blob: 87aeba056499dd3d184cf9defb690f87a9b16c2c [file] [log] [blame]
/*
* QEMU NVM Express Controller
*
* Copyright (c) 2012, Intel Corporation
*
* Written by Keith Busch <keith.busch@intel.com>
*
* This code is licensed under the GNU GPL v2 or later.
*/
/**
* Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e
*
* https://nvmexpress.org/developers/nvme-specification/
*
*
* Notes on coding style
* ---------------------
* While QEMU coding style prefers lowercase hexadecimals in constants, the
* NVMe subsystem use thes format from the NVMe specifications in the comments
* (i.e. 'h' suffix instead of '0x' prefix).
*
* Usage
* -----
* See docs/system/nvme.rst for extensive documentation.
*
* Add options:
* -drive file=<file>,if=none,id=<drive_id>
* -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id>
* -device nvme,serial=<serial>,id=<bus_name>, \
* cmb_size_mb=<cmb_size_mb[optional]>, \
* [pmrdev=<mem_backend_file_id>,] \
* max_ioqpairs=<N[optional]>, \
* aerl=<N[optional]>,aer_max_queued=<N[optional]>, \
* mdts=<N[optional]>,vsl=<N[optional]>, \
* zoned.zasl=<N[optional]>, \
* zoned.auto_transition=<on|off[optional]>, \
* sriov_max_vfs=<N[optional]> \
* sriov_vq_flexible=<N[optional]> \
* sriov_vi_flexible=<N[optional]> \
* sriov_max_vi_per_vf=<N[optional]> \
* sriov_max_vq_per_vf=<N[optional]> \
* subsys=<subsys_id>
* -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\
* zoned=<true|false[optional]>, \
* subsys=<subsys_id>,detached=<true|false[optional]>
*
* Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
* offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the
* device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to
* always enable the CMBLOC and CMBSZ registers (v1.3 behavior).
*
* Enabling pmr emulation can be achieved by pointing to memory-backend-file.
* For example:
* -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
* size=<size> .... -device nvme,...,pmrdev=<mem_id>
*
* The PMR will use BAR 4/5 exclusively.
*
* To place controller(s) and namespace(s) to a subsystem, then provide
* nvme-subsys device as above.
*
* nvme subsystem device parameters
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* - `nqn`
* This parameter provides the `<nqn_id>` part of the string
* `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field
* of subsystem controllers. Note that `<nqn_id>` should be unique per
* subsystem, but this is not enforced by QEMU. If not specified, it will
* default to the value of the `id` parameter (`<subsys_id>`).
*
* nvme device parameters
* ~~~~~~~~~~~~~~~~~~~~~~
* - `subsys`
* Specifying this parameter attaches the controller to the subsystem and
* the SUBNQN field in the controller will report the NQN of the subsystem
* device. This also enables multi controller capability represented in
* Identify Controller data structure in CMIC (Controller Multi-path I/O and
* Namespace Sharing Capabilities).
*
* - `aerl`
* The Asynchronous Event Request Limit (AERL). Indicates the maximum number
* of concurrently outstanding Asynchronous Event Request commands support
* by the controller. This is a 0's based value.
*
* - `aer_max_queued`
* This is the maximum number of events that the device will enqueue for
* completion when there are no outstanding AERs. When the maximum number of
* enqueued events are reached, subsequent events will be dropped.
*
* - `mdts`
* Indicates the maximum data transfer size for a command that transfers data
* between host-accessible memory and the controller. The value is specified
* as a power of two (2^n) and is in units of the minimum memory page size
* (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB).
*
* - `vsl`
* Indicates the maximum data size limit for the Verify command. Like `mdts`,
* this value is specified as a power of two (2^n) and is in units of the
* minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512
* KiB).
*
* - `zoned.zasl`
* Indicates the maximum data transfer size for the Zone Append command. Like
* `mdts`, the value is specified as a power of two (2^n) and is in units of
* the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e.
* defaulting to the value of `mdts`).
*
* - `zoned.auto_transition`
* Indicates if zones in zone state implicitly opened can be automatically
* transitioned to zone state closed for resource management purposes.
* Defaults to 'on'.
*
* - `sriov_max_vfs`
* Indicates the maximum number of PCIe virtual functions supported
* by the controller. The default value is 0. Specifying a non-zero value
* enables reporting of both SR-IOV and ARI capabilities by the NVMe device.
* Virtual function controllers will not report SR-IOV capability.
*
* NOTE: Single Root I/O Virtualization support is experimental.
* All the related parameters may be subject to change.
*
* - `sriov_vq_flexible`
* Indicates the total number of flexible queue resources assignable to all
* the secondary controllers. Implicitly sets the number of primary
* controller's private resources to `(max_ioqpairs - sriov_vq_flexible)`.
*
* - `sriov_vi_flexible`
* Indicates the total number of flexible interrupt resources assignable to
* all the secondary controllers. Implicitly sets the number of primary
* controller's private resources to `(msix_qsize - sriov_vi_flexible)`.
*
* - `sriov_max_vi_per_vf`
* Indicates the maximum number of virtual interrupt resources assignable
* to a secondary controller. The default 0 resolves to
* `(sriov_vi_flexible / sriov_max_vfs)`.
*
* - `sriov_max_vq_per_vf`
* Indicates the maximum number of virtual queue resources assignable to
* a secondary controller. The default 0 resolves to
* `(sriov_vq_flexible / sriov_max_vfs)`.
*
* nvme namespace device parameters
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* - `shared`
* When the parent nvme device (as defined explicitly by the 'bus' parameter
* or implicitly by the most recently defined NvmeBus) is linked to an
* nvme-subsys device, the namespace will be attached to all controllers in
* the subsystem. If set to 'off' (the default), the namespace will remain a
* private namespace and may only be attached to a single controller at a
* time.
*
* - `detached`
* This parameter is only valid together with the `subsys` parameter. If left
* at the default value (`false/off`), the namespace will be attached to all
* controllers in the NVMe subsystem at boot-up. If set to `true/on`, the
* namespace will be available in the subsystem but not attached to any
* controllers.
*
* Setting `zoned` to true selects Zoned Command Set at the namespace.
* In this case, the following namespace properties are available to configure
* zoned operation:
* zoned.zone_size=<zone size in bytes, default: 128MiB>
* The number may be followed by K, M, G as in kilo-, mega- or giga-.
*
* zoned.zone_capacity=<zone capacity in bytes, default: zone size>
* The value 0 (default) forces zone capacity to be the same as zone
* size. The value of this property may not exceed zone size.
*
* zoned.descr_ext_size=<zone descriptor extension size, default 0>
* This value needs to be specified in 64B units. If it is zero,
* namespace(s) will not support zone descriptor extensions.
*
* zoned.max_active=<Maximum Active Resources (zones), default: 0>
* The default value means there is no limit to the number of
* concurrently active zones.
*
* zoned.max_open=<Maximum Open Resources (zones), default: 0>
* The default value means there is no limit to the number of
* concurrently open zones.
*
* zoned.cross_read=<enable RAZB, default: false>
* Setting this property to true enables Read Across Zone Boundaries.
