
/* Shorthand for size of a pointer. Avoid promotion to unsigned. */
#define SZP ((int)sizeof(void *))
/* Shorthand for size of a register. */
#define SZR (TCG_TARGET_REG_BITS / 8)
#define TCG_CT_CONST_S16 0x100
#define TCG_CT_CONST_S32 0x400
#define TCG_CT_CONST_U32 0x800
#define TCG_CT_CONST_ZERO 0x1000
#define TCG_CT_CONST_MONE 0x2000
#define TCG_CT_CONST_WSZ 0x4000
#define ALL_GENERAL_REGS 0xffffffffu
#define ALL_VECTOR_REGS 0xffffffff00000000ull
#define have_isel (cpuinfo & CPUINFO_ISEL)
#ifndef CONFIG_SOFTMMU
#define TCG_GUEST_BASE_REG 30
#endif
#ifdef CONFIG_DEBUG_TCG
static const char tcg_target_reg_names[TCG_TARGET_NB_REGS][4] = {
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
"v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
"v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
"v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
"v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31",
};
#endif
static const int tcg_target_reg_alloc_order[] = {
TCG_REG_R14, /* call saved registers */
TCG_REG_R15,
TCG_REG_R16,
TCG_REG_R17,
TCG_REG_R18,
TCG_REG_R19,
TCG_REG_R20,
TCG_REG_R21,
TCG_REG_R22,
TCG_REG_R23,
TCG_REG_R24,
TCG_REG_R25,
TCG_REG_R26,
TCG_REG_R27,
TCG_REG_R28,
TCG_REG_R29,
TCG_REG_R30,
TCG_REG_R31,
TCG_REG_R12, /* call clobbered, non-arguments */
TCG_REG_R11,
TCG_REG_R2,
TCG_REG_R13,
TCG_REG_R10, /* call clobbered, arguments */
TCG_REG_R9,
TCG_REG_R8,
TCG_REG_R7,
TCG_REG_R6,
TCG_REG_R5,
TCG_REG_R4,
TCG_REG_R3,
/* V0 and V1 reserved as temporaries; V20 - V31 are call-saved */
TCG_REG_V2, /* call clobbered, vectors */
TCG_REG_V3,
TCG_REG_V4,
TCG_REG_V5,
TCG_REG_V6,
TCG_REG_V7,
TCG_REG_V8,
TCG_REG_V9,
TCG_REG_V10,
TCG_REG_V11,
TCG_REG_V12,
TCG_REG_V13,
TCG_REG_V14,
TCG_REG_V15,
TCG_REG_V16,
TCG_REG_V17,
TCG_REG_V18,
TCG_REG_V19,
};
static const int tcg_target_call_iarg_regs[] = {
TCG_REG_R3,
TCG_REG_R4,
TCG_REG_R5,
TCG_REG_R6,
TCG_REG_R7,
TCG_REG_R8,
TCG_REG_R9,
TCG_REG_R10
};
static TCGReg tcg_target_call_oarg_reg(TCGCallReturnKind kind, int slot)
{
tcg_debug_assert(kind == TCG_CALL_RET_NORMAL);
tcg_debug_assert(slot >= 0 && slot <= 1);
return TCG_REG_R3 + slot;
}
static const int tcg_target_callee_save_regs[] = {
#ifdef _CALL_DARWIN
TCG_REG_R11,
#endif
TCG_REG_R14,
TCG_REG_R15,
TCG_REG_R16,
TCG_REG_R17,
TCG_REG_R18,
TCG_REG_R19,
TCG_REG_R20,
TCG_REG_R21,
TCG_REG_R22,
TCG_REG_R23,
TCG_REG_R24,
TCG_REG_R25,
TCG_REG_R26,
TCG_REG_R27, /* currently used for the global env */
TCG_REG_R28,
TCG_REG_R29,
TCG_REG_R30,
TCG_REG_R31
};
static inline bool in_range_b(tcg_target_long target)
{
return target == sextract64(target, 0, 26);
}
static uint32_t reloc_pc24_val(const tcg_insn_unit *pc,
const tcg_insn_unit *target)
{
ptrdiff_t disp = tcg_ptr_byte_diff(target, pc);
tcg_debug_assert(in_range_b(disp));
return disp & 0x3fffffc;
}
static bool reloc_pc24(tcg_insn_unit *src_rw, const tcg_insn_unit *target)
{
const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw);
ptrdiff_t disp = tcg_ptr_byte_diff(target, src_rx);
if (in_range_b(disp)) {
*src_rw = (*src_rw & ~0x3fffffc) | (disp & 0x3fffffc);
return true;
}
return false;
}
static uint16_t reloc_pc14_val(const tcg_insn_unit *pc,
const tcg_insn_unit *target)
{
ptrdiff_t disp = tcg_ptr_byte_diff(target, pc);
tcg_debug_assert(disp == (int16_t) disp);
return disp & 0xfffc;
}
static bool reloc_pc14(tcg_insn_unit *src_rw, const tcg_insn_unit *target)
{
const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw);
ptrdiff_t disp = tcg_ptr_byte_diff(target, src_rx);
if (disp == (int16_t) disp) {
*src_rw = (*src_rw & ~0xfffc) | (disp & 0xfffc);
return true;
}
return false;
}
/* test if a constant matches the constraint */
static bool tcg_target_const_match(int64_t val, TCGType type, int ct)
{
if (ct & TCG_CT_CONST) {
return 1;
}
/* The only 32-bit constraint we use aside from
TCG_CT_CONST is TCG_CT_CONST_S16. */
if (type == TCG_TYPE_I32) {
val = (int32_t)val;
}
if ((ct & TCG_CT_CONST_S16) && val == (int16_t)val) {
return 1;
} else if ((ct & TCG_CT_CONST_S32) && val == (int32_t)val) {
return 1;
} else if ((ct & TCG_CT_CONST_U32) && val == (uint32_t)val) {
return 1;
} else if ((ct & TCG_CT_CONST_ZERO) && val == 0) {
return 1;
} else if ((ct & TCG_CT_CONST_MONE) && val == -1) {
return 1;
} else if ((ct & TCG_CT_CONST_WSZ)
&& val == (type == TCG_TYPE_I32 ? 32 : 64)) {
return 1;
}
return 0;
}
#define OPCD(opc) ((opc)<<26)
#define XO19(opc) (OPCD(19)|((opc)<<1))
#define MD30(opc) (OPCD(30)|((opc)<<2))
#define MDS30(opc) (OPCD(30)|((opc)<<1))
#define XO31(opc) (OPCD(31)|((opc)<<1))
#define XO58(opc) (OPCD(58)|(opc))
#define XO62(opc) (OPCD(62)|(opc))
#define VX4(opc) (OPCD(4)|(opc))
#define B OPCD( 18)
#define BC OPCD( 16)
#define LBZ OPCD( 34)
#define LHZ OPCD( 40)
#define LHA OPCD( 42)
#define LWZ OPCD( 32)
#define LWZUX XO31( 55)
#define LD XO58( 0)
#define LDX XO31( 21)
#define LDU XO58( 1)
#define LDUX XO31( 53)
#define LWA XO58( 2)
#define LWAX XO31(341)
#define LQ OPCD( 56)
#define STB OPCD( 38)
#define STH OPCD( 44)
#define STW OPCD( 36)
#define STD XO62( 0)
#define STDU XO62( 1)
#define STDX XO31(149)
#define STQ XO62( 2)
#define ADDIC OPCD( 12)
#define ADDI OPCD( 14)
#define ADDIS OPCD( 15)
#define ORI OPCD( 24)
#define ORIS OPCD( 25)
#define XORI OPCD( 26)
#define XORIS OPCD( 27)
#define ANDI OPCD( 28)
#define ANDIS OPCD( 29)
#define MULLI OPCD( 7)
#define CMPLI OPCD( 10)
#define CMPI OPCD( 11)
#define SUBFIC OPCD( 8)
#define LWZU OPCD( 33)
#define STWU OPCD( 37)
#define RLWIMI OPCD( 20)
#define RLWINM OPCD( 21)
#define RLWNM OPCD( 23)
#define RLDICL MD30( 0)
#define RLDICR MD30( 1)
#define RLDIMI MD30( 3)
#define RLDCL MDS30( 8)
#define BCLR XO19( 16)
#define BCCTR XO19(528)
#define CRAND XO19(257)
#define CRANDC XO19(129)
#define CRNAND XO19(225)
#define CROR XO19(449)
#define CRNOR XO19( 33)
#define EXTSB XO31(954)
#define EXTSH XO31(922)
#define EXTSW XO31(986)
#define ADD XO31(266)
#define ADDE XO31(138)
#define ADDME XO31(234)
#define ADDZE XO31(202)
#define ADDC XO31( 10)
#define AND XO31( 28)
#define SUBF XO31( 40)
#define SUBFC XO31( 8)
#define SUBFE XO31(136)
#define SUBFME XO31(232)
#define SUBFZE XO31(200)
#define OR XO31(444)
#define XOR XO31(316)
#define MULLW XO31(235)
#define MULHW XO31( 75)
#define MULHWU XO31( 11)
#define DIVW XO31(491)
#define DIVWU XO31(459)
#define MODSW XO31(779)
#define MODUW XO31(267)
#define CMP XO31( 0)
#define CMPL XO31( 32)
#define LHBRX XO31(790)
#define LWBRX XO31(534)
#define LDBRX XO31(532)
#define STHBRX XO31(918)
#define STWBRX XO31(662)
#define STDBRX XO31(660)
#define MFSPR XO31(339)
#define MTSPR XO31(467)
#define SRAWI XO31(824)
#define NEG XO31(104)
#define MFCR XO31( 19)
#define MFOCRF (MFCR | (1u << 20))
#define NOR XO31(124)
#define CNTLZW XO31( 26)
#define CNTLZD XO31( 58)
#define CNTTZW XO31(538)
#define CNTTZD XO31(570)
#define CNTPOPW XO31(378)
#define CNTPOPD XO31(506)
#define ANDC XO31( 60)
#define ORC XO31(412)
#define EQV XO31(284)
#define NAND XO31(476)
#define ISEL XO31( 15)
#define MULLD XO31(233)
#define MULHD XO31( 73)
#define MULHDU XO31( 9)
#define DIVD XO31(489)
#define DIVDU XO31(457)
#define MODSD XO31(777)
#define MODUD XO31(265)
#define LBZX XO31( 87)
#define LHZX XO31(279)
#define LHAX XO31(343)
#define LWZX XO31( 23)
#define STBX XO31(215)
#define STHX XO31(407)
#define STWX XO31(151)
#define EIEIO XO31(854)
#define HWSYNC XO31(598)
#define LWSYNC (HWSYNC | (1u << 21))
#define SPR(a, b) ((((a)<<5)|(b))<<11)
#define LR SPR(8, 0)
#define CTR SPR(9, 0)
#define SLW XO31( 24)
#define SRW XO31(536)
#define SRAW XO31(792)
#define SLD XO31( 27)
#define SRD XO31(539)
#define SRAD XO31(794)
#define SRADI XO31(413<<1)
#define BRH XO31(219)
#define BRW XO31(155)
#define BRD XO31(187)
#define TW XO31( 4)
#define TRAP (TW | TO(31))
#define NOP ORI /* ori 0,0,0 */
#define LVX XO31(103)
#define LVEBX XO31(7)
#define LVEHX XO31(39)
#define LVEWX XO31(71)
#define LXSDX (XO31(588) | 1) /* v2.06, force tx=1 */
#define LXVDSX (XO31(332) | 1) /* v2.06, force tx=1 */
#define LXSIWZX (XO31(12) | 1) /* v2.07, force tx=1 */
#define LXV (OPCD(61) | 8 | 1) /* v3.00, force tx=1 */
#define LXSD (OPCD(57) | 2) /* v3.00 */
#define LXVWSX (XO31(364) | 1) /* v3.00, force tx=1 */
#define STVX XO31(231)
#define STVEWX XO31(199)
#define STXSDX (XO31(716) | 1) /* v2.06, force sx=1 */
#define STXSIWX (XO31(140) | 1) /* v2.07, force sx=1 */
#define STXV (OPCD(61) | 8 | 5) /* v3.00, force sx=1 */
#define STXSD (OPCD(61) | 2) /* v3.00 */
#define VADDSBS VX4(768)
#define VADDUBS VX4(512)
#define VADDUBM VX4(0)
#define VADDSHS VX4(832)
#define VADDUHS VX4(576)
#define VADDUHM VX4(64)
#define VADDSWS VX4(896)
#define VADDUWS VX4(640)
#define VADDUWM VX4(128)
#define VADDUDM VX4(192) /* v2.07 */
#define VSUBSBS VX4(1792)
#define VSUBUBS VX4(1536)
#define VSUBUBM VX4(1024)
#define VSUBSHS VX4(1856)
#define VSUBUHS VX4(1600)
#define VSUBUHM VX4(1088)
#define VSUBSWS VX4(1920)
#define VSUBUWS VX4(1664)
#define VSUBUWM VX4(1152)
#define VSUBUDM VX4(1216) /* v2.07 */
#define VNEGW (VX4(1538) | (6 << 16)) /* v3.00 */
#define VNEGD (VX4(1538) | (7 << 16)) /* v3.00 */
#define VMAXSB VX4(258)
#define VMAXSH VX4(322)
#define VMAXSW VX4(386)
#define VMAXSD VX4(450) /* v2.07 */
#define VMAXUB VX4(2)
#define VMAXUH VX4(66)
#define VMAXUW VX4(130)
#define VMAXUD VX4(194) /* v2.07 */
#define VMINSB VX4(770)
#define VMINSH VX4(834)
#define VMINSW VX4(898)
#define VMINSD VX4(962) /* v2.07 */
#define VMINUB VX4(514)
#define VMINUH VX4(578)
#define VMINUW VX4(642)
#define VMINUD VX4(706) /* v2.07 */
#define VCMPEQUB VX4(6)
#define VCMPEQUH VX4(70)
#define VCMPEQUW VX4(134)
#define VCMPEQUD VX4(199) /* v2.07 */
#define VCMPGTSB VX4(774)
#define VCMPGTSH VX4(838)
#define VCMPGTSW VX4(902)
#define VCMPGTSD VX4(967) /* v2.07 */
#define VCMPGTUB VX4(518)
#define VCMPGTUH VX4(582)
#define VCMPGTUW VX4(646)
#define VCMPGTUD VX4(711) /* v2.07 */
#define VCMPNEB VX4(7) /* v3.00 */
#define VCMPNEH VX4(71) /* v3.00 */
#define VCMPNEW VX4(135) /* v3.00 */
#define VSLB VX4(260)
#define VSLH VX4(324)
#define VSLW VX4(388)
#define VSLD VX4(1476) /* v2.07 */
#define VSRB VX4(516)
#define VSRH VX4(580)
#define VSRW VX4(644)
#define VSRD VX4(1732) /* v2.07 */
#define VSRAB VX4(772)
#define VSRAH VX4(836)
#define VSRAW VX4(900)
#define VSRAD VX4(964) /* v2.07 */
#define VRLB VX4(4)
#define VRLH VX4(68)
#define VRLW VX4(132)
#define VRLD VX4(196) /* v2.07 */
#define VMULEUB VX4(520)
#define VMULEUH VX4(584)
#define VMULEUW VX4(648) /* v2.07 */
#define VMULOUB VX4(8)
#define VMULOUH VX4(72)
#define VMULOUW VX4(136) /* v2.07 */
#define VMULUWM VX4(137) /* v2.07 */
#define VMULLD VX4(457) /* v3.10 */
#define VMSUMUHM VX4(38)
#define VMRGHB VX4(12)
#define VMRGHH VX4(76)
#define VMRGHW VX4(140)
#define VMRGLB VX4(268)
#define VMRGLH VX4(332)
#define VMRGLW VX4(396)
#define VPKUHUM VX4(14)
#define VPKUWUM VX4(78)
#define VAND VX4(1028)
#define VANDC VX4(1092)
#define VNOR VX4(1284)
#define VOR VX4(1156)
#define VXOR VX4(1220)
#define VEQV VX4(1668) /* v2.07 */
#define VNAND VX4(1412) /* v2.07 */
#define VORC VX4(1348) /* v2.07 */
#define VSPLTB VX4(524)
#define VSPLTH VX4(588)
#define VSPLTW VX4(652)
#define VSPLTISB VX4(780)
#define VSPLTISH VX4(844)
#define VSPLTISW VX4(908)
#define VSLDOI VX4(44)
#define XXPERMDI (OPCD(60) | (10 << 3) | 7) /* v2.06, force ax=bx=tx=1 */
#define XXSEL (OPCD(60) | (3 << 4) | 0xf) /* v2.06, force ax=bx=cx=tx=1 */
#define XXSPLTIB (OPCD(60) | (360 << 1) | 1) /* v3.00, force tx=1 */
#define MFVSRD (XO31(51) | 1) /* v2.07, force sx=1 */
#define MFVSRWZ (XO31(115) | 1) /* v2.07, force sx=1 */
#define MTVSRD (XO31(179) | 1) /* v2.07, force tx=1 */
#define MTVSRWZ (XO31(243) | 1) /* v2.07, force tx=1 */
#define MTVSRDD (XO31(435) | 1) /* v3.00, force tx=1 */
#define MTVSRWS (XO31(403) | 1) /* v3.00, force tx=1 */
#define RT(r) ((r)<<21)
#define RS(r) ((r)<<21)
#define RA(r) ((r)<<16)
#define RB(r) ((r)<<11)
#define TO(t) ((t)<<21)
#define SH(s) ((s)<<11)
#define MB(b) ((b)<<6)
#define ME(e) ((e)<<1)
#define BO(o) ((o)<<21)
#define MB64(b) ((b)<<5)
#define FXM(b) (1 << (19 - (b)))
#define VRT(r) (((r) & 31) << 21)
#define VRA(r) (((r) & 31) << 16)
#define VRB(r) (((r) & 31) << 11)
#define VRC(r) (((r) & 31) << 6)
#define LK 1
#define TAB(t, a, b) (RT(t) | RA(a) | RB(b))
#define SAB(s, a, b) (RS(s) | RA(a) | RB(b))
#define TAI(s, a, i) (RT(s) | RA(a) | ((i) & 0xffff))
#define SAI(s, a, i) (RS(s) | RA(a) | ((i) & 0xffff))
#define BF(n) ((n)<<23)
#define BI(n, c) (((c)+((n)*4))<<16)
#define BT(n, c) (((c)+((n)*4))<<21)
#define BA(n, c) (((c)+((n)*4))<<16)
#define BB(n, c) (((c)+((n)*4))<<11)
#define BC_(n, c) (((c)+((n)*4))<<6)
#define BO_COND_TRUE BO(12)
#define BO_COND_FALSE BO( 4)
#define BO_ALWAYS BO(20)
enum {
CR_LT,
CR_GT,
CR_EQ,
CR_SO
};
static const uint32_t tcg_to_bc[] = {
[TCG_COND_EQ] = BC | BI(7, CR_EQ) | BO_COND_TRUE,
[TCG_COND_NE] = BC | BI(7, CR_EQ) | BO_COND_FALSE,
[TCG_COND_LT] = BC | BI(7, CR_LT) | BO_COND_TRUE,
[TCG_COND_GE] = BC | BI(7, CR_LT) | BO_COND_FALSE,
[TCG_COND_LE] = BC | BI(7, CR_GT) | BO_COND_FALSE,
[TCG_COND_GT] = BC | BI(7, CR_GT) | BO_COND_TRUE,
[TCG_COND_LTU] = BC | BI(7, CR_LT) | BO_COND_TRUE,
[TCG_COND_GEU] = BC | BI(7, CR_LT) | BO_COND_FALSE,
[TCG_COND_LEU] = BC | BI(7, CR_GT) | BO_COND_FALSE,
[TCG_COND_GTU] = BC | BI(7, CR_GT) | BO_COND_TRUE,
};
/* The low bit here is set if the RA and RB fields must be inverted. */
static const uint32_t tcg_to_isel[] = {
[TCG_COND_EQ] = ISEL | BC_(7, CR_EQ),
[TCG_COND_NE] = ISEL | BC_(7, CR_EQ) | 1,
[TCG_COND_LT] = ISEL | BC_(7, CR_LT),
[TCG_COND_GE] = ISEL | BC_(7, CR_LT) | 1,
[TCG_COND_LE] = ISEL | BC_(7, CR_GT) | 1,
[TCG_COND_GT] = ISEL | BC_(7, CR_GT),
[TCG_COND_LTU] = ISEL | BC_(7, CR_LT),
[TCG_COND_GEU] = ISEL | BC_(7, CR_LT) | 1,
[TCG_COND_LEU] = ISEL | BC_(7, CR_GT) | 1,
[TCG_COND_GTU] = ISEL | BC_(7, CR_GT),
};
static bool patch_reloc(tcg_insn_unit *code_ptr, int type,
intptr_t value, intptr_t addend)
{
const tcg_insn_unit *target;
int16_t lo;
int32_t hi;
value += addend;
target = (const tcg_insn_unit *)value;
switch (type) {
case R_PPC_REL14:
return reloc_pc14(code_ptr, target);
case R_PPC_REL24:
return reloc_pc24(code_ptr, target);
case R_PPC_ADDR16:
/*
* We are (slightly) abusing this relocation type. In particular,
* assert that the low 2 bits are zero, and do not modify them.