*/
#include "qemu/osdep.h"
#include "qemu/cutils.h"
#include "qemu/error-report.h"
#include "qemu/log.h"
#include "qemu/units.h"
#include "qemu/range.h"
#include "qapi/error.h"
#include "qapi/visitor.h"
#include "sysemu/sysemu.h"
#include "sysemu/block-backend.h"
#include "sysemu/hostmem.h"
#include "hw/pci/msix.h"
#include "hw/pci/pcie_sriov.h"
#include "migration/vmstate.h"
#include "nvme.h"
#include "dif.h"
#include "trace.h"
#define NVME_MAX_IOQPAIRS 0xffff
#define NVME_DB_SIZE 4
#define NVME_SPEC_VER 0x00010400
#define NVME_CMB_BIR 2
#define NVME_PMR_BIR 4
#define NVME_TEMPERATURE 0x143
#define NVME_TEMPERATURE_WARNING 0x157
#define NVME_TEMPERATURE_CRITICAL 0x175
#define NVME_NUM_FW_SLOTS 1
#define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB)
#define NVME_MAX_VFS 127
#define NVME_VF_RES_GRANULARITY 1
#define NVME_VF_OFFSET 0x1
#define NVME_VF_STRIDE 1
#define NVME_GUEST_ERR(trace, fmt, ...) \
do { \
(trace_##trace)(__VA_ARGS__); \
qemu_log_mask(LOG_GUEST_ERROR, #trace \
" in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
} while (0)
static const bool nvme_feature_support[NVME_FID_MAX] = {
[NVME_ARBITRATION] = true,
[NVME_POWER_MANAGEMENT] = true,
[NVME_TEMPERATURE_THRESHOLD] = true,
[NVME_ERROR_RECOVERY] = true,
[NVME_VOLATILE_WRITE_CACHE] = true,
[NVME_NUMBER_OF_QUEUES] = true,
[NVME_INTERRUPT_COALESCING] = true,
[NVME_INTERRUPT_VECTOR_CONF] = true,
[NVME_WRITE_ATOMICITY] = true,
[NVME_ASYNCHRONOUS_EVENT_CONF] = true,
[NVME_TIMESTAMP] = true,
[NVME_HOST_BEHAVIOR_SUPPORT] = true,
[NVME_COMMAND_SET_PROFILE] = true,
};
static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
[NVME_TEMPERATURE_THRESHOLD] = NVME_FEAT_CAP_CHANGE,
[NVME_ERROR_RECOVERY] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
[NVME_VOLATILE_WRITE_CACHE] = NVME_FEAT_CAP_CHANGE,
[NVME_NUMBER_OF_QUEUES] = NVME_FEAT_CAP_CHANGE,
[NVME_ASYNCHRONOUS_EVENT_CONF] = NVME_FEAT_CAP_CHANGE,
[NVME_TIMESTAMP] = NVME_FEAT_CAP_CHANGE,
[NVME_HOST_BEHAVIOR_SUPPORT] = NVME_FEAT_CAP_CHANGE,
[NVME_COMMAND_SET_PROFILE] = NVME_FEAT_CAP_CHANGE,
};
static const uint32_t nvme_cse_acs[256] = {
[NVME_ADM_CMD_DELETE_SQ] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_CREATE_SQ] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_GET_LOG_PAGE] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_DELETE_CQ] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_CREATE_CQ] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_IDENTIFY] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_ABORT] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_SET_FEATURES] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_GET_FEATURES] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_ASYNC_EV_REQ] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_NS_ATTACHMENT] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC,
[NVME_ADM_CMD_VIRT_MNGMT] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_DBBUF_CONFIG] = NVME_CMD_EFF_CSUPP,
[NVME_ADM_CMD_FORMAT_NVM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
};
static const uint32_t nvme_cse_iocs_none[256];
static const uint32_t nvme_cse_iocs_nvm[256] = {
[NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_READ] = NVME_CMD_EFF_CSUPP,
[NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP,
[NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP,
};
static const uint32_t nvme_cse_iocs_zoned[256] = {
[NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_READ] = NVME_CMD_EFF_CSUPP,
[NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP,
[NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP,
[NVME_CMD_ZONE_APPEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_ZONE_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
[NVME_CMD_ZONE_MGMT_RECV] = NVME_CMD_EFF_CSUPP,
};
static void nvme_process_sq(void *opaque);
static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst);
static uint16_t nvme_sqid(NvmeRequest *req)
{
return le16_to_cpu(req->sq->sqid);
}
static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone,
NvmeZoneState state)
{
if (QTAILQ_IN_USE(zone, entry)) {
switch (nvme_get_zone_state(zone)) {
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry);
break;
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
break;
case NVME_ZONE_STATE_CLOSED:
QTAILQ_REMOVE(&ns->closed_zones, zone, entry);
break;
case NVME_ZONE_STATE_FULL:
QTAILQ_REMOVE(&ns->full_zones, zone, entry);
default:
;
}
}
nvme_set_zone_state(zone, state);
switch (state) {
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry);
break;
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry);
break;
case NVME_ZONE_STATE_CLOSED:
QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry);
break;
case NVME_ZONE_STATE_FULL:
QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry);
case NVME_ZONE_STATE_READ_ONLY:
break;
default:
zone->d.za = 0;
}
}
static uint16_t nvme_zns_check_resources(NvmeNamespace *ns, uint32_t act,
uint32_t opn, uint32_t zrwa)
{
if (ns->params.max_active_zones != 0 &&
ns->nr_active_zones + act > ns->params.max_active_zones) {
trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones);
return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR;
}
if (ns->params.max_open_zones != 0 &&
ns->nr_open_zones + opn > ns->params.max_open_zones) {
trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones);
return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR;
}
if (zrwa > ns->zns.numzrwa) {
return NVME_NOZRWA | NVME_DNR;
}
return NVME_SUCCESS;
}
/*
* Check if we can open a zone without exceeding open/active limits.
* AOR stands for "Active and Open Resources" (see TP 4053 section 2.5).
*/
static uint16_t nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn)
{
return nvme_zns_check_resources(ns, act, opn, 0);
}
static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
{
hwaddr hi, lo;
if (!n->cmb.cmse) {
return false;
}
lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
hi = lo + int128_get64(n->cmb.mem.size);
return addr >= lo && addr < hi;
}
static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
{
hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
return &n->cmb.buf[addr - base];
}
static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr)
{
hwaddr hi;
if (!n->pmr.cmse) {
return false;
}
hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size);
return addr >= n->pmr.cba && addr < hi;
}
static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr)
{
return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba);
}
static inline bool nvme_addr_is_iomem(NvmeCtrl *n, hwaddr addr)
{
hwaddr hi, lo;
/*
* The purpose of this check is to guard against invalid "local" access to
* the iomem (i.e. controller registers). Thus, we check against the range
* covered by the 'bar0' MemoryRegion since that is currently composed of
* two subregions (the NVMe "MBAR" and the MSI-X table/pba). Note, however,
* that if the device model is ever changed to allow the CMB to be located
* in BAR0 as well, then this must be changed.