* That way we can use this with LD et al that have opcode bits
* in the low 2 bits of the insn.
*/
if ((value & 3) || value != (int16_t)value) {
return false;
}
*code_ptr = (*code_ptr & ~0xfffc) | (value & 0xfffc);
break;
case R_PPC_ADDR32:
/*
* We are abusing this relocation type. Again, this points to
* a pair of insns, lis + load. This is an absolute address
* relocation for PPC32 so the lis cannot be removed.
*/
lo = value;
hi = value - lo;
if (hi + lo != value) {
return false;
}
code_ptr[0] = deposit32(code_ptr[0], 0, 16, hi >> 16);
code_ptr[1] = deposit32(code_ptr[1], 0, 16, lo);
break;
default:
g_assert_not_reached();
}
return true;
}
static void tcg_out_mem_long(TCGContext *s, int opi, int opx, TCGReg rt,
TCGReg base, tcg_target_long offset);
static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg)
{
if (ret == arg) {
return true;
}
switch (type) {
case TCG_TYPE_I64:
tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
/* fallthru */
case TCG_TYPE_I32:
if (ret < TCG_REG_V0) {
if (arg < TCG_REG_V0) {
tcg_out32(s, OR | SAB(arg, ret, arg));
break;
} else if (have_isa_2_07) {
tcg_out32(s, (type == TCG_TYPE_I32 ? MFVSRWZ : MFVSRD)
| VRT(arg) | RA(ret));
break;
} else {
/* Altivec does not support vector->integer moves. */
return false;
}
} else if (arg < TCG_REG_V0) {
if (have_isa_2_07) {
tcg_out32(s, (type == TCG_TYPE_I32 ? MTVSRWZ : MTVSRD)
| VRT(ret) | RA(arg));
break;
} else {
/* Altivec does not support integer->vector moves. */
return false;
}
}
/* fallthru */
case TCG_TYPE_V64:
case TCG_TYPE_V128:
tcg_debug_assert(ret >= TCG_REG_V0 && arg >= TCG_REG_V0);
tcg_out32(s, VOR | VRT(ret) | VRA(arg) | VRB(arg));
break;
default:
g_assert_not_reached();
}
return true;
}
static inline void tcg_out_rld(TCGContext *s, int op, TCGReg ra, TCGReg rs,
int sh, int mb)
{
tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
sh = SH(sh & 0x1f) | (((sh >> 5) & 1) << 1);
mb = MB64((mb >> 5) | ((mb << 1) & 0x3f));
tcg_out32(s, op | RA(ra) | RS(rs) | sh | mb);
}
static inline void tcg_out_rlw(TCGContext *s, int op, TCGReg ra, TCGReg rs,
int sh, int mb, int me)
{
tcg_out32(s, op | RA(ra) | RS(rs) | SH(sh) | MB(mb) | ME(me));
}
static void tcg_out_ext8s(TCGContext *s, TCGType type, TCGReg dst, TCGReg src)
{
tcg_out32(s, EXTSB | RA(dst) | RS(src));
}
static void tcg_out_ext8u(TCGContext *s, TCGReg dst, TCGReg src)
{
tcg_out32(s, ANDI | SAI(src, dst, 0xff));
}
static void tcg_out_ext16s(TCGContext *s, TCGType type, TCGReg dst, TCGReg src)
{
tcg_out32(s, EXTSH | RA(dst) | RS(src));
}
static void tcg_out_ext16u(TCGContext *s, TCGReg dst, TCGReg src)
{
tcg_out32(s, ANDI | SAI(src, dst, 0xffff));
}
static void tcg_out_ext32s(TCGContext *s, TCGReg dst, TCGReg src)
{
tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
tcg_out32(s, EXTSW | RA(dst) | RS(src));
}
static void tcg_out_ext32u(TCGContext *s, TCGReg dst, TCGReg src)
{
tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
tcg_out_rld(s, RLDICL, dst, src, 0, 32);
}
static void tcg_out_exts_i32_i64(TCGContext *s, TCGReg dst, TCGReg src)
{
tcg_out_ext32s(s, dst, src);
}
static void tcg_out_extu_i32_i64(TCGContext *s, TCGReg dst, TCGReg src)
{
tcg_out_ext32u(s, dst, src);
}
static void tcg_out_extrl_i64_i32(TCGContext *s, TCGReg rd, TCGReg rn)
{
tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
tcg_out_mov(s, TCG_TYPE_I32, rd, rn);
}
static inline void tcg_out_shli32(TCGContext *s, TCGReg dst, TCGReg src, int c)
{
tcg_out_rlw(s, RLWINM, dst, src, c, 0, 31 - c);
}
static inline void tcg_out_shli64(TCGContext *s, TCGReg dst, TCGReg src, int c)
{
tcg_out_rld(s, RLDICR, dst, src, c, 63 - c);
}
static inline void tcg_out_sari32(TCGContext *s, TCGReg dst, TCGReg src, int c)
{
/* Limit immediate shift count lest we create an illegal insn. */
tcg_out32(s, SRAWI | RA(dst) | RS(src) | SH(c & 31));
}
static inline void tcg_out_shri32(TCGContext *s, TCGReg dst, TCGReg src, int c)
{
tcg_out_rlw(s, RLWINM, dst, src, 32 - c, c, 31);
}
static inline void tcg_out_shri64(TCGContext *s, TCGReg dst, TCGReg src, int c)
{
tcg_out_rld(s, RLDICL, dst, src, 64 - c, c);
}
static inline void tcg_out_sari64(TCGContext *s, TCGReg dst, TCGReg src, int c)
{
tcg_out32(s, SRADI | RA(dst) | RS(src) | SH(c & 0x1f) | ((c >> 4) & 2));
}
static void tcg_out_bswap16(TCGContext *s, TCGReg dst, TCGReg src, int flags)
{
TCGReg tmp = dst == src ? TCG_REG_R0 : dst;
if (have_isa_3_10) {
tcg_out32(s, BRH | RA(dst) | RS(src));
if (flags & TCG_BSWAP_OS) {
tcg_out_ext16s(s, TCG_TYPE_REG, dst, dst);
} else if ((flags & (TCG_BSWAP_IZ | TCG_BSWAP_OZ)) == TCG_BSWAP_OZ) {
tcg_out_ext16u(s, dst, dst);
}
return;
}
/*
* In the following,
* dep(a, b, m) -> (a & ~m) | (b & m)
*
* Begin with: src = xxxxabcd
*/
/* tmp = rol32(src, 24) & 0x000000ff = 0000000c */
tcg_out_rlw(s, RLWINM, tmp, src, 24, 24, 31);
/* tmp = dep(tmp, rol32(src, 8), 0x0000ff00) = 000000dc */
tcg_out_rlw(s, RLWIMI, tmp, src, 8, 16, 23);
if (flags & TCG_BSWAP_OS) {
tcg_out_ext16s(s, TCG_TYPE_REG, dst, tmp);
} else {
tcg_out_mov(s, TCG_TYPE_REG, dst, tmp);
}
}
static void tcg_out_bswap32(TCGContext *s, TCGReg dst, TCGReg src, int flags)
{
TCGReg tmp = dst == src ? TCG_REG_R0 : dst;
if (have_isa_3_10) {
tcg_out32(s, BRW | RA(dst) | RS(src));
if (flags & TCG_BSWAP_OS) {
tcg_out_ext32s(s, dst, dst);
} else if ((flags & (TCG_BSWAP_IZ | TCG_BSWAP_OZ)) == TCG_BSWAP_OZ) {
tcg_out_ext32u(s, dst, dst);
}
return;
}
/*
* Stolen from gcc's builtin_bswap32.
* In the following,
* dep(a, b, m) -> (a & ~m) | (b & m)
*
* Begin with: src = xxxxabcd
*/
/* tmp = rol32(src, 8) & 0xffffffff = 0000bcda */
tcg_out_rlw(s, RLWINM, tmp, src, 8, 0, 31);
/* tmp = dep(tmp, rol32(src, 24), 0xff000000) = 0000dcda */
tcg_out_rlw(s, RLWIMI, tmp, src, 24, 0, 7);
/* tmp = dep(tmp, rol32(src, 24), 0x0000ff00) = 0000dcba */
tcg_out_rlw(s, RLWIMI, tmp, src, 24, 16, 23);
if (flags & TCG_BSWAP_OS) {
tcg_out_ext32s(s, dst, tmp);
} else {
tcg_out_mov(s, TCG_TYPE_REG, dst, tmp);
}
}
static void tcg_out_bswap64(TCGContext *s, TCGReg dst, TCGReg src)
{
TCGReg t0 = dst == src ? TCG_REG_R0 : dst;
TCGReg t1 = dst == src ? dst : TCG_REG_R0;
if (have_isa_3_10) {
tcg_out32(s, BRD | RA(dst) | RS(src));
return;
}
/*
* In the following,
* dep(a, b, m) -> (a & ~m) | (b & m)
*
* Begin with: src = abcdefgh
*/
/* t0 = rol32(src, 8) & 0xffffffff = 0000fghe */
tcg_out_rlw(s, RLWINM, t0, src, 8, 0, 31);
/* t0 = dep(t0, rol32(src, 24), 0xff000000) = 0000hghe */
tcg_out_rlw(s, RLWIMI, t0, src, 24, 0, 7);
/* t0 = dep(t0, rol32(src, 24), 0x0000ff00) = 0000hgfe */
tcg_out_rlw(s, RLWIMI, t0, src, 24, 16, 23);
/* t0 = rol64(t0, 32) = hgfe0000 */
tcg_out_rld(s, RLDICL, t0, t0, 32, 0);
/* t1 = rol64(src, 32) = efghabcd */
tcg_out_rld(s, RLDICL, t1, src, 32, 0);
/* t0 = dep(t0, rol32(t1, 24), 0xffffffff) = hgfebcda */
tcg_out_rlw(s, RLWIMI, t0, t1, 8, 0, 31);
/* t0 = dep(t0, rol32(t1, 24), 0xff000000) = hgfedcda */
tcg_out_rlw(s, RLWIMI, t0, t1, 24, 0, 7);
/* t0 = dep(t0, rol32(t1, 24), 0x0000ff00) = hgfedcba */
tcg_out_rlw(s, RLWIMI, t0, t1, 24, 16, 23);
tcg_out_mov(s, TCG_TYPE_REG, dst, t0);
}
/* Emit a move into ret of arg, if it can be done in one insn. */
static bool tcg_out_movi_one(TCGContext *s, TCGReg ret, tcg_target_long arg)
{
if (arg == (int16_t)arg) {
tcg_out32(s, ADDI | TAI(ret, 0, arg));
return true;
}
if (arg == (int32_t)arg && (arg & 0xffff) == 0) {
tcg_out32(s, ADDIS | TAI(ret, 0, arg >> 16));
return true;
}
return false;
}
static void tcg_out_movi_int(TCGContext *s, TCGType type, TCGReg ret,
tcg_target_long arg, bool in_prologue)
{
intptr_t tb_diff;
tcg_target_long tmp;
int shift;
tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || type == TCG_TYPE_I32);
if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I32) {
arg = (int32_t)arg;
}
/* Load 16-bit immediates with one insn. */
if (tcg_out_movi_one(s, ret, arg)) {
return;
}
/* Load addresses within the TB with one insn. */
tb_diff = tcg_tbrel_diff(s, (void *)arg);
if (!in_prologue && USE_REG_TB && tb_diff == (int16_t)tb_diff) {
tcg_out32(s, ADDI | TAI(ret, TCG_REG_TB, tb_diff));
return;
}
/* Load 32-bit immediates with two insns. Note that we've already
eliminated bare ADDIS, so we know both insns are required. */
if (TCG_TARGET_REG_BITS == 32 || arg == (int32_t)arg) {
tcg_out32(s, ADDIS | TAI(ret, 0, arg >> 16));
tcg_out32(s, ORI | SAI(ret, ret, arg));
return;
}
if (arg == (uint32_t)arg && !(arg & 0x8000)) {
tcg_out32(s, ADDI | TAI(ret, 0, arg));
tcg_out32(s, ORIS | SAI(ret, ret, arg >> 16));
return;
}
/* Load masked 16-bit value. */
if (arg > 0 && (arg & 0x8000)) {
tmp = arg | 0x7fff;
if ((tmp & (tmp + 1)) == 0) {
int mb = clz64(tmp + 1) + 1;
tcg_out32(s, ADDI | TAI(ret, 0, arg));
tcg_out_rld(s, RLDICL, ret, ret, 0, mb);
return;
}
}
/* Load common masks with 2 insns. */
shift = ctz64(arg);
tmp = arg >> shift;
if (tmp == (int16_t)tmp) {
tcg_out32(s, ADDI | TAI(ret, 0, tmp));
tcg_out_shli64(s, ret, ret, shift);
return;
}
shift = clz64(arg);
if (tcg_out_movi_one(s, ret, arg << shift)) {
tcg_out_shri64(s, ret, ret, shift);
return;
}
/* Load addresses within 2GB of TB with 2 (or rarely 3) insns. */
if (!in_prologue && USE_REG_TB && tb_diff == (int32_t)tb_diff) {
tcg_out_mem_long(s, ADDI, ADD, ret, TCG_REG_TB, tb_diff);
return;
}
/* Use the constant pool, if possible. */
if (!in_prologue && USE_REG_TB) {
new_pool_label(s, arg, R_PPC_ADDR16, s->code_ptr,
tcg_tbrel_diff(s, NULL));
tcg_out32(s, LD | TAI(ret, TCG_REG_TB, 0));
return;
}
tmp = arg >> 31 >> 1;
tcg_out_movi(s, TCG_TYPE_I32, ret, tmp);
if (tmp) {
tcg_out_shli64(s, ret, ret, 32);
}
if (arg & 0xffff0000) {
tcg_out32(s, ORIS | SAI(ret, ret, arg >> 16));
}
if (arg & 0xffff) {
tcg_out32(s, ORI | SAI(ret, ret, arg));
}
}
static void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece,
TCGReg ret, int64_t val)
{
uint32_t load_insn;
int rel, low;
intptr_t add;
switch (vece) {
case MO_8:
low = (int8_t)val;
if (low >= -16 && low < 16) {
tcg_out32(s, VSPLTISB | VRT(ret) | ((val & 31) << 16));
return;
}
if (have_isa_3_00) {
tcg_out32(s, XXSPLTIB | VRT(ret) | ((val & 0xff) << 11));
return;
}
break;
case MO_16:
low = (int16_t)val;
if (low >= -16 && low < 16) {
tcg_out32(s, VSPLTISH | VRT(ret) | ((val & 31) << 16));
return;
}
break;
case MO_32:
low = (int32_t)val;
if (low >= -16 && low < 16) {
tcg_out32(s, VSPLTISW | VRT(ret) | ((val & 31) << 16));
return;
}
break;
}
/*
* Otherwise we must load the value from the constant pool.
*/
if (USE_REG_TB) {
rel = R_PPC_ADDR16;
add = tcg_tbrel_diff(s, NULL);
} else {
rel = R_PPC_ADDR32;
add = 0;
}
if (have_vsx) {
load_insn = type == TCG_TYPE_V64 ? LXSDX : LXVDSX;
load_insn |= VRT(ret) | RB(TCG_REG_TMP1);
if (TCG_TARGET_REG_BITS == 64) {
new_pool_label(s, val, rel, s->code_ptr, add);
} else {
new_pool_l2(s, rel, s->code_ptr, add, val >> 32, val);
}
} else {
load_insn = LVX | VRT(ret) | RB(TCG_REG_TMP1);
if (TCG_TARGET_REG_BITS == 64) {
new_pool_l2(s, rel, s->code_ptr, add, val, val);
} else {
new_pool_l4(s, rel, s->code_ptr, add,
val >> 32, val, val >> 32, val);
}
}
if (USE_REG_TB) {
tcg_out32(s, ADDI | TAI(TCG_REG_TMP1, 0, 0));
load_insn |= RA(TCG_REG_TB);
} else {
tcg_out32(s, ADDIS | TAI(TCG_REG_TMP1, 0, 0));
tcg_out32(s, ADDI | TAI(TCG_REG_TMP1, TCG_REG_TMP1, 0));
}
tcg_out32(s, load_insn);
}
static void tcg_out_movi(TCGContext *s, TCGType type, TCGReg ret,
tcg_target_long arg)
{
switch (type) {
case TCG_TYPE_I32:
case TCG_TYPE_I64:
tcg_debug_assert(ret < TCG_REG_V0);
tcg_out_movi_int(s, type, ret, arg, false);
break;
default:
g_assert_not_reached();
}
}
static bool tcg_out_xchg(TCGContext *s, TCGType type, TCGReg r1, TCGReg r2)
{
return false;
}
static void tcg_out_addi_ptr(TCGContext *s, TCGReg rd, TCGReg rs,
tcg_target_long imm)
{
/* This function is only used for passing structs by reference. */
g_assert_not_reached();
}
static bool mask_operand(uint32_t c, int *mb, int *me)
{
uint32_t lsb, test;
/* Accept a bit pattern like:
0....01....1
1....10....0
0..01..10..0
Keep track of the transitions. */
if (c == 0 || c == -1) {
return false;
}
test = c;
lsb = test & -test;
test += lsb;
if (test & (test - 1)) {
return false;
}
*me = clz32(lsb);
*mb = test ? clz32(test & -test) + 1 : 0;
return true;
}
static bool mask64_operand(uint64_t c, int *mb, int *me)
{
uint64_t lsb;
if (c == 0) {
return false;
}
lsb = c & -c;
/* Accept 1..10..0. */
if (c == -lsb) {
*mb = 0;
*me = clz64(lsb);
return true;
}
/* Accept 0..01..1. */
if (lsb == 1 && (c & (c + 1)) == 0) {
*mb = clz64(c + 1) + 1;
*me = 63;
return true;
}
return false;
}
static void tcg_out_andi32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c)
{
int mb, me;
if (mask_operand(c, &mb, &me)) {
tcg_out_rlw(s, RLWINM, dst, src, 0, mb, me);
} else if ((c & 0xffff) == c) {
tcg_out32(s, ANDI | SAI(src, dst, c));
return;
} else if ((c & 0xffff0000) == c) {
tcg_out32(s, ANDIS | SAI(src, dst, c >> 16));
return;
} else {
tcg_out_movi(s, TCG_TYPE_I32, TCG_REG_R0, c);
tcg_out32(s, AND | SAB(src, dst, TCG_REG_R0));
}
}
static void tcg_out_andi64(TCGContext *s, TCGReg dst, TCGReg src, uint64_t c)
{
int mb, me;
tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
if (mask64_operand(c, &mb, &me)) {
if (mb == 0) {
tcg_out_rld(s, RLDICR, dst, src, 0, me);
} else {
tcg_out_rld(s, RLDICL, dst, src, 0, mb);
}
} else if ((c & 0xffff) == c) {
tcg_out32(s, ANDI | SAI(src, dst, c));
return;
} else if ((c & 0xffff0000) == c) {
tcg_out32(s, ANDIS | SAI(src, dst, c >> 16));
return;
} else {
tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_R0, c);
tcg_out32(s, AND | SAB(src, dst, TCG_REG_R0));
}
}
static void tcg_out_zori32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c,
int op_lo, int op_hi)
{
if (c >> 16) {
tcg_out32(s, op_hi | SAI(src, dst, c >> 16));
src = dst;
}
if (c & 0xffff) {
tcg_out32(s, op_lo | SAI(src, dst, c));
src = dst;
}
}
static void tcg_out_ori32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c)
{
tcg_out_zori32(s, dst, src, c, ORI, ORIS);
}
static void tcg_out_xori32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c)
{
tcg_out_zori32(s, dst, src, c, XORI, XORIS);
}
static void tcg_out_b(TCGContext *s, int mask, const tcg_insn_unit *target)
{
ptrdiff_t disp = tcg_pcrel_diff(s, target);
if (in_range_b(disp)) {
tcg_out32(s, B | (disp & 0x3fffffc) | mask);
} else {
tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R0, (uintptr_t)target);
tcg_out32(s, MTSPR | RS(TCG_REG_R0) | CTR);
tcg_out32(s, BCCTR | BO_ALWAYS | mask);
}
}
static void tcg_out_mem_long(TCGContext *s, int opi, int opx, TCGReg rt,
TCGReg base, tcg_target_long offset)
{
tcg_target_long orig = offset, l0, l1, extra = 0, align = 0;
bool is_int_store = false;
TCGReg rs = TCG_REG_TMP1;
switch (opi) {
case LD: case LWA:
align = 3;
/* FALLTHRU */
default:
if (rt > TCG_REG_R0 && rt < TCG_REG_V0) {
rs = rt;
break;
}
break;
case LXSD:
case STXSD:
align = 3;
break;
case LXV:
case STXV:
align = 15;
break;
case STD:
align = 3;
/* FALLTHRU */
case STB: case STH: case STW:
is_int_store = true;
break;
}
/* For unaligned, or very large offsets, use the indexed form. */
if (offset & align || offset != (int32_t)offset || opi == 0) {
if (rs == base) {
rs = TCG_REG_R0;
}
tcg_debug_assert(!is_int_store || rs != rt);
tcg_out_movi(s, TCG_TYPE_PTR, rs, orig);
tcg_out32(s, opx | TAB(rt & 31, base, rs));
return;
}
l0 = (int16_t)offset;
offset = (offset - l0) >> 16;
l1 = (int16_t)offset;
if (l1 < 0 && orig >= 0) {
extra = 0x4000;
l1 = (int16_t)(offset - 0x4000);
}
if (l1) {
tcg_out32(s, ADDIS | TAI(rs, base, l1));
base = rs;
}
if (extra) {
tcg_out32(s, ADDIS | TAI(rs, base, extra));
base = rs;
}
if (opi != ADDI || base != rt || l0 != 0) {
tcg_out32(s, opi | TAI(rt & 31, base, l0));
}
}
static void tcg_out_vsldoi(TCGContext *s, TCGReg ret,
TCGReg va, TCGReg vb, int shb)
{
tcg_out32(s, VSLDOI | VRT(ret) | VRA(va) | VRB(vb) | (shb << 6));
}
static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret,
TCGReg base, intptr_t offset)
{
int shift;
switch (type) {
case TCG_TYPE_I32:
if (ret < TCG_REG_V0) {
tcg_out_mem_long(s, LWZ, LWZX, ret, base, offset);
break;
}
if (have_isa_2_07 && have_vsx) {
tcg_out_mem_long(s, 0, LXSIWZX, ret, base, offset);
break;
}
tcg_debug_assert((offset & 3) == 0);
tcg_out_mem_long(s, 0, LVEWX, ret, base, offset);
shift = (offset - 4) & 0xc;
if (shift) {
tcg_out_vsldoi(s, ret, ret, ret, shift);
}
break;
case TCG_TYPE_I64:
if (ret < TCG_REG_V0) {
tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
tcg_out_mem_long(s, LD, LDX, ret, base, offset);
break;
}
/* fallthru */
case TCG_TYPE_V64:
tcg_debug_assert(ret >= TCG_REG_V0);
if (have_vsx) {
tcg_out_mem_long(s, have_isa_3_00 ? LXSD : 0, LXSDX,
ret, base, offset);
break;
}
tcg_debug_assert((offset & 7) == 0);
tcg_out_mem_long(s, 0, LVX, ret, base, offset & -16);
if (offset & 8) {
tcg_out_vsldoi(s, ret, ret, ret, 8);
}
break;
case TCG_TYPE_V128:
tcg_debug_assert(ret >= TCG_REG_V0);
tcg_debug_assert((offset & 15) == 0);
tcg_out_mem_long(s, have_isa_3_00 ? LXV : 0,
LVX, ret, base, offset);
break;
default:
g_assert_not_reached();
}
}
static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg,
TCGReg base, intptr_t offset)
{
int shift;
switch (type) {
case TCG_TYPE_I32:
if (arg < TCG_REG_V0) {
tcg_out_mem_long(s, STW, STWX, arg, base, offset);
break;
}
if (have_isa_2_07 && have_vsx) {
tcg_out_mem_long(s, 0, STXSIWX, arg, base, offset);
break;
}
assert((offset & 3) == 0);
tcg_debug_assert((offset & 3) == 0);
shift = (offset - 4) & 0xc;
if (shift) {
tcg_out_vsldoi(s, TCG_VEC_TMP1, arg, arg, shift);
arg = TCG_VEC_TMP1;
}
tcg_out_mem_long(s, 0, STVEWX, arg, base, offset);
break;
case TCG_TYPE_I64:
if (arg < TCG_REG_V0) {
tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
tcg_out_mem_long(s, STD, STDX, arg, base, offset);
break;
}
/* fallthru */
case TCG_TYPE_V64:
tcg_debug_assert(arg >= TCG_REG_V0);
if (have_vsx) {
tcg_out_mem_long(s, have_isa_3_00 ? STXSD : 0,
STXSDX, arg, base, offset);
break;
}
tcg_debug_assert((offset & 7) == 0);
if (offset & 8) {
tcg_out_vsldoi(s, TCG_VEC_TMP1, arg, arg, 8);
arg = TCG_VEC_TMP1;
}
tcg_out_mem_long(s, 0, STVEWX, arg, base, offset);
tcg_out_mem_long(s, 0, STVEWX, arg, base, offset + 4);
break;
case TCG_TYPE_V128:
tcg_debug_assert(arg >= TCG_REG_V0);
tcg_out_mem_long(s, have_isa_3_00 ? STXV : 0,
STVX, arg, base, offset);
break;
default:
g_assert_not_reached();
}
}
static inline bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
TCGReg base, intptr_t ofs)
{
return false;
}
static void tcg_out_cmp(TCGContext *s, int cond, TCGArg arg1, TCGArg arg2,
int const_arg2, int cr, TCGType type)
{
int imm;
uint32_t op;
tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || type == TCG_TYPE_I32);
/* Simplify the comparisons below wrt CMPI. */
if (type == TCG_TYPE_I32) {
arg2 = (int32_t)arg2;
}
switch (cond) {
case TCG_COND_EQ:
case TCG_COND_NE:
if (const_arg2) {
if ((int16_t) arg2 == arg2) {
op = CMPI;
imm = 1;
break;
} else if ((uint16_t) arg2 == arg2) {
op = CMPLI;
imm = 1;
break;
}
}
op = CMPL;
imm = 0;
break;
case TCG_COND_LT:
case TCG_COND_GE:
case TCG_COND_LE:
case TCG_COND_GT:
if (const_arg2) {
if ((int16_t) arg2 == arg2) {
op = CMPI;
imm = 1;
break;
}
}
op = CMP;
imm = 0;
break;
case TCG_COND_LTU:
case TCG_COND_GEU:
case TCG_COND_LEU:
case TCG_COND_GTU:
if (const_arg2) {
if ((uint16_t) arg2 == arg2) {
op = CMPLI;
imm = 1;
break;
}
}
op = CMPL;
imm = 0;
break;
default:
g_assert_not_reached();
}
op |= BF(cr) | ((type == TCG_TYPE_I64) << 21);
if (imm) {
tcg_out32(s, op | RA(arg1) | (arg2 & 0xffff));
} else {
if (const_arg2) {
tcg_out_movi(s, type, TCG_REG_R0, arg2);
arg2 = TCG_REG_R0;
}
tcg_out32(s, op | RA(arg1) | RB(arg2));
}
}
static void tcg_out_setcond_eq0(TCGContext *s, TCGType type,
TCGReg dst, TCGReg src)
{
if (type == TCG_TYPE_I32) {
tcg_out32(s, CNTLZW | RS(src) | RA(dst));
tcg_out_shri32(s, dst, dst, 5);
} else {
tcg_out32(s, CNTLZD | RS(src) | RA(dst));
tcg_out_shri64(s, dst, dst, 6);
}
}
static void tcg_out_setcond_ne0(TCGContext *s, TCGReg dst, TCGReg src)
{
/* X != 0 implies X + -1 generates a carry. Extra addition
trickery means: R = X-1 + ~X + C = X-1 + (-X+1) + C = C. */
if (dst != src) {
tcg_out32(s, ADDIC | TAI(dst, src, -1));
tcg_out32(s, SUBFE | TAB(dst, dst, src));
} else {
tcg_out32(s, ADDIC | TAI(TCG_REG_R0, src, -1));
tcg_out32(s, SUBFE | TAB(dst, TCG_REG_R0, src));
}
}
static TCGReg tcg_gen_setcond_xor(TCGContext *s, TCGReg arg1, TCGArg arg2,
bool const_arg2)
{
if (const_arg2) {
if ((uint32_t)arg2 == arg2) {
tcg_out_xori32(s, TCG_REG_R0, arg1, arg2);
} else {
tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_R0, arg2);
tcg_out32(s, XOR | SAB(arg1, TCG_REG_R0, TCG_REG_R0));
}
} else {
tcg_out32(s, XOR | SAB(arg1, TCG_REG_R0, arg2));
}
return TCG_REG_R0;
}
static void tcg_out_setcond(TCGContext *s, TCGType type, TCGCond cond,
TCGArg arg0, TCGArg arg1, TCGArg arg2,
int const_arg2)
{
int crop, sh;
tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || type == TCG_TYPE_I32);
/* Ignore high bits of a potential constant arg2. */
if (type == TCG_TYPE_I32) {
arg2 = (uint32_t)arg2;
}
/* Handle common and trivial cases before handling anything else. */
if (arg2 == 0) {
switch (cond) {
case TCG_COND_EQ:
tcg_out_setcond_eq0(s, type, arg0, arg1);
return;
case TCG_COND_NE:
if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I32) {
tcg_out_ext32u(s, TCG_REG_R0, arg1);
arg1 = TCG_REG_R0;
}
tcg_out_setcond_ne0(s, arg0, arg1);
return;
case TCG_COND_GE:
tcg_out32(s, NOR | SAB(arg1, arg0, arg1));
arg1 = arg0;
/* FALLTHRU */
case TCG_COND_LT:
/* Extract the sign bit. */
if (type == TCG_TYPE_I32) {
tcg_out_shri32(s, arg0, arg1, 31);
} else {
tcg_out_shri64(s, arg0, arg1, 63);
}
return;
default:
break;
}
}
/* If we have ISEL, we can implement everything with 3 or 4 insns.