*/
lo = n->bar0.addr;
hi = lo + int128_get64(n->bar0.size);
return addr >= lo && addr < hi;
}
static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
{
hwaddr hi = addr + size - 1;
if (hi < addr) {
return 1;
}
if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
memcpy(buf, nvme_addr_to_cmb(n, addr), size);
return 0;
}
if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
memcpy(buf, nvme_addr_to_pmr(n, addr), size);
return 0;
}
return pci_dma_read(&n->parent_obj, addr, buf, size);
}
static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, const void *buf, int size)
{
hwaddr hi = addr + size - 1;
if (hi < addr) {
return 1;
}
if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
memcpy(nvme_addr_to_cmb(n, addr), buf, size);
return 0;
}
if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
memcpy(nvme_addr_to_pmr(n, addr), buf, size);
return 0;
}
return pci_dma_write(&n->parent_obj, addr, buf, size);
}
static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid)
{
return nsid &&
(nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES);
}
static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
{
return sqid < n->conf_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
}
static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
{
return cqid < n->conf_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
}
static void nvme_inc_cq_tail(NvmeCQueue *cq)
{
cq->tail++;
if (cq->tail >= cq->size) {
cq->tail = 0;
cq->phase = !cq->phase;
}
}
static void nvme_inc_sq_head(NvmeSQueue *sq)
{
sq->head = (sq->head + 1) % sq->size;
}
static uint8_t nvme_cq_full(NvmeCQueue *cq)
{
return (cq->tail + 1) % cq->size == cq->head;
}
static uint8_t nvme_sq_empty(NvmeSQueue *sq)
{
return sq->head == sq->tail;
}
static void nvme_irq_check(NvmeCtrl *n)
{
uint32_t intms = ldl_le_p(&n->bar.intms);
if (msix_enabled(&(n->parent_obj))) {
return;
}
if (~intms & n->irq_status) {
pci_irq_assert(&n->parent_obj);
} else {
pci_irq_deassert(&n->parent_obj);
}
}
static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
{
if (cq->irq_enabled) {
if (msix_enabled(&(n->parent_obj))) {
trace_pci_nvme_irq_msix(cq->vector);
msix_notify(&(n->parent_obj), cq->vector);
} else {
trace_pci_nvme_irq_pin();
assert(cq->vector < 32);
n->irq_status |= 1 << cq->vector;
nvme_irq_check(n);
}
} else {
trace_pci_nvme_irq_masked();
}
}
static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
{
if (cq->irq_enabled) {
if (msix_enabled(&(n->parent_obj))) {
return;
} else {
assert(cq->vector < 32);
if (!n->cq_pending) {
n->irq_status &= ~(1 << cq->vector);
}
nvme_irq_check(n);
}
}
}
static void nvme_req_clear(NvmeRequest *req)
{
req->ns = NULL;
req->opaque = NULL;
req->aiocb = NULL;
memset(&req->cqe, 0x0, sizeof(req->cqe));
req->status = NVME_SUCCESS;
}
static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma)
{
if (dma) {
pci_dma_sglist_init(&sg->qsg, &n->parent_obj, 0);
sg->flags = NVME_SG_DMA;
} else {
qemu_iovec_init(&sg->iov, 0);
}
sg->flags |= NVME_SG_ALLOC;
}
static inline void nvme_sg_unmap(NvmeSg *sg)
{
if (!(sg->flags & NVME_SG_ALLOC)) {
return;
}
if (sg->flags & NVME_SG_DMA) {
qemu_sglist_destroy(&sg->qsg);
} else {
qemu_iovec_destroy(&sg->iov);
}
memset(sg, 0x0, sizeof(*sg));
}
/*
* When metadata is transfered as extended LBAs, the DPTR mapped into `sg`
* holds both data and metadata. This function splits the data and metadata
* into two separate QSG/IOVs.
*/
static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data,
NvmeSg *mdata)
{
NvmeSg *dst = data;
uint32_t trans_len, count = ns->lbasz;
uint64_t offset = 0;
bool dma = sg->flags & NVME_SG_DMA;
size_t sge_len;
size_t sg_len = dma ? sg->qsg.size : sg->iov.size;
int sg_idx = 0;
assert(sg->flags & NVME_SG_ALLOC);
while (sg_len) {
sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
trans_len = MIN(sg_len, count);
trans_len = MIN(trans_len, sge_len - offset);
if (dst) {
if (dma) {
qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset,
trans_len);
} else {
qemu_iovec_add(&dst->iov,
sg->iov.iov[sg_idx].iov_base + offset,
trans_len);
}
}
sg_len -= trans_len;
count -= trans_len;
offset += trans_len;
if (count == 0) {
dst = (dst == data) ? mdata : data;
count = (dst == data) ? ns->lbasz : ns->lbaf.ms;
}
if (sge_len == offset) {
offset = 0;
sg_idx++;
}
}
}
static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
size_t len)
{
if (!len) {
return NVME_SUCCESS;
}
trace_pci_nvme_map_addr_cmb(addr, len);
if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
return NVME_DATA_TRAS_ERROR;
}
qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
return NVME_SUCCESS;
}
static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
size_t len)
{
if (!len) {
return NVME_SUCCESS;
}
if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) {
return NVME_DATA_TRAS_ERROR;
}
qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len);
return NVME_SUCCESS;
}
static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len)
{
bool cmb = false, pmr = false;
if (!len) {
return NVME_SUCCESS;
}
trace_pci_nvme_map_addr(addr, len);
if (nvme_addr_is_iomem(n, addr)) {
return NVME_DATA_TRAS_ERROR;
}
if (nvme_addr_is_cmb(n, addr)) {
cmb = true;
} else if (nvme_addr_is_pmr(n, addr)) {
pmr = true;
}
if (cmb || pmr) {
if (sg->flags & NVME_SG_DMA) {
return NVME_INVALID_USE_OF_CMB | NVME_DNR;
}
if (sg->iov.niov + 1 > IOV_MAX) {
goto max_mappings_exceeded;
}
if (cmb) {
return nvme_map_addr_cmb(n, &sg->iov, addr, len);
} else {
return nvme_map_addr_pmr(n, &sg->iov, addr, len);
}
}
if (!(sg->flags & NVME_SG_DMA)) {
return NVME_INVALID_USE_OF_CMB | NVME_DNR;
}
if (sg->qsg.nsg + 1 > IOV_MAX) {
goto max_mappings_exceeded;
}
qemu_sglist_add(&sg->qsg, addr, len);
return NVME_SUCCESS;
max_mappings_exceeded:
NVME_GUEST_ERR(pci_nvme_ub_too_many_mappings,
"number of mappings exceed 1024");
return NVME_INTERNAL_DEV_ERROR | NVME_DNR;
}
static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr)
{
return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr));
}
static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1,
uint64_t prp2, uint32_t len)
{
hwaddr trans_len = n->page_size - (prp1 % n->page_size);
trans_len = MIN(len, trans_len);
int num_prps = (len >> n->page_bits) + 1;
uint16_t status;
int ret;
trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1));
status = nvme_map_addr(n, sg, prp1, trans_len);
if (status) {
goto unmap;
}
len -= trans_len;
if (len) {
if (len > n->page_size) {
uint64_t prp_list[n->max_prp_ents];
uint32_t nents, prp_trans;
int i = 0;
/*
* The first PRP list entry, pointed to by PRP2 may contain offset.
* Hence, we need to calculate the number of entries in based on
* that offset.