All other cases below are also at least 3 insns, so speed up the
code generator by not considering them and always using ISEL. */
if (have_isel) {
int isel, tab;
tcg_out_cmp(s, cond, arg1, arg2, const_arg2, 7, type);
isel = tcg_to_isel[cond];
tcg_out_movi(s, type, arg0, 1);
if (isel & 1) {
/* arg0 = (bc ? 0 : 1) */
tab = TAB(arg0, 0, arg0);
isel &= ~1;
} else {
/* arg0 = (bc ? 1 : 0) */
tcg_out_movi(s, type, TCG_REG_R0, 0);
tab = TAB(arg0, arg0, TCG_REG_R0);
}
tcg_out32(s, isel | tab);
return;
}
switch (cond) {
case TCG_COND_EQ:
arg1 = tcg_gen_setcond_xor(s, arg1, arg2, const_arg2);
tcg_out_setcond_eq0(s, type, arg0, arg1);
return;
case TCG_COND_NE:
arg1 = tcg_gen_setcond_xor(s, arg1, arg2, const_arg2);
/* Discard the high bits only once, rather than both inputs. */
if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I32) {
tcg_out_ext32u(s, TCG_REG_R0, arg1);
arg1 = TCG_REG_R0;
}
tcg_out_setcond_ne0(s, arg0, arg1);
return;
case TCG_COND_GT:
case TCG_COND_GTU:
sh = 30;
crop = 0;
goto crtest;
case TCG_COND_LT:
case TCG_COND_LTU:
sh = 29;
crop = 0;
goto crtest;
case TCG_COND_GE:
case TCG_COND_GEU:
sh = 31;
crop = CRNOR | BT(7, CR_EQ) | BA(7, CR_LT) | BB(7, CR_LT);
goto crtest;
case TCG_COND_LE:
case TCG_COND_LEU:
sh = 31;
crop = CRNOR | BT(7, CR_EQ) | BA(7, CR_GT) | BB(7, CR_GT);
crtest:
tcg_out_cmp(s, cond, arg1, arg2, const_arg2, 7, type);
if (crop) {
tcg_out32(s, crop);
}
tcg_out32(s, MFOCRF | RT(TCG_REG_R0) | FXM(7));
tcg_out_rlw(s, RLWINM, arg0, TCG_REG_R0, sh, 31, 31);
break;
default:
g_assert_not_reached();
}
}
static void tcg_out_bc(TCGContext *s, int bc, TCGLabel *l)
{
if (l->has_value) {
bc |= reloc_pc14_val(tcg_splitwx_to_rx(s->code_ptr), l->u.value_ptr);
} else {
tcg_out_reloc(s, s->code_ptr, R_PPC_REL14, l, 0);
}
tcg_out32(s, bc);
}
static void tcg_out_brcond(TCGContext *s, TCGCond cond,
TCGArg arg1, TCGArg arg2, int const_arg2,
TCGLabel *l, TCGType type)
{
tcg_out_cmp(s, cond, arg1, arg2, const_arg2, 7, type);
tcg_out_bc(s, tcg_to_bc[cond], l);
}
static void tcg_out_movcond(TCGContext *s, TCGType type, TCGCond cond,
TCGArg dest, TCGArg c1, TCGArg c2, TCGArg v1,
TCGArg v2, bool const_c2)
{
/* If for some reason both inputs are zero, don't produce bad code. */
if (v1 == 0 && v2 == 0) {
tcg_out_movi(s, type, dest, 0);
return;
}
tcg_out_cmp(s, cond, c1, c2, const_c2, 7, type);
if (have_isel) {
int isel = tcg_to_isel[cond];
/* Swap the V operands if the operation indicates inversion. */
if (isel & 1) {
int t = v1;
v1 = v2;
v2 = t;
isel &= ~1;
}
/* V1 == 0 is handled by isel; V2 == 0 must be handled by hand. */
if (v2 == 0) {
tcg_out_movi(s, type, TCG_REG_R0, 0);
}
tcg_out32(s, isel | TAB(dest, v1, v2));
} else {
if (dest == v2) {
cond = tcg_invert_cond(cond);
v2 = v1;
} else if (dest != v1) {
if (v1 == 0) {
tcg_out_movi(s, type, dest, 0);
} else {
tcg_out_mov(s, type, dest, v1);
}
}
/* Branch forward over one insn */
tcg_out32(s, tcg_to_bc[cond] | 8);
if (v2 == 0) {
tcg_out_movi(s, type, dest, 0);
} else {
tcg_out_mov(s, type, dest, v2);
}
}
}
static void tcg_out_cntxz(TCGContext *s, TCGType type, uint32_t opc,
TCGArg a0, TCGArg a1, TCGArg a2, bool const_a2)
{
if (const_a2 && a2 == (type == TCG_TYPE_I32 ? 32 : 64)) {
tcg_out32(s, opc | RA(a0) | RS(a1));
} else {
tcg_out_cmp(s, TCG_COND_EQ, a1, 0, 1, 7, type);
/* Note that the only other valid constant for a2 is 0. */
if (have_isel) {
tcg_out32(s, opc | RA(TCG_REG_R0) | RS(a1));
tcg_out32(s, tcg_to_isel[TCG_COND_EQ] | TAB(a0, a2, TCG_REG_R0));
} else if (!const_a2 && a0 == a2) {
tcg_out32(s, tcg_to_bc[TCG_COND_EQ] | 8);
tcg_out32(s, opc | RA(a0) | RS(a1));
} else {
tcg_out32(s, opc | RA(a0) | RS(a1));
tcg_out32(s, tcg_to_bc[TCG_COND_NE] | 8);
if (const_a2) {
tcg_out_movi(s, type, a0, 0);
} else {
tcg_out_mov(s, type, a0, a2);
}
}
}
}
static void tcg_out_cmp2(TCGContext *s, const TCGArg *args,
const int *const_args)
{
static const struct { uint8_t bit1, bit2; } bits[] = {
[TCG_COND_LT ] = { CR_LT, CR_LT },
[TCG_COND_LE ] = { CR_LT, CR_GT },
[TCG_COND_GT ] = { CR_GT, CR_GT },
[TCG_COND_GE ] = { CR_GT, CR_LT },
[TCG_COND_LTU] = { CR_LT, CR_LT },
[TCG_COND_LEU] = { CR_LT, CR_GT },
[TCG_COND_GTU] = { CR_GT, CR_GT },
[TCG_COND_GEU] = { CR_GT, CR_LT },
};
TCGCond cond = args[4], cond2;
TCGArg al, ah, bl, bh;
int blconst, bhconst;
int op, bit1, bit2;
al = args[0];
ah = args[1];
bl = args[2];
bh = args[3];
blconst = const_args[2];
bhconst = const_args[3];
switch (cond) {
case TCG_COND_EQ:
op = CRAND;
goto do_equality;
case TCG_COND_NE:
op = CRNAND;
do_equality:
tcg_out_cmp(s, cond, al, bl, blconst, 6, TCG_TYPE_I32);
tcg_out_cmp(s, cond, ah, bh, bhconst, 7, TCG_TYPE_I32);
tcg_out32(s, op | BT(7, CR_EQ) | BA(6, CR_EQ) | BB(7, CR_EQ));
break;
case TCG_COND_LT:
case TCG_COND_LE:
case TCG_COND_GT:
case TCG_COND_GE:
case TCG_COND_LTU:
case TCG_COND_LEU:
case TCG_COND_GTU:
case TCG_COND_GEU:
bit1 = bits[cond].bit1;
bit2 = bits[cond].bit2;
op = (bit1 != bit2 ? CRANDC : CRAND);
cond2 = tcg_unsigned_cond(cond);
tcg_out_cmp(s, cond, ah, bh, bhconst, 6, TCG_TYPE_I32);
tcg_out_cmp(s, cond2, al, bl, blconst, 7, TCG_TYPE_I32);
tcg_out32(s, op | BT(7, CR_EQ) | BA(6, CR_EQ) | BB(7, bit2));
tcg_out32(s, CROR | BT(7, CR_EQ) | BA(6, bit1) | BB(7, CR_EQ));
break;
default:
g_assert_not_reached();
}
}
static void tcg_out_setcond2(TCGContext *s, const TCGArg *args,
const int *const_args)
{
tcg_out_cmp2(s, args + 1, const_args + 1);
tcg_out32(s, MFOCRF | RT(TCG_REG_R0) | FXM(7));
tcg_out_rlw(s, RLWINM, args[0], TCG_REG_R0, 31, 31, 31);
}
static void tcg_out_brcond2 (TCGContext *s, const TCGArg *args,
const int *const_args)
{
tcg_out_cmp2(s, args, const_args);
tcg_out_bc(s, BC | BI(7, CR_EQ) | BO_COND_TRUE, arg_label(args[5]));
}
static void tcg_out_mb(TCGContext *s, TCGArg a0)
{
uint32_t insn;
if (a0 & TCG_MO_ST_LD) {
insn = HWSYNC;
} else {
insn = LWSYNC;
}
tcg_out32(s, insn);
}
static void tcg_out_call_int(TCGContext *s, int lk,
const tcg_insn_unit *target)
{
#ifdef _CALL_AIX
/* Look through the descriptor. If the branch is in range, and we
don't have to spend too much effort on building the toc. */
const void *tgt = ((const void * const *)target)[0];
uintptr_t toc = ((const uintptr_t *)target)[1];
intptr_t diff = tcg_pcrel_diff(s, tgt);
if (in_range_b(diff) && toc == (uint32_t)toc) {
tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_TMP1, toc);
tcg_out_b(s, lk, tgt);
} else {
/* Fold the low bits of the constant into the addresses below. */
intptr_t arg = (intptr_t)target;
int ofs = (int16_t)arg;
if (ofs + 8 < 0x8000) {
arg -= ofs;
} else {
ofs = 0;
}
tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_TMP1, arg);
tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R0, TCG_REG_TMP1, ofs);
tcg_out32(s, MTSPR | RA(TCG_REG_R0) | CTR);
tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R2, TCG_REG_TMP1, ofs + SZP);
tcg_out32(s, BCCTR | BO_ALWAYS | lk);
}
#elif defined(_CALL_ELF) && _CALL_ELF == 2
intptr_t diff;
/* In the ELFv2 ABI, we have to set up r12 to contain the destination
address, which the callee uses to compute its TOC address. */
/* FIXME: when the branch is in range, we could avoid r12 load if we
knew that the destination uses the same TOC, and what its local
entry point offset is. */
tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R12, (intptr_t)target);
diff = tcg_pcrel_diff(s, target);
if (in_range_b(diff)) {
tcg_out_b(s, lk, target);
} else {
tcg_out32(s, MTSPR | RS(TCG_REG_R12) | CTR);
tcg_out32(s, BCCTR | BO_ALWAYS | lk);
}
#else
tcg_out_b(s, lk, target);
#endif
}
static void tcg_out_call(TCGContext *s, const tcg_insn_unit *target,
const TCGHelperInfo *info)
{
tcg_out_call_int(s, LK, target);
}
static const uint32_t qemu_ldx_opc[(MO_SSIZE + MO_BSWAP) + 1] = {
[MO_UB] = LBZX,
[MO_UW] = LHZX,
[MO_UL] = LWZX,
[MO_UQ] = LDX,
[MO_SW] = LHAX,
[MO_SL] = LWAX,
[MO_BSWAP | MO_UB] = LBZX,
[MO_BSWAP | MO_UW] = LHBRX,
[MO_BSWAP | MO_UL] = LWBRX,
[MO_BSWAP | MO_UQ] = LDBRX,
};
static const uint32_t qemu_stx_opc[(MO_SIZE + MO_BSWAP) + 1] = {
[MO_UB] = STBX,
[MO_UW] = STHX,
[MO_UL] = STWX,
[MO_UQ] = STDX,
[MO_BSWAP | MO_UB] = STBX,
[MO_BSWAP | MO_UW] = STHBRX,
[MO_BSWAP | MO_UL] = STWBRX,
[MO_BSWAP | MO_UQ] = STDBRX,
};
static TCGReg ldst_ra_gen(TCGContext *s, const TCGLabelQemuLdst *l, int arg)
{
if (arg < 0) {
arg = TCG_REG_TMP1;
}
tcg_out32(s, MFSPR | RT(arg) | LR);
return arg;
}
/*
* For the purposes of ppc32 sorting 4 input registers into 4 argument
* registers, there is an outside chance we would require 3 temps.
*/
static const TCGLdstHelperParam ldst_helper_param = {
.ra_gen = ldst_ra_gen,
.ntmp = 3,
.tmp = { TCG_REG_TMP1, TCG_REG_TMP2, TCG_REG_R0 }
};
static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *lb)
{
MemOp opc = get_memop(lb->oi);
if (!reloc_pc14(lb->label_ptr[0], tcg_splitwx_to_rx(s->code_ptr))) {
return false;
}
tcg_out_ld_helper_args(s, lb, &ldst_helper_param);
tcg_out_call_int(s, LK, qemu_ld_helpers[opc & MO_SIZE]);
tcg_out_ld_helper_ret(s, lb, false, &ldst_helper_param);
tcg_out_b(s, 0, lb->raddr);
return true;
}
static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *lb)
{
MemOp opc = get_memop(lb->oi);
if (!reloc_pc14(lb->label_ptr[0], tcg_splitwx_to_rx(s->code_ptr))) {
return false;
}
tcg_out_st_helper_args(s, lb, &ldst_helper_param);
tcg_out_call_int(s, LK, qemu_st_helpers[opc & MO_SIZE]);
tcg_out_b(s, 0, lb->raddr);
return true;
}
typedef struct {
TCGReg base;
TCGReg index;
TCGAtomAlign aa;
} HostAddress;
bool tcg_target_has_memory_bswap(MemOp memop)
{
TCGAtomAlign aa;
if ((memop & MO_SIZE) <= MO_64) {
return true;
}
/*
* Reject 16-byte memop with 16-byte atomicity,
* but do allow a pair of 64-bit operations.
*/
aa = atom_and_align_for_opc(tcg_ctx, memop, MO_ATOM_IFALIGN, true);
return aa.atom <= MO_64;
}
/* We expect to use a 16-bit negative offset from ENV. */
#define MIN_TLB_MASK_TABLE_OFS -32768
/*
* For softmmu, perform the TLB load and compare.
* For useronly, perform any required alignment tests.
* In both cases, return a TCGLabelQemuLdst structure if the slow path
* is required and fill in @h with the host address for the fast path.
*/
static TCGLabelQemuLdst *prepare_host_addr(TCGContext *s, HostAddress *h,
TCGReg addrlo, TCGReg addrhi,
MemOpIdx oi, bool is_ld)
{
TCGType addr_type = s->addr_type;
TCGLabelQemuLdst *ldst = NULL;
MemOp opc = get_memop(oi);
MemOp a_bits, s_bits;
/*
* Book II, Section 1.4, Single-Copy Atomicity, specifies:
*
* Before 3.0, "An access that is not atomic is performed as a set of
* smaller disjoint atomic accesses. In general, the number and alignment
* of these accesses are implementation-dependent." Thus MO_ATOM_IFALIGN.
*
* As of 3.0, "the non-atomic access is performed as described in
* the corresponding list", which matches MO_ATOM_SUBALIGN.
*/
s_bits = opc & MO_SIZE;
h->aa = atom_and_align_for_opc(s, opc,
have_isa_3_00 ? MO_ATOM_SUBALIGN
: MO_ATOM_IFALIGN,
s_bits == MO_128);
a_bits = h->aa.align;
#ifdef CONFIG_SOFTMMU
int mem_index = get_mmuidx(oi);
int cmp_off = is_ld ? offsetof(CPUTLBEntry, addr_read)
: offsetof(CPUTLBEntry, addr_write);
int fast_off = tlb_mask_table_ofs(s, mem_index);
int mask_off = fast_off + offsetof(CPUTLBDescFast, mask);
int table_off = fast_off + offsetof(CPUTLBDescFast, table);
ldst = new_ldst_label(s);
ldst->is_ld = is_ld;
ldst->oi = oi;
ldst->addrlo_reg = addrlo;
ldst->addrhi_reg = addrhi;
/* Load tlb_mask[mmu_idx] and tlb_table[mmu_idx]. */
tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_TMP1, TCG_AREG0, mask_off);
tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_TMP2, TCG_AREG0, table_off);
/* Extract the page index, shifted into place for tlb index. */
if (TCG_TARGET_REG_BITS == 32) {
tcg_out_shri32(s, TCG_REG_R0, addrlo,
s->page_bits - CPU_TLB_ENTRY_BITS);
} else {
tcg_out_shri64(s, TCG_REG_R0, addrlo,
s->page_bits - CPU_TLB_ENTRY_BITS);
}
tcg_out32(s, AND | SAB(TCG_REG_TMP1, TCG_REG_TMP1, TCG_REG_R0));
/*
* Load the (low part) TLB comparator into TMP2.
* For 64-bit host, always load the entire 64-bit slot for simplicity.
* We will ignore the high bits with tcg_out_cmp(..., addr_type).
*/
if (TCG_TARGET_REG_BITS == 64) {
if (cmp_off == 0) {
tcg_out32(s, LDUX | TAB(TCG_REG_TMP2, TCG_REG_TMP1, TCG_REG_TMP2));
} else {
tcg_out32(s, ADD | TAB(TCG_REG_TMP1, TCG_REG_TMP1, TCG_REG_TMP2));
tcg_out_ld(s, TCG_TYPE_I64, TCG_REG_TMP2, TCG_REG_TMP1, cmp_off);
}
} else if (cmp_off == 0 && !HOST_BIG_ENDIAN) {
tcg_out32(s, LWZUX | TAB(TCG_REG_TMP2, TCG_REG_TMP1, TCG_REG_TMP2));
} else {
tcg_out32(s, ADD | TAB(TCG_REG_TMP1, TCG_REG_TMP1, TCG_REG_TMP2));
tcg_out_ld(s, TCG_TYPE_I32, TCG_REG_TMP2, TCG_REG_TMP1,
cmp_off + 4 * HOST_BIG_ENDIAN);
}
/*
* Load the TLB addend for use on the fast path.
* Do this asap to minimize any load use delay.
*/
if (TCG_TARGET_REG_BITS == 64 || addr_type == TCG_TYPE_I32) {
tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_TMP1, TCG_REG_TMP1,
offsetof(CPUTLBEntry, addend));
}
/* Clear the non-page, non-alignment bits from the address in R0. */
if (TCG_TARGET_REG_BITS == 32) {
/*
* We don't support unaligned accesses on 32-bits.
* Preserve the bottom bits and thus trigger a comparison
* failure on unaligned accesses.
*/
if (a_bits < s_bits) {
a_bits = s_bits;
}
tcg_out_rlw(s, RLWINM, TCG_REG_R0, addrlo, 0,
(32 - a_bits) & 31, 31 - s->page_bits);
} else {
TCGReg t = addrlo;
/*
* If the access is unaligned, we need to make sure we fail if we
* cross a page boundary. The trick is to add the access size-1
* to the address before masking the low bits. That will make the
* address overflow to the next page if we cross a page boundary,
* which will then force a mismatch of the TLB compare.
*/
if (a_bits < s_bits) {
unsigned a_mask = (1 << a_bits) - 1;
unsigned s_mask = (1 << s_bits) - 1;
tcg_out32(s, ADDI | TAI(TCG_REG_R0, t, s_mask - a_mask));
t = TCG_REG_R0;
}
/* Mask the address for the requested alignment. */
if (addr_type == TCG_TYPE_I32) {
tcg_out_rlw(s, RLWINM, TCG_REG_R0, t, 0,
(32 - a_bits) & 31, 31 - s->page_bits);
} else if (a_bits == 0) {
tcg_out_rld(s, RLDICR, TCG_REG_R0, t, 0, 63 - s->page_bits);
} else {
tcg_out_rld(s, RLDICL, TCG_REG_R0, t,
64 - s->page_bits, s->page_bits - a_bits);
tcg_out_rld(s, RLDICL, TCG_REG_R0, TCG_REG_R0, s->page_bits, 0);
}
}
if (TCG_TARGET_REG_BITS == 32 && addr_type != TCG_TYPE_I32) {
/* Low part comparison into cr7. */
tcg_out_cmp(s, TCG_COND_EQ, TCG_REG_R0, TCG_REG_TMP2,
0, 7, TCG_TYPE_I32);
/* Load the high part TLB comparator into TMP2. */
tcg_out_ld(s, TCG_TYPE_I32, TCG_REG_TMP2, TCG_REG_TMP1,
cmp_off + 4 * !HOST_BIG_ENDIAN);
/* Load addend, deferred for this case. */
tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_TMP1, TCG_REG_TMP1,
offsetof(CPUTLBEntry, addend));
/* High part comparison into cr6. */
tcg_out_cmp(s, TCG_COND_EQ, addrhi, TCG_REG_TMP2, 0, 6, TCG_TYPE_I32);
/* Combine comparisons into cr7. */
tcg_out32(s, CRAND | BT(7, CR_EQ) | BA(6, CR_EQ) | BB(7, CR_EQ));
} else {
/* Full comparison into cr7. */
tcg_out_cmp(s, TCG_COND_EQ, TCG_REG_R0, TCG_REG_TMP2, 0, 7, addr_type);
}
/* Load a pointer into the current opcode w/conditional branch-link. */
ldst->label_ptr[0] = s->code_ptr;
tcg_out32(s, BC | BI(7, CR_EQ) | BO_COND_FALSE | LK);
h->base = TCG_REG_TMP1;
#else
if (a_bits) {
ldst = new_ldst_label(s);
ldst->is_ld = is_ld;
ldst->oi = oi;
ldst->addrlo_reg = addrlo;
ldst->addrhi_reg = addrhi;
/* We are expecting a_bits to max out at 7, much lower than ANDI. */
tcg_debug_assert(a_bits < 16);
tcg_out32(s, ANDI | SAI(addrlo, TCG_REG_R0, (1 << a_bits) - 1));
ldst->label_ptr[0] = s->code_ptr;
tcg_out32(s, BC | BI(0, CR_EQ) | BO_COND_FALSE | LK);
}
h->base = guest_base ? TCG_GUEST_BASE_REG : 0;
#endif
if (TCG_TARGET_REG_BITS == 64 && addr_type == TCG_TYPE_I32) {
/* Zero-extend the guest address for use in the host address. */
tcg_out_ext32u(s, TCG_REG_R0, addrlo);
h->index = TCG_REG_R0;
} else {
h->index = addrlo;
}
return ldst;
}
static void tcg_out_qemu_ld(TCGContext *s, TCGReg datalo, TCGReg datahi,
TCGReg addrlo, TCGReg addrhi,
MemOpIdx oi, TCGType data_type)
{
MemOp opc = get_memop(oi);
TCGLabelQemuLdst *ldst;
HostAddress h;
ldst = prepare_host_addr(s, &h, addrlo, addrhi, oi, true);
if (TCG_TARGET_REG_BITS == 32 && (opc & MO_SIZE) == MO_64) {
if (opc & MO_BSWAP) {
tcg_out32(s, ADDI | TAI(TCG_REG_R0, h.index, 4));
tcg_out32(s, LWBRX | TAB(datalo, h.base, h.index));
tcg_out32(s, LWBRX | TAB(datahi, h.base, TCG_REG_R0));
} else if (h.base != 0) {
tcg_out32(s, ADDI | TAI(TCG_REG_R0, h.index, 4));
tcg_out32(s, LWZX | TAB(datahi, h.base, h.index));
tcg_out32(s, LWZX | TAB(datalo, h.base, TCG_REG_R0));
} else if (h.index == datahi) {
tcg_out32(s, LWZ | TAI(datalo, h.index, 4));
tcg_out32(s, LWZ | TAI(datahi, h.index, 0));
} else {
tcg_out32(s, LWZ | TAI(datahi, h.index, 0));
tcg_out32(s, LWZ | TAI(datalo, h.index, 4));
}
} else {
uint32_t insn = qemu_ldx_opc[opc & (MO_BSWAP | MO_SSIZE)];
if (!have_isa_2_06 && insn == LDBRX) {
tcg_out32(s, ADDI | TAI(TCG_REG_R0, h.index, 4));
tcg_out32(s, LWBRX | TAB(datalo, h.base, h.index));
tcg_out32(s, LWBRX | TAB(TCG_REG_R0, h.base, TCG_REG_R0));
tcg_out_rld(s, RLDIMI, datalo, TCG_REG_R0, 32, 0);
} else if (insn) {
tcg_out32(s, insn | TAB(datalo, h.base, h.index));
} else {
insn = qemu_ldx_opc[opc & (MO_SIZE | MO_BSWAP)];
tcg_out32(s, insn | TAB(datalo, h.base, h.index));
tcg_out_movext(s, TCG_TYPE_REG, datalo,
TCG_TYPE_REG, opc & MO_SSIZE, datalo);
}
}
if (ldst) {
ldst->type = data_type;
ldst->datalo_reg = datalo;
ldst->datahi_reg = datahi;
ldst->raddr = tcg_splitwx_to_rx(s->code_ptr);
}
}
static void tcg_out_qemu_st(TCGContext *s, TCGReg datalo, TCGReg datahi,
TCGReg addrlo, TCGReg addrhi,
MemOpIdx oi, TCGType data_type)
{
MemOp opc = get_memop(oi);
TCGLabelQemuLdst *ldst;
HostAddress h;
ldst = prepare_host_addr(s, &h, addrlo, addrhi, oi, false);
if (TCG_TARGET_REG_BITS == 32 && (opc & MO_SIZE) == MO_64) {
if (opc & MO_BSWAP) {
tcg_out32(s, ADDI | TAI(TCG_REG_R0, h.index, 4));
tcg_out32(s, STWBRX | SAB(datalo, h.base, h.index));
tcg_out32(s, STWBRX | SAB(datahi, h.base, TCG_REG_R0));
} else if (h.base != 0) {
tcg_out32(s, ADDI | TAI(TCG_REG_R0, h.index, 4));
tcg_out32(s, STWX | SAB(datahi, h.base, h.index));
tcg_out32(s, STWX | SAB(datalo, h.base, TCG_REG_R0));
} else {
tcg_out32(s, STW | TAI(datahi, h.index, 0));
tcg_out32(s, STW | TAI(datalo, h.index, 4));
}
} else {
uint32_t insn = qemu_stx_opc[opc & (MO_BSWAP | MO_SIZE)];
if (!have_isa_2_06 && insn == STDBRX) {
tcg_out32(s, STWBRX | SAB(datalo, h.base, h.index));
tcg_out32(s, ADDI | TAI(TCG_REG_TMP1, h.index, 4));
tcg_out_shri64(s, TCG_REG_R0, datalo, 32);
tcg_out32(s, STWBRX | SAB(TCG_REG_R0, h.base, TCG_REG_TMP1));
} else {
tcg_out32(s, insn | SAB(datalo, h.base, h.index));
}
}
if (ldst) {
ldst->type = data_type;
ldst->datalo_reg = datalo;
ldst->datahi_reg = datahi;
ldst->raddr = tcg_splitwx_to_rx(s->code_ptr);
}
}
static void tcg_out_qemu_ldst_i128(TCGContext *s, TCGReg datalo, TCGReg datahi,
TCGReg addr_reg, MemOpIdx oi, bool is_ld)
{
TCGLabelQemuLdst *ldst;
HostAddress h;
bool need_bswap;
uint32_t insn;
TCGReg index;
ldst = prepare_host_addr(s, &h, addr_reg, -1, oi, is_ld);
/* Compose the final address, as LQ/STQ have no indexing. */
index = h.index;
if (h.base != 0) {
index = TCG_REG_TMP1;
tcg_out32(s, ADD | TAB(index, h.base, h.index));
}
need_bswap = get_memop(oi) & MO_BSWAP;
if (h.aa.atom == MO_128) {
tcg_debug_assert(!need_bswap);
tcg_debug_assert(datalo & 1);
tcg_debug_assert(datahi == datalo - 1);
insn = is_ld ? LQ : STQ;
tcg_out32(s, insn | TAI(datahi, index, 0));
} else {
TCGReg d1, d2;
if (HOST_BIG_ENDIAN ^ need_bswap) {
d1 = datahi, d2 = datalo;
} else {
d1 = datalo, d2 = datahi;
}
if (need_bswap) {
tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R0, 8);
insn = is_ld ? LDBRX : STDBRX;
tcg_out32(s, insn | TAB(d1, 0, index));
tcg_out32(s, insn | TAB(d2, index, TCG_REG_R0));
} else {
insn = is_ld ? LD : STD;
tcg_out32(s, insn | TAI(d1, index, 0));
tcg_out32(s, insn | TAI(d2, index, 8));
}
}
if (ldst) {
ldst->type = TCG_TYPE_I128;
ldst->datalo_reg = datalo;
ldst->datahi_reg = datahi;
ldst->raddr = tcg_splitwx_to_rx(s->code_ptr);
}
}
static void tcg_out_nop_fill(tcg_insn_unit *p, int count)
{
int i;
for (i = 0; i < count; ++i) {
p[i] = NOP;
}
}
/* Parameters for function call generation, used in tcg.c. */
#define TCG_TARGET_STACK_ALIGN 16
#ifdef _CALL_AIX
# define LINK_AREA_SIZE (6 * SZR)
# define LR_OFFSET (1 * SZR)
# define TCG_TARGET_CALL_STACK_OFFSET (LINK_AREA_SIZE + 8 * SZR)
#elif defined(_CALL_DARWIN)
# define LINK_AREA_SIZE (6 * SZR)
# define LR_OFFSET (2 * SZR)
#elif TCG_TARGET_REG_BITS == 64
# if defined(_CALL_ELF) && _CALL_ELF == 2
# define LINK_AREA_SIZE (4 * SZR)
# define LR_OFFSET (1 * SZR)
# endif
#else /* TCG_TARGET_REG_BITS == 32 */
# if defined(_CALL_SYSV)
# define LINK_AREA_SIZE (2 * SZR)
# define LR_OFFSET (1 * SZR)
# endif
#endif
#ifndef LR_OFFSET
# error "Unhandled abi"
#endif
#ifndef TCG_TARGET_CALL_STACK_OFFSET
# define TCG_TARGET_CALL_STACK_OFFSET LINK_AREA_SIZE
#endif
#define CPU_TEMP_BUF_SIZE (CPU_TEMP_BUF_NLONGS * (int)sizeof(long))
#define REG_SAVE_SIZE ((int)ARRAY_SIZE(tcg_target_callee_save_regs) * SZR)
#define FRAME_SIZE ((TCG_TARGET_CALL_STACK_OFFSET \
+ TCG_STATIC_CALL_ARGS_SIZE \
+ CPU_TEMP_BUF_SIZE \
+ REG_SAVE_SIZE \
+ TCG_TARGET_STACK_ALIGN - 1) \
& -TCG_TARGET_STACK_ALIGN)
#define REG_SAVE_BOT (FRAME_SIZE - REG_SAVE_SIZE)
static void tcg_target_qemu_prologue(TCGContext *s)
{
int i;
#ifdef _CALL_AIX
const void **desc = (const void **)s->code_ptr;
desc[0] = tcg_splitwx_to_rx(desc + 2); /* entry point */
desc[1] = 0; /* environment pointer */
s->code_ptr = (void *)(desc + 2); /* skip over descriptor */
#endif
tcg_set_frame(s, TCG_REG_CALL_STACK, REG_SAVE_BOT - CPU_TEMP_BUF_SIZE,
CPU_TEMP_BUF_SIZE);
/* Prologue */
tcg_out32(s, MFSPR | RT(TCG_REG_R0) | LR);
tcg_out32(s, (SZR == 8 ? STDU : STWU)
| SAI(TCG_REG_R1, TCG_REG_R1, -FRAME_SIZE));
for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); ++i) {
tcg_out_st(s, TCG_TYPE_REG, tcg_target_callee_save_regs[i],
TCG_REG_R1, REG_SAVE_BOT + i * SZR);
}
tcg_out_st(s, TCG_TYPE_PTR, TCG_REG_R0, TCG_REG_R1, FRAME_SIZE+LR_OFFSET);
#ifndef CONFIG_SOFTMMU
if (guest_base) {
tcg_out_movi_int(s, TCG_TYPE_PTR, TCG_GUEST_BASE_REG, guest_base, true);
tcg_regset_set_reg(s->reserved_regs, TCG_GUEST_BASE_REG);
}
#endif
tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]);
tcg_out32(s, MTSPR | RS(tcg_target_call_iarg_regs[1]) | CTR);
if (USE_REG_TB) {
tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_TB, tcg_target_call_iarg_regs[1]);
}
tcg_out32(s, BCCTR | BO_ALWAYS);
/* Epilogue */
tcg_code_gen_epilogue = tcg_splitwx_to_rx(s->code_ptr);
tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R0, TCG_REG_R1, FRAME_SIZE+LR_OFFSET);
for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); ++i) {
tcg_out_ld(s, TCG_TYPE_REG, tcg_target_callee_save_regs[i],
TCG_REG_R1, REG_SAVE_BOT + i * SZR);
}
tcg_out32(s, MTSPR | RS(TCG_REG_R0) | LR);
tcg_out32(s, ADDI | TAI(TCG_REG_R1, TCG_REG_R1, FRAME_SIZE));
tcg_out32(s, BCLR | BO_ALWAYS);
}
static void tcg_out_exit_tb(TCGContext *s, uintptr_t arg)
{
tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R3, arg);
tcg_out_b(s, 0, tcg_code_gen_epilogue);
}
static void tcg_out_goto_tb(TCGContext *s, int which)
{
uintptr_t ptr = get_jmp_target_addr(s, which);
if (USE_REG_TB) {
ptrdiff_t offset = tcg_tbrel_diff(s, (void *)ptr);
tcg_out_mem_long(s, LD, LDX, TCG_REG_TB, TCG_REG_TB, offset);
/* TODO: Use direct branches when possible. */
set_jmp_insn_offset(s, which);
tcg_out32(s, MTSPR | RS(TCG_REG_TB) | CTR);
tcg_out32(s, BCCTR | BO_ALWAYS);
/* For the unlinked case, need to reset TCG_REG_TB. */
set_jmp_reset_offset(s, which);
tcg_out_mem_long(s, ADDI, ADD, TCG_REG_TB, TCG_REG_TB,
-tcg_current_code_size(s));
} else {
/* Direct branch will be patched by tb_target_set_jmp_target. */
set_jmp_insn_offset(s, which);
tcg_out32(s, NOP);
/* When branch is out of range, fall through to indirect. */
tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_TMP1, ptr - (int16_t)ptr);
tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_TMP1, TCG_REG_TMP1, (int16_t)ptr);
tcg_out32(s, MTSPR | RS(TCG_REG_TMP1) | CTR);
tcg_out32(s, BCCTR | BO_ALWAYS);
set_jmp_reset_offset(s, which);
}
}
void tb_target_set_jmp_target(const TranslationBlock *tb, int n,
uintptr_t jmp_rx, uintptr_t jmp_rw)
{
uintptr_t addr = tb->jmp_target_addr[n];
intptr_t diff = addr - jmp_rx;
tcg_insn_unit insn;
if (USE_REG_TB) {
return;
}
if (in_range_b(diff)) {
insn = B | (diff & 0x3fffffc);
} else {
insn = NOP;
}
qatomic_set((uint32_t *)jmp_rw, insn);
flush_idcache_range(jmp_rx, jmp_rw, 4);
}
static void tcg_out_op(TCGContext *s, TCGOpcode opc,
const TCGArg args[TCG_MAX_OP_ARGS],
const int const_args[TCG_MAX_OP_ARGS])
{
TCGArg a0, a1, a2;
switch (opc) {
case INDEX_op_goto_ptr:
tcg_out32(s, MTSPR | RS(args[0]) | CTR);
if (USE_REG_TB) {
tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_TB, args[0]);
}