*/
nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3;
prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
if (ret) {
trace_pci_nvme_err_addr_read(prp2);
status = NVME_DATA_TRAS_ERROR;
goto unmap;
}
while (len != 0) {
uint64_t prp_ent = le64_to_cpu(prp_list[i]);
if (i == nents - 1 && len > n->page_size) {
if (unlikely(prp_ent & (n->page_size - 1))) {
trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
goto unmap;
}
i = 0;
nents = (len + n->page_size - 1) >> n->page_bits;
nents = MIN(nents, n->max_prp_ents);
prp_trans = nents * sizeof(uint64_t);
ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
prp_trans);
if (ret) {
trace_pci_nvme_err_addr_read(prp_ent);
status = NVME_DATA_TRAS_ERROR;
goto unmap;
}
prp_ent = le64_to_cpu(prp_list[i]);
}
if (unlikely(prp_ent & (n->page_size - 1))) {
trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
goto unmap;
}
trans_len = MIN(len, n->page_size);
status = nvme_map_addr(n, sg, prp_ent, trans_len);
if (status) {
goto unmap;
}
len -= trans_len;
i++;
}
} else {
if (unlikely(prp2 & (n->page_size - 1))) {
trace_pci_nvme_err_invalid_prp2_align(prp2);
status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
goto unmap;
}
status = nvme_map_addr(n, sg, prp2, len);
if (status) {
goto unmap;
}
}
}
return NVME_SUCCESS;
unmap:
nvme_sg_unmap(sg);
return status;
}
/*
* Map 'nsgld' data descriptors from 'segment'. The function will subtract the
* number of bytes mapped in len.
*/
static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg,
NvmeSglDescriptor *segment, uint64_t nsgld,
size_t *len, NvmeCmd *cmd)
{
dma_addr_t addr, trans_len;
uint32_t dlen;
uint16_t status;
for (int i = 0; i < nsgld; i++) {
uint8_t type = NVME_SGL_TYPE(segment[i].type);
switch (type) {
case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
break;
case NVME_SGL_DESCR_TYPE_SEGMENT:
case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR;
default:
return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR;
}
dlen = le32_to_cpu(segment[i].len);
if (!dlen) {
continue;
}
if (*len == 0) {
/*
* All data has been mapped, but the SGL contains additional
* segments and/or descriptors. The controller might accept
* ignoring the rest of the SGL.
*/
uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls);
if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) {
break;
}
trace_pci_nvme_err_invalid_sgl_excess_length(dlen);
return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
}
trans_len = MIN(*len, dlen);
addr = le64_to_cpu(segment[i].addr);
if (UINT64_MAX - addr < dlen) {
return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
}
status = nvme_map_addr(n, sg, addr, trans_len);
if (status) {
return status;
}
*len -= trans_len;
}
return NVME_SUCCESS;
}
static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl,
size_t len, NvmeCmd *cmd)
{
/*
* Read the segment in chunks of 256 descriptors (one 4k page) to avoid
* dynamically allocating a potentially huge SGL. The spec allows the SGL
* to be larger (as in number of bytes required to describe the SGL
* descriptors and segment chain) than the command transfer size, so it is
* not bounded by MDTS.
*/
const int SEG_CHUNK_SIZE = 256;
NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld;
uint64_t nsgld;
uint32_t seg_len;
uint16_t status;
hwaddr addr;
int ret;
sgld = &sgl;
addr = le64_to_cpu(sgl.addr);
trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len);
nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr));
/*
* If the entire transfer can be described with a single data block it can
* be mapped directly.
*/
if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd);
if (status) {
goto unmap;
}
goto out;
}
for (;;) {
switch (NVME_SGL_TYPE(sgld->type)) {
case NVME_SGL_DESCR_TYPE_SEGMENT:
case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
break;
default:
return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
}
seg_len = le32_to_cpu(sgld->len);
/* check the length of the (Last) Segment descriptor */
if (!seg_len || seg_len & 0xf) {
return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
}
if (UINT64_MAX - addr < seg_len) {
return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
}
nsgld = seg_len / sizeof(NvmeSglDescriptor);
while (nsgld > SEG_CHUNK_SIZE) {
if (nvme_addr_read(n, addr, segment, sizeof(segment))) {
trace_pci_nvme_err_addr_read(addr);
status = NVME_DATA_TRAS_ERROR;
goto unmap;
}
status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE,
&len, cmd);
if (status) {
goto unmap;
}
nsgld -= SEG_CHUNK_SIZE;
addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor);
}
ret = nvme_addr_read(n, addr, segment, nsgld *
sizeof(NvmeSglDescriptor));
if (ret) {
trace_pci_nvme_err_addr_read(addr);
status = NVME_DATA_TRAS_ERROR;
goto unmap;
}
last_sgld = &segment[nsgld - 1];
/*
* If the segment ends with a Data Block, then we are done.
*/
if (NVME_SGL_TYPE(last_sgld->type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd);
if (status) {
goto unmap;
}
goto out;
}
/*
* If the last descriptor was not a Data Block, then the current
* segment must not be a Last Segment.
*/
if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) {
status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
goto unmap;
}
sgld = last_sgld;
addr = le64_to_cpu(sgld->addr);
/*
* Do not map the last descriptor; it will be a Segment or Last Segment
* descriptor and is handled by the next iteration.
*/
status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd);
if (status) {
goto unmap;
}
}
out:
/* if there is any residual left in len, the SGL was too short */
if (len) {
status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
goto unmap;
}
return NVME_SUCCESS;
unmap:
nvme_sg_unmap(sg);
return status;
}
uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
NvmeCmd *cmd)
{
uint64_t prp1, prp2;
switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) {
case NVME_PSDT_PRP:
prp1 = le64_to_cpu(cmd->dptr.prp1);
prp2 = le64_to_cpu(cmd->dptr.prp2);
return nvme_map_prp(n, sg, prp1, prp2, len);
case NVME_PSDT_SGL_MPTR_CONTIGUOUS:
case NVME_PSDT_SGL_MPTR_SGL:
return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd);
default:
return NVME_INVALID_FIELD;
}
}
static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
NvmeCmd *cmd)
{
int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags);
hwaddr mptr = le64_to_cpu(cmd->mptr);
uint16_t status;
if (psdt == NVME_PSDT_SGL_MPTR_SGL) {
NvmeSglDescriptor sgl;
if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) {
return NVME_DATA_TRAS_ERROR;
}
status = nvme_map_sgl(n, sg, sgl, len, cmd);
if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) {
status = NVME_MD_SGL_LEN_INVALID | NVME_DNR;
}
return status;
}
nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr));
status = nvme_map_addr(n, sg, mptr, len);
if (status) {
nvme_sg_unmap(sg);
}
return status;
}
static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
{
NvmeNamespace *ns = req->ns;
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
size_t len = nvme_l2b(ns, nlb);
uint16_t status;
if (nvme_ns_ext(ns) &&
!(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
NvmeSg sg;
len += nvme_m2b(ns, nlb);
status = nvme_map_dptr(n, &sg, len, &req->cmd);
if (status) {
return status;
}
nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
nvme_sg_split(&sg, ns, &req->sg, NULL);
nvme_sg_unmap(&sg);
return NVME_SUCCESS;
}
return nvme_map_dptr(n, &req->sg, len, &req->cmd);
}
static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
{
NvmeNamespace *ns = req->ns;
size_t len = nvme_m2b(ns, nlb);
uint16_t status;
if (nvme_ns_ext(ns)) {
NvmeSg sg;
len += nvme_l2b(ns, nlb);
status = nvme_map_dptr(n, &sg, len, &req->cmd);
if (status) {
return status;
}
nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
nvme_sg_split(&sg, ns, NULL, &req->sg);
nvme_sg_unmap(&sg);
return NVME_SUCCESS;
}
return nvme_map_mptr(n, &req->sg, len, &req->cmd);
}
static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr,
uint32_t len, uint32_t bytes,
int32_t skip_bytes, int64_t offset,
NvmeTxDirection dir)
{
hwaddr addr;
uint32_t trans_len, count = bytes;
bool dma = sg->flags & NVME_SG_DMA;
int64_t sge_len;
int sg_idx = 0;
int ret;
assert(sg->flags & NVME_SG_ALLOC);
while (len) {
sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
if (sge_len - offset < 0) {
offset -= sge_len;
sg_idx++;
continue;
}
if (sge_len == offset) {
offset = 0;
sg_idx++;
continue;
}
trans_len = MIN(len, count);
trans_len = MIN(trans_len, sge_len - offset);
if (dma) {
addr = sg->qsg.sg[sg_idx].base + offset;
} else {
addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset;
}
if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
ret = nvme_addr_read(n, addr, ptr, trans_len);
} else {
ret = nvme_addr_write(n, addr, ptr, trans_len);
}
if (ret) {
return NVME_DATA_TRAS_ERROR;
}
ptr += trans_len;
len -= trans_len;
count -= trans_len;
offset += trans_len;
if (count == 0) {
count = bytes;
offset += skip_bytes;
}
}
return NVME_SUCCESS;
}
static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, void *ptr, uint32_t len,
NvmeTxDirection dir)
{
assert(sg->flags & NVME_SG_ALLOC);
if (sg->flags & NVME_SG_DMA) {
const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
dma_addr_t residual;
if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
dma_buf_write(ptr, len, &residual, &sg->qsg, attrs);
} else {
dma_buf_read(ptr, len, &residual, &sg->qsg, attrs);
}
if (unlikely(residual)) {
trace_pci_nvme_err_invalid_dma();
return NVME_INVALID_FIELD | NVME_DNR;
}
} else {
size_t bytes;
if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len);
} else {
bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len);
}
if (unlikely(bytes != len)) {
trace_pci_nvme_err_invalid_dma();
return NVME_INVALID_FIELD | NVME_DNR;
}
}
return NVME_SUCCESS;
}
static inline uint16_t nvme_c2h(NvmeCtrl *n, void *ptr, uint32_t len,
NvmeRequest *req)
{
uint16_t status;
status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
if (status) {
return status;
}
return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE);
}
static inline uint16_t nvme_h2c(NvmeCtrl *n, void *ptr, uint32_t len,
NvmeRequest *req)
{
uint16_t status;
status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
if (status) {
return status;
}
return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE);
}
uint16_t nvme_bounce_data(NvmeCtrl *n, void *ptr, uint32_t len,
NvmeTxDirection dir, NvmeRequest *req)
{
NvmeNamespace *ns = req->ns;
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
if (nvme_ns_ext(ns) &&
!(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz,
ns->lbaf.ms, 0, dir);
}
return nvme_tx(n, &req->sg, ptr, len, dir);
}
uint16_t nvme_bounce_mdata(NvmeCtrl *n, void *ptr, uint32_t len,
NvmeTxDirection dir, NvmeRequest *req)
{
NvmeNamespace *ns = req->ns;
uint16_t status;
if (nvme_ns_ext(ns)) {
return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms,
ns->lbasz, ns->lbasz, dir);
}
nvme_sg_unmap(&req->sg);
status = nvme_map_mptr(n, &req->sg, len, &req->cmd);
if (status) {
return status;
}
return nvme_tx(n, &req->sg, ptr, len, dir);
}
static inline void nvme_blk_read(BlockBackend *blk, int64_t offset,
BlockCompletionFunc *cb, NvmeRequest *req)
{
assert(req->sg.flags & NVME_SG_ALLOC);
if (req->sg.flags & NVME_SG_DMA) {
req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
cb, req);
} else {
req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req);
}
}
static inline void nvme_blk_write(BlockBackend *blk, int64_t offset,
BlockCompletionFunc *cb, NvmeRequest *req)
{
assert(req->sg.flags & NVME_SG_ALLOC);
if (req->sg.flags & NVME_SG_DMA) {
req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
cb, req);
} else {
req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req);
}
}
static void nvme_update_cq_head(NvmeCQueue *cq)
{
pci_dma_read(&cq->ctrl->parent_obj, cq->db_addr, &cq->head,
sizeof(cq->head));
trace_pci_nvme_shadow_doorbell_cq(cq->cqid, cq->head);
}
static void nvme_post_cqes(void *opaque)
{
NvmeCQueue *cq = opaque;
NvmeCtrl *n = cq->ctrl;
NvmeRequest *req, *next;
bool pending = cq->head != cq->tail;
int ret;
QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
NvmeSQueue *sq;
hwaddr addr;
if (n->dbbuf_enabled) {
nvme_update_cq_head(cq);
}
if (nvme_cq_full(cq)) {
break;
}
sq = req->sq;
req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
req->cqe.sq_id = cpu_to_le16(sq->sqid);
req->cqe.sq_head = cpu_to_le16(sq->head);
addr = cq->dma_addr + cq->tail * n->cqe_size;
ret = pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
sizeof(req->cqe));
if (ret) {
trace_pci_nvme_err_addr_write(addr);
trace_pci_nvme_err_cfs();
stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
break;
}
QTAILQ_REMOVE(&cq->req_list, req, entry);
nvme_inc_cq_tail(cq);
nvme_sg_unmap(&req->sg);
QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
}
if (cq->tail != cq->head) {
if (cq->irq_enabled && !pending) {
n->cq_pending++;
}
nvme_irq_assert(n, cq);
}
}
static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
{
assert(cq->cqid == req->sq->cqid);
trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
le32_to_cpu(req->cqe.result),
le32_to_cpu(req->cqe.dw1),
req->status);
if (req->status) {
trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns),
req->status, req->cmd.opcode);
}
QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
if (req->sq->ioeventfd_enabled) {
/* Post CQE directly since we are in main loop thread */
nvme_post_cqes(cq);
} else {
/* Schedule the timer to post CQE later since we are in vcpu thread */
timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
}
}
static void nvme_process_aers(void *opaque)
{
NvmeCtrl *n = opaque;
NvmeAsyncEvent *event, *next;
trace_pci_nvme_process_aers(n->aer_queued);
QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
NvmeRequest *req;
NvmeAerResult *result;
/* can't post cqe if there is nothing to complete */
if (!n->outstanding_aers) {
trace_pci_nvme_no_outstanding_aers();
break;
}
/* ignore if masked (cqe posted, but event not cleared) */
if (n->aer_mask & (1 << event->result.event_type)) {
trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
continue;
}
QTAILQ_REMOVE(&n->aer_queue, event, entry);
n->aer_queued--;
n->aer_mask |= 1 << event->result.event_type;
n->outstanding_aers--;
req = n->aer_reqs[n->outstanding_aers];
result = (NvmeAerResult *) &req->cqe.result;
result->event_type = event->result.event_type;
result->event_info = event->result.event_info;
result->log_page = event->result.log_page;
g_free(event);
trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
result->log_page);
nvme_enqueue_req_completion(&n->admin_cq, req);
}
}
static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
uint8_t event_info, uint8_t log_page)
{
NvmeAsyncEvent *event;
trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
if (n->aer_queued == n->params.aer_max_queued) {
trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
return;
}
event = g_new(NvmeAsyncEvent, 1);
event->result = (NvmeAerResult) {
.event_type = event_type,
.event_info = event_info,
.log_page = log_page,
};
QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
n->aer_queued++;
nvme_process_aers(n);
}
static void nvme_smart_event(NvmeCtrl *n, uint8_t event)
{
uint8_t aer_info;
/* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */
if (!(NVME_AEC_SMART(n->features.async_config) & event)) {
return;
}
switch (event) {
case NVME_SMART_SPARE:
aer_info = NVME_AER_INFO_SMART_SPARE_THRESH;
break;
case NVME_SMART_TEMPERATURE:
aer_info = NVME_AER_INFO_SMART_TEMP_THRESH;
break;
case NVME_SMART_RELIABILITY:
case NVME_SMART_MEDIA_READ_ONLY:
case NVME_SMART_FAILED_VOLATILE_MEDIA:
case NVME_SMART_PMR_UNRELIABLE:
aer_info = NVME_AER_INFO_SMART_RELIABILITY;
break;
default:
return;
}
nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO);
}
static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
{
n->aer_mask &= ~(1 << event_type);
if (!QTAILQ_EMPTY(&n->aer_queue)) {
nvme_process_aers(n);
}
}
static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
{
uint8_t mdts = n->params.mdts;
if (mdts && len > n->page_size << mdts) {
trace_pci_nvme_err_mdts(len);
return NVME_INVALID_FIELD | NVME_DNR;
}
return NVME_SUCCESS;
}
static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba,
uint32_t nlb)
{
uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze);
return NVME_LBA_RANGE | NVME_DNR;
}
return NVME_SUCCESS;
}
static int nvme_block_status_all(NvmeNamespace *ns, uint64_t slba,
uint32_t nlb, int flags)
{
BlockDriverState *bs = blk_bs(ns->blkconf.blk);
int64_t pnum = 0, bytes = nvme_l2b(ns, nlb);
int64_t offset = nvme_l2b(ns, slba);
int ret;
/*
* `pnum` holds the number of bytes after offset that shares the same
* allocation status as the byte at offset. If `pnum` is different from
* `bytes`, we should check the allocation status of the next range and
* continue this until all bytes have been checked.