tcg_out32(s, ADDI | TAI(TCG_REG_R3, 0, 0));
tcg_out32(s, BCCTR | BO_ALWAYS);
break;
case INDEX_op_br:
{
TCGLabel *l = arg_label(args[0]);
uint32_t insn = B;
if (l->has_value) {
insn |= reloc_pc24_val(tcg_splitwx_to_rx(s->code_ptr),
l->u.value_ptr);
} else {
tcg_out_reloc(s, s->code_ptr, R_PPC_REL24, l, 0);
}
tcg_out32(s, insn);
}
break;
case INDEX_op_ld8u_i32:
case INDEX_op_ld8u_i64:
tcg_out_mem_long(s, LBZ, LBZX, args[0], args[1], args[2]);
break;
case INDEX_op_ld8s_i32:
case INDEX_op_ld8s_i64:
tcg_out_mem_long(s, LBZ, LBZX, args[0], args[1], args[2]);
tcg_out_ext8s(s, TCG_TYPE_REG, args[0], args[0]);
break;
case INDEX_op_ld16u_i32:
case INDEX_op_ld16u_i64:
tcg_out_mem_long(s, LHZ, LHZX, args[0], args[1], args[2]);
break;
case INDEX_op_ld16s_i32:
case INDEX_op_ld16s_i64:
tcg_out_mem_long(s, LHA, LHAX, args[0], args[1], args[2]);
break;
case INDEX_op_ld_i32:
case INDEX_op_ld32u_i64:
tcg_out_mem_long(s, LWZ, LWZX, args[0], args[1], args[2]);
break;
case INDEX_op_ld32s_i64:
tcg_out_mem_long(s, LWA, LWAX, args[0], args[1], args[2]);
break;
case INDEX_op_ld_i64:
tcg_out_mem_long(s, LD, LDX, args[0], args[1], args[2]);
break;
case INDEX_op_st8_i32:
case INDEX_op_st8_i64:
tcg_out_mem_long(s, STB, STBX, args[0], args[1], args[2]);
break;
case INDEX_op_st16_i32:
case INDEX_op_st16_i64:
tcg_out_mem_long(s, STH, STHX, args[0], args[1], args[2]);
break;
case INDEX_op_st_i32:
case INDEX_op_st32_i64:
tcg_out_mem_long(s, STW, STWX, args[0], args[1], args[2]);
break;
case INDEX_op_st_i64:
tcg_out_mem_long(s, STD, STDX, args[0], args[1], args[2]);
break;
case INDEX_op_add_i32:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[2]) {
do_addi_32:
tcg_out_mem_long(s, ADDI, ADD, a0, a1, (int32_t)a2);
} else {
tcg_out32(s, ADD | TAB(a0, a1, a2));
}
break;
case INDEX_op_sub_i32:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[1]) {
if (const_args[2]) {
tcg_out_movi(s, TCG_TYPE_I32, a0, a1 - a2);
} else {
tcg_out32(s, SUBFIC | TAI(a0, a2, a1));
}
} else if (const_args[2]) {
a2 = -a2;
goto do_addi_32;
} else {
tcg_out32(s, SUBF | TAB(a0, a2, a1));
}
break;
case INDEX_op_and_i32:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[2]) {
tcg_out_andi32(s, a0, a1, a2);
} else {
tcg_out32(s, AND | SAB(a1, a0, a2));
}
break;
case INDEX_op_and_i64:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[2]) {
tcg_out_andi64(s, a0, a1, a2);
} else {
tcg_out32(s, AND | SAB(a1, a0, a2));
}
break;
case INDEX_op_or_i64:
case INDEX_op_or_i32:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[2]) {
tcg_out_ori32(s, a0, a1, a2);
} else {
tcg_out32(s, OR | SAB(a1, a0, a2));
}
break;
case INDEX_op_xor_i64:
case INDEX_op_xor_i32:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[2]) {
tcg_out_xori32(s, a0, a1, a2);
} else {
tcg_out32(s, XOR | SAB(a1, a0, a2));
}
break;
case INDEX_op_andc_i32:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[2]) {
tcg_out_andi32(s, a0, a1, ~a2);
} else {
tcg_out32(s, ANDC | SAB(a1, a0, a2));
}
break;
case INDEX_op_andc_i64:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[2]) {
tcg_out_andi64(s, a0, a1, ~a2);
} else {
tcg_out32(s, ANDC | SAB(a1, a0, a2));
}
break;
case INDEX_op_orc_i32:
if (const_args[2]) {
tcg_out_ori32(s, args[0], args[1], ~args[2]);
break;
}
/* FALLTHRU */
case INDEX_op_orc_i64:
tcg_out32(s, ORC | SAB(args[1], args[0], args[2]));
break;
case INDEX_op_eqv_i32:
if (const_args[2]) {
tcg_out_xori32(s, args[0], args[1], ~args[2]);
break;
}
/* FALLTHRU */
case INDEX_op_eqv_i64:
tcg_out32(s, EQV | SAB(args[1], args[0], args[2]));
break;
case INDEX_op_nand_i32:
case INDEX_op_nand_i64:
tcg_out32(s, NAND | SAB(args[1], args[0], args[2]));
break;
case INDEX_op_nor_i32:
case INDEX_op_nor_i64:
tcg_out32(s, NOR | SAB(args[1], args[0], args[2]));
break;
case INDEX_op_clz_i32:
tcg_out_cntxz(s, TCG_TYPE_I32, CNTLZW, args[0], args[1],
args[2], const_args[2]);
break;
case INDEX_op_ctz_i32:
tcg_out_cntxz(s, TCG_TYPE_I32, CNTTZW, args[0], args[1],
args[2], const_args[2]);
break;
case INDEX_op_ctpop_i32:
tcg_out32(s, CNTPOPW | SAB(args[1], args[0], 0));
break;
case INDEX_op_clz_i64:
tcg_out_cntxz(s, TCG_TYPE_I64, CNTLZD, args[0], args[1],
args[2], const_args[2]);
break;
case INDEX_op_ctz_i64:
tcg_out_cntxz(s, TCG_TYPE_I64, CNTTZD, args[0], args[1],
args[2], const_args[2]);
break;
case INDEX_op_ctpop_i64:
tcg_out32(s, CNTPOPD | SAB(args[1], args[0], 0));
break;
case INDEX_op_mul_i32:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[2]) {
tcg_out32(s, MULLI | TAI(a0, a1, a2));
} else {
tcg_out32(s, MULLW | TAB(a0, a1, a2));
}
break;
case INDEX_op_div_i32:
tcg_out32(s, DIVW | TAB(args[0], args[1], args[2]));
break;
case INDEX_op_divu_i32:
tcg_out32(s, DIVWU | TAB(args[0], args[1], args[2]));
break;
case INDEX_op_rem_i32:
tcg_out32(s, MODSW | TAB(args[0], args[1], args[2]));
break;
case INDEX_op_remu_i32:
tcg_out32(s, MODUW | TAB(args[0], args[1], args[2]));
break;
case INDEX_op_shl_i32:
if (const_args[2]) {
/* Limit immediate shift count lest we create an illegal insn. */
tcg_out_shli32(s, args[0], args[1], args[2] & 31);
} else {
tcg_out32(s, SLW | SAB(args[1], args[0], args[2]));
}
break;
case INDEX_op_shr_i32:
if (const_args[2]) {
/* Limit immediate shift count lest we create an illegal insn. */
tcg_out_shri32(s, args[0], args[1], args[2] & 31);
} else {
tcg_out32(s, SRW | SAB(args[1], args[0], args[2]));
}
break;
case INDEX_op_sar_i32:
if (const_args[2]) {
tcg_out_sari32(s, args[0], args[1], args[2]);
} else {
tcg_out32(s, SRAW | SAB(args[1], args[0], args[2]));
}
break;
case INDEX_op_rotl_i32:
if (const_args[2]) {
tcg_out_rlw(s, RLWINM, args[0], args[1], args[2], 0, 31);
} else {
tcg_out32(s, RLWNM | SAB(args[1], args[0], args[2])
| MB(0) | ME(31));
}
break;
case INDEX_op_rotr_i32:
if (const_args[2]) {
tcg_out_rlw(s, RLWINM, args[0], args[1], 32 - args[2], 0, 31);
} else {
tcg_out32(s, SUBFIC | TAI(TCG_REG_R0, args[2], 32));
tcg_out32(s, RLWNM | SAB(args[1], args[0], TCG_REG_R0)
| MB(0) | ME(31));
}
break;
case INDEX_op_brcond_i32:
tcg_out_brcond(s, args[2], args[0], args[1], const_args[1],
arg_label(args[3]), TCG_TYPE_I32);
break;
case INDEX_op_brcond_i64:
tcg_out_brcond(s, args[2], args[0], args[1], const_args[1],
arg_label(args[3]), TCG_TYPE_I64);
break;
case INDEX_op_brcond2_i32:
tcg_out_brcond2(s, args, const_args);
break;
case INDEX_op_neg_i32:
case INDEX_op_neg_i64:
tcg_out32(s, NEG | RT(args[0]) | RA(args[1]));
break;
case INDEX_op_not_i32:
case INDEX_op_not_i64:
tcg_out32(s, NOR | SAB(args[1], args[0], args[1]));
break;
case INDEX_op_add_i64:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[2]) {
do_addi_64:
tcg_out_mem_long(s, ADDI, ADD, a0, a1, a2);
} else {
tcg_out32(s, ADD | TAB(a0, a1, a2));
}
break;
case INDEX_op_sub_i64:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[1]) {
if (const_args[2]) {
tcg_out_movi(s, TCG_TYPE_I64, a0, a1 - a2);
} else {
tcg_out32(s, SUBFIC | TAI(a0, a2, a1));
}
} else if (const_args[2]) {
a2 = -a2;
goto do_addi_64;
} else {
tcg_out32(s, SUBF | TAB(a0, a2, a1));
}
break;
case INDEX_op_shl_i64:
if (const_args[2]) {
/* Limit immediate shift count lest we create an illegal insn. */
tcg_out_shli64(s, args[0], args[1], args[2] & 63);
} else {
tcg_out32(s, SLD | SAB(args[1], args[0], args[2]));
}
break;
case INDEX_op_shr_i64:
if (const_args[2]) {
/* Limit immediate shift count lest we create an illegal insn. */
tcg_out_shri64(s, args[0], args[1], args[2] & 63);
} else {
tcg_out32(s, SRD | SAB(args[1], args[0], args[2]));
}
break;
case INDEX_op_sar_i64:
if (const_args[2]) {
tcg_out_sari64(s, args[0], args[1], args[2]);
} else {
tcg_out32(s, SRAD | SAB(args[1], args[0], args[2]));
}
break;
case INDEX_op_rotl_i64:
if (const_args[2]) {
tcg_out_rld(s, RLDICL, args[0], args[1], args[2], 0);
} else {
tcg_out32(s, RLDCL | SAB(args[1], args[0], args[2]) | MB64(0));
}
break;
case INDEX_op_rotr_i64:
if (const_args[2]) {
tcg_out_rld(s, RLDICL, args[0], args[1], 64 - args[2], 0);
} else {
tcg_out32(s, SUBFIC | TAI(TCG_REG_R0, args[2], 64));
tcg_out32(s, RLDCL | SAB(args[1], args[0], TCG_REG_R0) | MB64(0));
}
break;
case INDEX_op_mul_i64:
a0 = args[0], a1 = args[1], a2 = args[2];
if (const_args[2]) {
tcg_out32(s, MULLI | TAI(a0, a1, a2));
} else {
tcg_out32(s, MULLD | TAB(a0, a1, a2));
}
break;
case INDEX_op_div_i64:
tcg_out32(s, DIVD | TAB(args[0], args[1], args[2]));
break;
case INDEX_op_divu_i64:
tcg_out32(s, DIVDU | TAB(args[0], args[1], args[2]));
break;
case INDEX_op_rem_i64:
tcg_out32(s, MODSD | TAB(args[0], args[1], args[2]));
break;
case INDEX_op_remu_i64:
tcg_out32(s, MODUD | TAB(args[0], args[1], args[2]));
break;
case INDEX_op_qemu_ld_a64_i32:
if (TCG_TARGET_REG_BITS == 32) {
tcg_out_qemu_ld(s, args[0], -1, args[1], args[2],
args[3], TCG_TYPE_I32);
break;
}
/* fall through */
case INDEX_op_qemu_ld_a32_i32:
tcg_out_qemu_ld(s, args[0], -1, args[1], -1, args[2], TCG_TYPE_I32);
break;
case INDEX_op_qemu_ld_a32_i64:
if (TCG_TARGET_REG_BITS == 64) {
tcg_out_qemu_ld(s, args[0], -1, args[1], -1,
args[2], TCG_TYPE_I64);
} else {
tcg_out_qemu_ld(s, args[0], args[1], args[2], -1,
args[3], TCG_TYPE_I64);
}
break;
case INDEX_op_qemu_ld_a64_i64:
if (TCG_TARGET_REG_BITS == 64) {
tcg_out_qemu_ld(s, args[0], -1, args[1], -1,
args[2], TCG_TYPE_I64);
} else {
tcg_out_qemu_ld(s, args[0], args[1], args[2], args[3],
args[4], TCG_TYPE_I64);
}
break;
case INDEX_op_qemu_ld_a32_i128:
case INDEX_op_qemu_ld_a64_i128:
tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
tcg_out_qemu_ldst_i128(s, args[0], args[1], args[2], args[3], true);
break;
case INDEX_op_qemu_st_a64_i32:
if (TCG_TARGET_REG_BITS == 32) {
tcg_out_qemu_st(s, args[0], -1, args[1], args[2],
args[3], TCG_TYPE_I32);
break;
}
/* fall through */
case INDEX_op_qemu_st_a32_i32:
tcg_out_qemu_st(s, args[0], -1, args[1], -1, args[2], TCG_TYPE_I32);
break;
case INDEX_op_qemu_st_a32_i64:
if (TCG_TARGET_REG_BITS == 64) {
tcg_out_qemu_st(s, args[0], -1, args[1], -1,
args[2], TCG_TYPE_I64);
} else {
tcg_out_qemu_st(s, args[0], args[1], args[2], -1,
args[3], TCG_TYPE_I64);
}
break;
case INDEX_op_qemu_st_a64_i64:
if (TCG_TARGET_REG_BITS == 64) {
tcg_out_qemu_st(s, args[0], -1, args[1], -1,
args[2], TCG_TYPE_I64);
} else {
tcg_out_qemu_st(s, args[0], args[1], args[2], args[3],
args[4], TCG_TYPE_I64);
}
break;
case INDEX_op_qemu_st_a32_i128:
case INDEX_op_qemu_st_a64_i128:
tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
tcg_out_qemu_ldst_i128(s, args[0], args[1], args[2], args[3], false);
break;
case INDEX_op_setcond_i32:
tcg_out_setcond(s, TCG_TYPE_I32, args[3], args[0], args[1], args[2],
const_args[2]);
break;
case INDEX_op_setcond_i64:
tcg_out_setcond(s, TCG_TYPE_I64, args[3], args[0], args[1], args[2],
const_args[2]);
break;
case INDEX_op_setcond2_i32:
tcg_out_setcond2(s, args, const_args);
break;
case INDEX_op_bswap16_i32:
case INDEX_op_bswap16_i64:
tcg_out_bswap16(s, args[0], args[1], args[2]);
break;
case INDEX_op_bswap32_i32:
tcg_out_bswap32(s, args[0], args[1], 0);
break;
case INDEX_op_bswap32_i64:
tcg_out_bswap32(s, args[0], args[1], args[2]);
break;
case INDEX_op_bswap64_i64:
tcg_out_bswap64(s, args[0], args[1]);
break;
case INDEX_op_deposit_i32:
if (const_args[2]) {
uint32_t mask = ((2u << (args[4] - 1)) - 1) << args[3];
tcg_out_andi32(s, args[0], args[0], ~mask);
} else {
tcg_out_rlw(s, RLWIMI, args[0], args[2], args[3],
32 - args[3] - args[4], 31 - args[3]);
}
break;
case INDEX_op_deposit_i64:
if (const_args[2]) {
uint64_t mask = ((2ull << (args[4] - 1)) - 1) << args[3];
tcg_out_andi64(s, args[0], args[0], ~mask);
} else {
tcg_out_rld(s, RLDIMI, args[0], args[2], args[3],
64 - args[3] - args[4]);
}
break;
case INDEX_op_extract_i32:
tcg_out_rlw(s, RLWINM, args[0], args[1],
32 - args[2], 32 - args[3], 31);
break;
case INDEX_op_extract_i64:
tcg_out_rld(s, RLDICL, args[0], args[1], 64 - args[2], 64 - args[3]);
break;
case INDEX_op_movcond_i32:
tcg_out_movcond(s, TCG_TYPE_I32, args[5], args[0], args[1], args[2],
args[3], args[4], const_args[2]);
break;
case INDEX_op_movcond_i64:
tcg_out_movcond(s, TCG_TYPE_I64, args[5], args[0], args[1], args[2],
args[3], args[4], const_args[2]);
break;
#if TCG_TARGET_REG_BITS == 64
case INDEX_op_add2_i64:
#else
case INDEX_op_add2_i32:
#endif
/* Note that the CA bit is defined based on the word size of the
environment. So in 64-bit mode it's always carry-out of bit 63.
The fallback code using deposit works just as well for 32-bit. */
a0 = args[0], a1 = args[1];
if (a0 == args[3] || (!const_args[5] && a0 == args[5])) {
a0 = TCG_REG_R0;
}
if (const_args[4]) {
tcg_out32(s, ADDIC | TAI(a0, args[2], args[4]));
} else {
tcg_out32(s, ADDC | TAB(a0, args[2], args[4]));
}
if (const_args[5]) {
tcg_out32(s, (args[5] ? ADDME : ADDZE) | RT(a1) | RA(args[3]));
} else {
tcg_out32(s, ADDE | TAB(a1, args[3], args[5]));
}
if (a0 != args[0]) {
tcg_out_mov(s, TCG_TYPE_REG, args[0], a0);
}
break;
#if TCG_TARGET_REG_BITS == 64
case INDEX_op_sub2_i64:
#else
case INDEX_op_sub2_i32:
#endif
a0 = args[0], a1 = args[1];
if (a0 == args[5] || (!const_args[3] && a0 == args[3])) {
a0 = TCG_REG_R0;
}
if (const_args[2]) {
tcg_out32(s, SUBFIC | TAI(a0, args[4], args[2]));
} else {
tcg_out32(s, SUBFC | TAB(a0, args[4], args[2]));
}
if (const_args[3]) {
tcg_out32(s, (args[3] ? SUBFME : SUBFZE) | RT(a1) | RA(args[5]));
} else {
tcg_out32(s, SUBFE | TAB(a1, args[5], args[3]));
}
if (a0 != args[0]) {
tcg_out_mov(s, TCG_TYPE_REG, args[0], a0);
}
break;
case INDEX_op_muluh_i32:
tcg_out32(s, MULHWU | TAB(args[0], args[1], args[2]));
break;
case INDEX_op_mulsh_i32:
tcg_out32(s, MULHW | TAB(args[0], args[1], args[2]));
break;
case INDEX_op_muluh_i64:
tcg_out32(s, MULHDU | TAB(args[0], args[1], args[2]));
break;
case INDEX_op_mulsh_i64:
tcg_out32(s, MULHD | TAB(args[0], args[1], args[2]));
break;
case INDEX_op_mb:
tcg_out_mb(s, args[0]);
break;
case INDEX_op_mov_i32: /* Always emitted via tcg_out_mov. */
case INDEX_op_mov_i64:
case INDEX_op_call: /* Always emitted via tcg_out_call. */
case INDEX_op_exit_tb: /* Always emitted via tcg_out_exit_tb. */
case INDEX_op_goto_tb: /* Always emitted via tcg_out_goto_tb. */
case INDEX_op_ext8s_i32: /* Always emitted via tcg_reg_alloc_op. */
case INDEX_op_ext8s_i64:
case INDEX_op_ext8u_i32:
case INDEX_op_ext8u_i64:
case INDEX_op_ext16s_i32:
case INDEX_op_ext16s_i64:
case INDEX_op_ext16u_i32:
case INDEX_op_ext16u_i64:
case INDEX_op_ext32s_i64:
case INDEX_op_ext32u_i64:
case INDEX_op_ext_i32_i64:
case INDEX_op_extu_i32_i64:
case INDEX_op_extrl_i64_i32:
default:
g_assert_not_reached();
}
}
int tcg_can_emit_vec_op(TCGOpcode opc, TCGType type, unsigned vece)
{
switch (opc) {
case INDEX_op_and_vec:
case INDEX_op_or_vec:
case INDEX_op_xor_vec:
case INDEX_op_andc_vec:
case INDEX_op_not_vec:
case INDEX_op_nor_vec:
case INDEX_op_eqv_vec:
case INDEX_op_nand_vec:
return 1;
case INDEX_op_orc_vec:
return have_isa_2_07;
case INDEX_op_add_vec:
case INDEX_op_sub_vec:
case INDEX_op_smax_vec:
case INDEX_op_smin_vec:
case INDEX_op_umax_vec:
case INDEX_op_umin_vec:
case INDEX_op_shlv_vec:
case INDEX_op_shrv_vec:
case INDEX_op_sarv_vec:
case INDEX_op_rotlv_vec:
return vece <= MO_32 || have_isa_2_07;
case INDEX_op_ssadd_vec:
case INDEX_op_sssub_vec:
case INDEX_op_usadd_vec:
case INDEX_op_ussub_vec:
return vece <= MO_32;
case INDEX_op_cmp_vec:
case INDEX_op_shli_vec:
case INDEX_op_shri_vec:
case INDEX_op_sari_vec:
case INDEX_op_rotli_vec:
return vece <= MO_32 || have_isa_2_07 ? -1 : 0;
case INDEX_op_neg_vec:
return vece >= MO_32 && have_isa_3_00;
case INDEX_op_mul_vec:
switch (vece) {
case MO_8:
case MO_16:
return -1;
case MO_32:
return have_isa_2_07 ? 1 : -1;
case MO_64:
return have_isa_3_10;
}
return 0;
case INDEX_op_bitsel_vec:
return have_vsx;
case INDEX_op_rotrv_vec:
return -1;
default:
return 0;
}
}
static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece,
TCGReg dst, TCGReg src)
{
tcg_debug_assert(dst >= TCG_REG_V0);
/* Splat from integer reg allowed via constraints for v3.00. */
if (src < TCG_REG_V0) {
tcg_debug_assert(have_isa_3_00);
switch (vece) {
case MO_64:
tcg_out32(s, MTVSRDD | VRT(dst) | RA(src) | RB(src));
return true;
case MO_32:
tcg_out32(s, MTVSRWS | VRT(dst) | RA(src));
return true;
default:
/* Fail, so that we fall back on either dupm or mov+dup. */
return false;
}
}
/*
* Recall we use (or emulate) VSX integer loads, so the integer is
* right justified within the left (zero-index) double-word.
*/
switch (vece) {
case MO_8:
tcg_out32(s, VSPLTB | VRT(dst) | VRB(src) | (7 << 16));
break;
case MO_16:
tcg_out32(s, VSPLTH | VRT(dst) | VRB(src) | (3 << 16));
break;
case MO_32:
tcg_out32(s, VSPLTW | VRT(dst) | VRB(src) | (1 << 16));
break;
case MO_64:
if (have_vsx) {
tcg_out32(s, XXPERMDI | VRT(dst) | VRA(src) | VRB(src));
break;
}
tcg_out_vsldoi(s, TCG_VEC_TMP1, src, src, 8);
tcg_out_vsldoi(s, dst, TCG_VEC_TMP1, src, 8);
break;
default:
g_assert_not_reached();
}
return true;
}
static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece,
TCGReg out, TCGReg base, intptr_t offset)
{
int elt;
tcg_debug_assert(out >= TCG_REG_V0);
switch (vece) {
case MO_8:
if (have_isa_3_00) {
tcg_out_mem_long(s, LXV, LVX, out, base, offset & -16);
} else {
tcg_out_mem_long(s, 0, LVEBX, out, base, offset);
}
elt = extract32(offset, 0, 4);
#if !HOST_BIG_ENDIAN
elt ^= 15;
#endif
tcg_out32(s, VSPLTB | VRT(out) | VRB(out) | (elt << 16));
break;
case MO_16:
tcg_debug_assert((offset & 1) == 0);
if (have_isa_3_00) {
tcg_out_mem_long(s, LXV | 8, LVX, out, base, offset & -16);
} else {
tcg_out_mem_long(s, 0, LVEHX, out, base, offset);
}
elt = extract32(offset, 1, 3);
#if !HOST_BIG_ENDIAN
elt ^= 7;
#endif
tcg_out32(s, VSPLTH | VRT(out) | VRB(out) | (elt << 16));
break;
case MO_32:
if (have_isa_3_00) {
tcg_out_mem_long(s, 0, LXVWSX, out, base, offset);
break;
}
tcg_debug_assert((offset & 3) == 0);
tcg_out_mem_long(s, 0, LVEWX, out, base, offset);
elt = extract32(offset, 2, 2);
#if !HOST_BIG_ENDIAN
elt ^= 3;
#endif
tcg_out32(s, VSPLTW | VRT(out) | VRB(out) | (elt << 16));
break;
case MO_64:
if (have_vsx) {
tcg_out_mem_long(s, 0, LXVDSX, out, base, offset);
break;
}
tcg_debug_assert((offset & 7) == 0);
tcg_out_mem_long(s, 0, LVX, out, base, offset & -16);
tcg_out_vsldoi(s, TCG_VEC_TMP1, out, out, 8);
elt = extract32(offset, 3, 1);
#if !HOST_BIG_ENDIAN
elt = !elt;
#endif
if (elt) {
tcg_out_vsldoi(s, out, out, TCG_VEC_TMP1, 8);
} else {
tcg_out_vsldoi(s, out, TCG_VEC_TMP1, out, 8);
}
break;
default:
g_assert_not_reached();
}
return true;
}
static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc,
unsigned vecl, unsigned vece,
const TCGArg args[TCG_MAX_OP_ARGS],
const int const_args[TCG_MAX_OP_ARGS])
{
static const uint32_t
add_op[4] = { VADDUBM, VADDUHM, VADDUWM, VADDUDM },
sub_op[4] = { VSUBUBM, VSUBUHM, VSUBUWM, VSUBUDM },
mul_op[4] = { 0, 0, VMULUWM, VMULLD },
neg_op[4] = { 0, 0, VNEGW, VNEGD },
eq_op[4] = { VCMPEQUB, VCMPEQUH, VCMPEQUW, VCMPEQUD },
ne_op[4] = { VCMPNEB, VCMPNEH, VCMPNEW, 0 },
gts_op[4] = { VCMPGTSB, VCMPGTSH, VCMPGTSW, VCMPGTSD },
gtu_op[4] = { VCMPGTUB, VCMPGTUH, VCMPGTUW, VCMPGTUD },
ssadd_op[4] = { VADDSBS, VADDSHS, VADDSWS, 0 },
usadd_op[4] = { VADDUBS, VADDUHS, VADDUWS, 0 },
sssub_op[4] = { VSUBSBS, VSUBSHS, VSUBSWS, 0 },
ussub_op[4] = { VSUBUBS, VSUBUHS, VSUBUWS, 0 },
umin_op[4] = { VMINUB, VMINUH, VMINUW, VMINUD },
smin_op[4] = { VMINSB, VMINSH, VMINSW, VMINSD },
umax_op[4] = { VMAXUB, VMAXUH, VMAXUW, VMAXUD },
smax_op[4] = { VMAXSB, VMAXSH, VMAXSW, VMAXSD },
shlv_op[4] = { VSLB, VSLH, VSLW, VSLD },
shrv_op[4] = { VSRB, VSRH, VSRW, VSRD },
sarv_op[4] = { VSRAB, VSRAH, VSRAW, VSRAD },
mrgh_op[4] = { VMRGHB, VMRGHH, VMRGHW, 0 },
mrgl_op[4] = { VMRGLB, VMRGLH, VMRGLW, 0 },
muleu_op[4] = { VMULEUB, VMULEUH, VMULEUW, 0 },
mulou_op[4] = { VMULOUB, VMULOUH, VMULOUW, 0 },
pkum_op[4] = { VPKUHUM, VPKUWUM, 0, 0 },
rotl_op[4] = { VRLB, VRLH, VRLW, VRLD };
TCGType type = vecl + TCG_TYPE_V64;
TCGArg a0 = args[0], a1 = args[1], a2 = args[2];
uint32_t insn;
switch (opc) {
case INDEX_op_ld_vec:
tcg_out_ld(s, type, a0, a1, a2);
return;
case INDEX_op_st_vec:
tcg_out_st(s, type, a0, a1, a2);
return;
case INDEX_op_dupm_vec:
tcg_out_dupm_vec(s, type, vece, a0, a1, a2);
return;
case INDEX_op_add_vec:
insn = add_op[vece];
break;
case INDEX_op_sub_vec:
insn = sub_op[vece];
break;
case INDEX_op_neg_vec:
insn = neg_op[vece];
a2 = a1;
a1 = 0;
break;
case INDEX_op_mul_vec:
insn = mul_op[vece];
break;
case INDEX_op_ssadd_vec:
insn = ssadd_op[vece];
break;
case INDEX_op_sssub_vec:
insn = sssub_op[vece];
break;
case INDEX_op_usadd_vec:
insn = usadd_op[vece];
break;
case INDEX_op_ussub_vec:
insn = ussub_op[vece];
break;
case INDEX_op_smin_vec:
insn = smin_op[vece];
break;
case INDEX_op_umin_vec:
insn = umin_op[vece];
break;
case INDEX_op_smax_vec:
insn = smax_op[vece];
break;
case INDEX_op_umax_vec:
insn = umax_op[vece];
break;
case INDEX_op_shlv_vec:
insn = shlv_op[vece];
break;
case INDEX_op_shrv_vec:
insn = shrv_op[vece];
break;
case INDEX_op_sarv_vec:
insn = sarv_op[vece];
break;
case INDEX_op_and_vec:
insn = VAND;
break;
case INDEX_op_or_vec:
insn = VOR;
break;
case INDEX_op_xor_vec:
insn = VXOR;
break;
case INDEX_op_andc_vec:
insn = VANDC;
break;
case INDEX_op_not_vec:
insn = VNOR;
a2 = a1;
break;
case INDEX_op_orc_vec:
insn = VORC;
break;
case INDEX_op_nand_vec:
insn = VNAND;
break;
case INDEX_op_nor_vec:
insn = VNOR;
break;
case INDEX_op_eqv_vec:
insn = VEQV;
break;
case INDEX_op_cmp_vec:
switch (args[3]) {
case TCG_COND_EQ:
insn = eq_op[vece];
break;
case TCG_COND_NE:
insn = ne_op[vece];
break;
case TCG_COND_GT:
insn = gts_op[vece];
break;
case TCG_COND_GTU:
insn = gtu_op[vece];
break;
default:
g_assert_not_reached();
}
break;
case INDEX_op_bitsel_vec:
tcg_out32(s, XXSEL | VRT(a0) | VRC(a1) | VRB(a2) | VRA(args[3]));
return;
case INDEX_op_dup2_vec:
assert(TCG_TARGET_REG_BITS == 32);
/* With inputs a1 = xLxx, a2 = xHxx */
tcg_out32(s, VMRGHW | VRT(a0) | VRA(a2) | VRB(a1)); /* a0 = xxHL */
tcg_out_vsldoi(s, TCG_VEC_TMP1, a0, a0, 8); /* tmp = HLxx */
tcg_out_vsldoi(s, a0, a0, TCG_VEC_TMP1, 8); /* a0 = HLHL */
return;
case INDEX_op_ppc_mrgh_vec:
insn = mrgh_op[vece];
break;
case INDEX_op_ppc_mrgl_vec:
insn = mrgl_op[vece];
break;
case INDEX_op_ppc_muleu_vec:
insn = muleu_op[vece];
break;
case INDEX_op_ppc_mulou_vec:
insn = mulou_op[vece];
break;
case INDEX_op_ppc_pkum_vec:
insn = pkum_op[vece];
break;
case INDEX_op_rotlv_vec:
insn = rotl_op[vece];
break;
case INDEX_op_ppc_msum_vec:
tcg_debug_assert(vece == MO_16);
tcg_out32(s, VMSUMUHM | VRT(a0) | VRA(a1) | VRB(a2) | VRC(args[3]));
return;
case INDEX_op_mov_vec: /* Always emitted via tcg_out_mov. */
case INDEX_op_dup_vec: /* Always emitted via tcg_out_dup_vec. */
default:
g_assert_not_reached();
}
tcg_debug_assert(insn != 0);
tcg_out32(s, insn | VRT(a0) | VRA(a1) | VRB(a2));
}
static void expand_vec_shi(TCGType type, unsigned vece, TCGv_vec v0,
TCGv_vec v1, TCGArg imm, TCGOpcode opci)
{
TCGv_vec t1;
if (vece == MO_32) {
/*
* Only 5 bits are significant, and VSPLTISB can represent -16..15.
* So using negative numbers gets us the 4th bit easily.