*/
do {
bytes -= pnum;
ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL);
if (ret < 0) {
return ret;
}
trace_pci_nvme_block_status(offset, bytes, pnum, ret,
!!(ret & BDRV_BLOCK_ZERO));
if (!(ret & flags)) {
return 1;
}
offset += pnum;
} while (pnum != bytes);
return 0;
}
static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba,
uint32_t nlb)
{
int ret;
Error *err = NULL;
ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_DATA);
if (ret) {
if (ret < 0) {
error_setg_errno(&err, -ret, "unable to get block status");
error_report_err(err);
return NVME_INTERNAL_DEV_ERROR;
}
return NVME_DULB;
}
return NVME_SUCCESS;
}
static void nvme_aio_err(NvmeRequest *req, int ret)
{
uint16_t status = NVME_SUCCESS;
Error *local_err = NULL;
switch (req->cmd.opcode) {
case NVME_CMD_READ:
status = NVME_UNRECOVERED_READ;
break;
case NVME_CMD_FLUSH:
case NVME_CMD_WRITE:
case NVME_CMD_WRITE_ZEROES:
case NVME_CMD_ZONE_APPEND:
status = NVME_WRITE_FAULT;
break;
default:
status = NVME_INTERNAL_DEV_ERROR;
break;
}
trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status);
error_setg_errno(&local_err, -ret, "aio failed");
error_report_err(local_err);
/*
* Set the command status code to the first encountered error but allow a
* subsequent Internal Device Error to trump it.
*/
if (req->status && status != NVME_INTERNAL_DEV_ERROR) {
return;
}
req->status = status;
}
static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba)
{
return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 :
slba / ns->zone_size;
}
static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba)
{
uint32_t zone_idx = nvme_zone_idx(ns, slba);
if (zone_idx >= ns->num_zones) {
return NULL;
}
return &ns->zone_array[zone_idx];
}
static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone)
{
uint64_t zslba = zone->d.zslba;
switch (nvme_get_zone_state(zone)) {
case NVME_ZONE_STATE_EMPTY:
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
case NVME_ZONE_STATE_CLOSED:
return NVME_SUCCESS;
case NVME_ZONE_STATE_FULL:
trace_pci_nvme_err_zone_is_full(zslba);
return NVME_ZONE_FULL;
case NVME_ZONE_STATE_OFFLINE:
trace_pci_nvme_err_zone_is_offline(zslba);
return NVME_ZONE_OFFLINE;
case NVME_ZONE_STATE_READ_ONLY:
trace_pci_nvme_err_zone_is_read_only(zslba);
return NVME_ZONE_READ_ONLY;
default:
assert(false);
}
return NVME_INTERNAL_DEV_ERROR;
}
static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone,
uint64_t slba, uint32_t nlb)
{
uint64_t zcap = nvme_zone_wr_boundary(zone);
uint16_t status;
status = nvme_check_zone_state_for_write(zone);
if (status) {
return status;
}
if (zone->d.za & NVME_ZA_ZRWA_VALID) {
uint64_t ezrwa = zone->w_ptr + 2 * ns->zns.zrwas;
if (slba < zone->w_ptr || slba + nlb > ezrwa) {
trace_pci_nvme_err_zone_invalid_write(slba, zone->w_ptr);
return NVME_ZONE_INVALID_WRITE;
}
} else {
if (unlikely(slba != zone->w_ptr)) {
trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba,
zone->w_ptr);
return NVME_ZONE_INVALID_WRITE;
}
}
if (unlikely((slba + nlb) > zcap)) {
trace_pci_nvme_err_zone_boundary(slba, nlb, zcap);
return NVME_ZONE_BOUNDARY_ERROR;
}
return NVME_SUCCESS;
}
static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone)
{
switch (nvme_get_zone_state(zone)) {
case NVME_ZONE_STATE_EMPTY:
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
case NVME_ZONE_STATE_FULL:
case NVME_ZONE_STATE_CLOSED:
case NVME_ZONE_STATE_READ_ONLY:
return NVME_SUCCESS;
case NVME_ZONE_STATE_OFFLINE:
trace_pci_nvme_err_zone_is_offline(zone->d.zslba);
return NVME_ZONE_OFFLINE;
default:
assert(false);
}
return NVME_INTERNAL_DEV_ERROR;
}
static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba,
uint32_t nlb)
{
NvmeZone *zone;
uint64_t bndry, end;
uint16_t status;
zone = nvme_get_zone_by_slba(ns, slba);
assert(zone);
bndry = nvme_zone_rd_boundary(ns, zone);
end = slba + nlb;
status = nvme_check_zone_state_for_read(zone);
if (status) {
;
} else if (unlikely(end > bndry)) {
if (!ns->params.cross_zone_read) {
status = NVME_ZONE_BOUNDARY_ERROR;
} else {
/*
* Read across zone boundary - check that all subsequent
* zones that are being read have an appropriate state.