*/
imm = sextract32(imm, 0, 5);
} else {
imm &= (8 << vece) - 1;
}
/* Splat w/bytes for xxspltib when 2.07 allows MO_64. */
t1 = tcg_constant_vec(type, MO_8, imm);
vec_gen_3(opci, type, vece, tcgv_vec_arg(v0),
tcgv_vec_arg(v1), tcgv_vec_arg(t1));
}
static void expand_vec_cmp(TCGType type, unsigned vece, TCGv_vec v0,
TCGv_vec v1, TCGv_vec v2, TCGCond cond)
{
bool need_swap = false, need_inv = false;
tcg_debug_assert(vece <= MO_32 || have_isa_2_07);
switch (cond) {
case TCG_COND_EQ:
case TCG_COND_GT:
case TCG_COND_GTU:
break;
case TCG_COND_NE:
if (have_isa_3_00 && vece <= MO_32) {
break;
}
/* fall through */
case TCG_COND_LE:
case TCG_COND_LEU:
need_inv = true;
break;
case TCG_COND_LT:
case TCG_COND_LTU:
need_swap = true;
break;
case TCG_COND_GE:
case TCG_COND_GEU:
need_swap = need_inv = true;
break;
default:
g_assert_not_reached();
}
if (need_inv) {
cond = tcg_invert_cond(cond);
}
if (need_swap) {
TCGv_vec t1;
t1 = v1, v1 = v2, v2 = t1;
cond = tcg_swap_cond(cond);
}
vec_gen_4(INDEX_op_cmp_vec, type, vece, tcgv_vec_arg(v0),
tcgv_vec_arg(v1), tcgv_vec_arg(v2), cond);
if (need_inv) {
tcg_gen_not_vec(vece, v0, v0);
}
}
static void expand_vec_mul(TCGType type, unsigned vece, TCGv_vec v0,
TCGv_vec v1, TCGv_vec v2)
{
TCGv_vec t1 = tcg_temp_new_vec(type);
TCGv_vec t2 = tcg_temp_new_vec(type);
TCGv_vec c0, c16;
switch (vece) {
case MO_8:
case MO_16:
vec_gen_3(INDEX_op_ppc_muleu_vec, type, vece, tcgv_vec_arg(t1),
tcgv_vec_arg(v1), tcgv_vec_arg(v2));
vec_gen_3(INDEX_op_ppc_mulou_vec, type, vece, tcgv_vec_arg(t2),
tcgv_vec_arg(v1), tcgv_vec_arg(v2));
vec_gen_3(INDEX_op_ppc_mrgh_vec, type, vece + 1, tcgv_vec_arg(v0),
tcgv_vec_arg(t1), tcgv_vec_arg(t2));
vec_gen_3(INDEX_op_ppc_mrgl_vec, type, vece + 1, tcgv_vec_arg(t1),
tcgv_vec_arg(t1), tcgv_vec_arg(t2));
vec_gen_3(INDEX_op_ppc_pkum_vec, type, vece, tcgv_vec_arg(v0),
tcgv_vec_arg(v0), tcgv_vec_arg(t1));
break;
case MO_32:
tcg_debug_assert(!have_isa_2_07);
/*
* Only 5 bits are significant, and VSPLTISB can represent -16..15.
* So using -16 is a quick way to represent 16.
*/
c16 = tcg_constant_vec(type, MO_8, -16);
c0 = tcg_constant_vec(type, MO_8, 0);
vec_gen_3(INDEX_op_rotlv_vec, type, MO_32, tcgv_vec_arg(t1),
tcgv_vec_arg(v2), tcgv_vec_arg(c16));
vec_gen_3(INDEX_op_ppc_mulou_vec, type, MO_16, tcgv_vec_arg(t2),
tcgv_vec_arg(v1), tcgv_vec_arg(v2));
vec_gen_4(INDEX_op_ppc_msum_vec, type, MO_16, tcgv_vec_arg(t1),
tcgv_vec_arg(v1), tcgv_vec_arg(t1), tcgv_vec_arg(c0));
vec_gen_3(INDEX_op_shlv_vec, type, MO_32, tcgv_vec_arg(t1),
tcgv_vec_arg(t1), tcgv_vec_arg(c16));
tcg_gen_add_vec(MO_32, v0, t1, t2);
break;
default:
g_assert_not_reached();
}
tcg_temp_free_vec(t1);
tcg_temp_free_vec(t2);
}
void tcg_expand_vec_op(TCGOpcode opc, TCGType type, unsigned vece,
TCGArg a0, ...)
{
va_list va;
TCGv_vec v0, v1, v2, t0;
TCGArg a2;
va_start(va, a0);
v0 = temp_tcgv_vec(arg_temp(a0));
v1 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg)));
a2 = va_arg(va, TCGArg);
switch (opc) {
case INDEX_op_shli_vec:
expand_vec_shi(type, vece, v0, v1, a2, INDEX_op_shlv_vec);
break;
case INDEX_op_shri_vec:
expand_vec_shi(type, vece, v0, v1, a2, INDEX_op_shrv_vec);
break;
case INDEX_op_sari_vec:
expand_vec_shi(type, vece, v0, v1, a2, INDEX_op_sarv_vec);
break;
case INDEX_op_rotli_vec:
expand_vec_shi(type, vece, v0, v1, a2, INDEX_op_rotlv_vec);
break;
case INDEX_op_cmp_vec:
v2 = temp_tcgv_vec(arg_temp(a2));
expand_vec_cmp(type, vece, v0, v1, v2, va_arg(va, TCGArg));
break;
case INDEX_op_mul_vec:
v2 = temp_tcgv_vec(arg_temp(a2));
expand_vec_mul(type, vece, v0, v1, v2);
break;
case INDEX_op_rotlv_vec:
v2 = temp_tcgv_vec(arg_temp(a2));
t0 = tcg_temp_new_vec(type);
tcg_gen_neg_vec(vece, t0, v2);
tcg_gen_rotlv_vec(vece, v0, v1, t0);
tcg_temp_free_vec(t0);
break;
default:
g_assert_not_reached();
}
va_end(va);
}
static TCGConstraintSetIndex tcg_target_op_def(TCGOpcode op)
{
switch (op) {
case INDEX_op_goto_ptr:
return C_O0_I1(r);
case INDEX_op_ld8u_i32:
case INDEX_op_ld8s_i32:
case INDEX_op_ld16u_i32:
case INDEX_op_ld16s_i32:
case INDEX_op_ld_i32:
case INDEX_op_ctpop_i32:
case INDEX_op_neg_i32:
case INDEX_op_not_i32:
case INDEX_op_ext8s_i32:
case INDEX_op_ext16s_i32:
case INDEX_op_bswap16_i32:
case INDEX_op_bswap32_i32:
case INDEX_op_extract_i32:
case INDEX_op_ld8u_i64:
case INDEX_op_ld8s_i64:
case INDEX_op_ld16u_i64:
case INDEX_op_ld16s_i64:
case INDEX_op_ld32u_i64:
case INDEX_op_ld32s_i64:
case INDEX_op_ld_i64:
case INDEX_op_ctpop_i64:
case INDEX_op_neg_i64:
case INDEX_op_not_i64:
case INDEX_op_ext8s_i64:
case INDEX_op_ext16s_i64:
case INDEX_op_ext32s_i64:
case INDEX_op_ext_i32_i64:
case INDEX_op_extu_i32_i64:
case INDEX_op_bswap16_i64:
case INDEX_op_bswap32_i64:
case INDEX_op_bswap64_i64:
case INDEX_op_extract_i64:
return C_O1_I1(r, r);
case INDEX_op_st8_i32:
case INDEX_op_st16_i32:
case INDEX_op_st_i32:
case INDEX_op_st8_i64:
case INDEX_op_st16_i64:
case INDEX_op_st32_i64:
case INDEX_op_st_i64:
return C_O0_I2(r, r);
case INDEX_op_add_i32:
case INDEX_op_and_i32:
case INDEX_op_or_i32:
case INDEX_op_xor_i32:
case INDEX_op_andc_i32:
case INDEX_op_orc_i32:
case INDEX_op_eqv_i32:
case INDEX_op_shl_i32:
case INDEX_op_shr_i32:
case INDEX_op_sar_i32:
case INDEX_op_rotl_i32:
case INDEX_op_rotr_i32:
case INDEX_op_setcond_i32:
case INDEX_op_and_i64:
case INDEX_op_andc_i64:
case INDEX_op_shl_i64:
case INDEX_op_shr_i64:
case INDEX_op_sar_i64:
case INDEX_op_rotl_i64:
case INDEX_op_rotr_i64:
case INDEX_op_setcond_i64:
return C_O1_I2(r, r, ri);
case INDEX_op_mul_i32:
case INDEX_op_mul_i64:
return C_O1_I2(r, r, rI);
case INDEX_op_div_i32:
case INDEX_op_divu_i32:
case INDEX_op_rem_i32:
case INDEX_op_remu_i32:
case INDEX_op_nand_i32:
case INDEX_op_nor_i32:
case INDEX_op_muluh_i32:
case INDEX_op_mulsh_i32:
case INDEX_op_orc_i64:
case INDEX_op_eqv_i64:
case INDEX_op_nand_i64:
case INDEX_op_nor_i64:
case INDEX_op_div_i64:
case INDEX_op_divu_i64:
case INDEX_op_rem_i64:
case INDEX_op_remu_i64:
case INDEX_op_mulsh_i64:
case INDEX_op_muluh_i64:
return C_O1_I2(r, r, r);
case INDEX_op_sub_i32:
return C_O1_I2(r, rI, ri);
case INDEX_op_add_i64:
return C_O1_I2(r, r, rT);
case INDEX_op_or_i64:
case INDEX_op_xor_i64:
return C_O1_I2(r, r, rU);
case INDEX_op_sub_i64:
return C_O1_I2(r, rI, rT);
case INDEX_op_clz_i32:
case INDEX_op_ctz_i32:
case INDEX_op_clz_i64:
case INDEX_op_ctz_i64:
return C_O1_I2(r, r, rZW);
case INDEX_op_brcond_i32:
case INDEX_op_brcond_i64:
return C_O0_I2(r, ri);
case INDEX_op_movcond_i32:
case INDEX_op_movcond_i64:
return C_O1_I4(r, r, ri, rZ, rZ);
case INDEX_op_deposit_i32:
case INDEX_op_deposit_i64:
return C_O1_I2(r, 0, rZ);
case INDEX_op_brcond2_i32:
return C_O0_I4(r, r, ri, ri);
case INDEX_op_setcond2_i32:
return C_O1_I4(r, r, r, ri, ri);
case INDEX_op_add2_i64:
case INDEX_op_add2_i32:
return C_O2_I4(r, r, r, r, rI, rZM);
case INDEX_op_sub2_i64:
case INDEX_op_sub2_i32:
return C_O2_I4(r, r, rI, rZM, r, r);
case INDEX_op_qemu_ld_a32_i32:
return C_O1_I1(r, r);
case INDEX_op_qemu_ld_a64_i32:
return TCG_TARGET_REG_BITS == 64 ? C_O1_I1(r, r) : C_O1_I2(r, r, r);
case INDEX_op_qemu_ld_a32_i64:
return TCG_TARGET_REG_BITS == 64 ? C_O1_I1(r, r) : C_O2_I1(r, r, r);
case INDEX_op_qemu_ld_a64_i64:
return TCG_TARGET_REG_BITS == 64 ? C_O1_I1(r, r) : C_O2_I2(r, r, r, r);
case INDEX_op_qemu_st_a32_i32:
return C_O0_I2(r, r);
case INDEX_op_qemu_st_a64_i32:
return TCG_TARGET_REG_BITS == 64 ? C_O0_I2(r, r) : C_O0_I3(r, r, r);
case INDEX_op_qemu_st_a32_i64:
return TCG_TARGET_REG_BITS == 64 ? C_O0_I2(r, r) : C_O0_I3(r, r, r);
case INDEX_op_qemu_st_a64_i64:
return TCG_TARGET_REG_BITS == 64 ? C_O0_I2(r, r) : C_O0_I4(r, r, r, r);
case INDEX_op_qemu_ld_a32_i128:
case INDEX_op_qemu_ld_a64_i128:
return C_O2_I1(o, m, r);
case INDEX_op_qemu_st_a32_i128:
case INDEX_op_qemu_st_a64_i128:
return C_O0_I3(o, m, r);
case INDEX_op_add_vec:
case INDEX_op_sub_vec:
case INDEX_op_mul_vec:
case INDEX_op_and_vec:
case INDEX_op_or_vec:
case INDEX_op_xor_vec:
case INDEX_op_andc_vec:
case INDEX_op_orc_vec:
case INDEX_op_nor_vec:
case INDEX_op_eqv_vec:
case INDEX_op_nand_vec:
case INDEX_op_cmp_vec:
case INDEX_op_ssadd_vec:
case INDEX_op_sssub_vec:
case INDEX_op_usadd_vec:
case INDEX_op_ussub_vec:
case INDEX_op_smax_vec:
case INDEX_op_smin_vec:
case INDEX_op_umax_vec:
case INDEX_op_umin_vec:
case INDEX_op_shlv_vec:
case INDEX_op_shrv_vec:
case INDEX_op_sarv_vec:
case INDEX_op_rotlv_vec:
case INDEX_op_rotrv_vec:
case INDEX_op_ppc_mrgh_vec:
case INDEX_op_ppc_mrgl_vec:
case INDEX_op_ppc_muleu_vec:
case INDEX_op_ppc_mulou_vec:
case INDEX_op_ppc_pkum_vec:
case INDEX_op_dup2_vec:
return C_O1_I2(v, v, v);
case INDEX_op_not_vec:
case INDEX_op_neg_vec:
return C_O1_I1(v, v);
case INDEX_op_dup_vec:
return have_isa_3_00 ? C_O1_I1(v, vr) : C_O1_I1(v, v);
case INDEX_op_ld_vec:
case INDEX_op_dupm_vec:
return C_O1_I1(v, r);
case INDEX_op_st_vec:
return C_O0_I2(v, r);
case INDEX_op_bitsel_vec:
case INDEX_op_ppc_msum_vec:
return C_O1_I3(v, v, v, v);
default:
g_assert_not_reached();
}
}
static void tcg_target_init(TCGContext *s)
{
tcg_target_available_regs[TCG_TYPE_I32] = 0xffffffff;
tcg_target_available_regs[TCG_TYPE_I64] = 0xffffffff;
if (have_altivec) {
tcg_target_available_regs[TCG_TYPE_V64] = 0xffffffff00000000ull;
tcg_target_available_regs[TCG_TYPE_V128] = 0xffffffff00000000ull;
}
tcg_target_call_clobber_regs = 0;
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R0);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R2);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R3);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R4);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R5);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R6);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R7);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R8);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R9);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R10);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R11);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R12);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V0);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V1);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V2);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V3);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V4);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V5);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V6);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V7);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V8);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V9);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V10);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V11);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V12);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V13);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V14);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V15);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V16);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V17);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V18);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V19);
s->reserved_regs = 0;
tcg_regset_set_reg(s->reserved_regs, TCG_REG_R0); /* tcg temp */
tcg_regset_set_reg(s->reserved_regs, TCG_REG_R1); /* stack pointer */
#if defined(_CALL_SYSV)
tcg_regset_set_reg(s->reserved_regs, TCG_REG_R2); /* toc pointer */
#endif
#if defined(_CALL_SYSV) || TCG_TARGET_REG_BITS == 64
tcg_regset_set_reg(s->reserved_regs, TCG_REG_R13); /* thread pointer */
#endif
tcg_regset_set_reg(s->reserved_regs, TCG_REG_TMP1);
tcg_regset_set_reg(s->reserved_regs, TCG_REG_TMP2);
tcg_regset_set_reg(s->reserved_regs, TCG_VEC_TMP1);
tcg_regset_set_reg(s->reserved_regs, TCG_VEC_TMP2);
if (USE_REG_TB) {
tcg_regset_set_reg(s->reserved_regs, TCG_REG_TB); /* tb->tc_ptr */
}
}
#ifdef __ELF__
typedef struct {
DebugFrameCIE cie;
DebugFrameFDEHeader fde;
uint8_t fde_def_cfa[4];
uint8_t fde_reg_ofs[ARRAY_SIZE(tcg_target_callee_save_regs) * 2 + 3];
} DebugFrame;
/* We're expecting a 2 byte uleb128 encoded value. */
QEMU_BUILD_BUG_ON(FRAME_SIZE >= (1 << 14));
#if TCG_TARGET_REG_BITS == 64
# define ELF_HOST_MACHINE EM_PPC64
#else
# define ELF_HOST_MACHINE EM_PPC
#endif
static DebugFrame debug_frame = {
.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
.cie.id = -1,
.cie.version = 1,
.cie.code_align = 1,
.cie.data_align = (-SZR & 0x7f), /* sleb128 -SZR */
.cie.return_column = 65,
/* Total FDE size does not include the "len" member. */
.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, fde.cie_offset),
.fde_def_cfa = {
12, TCG_REG_R1, /* DW_CFA_def_cfa r1, ... */
(FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */
(FRAME_SIZE >> 7)
},
.fde_reg_ofs = {
/* DW_CFA_offset_extended_sf, lr, LR_OFFSET */
0x11, 65, (LR_OFFSET / -SZR) & 0x7f,
}
};
void tcg_register_jit(const void *buf, size_t buf_size)
{
uint8_t *p = &debug_frame.fde_reg_ofs[3];
int i;
for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); ++i, p += 2) {
p[0] = 0x80 + tcg_target_callee_save_regs[i];
p[1] = (FRAME_SIZE - (REG_SAVE_BOT + i * SZR)) / SZR;
}
debug_frame.fde.func_start = (uintptr_t)buf;
debug_frame.fde.func_len = buf_size;
tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame));
}
#endif /* __ELF__ */
#undef VMULEUB
#undef VMULEUH
#undef VMULEUW
#undef VMULOUB
#undef VMULOUH
#undef VMULOUW
#undef VMSUMUHM