*/
do {
zone++;
status = nvme_check_zone_state_for_read(zone);
if (status) {
break;
}
} while (end > nvme_zone_rd_boundary(ns, zone));
}
}
return status;
}
static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone)
{
switch (nvme_get_zone_state(zone)) {
case NVME_ZONE_STATE_FULL:
return NVME_SUCCESS;
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
nvme_aor_dec_open(ns);
/* fallthrough */
case NVME_ZONE_STATE_CLOSED:
nvme_aor_dec_active(ns);
if (zone->d.za & NVME_ZA_ZRWA_VALID) {
zone->d.za &= ~NVME_ZA_ZRWA_VALID;
if (ns->params.numzrwa) {
ns->zns.numzrwa++;
}
}
/* fallthrough */
case NVME_ZONE_STATE_EMPTY:
nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL);
return NVME_SUCCESS;
default:
return NVME_ZONE_INVAL_TRANSITION;
}
}
static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone)
{
switch (nvme_get_zone_state(zone)) {
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
nvme_aor_dec_open(ns);
nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
/* fall through */
case NVME_ZONE_STATE_CLOSED:
return NVME_SUCCESS;
default:
return NVME_ZONE_INVAL_TRANSITION;
}
}
static uint16_t nvme_zrm_reset(NvmeNamespace *ns, NvmeZone *zone)
{
switch (nvme_get_zone_state(zone)) {
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
nvme_aor_dec_open(ns);
/* fallthrough */
case NVME_ZONE_STATE_CLOSED:
nvme_aor_dec_active(ns);
if (zone->d.za & NVME_ZA_ZRWA_VALID) {
if (ns->params.numzrwa) {
ns->zns.numzrwa++;
}
}
/* fallthrough */
case NVME_ZONE_STATE_FULL:
zone->w_ptr = zone->d.zslba;
zone->d.wp = zone->w_ptr;
nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY);
/* fallthrough */
case NVME_ZONE_STATE_EMPTY:
return NVME_SUCCESS;
default:
return NVME_ZONE_INVAL_TRANSITION;
}
}
static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns)
{
NvmeZone *zone;
if (ns->params.max_open_zones &&
ns->nr_open_zones == ns->params.max_open_zones) {
zone = QTAILQ_FIRST(&ns->imp_open_zones);
if (zone) {
/*
* Automatically close this implicitly open zone.
*/
QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
nvme_zrm_close(ns, zone);
}
}
}
enum {
NVME_ZRM_AUTO = 1 << 0,
NVME_ZRM_ZRWA = 1 << 1,
};
static uint16_t nvme_zrm_open_flags(NvmeCtrl *n, NvmeNamespace *ns,
NvmeZone *zone, int flags)
{
int act = 0;
uint16_t status;
switch (nvme_get_zone_state(zone)) {
case NVME_ZONE_STATE_EMPTY:
act = 1;
/* fallthrough */
case NVME_ZONE_STATE_CLOSED:
if (n->params.auto_transition_zones) {
nvme_zrm_auto_transition_zone(ns);
}
status = nvme_zns_check_resources(ns, act, 1,
(flags & NVME_ZRM_ZRWA) ? 1 : 0);
if (status) {
return status;
}
if (act) {
nvme_aor_inc_active(ns);
}
nvme_aor_inc_open(ns);
if (flags & NVME_ZRM_AUTO) {
nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN);
return NVME_SUCCESS;
}
/* fallthrough */
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
if (flags & NVME_ZRM_AUTO) {
return NVME_SUCCESS;
}
nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN);
/* fallthrough */
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
if (flags & NVME_ZRM_ZRWA) {
ns->zns.numzrwa--;
zone->d.za |= NVME_ZA_ZRWA_VALID;
}
return NVME_SUCCESS;
default:
return NVME_ZONE_INVAL_TRANSITION;
}
}
static inline uint16_t nvme_zrm_auto(NvmeCtrl *n, NvmeNamespace *ns,
NvmeZone *zone)
{
return nvme_zrm_open_flags(n, ns, zone, NVME_ZRM_AUTO);
}
static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone,
uint32_t nlb)
{
zone->d.wp += nlb;
if (zone->d.wp == nvme_zone_wr_boundary(zone)) {
nvme_zrm_finish(ns, zone);
}
}
static void nvme_zoned_zrwa_implicit_flush(NvmeNamespace *ns, NvmeZone *zone,
uint32_t nlbc)
{
uint16_t nzrwafgs = DIV_ROUND_UP(nlbc, ns->zns.zrwafg);
nlbc = nzrwafgs * ns->zns.zrwafg;
trace_pci_nvme_zoned_zrwa_implicit_flush(zone->d.zslba, nlbc);
zone->w_ptr += nlbc;
nvme_advance_zone_wp(ns, zone, nlbc);
}
static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req)
{
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
NvmeZone *zone;
uint64_t slba;
uint32_t nlb;
slba = le64_to_cpu(rw->slba);
nlb = le16_to_cpu(rw->nlb) + 1;
zone = nvme_get_zone_by_slba(ns, slba);
assert(zone);
if (zone->d.za & NVME_ZA_ZRWA_VALID) {
uint64_t ezrwa = zone->w_ptr + ns->zns.zrwas - 1;
uint64_t elba = slba + nlb - 1;
if (elba > ezrwa) {
nvme_zoned_zrwa_implicit_flush(ns, zone, elba - ezrwa);
}
return;
}
nvme_advance_zone_wp(ns, zone, nlb);
}
static inline bool nvme_is_write(NvmeRequest *req)
{
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
return rw->opcode == NVME_CMD_WRITE ||
rw->opcode == NVME_CMD_ZONE_APPEND ||
rw->opcode == NVME_CMD_WRITE_ZEROES;
}
static AioContext *nvme_get_aio_context(BlockAIOCB *acb)
{
return qemu_get_aio_context();
}
static void nvme_misc_cb(void *opaque, int ret)
{
NvmeRequest *req = opaque;
trace_pci_nvme_misc_cb(nvme_cid(req));
if (ret) {
nvme_aio_err(req, ret);
}
nvme_enqueue_req_completion(nvme_cq(req), req);
}
void nvme_rw_complete_cb(void *opaque, int ret)
{
NvmeRequest *req = opaque;
NvmeNamespace *ns = req->ns;
BlockBackend *blk = ns->blkconf.blk;
BlockAcctCookie *acct = &req->acct;
BlockAcctStats *stats = blk_get_stats(blk);
trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk));
if (ret) {
block_acct_failed(stats, acct);
nvme_aio_err(req, ret);
} else {
block_acct_done(stats, acct);
}
if (ns->params.zoned && nvme_is_write(req)) {
nvme_finalize_zoned_write(ns, req);
}
nvme_enqueue_req_completion(nvme_cq(req), req);
}
static void nvme_rw_cb(void *opaque, int ret)
{
NvmeRequest *req = opaque;
NvmeNamespace *ns = req->ns;
BlockBackend *blk = ns->blkconf.blk;
trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk));
if (ret) {
goto out;
}
if (ns->lbaf.ms) {
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
uint64_t slba = le64_to_cpu(rw->slba);
uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
uint64_t offset = nvme_moff(ns, slba);
if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) {
size_t mlen = nvme_m2b(ns, nlb);
req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen,
BDRV_REQ_MAY_UNMAP,
nvme_rw_complete_cb, req);
return;
}
if (nvme_ns_ext(ns) || req->cmd.mptr) {
uint16_t status;
nvme_sg_unmap(&req->sg);
status = nvme_map_mdata(nvme_ctrl(req), nlb, req);
if (status) {
ret = -EFAULT;
goto out;
}
if (req->cmd.opcode == NVME_CMD_READ) {
return nvme_blk_read(blk, offset, nvme_rw_complete_cb, req);
}
return nvme_blk_write(blk, offset, nvme_rw_complete_cb, req);
}
}
out:
nvme_rw_complete_cb(req, ret);
}
static void nvme_verify_cb(void *opaque, int ret)
{
NvmeBounceContext *ctx = opaque;
NvmeRequest *req = ctx->req;
NvmeNamespace *ns = req->ns;
BlockBackend *blk = ns->blkconf.blk;
BlockAcctCookie *acct = &req->acct;
BlockAcctStats *stats = blk_get_stats(blk);
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
uint64_t slba = le64_to_cpu(rw->slba);
uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
uint16_t apptag = le16_to_cpu(rw->apptag);
uint16_t appmask = le16_to_cpu(rw->appmask);
uint64_t reftag = le32_to_cpu(rw->reftag);
uint64_t cdw3 = le32_to_cpu(rw->cdw3);
uint16_t status;
reftag |= cdw3 << 32;
trace_pci_nvme_verify_cb(nvme_cid(req), prinfo, apptag, appmask, reftag);
if (ret) {
block_acct_failed(stats, acct);
nvme_aio_err(req, ret);
goto out;
}
block_acct_done(stats, acct);
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce,
ctx->mdata.iov.size, slba);
if (status) {
req->status = status;
goto out;
}
req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
ctx->mdata.bounce, ctx->mdata.iov.size,
prinfo, slba, apptag, appmask, &reftag);
}
out:
qemu_iovec_destroy(&ctx->data.iov);
g_free(ctx->data.bounce);
qemu_iovec_destroy(&ctx->mdata.iov);
g_free(ctx->mdata.bounce);
g_free(ctx);
nvme_enqueue_req_completion(nvme_cq(req), req);
}
static void nvme_verify_mdata_in_cb(void *opaque, int ret)
{
NvmeBounceContext *ctx = opaque;
NvmeRequest *req = ctx->req;
NvmeNamespace *ns = req->ns;
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
uint64_t slba = le64_to_cpu(rw->slba);
uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
size_t mlen = nvme_m2b(ns, nlb);
uint64_t offset = nvme_moff(ns, slba);
BlockBackend *blk = ns->blkconf.blk;
trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk));
if (ret) {
goto out;
}
ctx->mdata.bounce = g_malloc(mlen);
qemu_iovec_reset(&ctx->mdata.iov);
qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
nvme_verify_cb, ctx);
return;
out:
nvme_verify_cb(ctx, ret);
}
struct nvme_compare_ctx {
struct {
QEMUIOVector iov;
uint8_t *bounce;
} data;
struct {
QEMUIOVector iov;
uint8_t *bounce;
} mdata;
};
static void nvme_compare_mdata_cb(void *opaque, int ret)
{
NvmeRequest *req = opaque;
NvmeNamespace *ns = req->ns;
NvmeCtrl *n = nvme_ctrl(req);
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
uint16_t apptag = le16_to_cpu(rw->apptag);
uint16_t appmask = le16_to_cpu(rw->appmask);
uint64_t reftag = le32_to_cpu(rw->reftag);
uint64_t cdw3 = le32_to_cpu(rw->cdw3);
struct nvme_compare_ctx *ctx = req->opaque;
g_autofree uint8_t *buf = NULL;
BlockBackend *blk = ns->blkconf.blk;
BlockAcctCookie *acct = &req->acct;
BlockAcctStats *stats = blk_get_stats(blk);
uint16_t status = NVME_SUCCESS;
reftag |= cdw3 << 32;
trace_pci_nvme_compare_mdata_cb(nvme_cid(req));
if (ret) {
block_acct_failed(stats, acct);
nvme_aio_err(req, ret);
goto out;
}
buf = g_malloc(ctx->mdata.iov.size);
status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size,
NVME_TX_DIRECTION_TO_DEVICE, req);
if (status) {
req->status = status;
goto out;
}
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
uint64_t slba = le64_to_cpu(rw->slba);
uint8_t *bufp;
uint8_t *mbufp = ctx->mdata.bounce;
uint8_t *end = mbufp + ctx->mdata.iov.size;
int16_t pil = 0;
status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
ctx->mdata.bounce, ctx->mdata.iov.size, prinfo,
slba, apptag, appmask, &reftag);
if (status) {
req->status = status;
goto out;
}
/*
* When formatted with protection information, do not compare the DIF
* tuple.
*/
if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) {
pil = ns->lbaf.ms - nvme_pi_tuple_size(ns);
}
for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) {
if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) {
req->status = NVME_CMP_FAILURE;
goto out;
}
}
goto out;
}
if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) {
req->status = NVME_CMP_FAILURE;
goto out;
}
block_acct_done(stats, acct);
out:
qemu_iovec_destroy(&ctx->data.iov);
g_free(ctx->data.bounce);
qemu_iovec_destroy(&ctx->mdata.iov);
g_free(ctx->mdata.bounce);
g_free(ctx);
nvme_enqueue_req_completion(nvme_cq(req), req);
}
static void nvme_compare_data_cb(void *opaque, int ret)
{
NvmeRequest *req = opaque;
NvmeCtrl *n = nvme_ctrl(req);
NvmeNamespace *ns = req->ns;
BlockBackend *blk = ns->blkconf.blk;
BlockAcctCookie *acct = &req->acct;
BlockAcctStats *stats = blk_get_stats(blk);
struct nvme_compare_ctx *ctx = req->opaque;
g_autofree uint8_t *buf = NULL;
uint16_t status;
trace_pci_nvme_compare_data_cb(nvme_cid(req));
if (ret) {
block_acct_failed(stats, acct);
nvme_aio_err(req, ret);
goto out;
}
buf = g_malloc(ctx->data.iov.size);
status = nvme_bounce_data(n, buf, ctx->data.iov.size,
NVME_TX_DIRECTION_TO_DEVICE, req);
if (status) {
req->status = status;
goto out;
}
if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) {
req->status = NVME_CMP_FAILURE;
goto out;
}
if (ns->lbaf.ms) {
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
uint64_t slba = le64_to_cpu(rw->slba);
uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
size_t mlen = nvme_m2b(ns, nlb);
uint64_t offset = nvme_moff(ns, slba);
ctx->mdata.bounce = g_malloc(mlen);
qemu_iovec_init(&ctx->mdata.iov, 1);
qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
nvme_compare_mdata_cb, req);
return;
}
block_acct_done(stats, acct);
out:
qemu_iovec_destroy(&ctx->data.iov);
g_free(ctx->data.bounce);
g_free(ctx);
nvme_enqueue_req_completion(nvme_cq(req), req);
}
typedef struct NvmeDSMAIOCB {
BlockAIOCB common;
BlockAIOCB *aiocb;
NvmeRequest *req;
QEMUBH *bh;
int ret;
NvmeDsmRange *range;
unsigned int nr;
unsigned int idx;
} NvmeDSMAIOCB;
static void nvme_dsm_cancel(BlockAIOCB *aiocb)
{
NvmeDSMAIOCB *iocb = container_of(aiocb, NvmeDSMAIOCB, common);
/* break nvme_dsm_cb loop */
iocb->idx = iocb->nr;
iocb->ret = -ECANCELED;
if (iocb->aiocb) {
blk_aio_cancel_async(iocb->aiocb);
iocb->aiocb = NULL;
} else {
/*
* We only reach this if nvme_dsm_cancel() has already been called or
* the command ran to completion and nvme_dsm_bh is scheduled to run.
*/
assert(iocb->idx == iocb->nr);
}
}
static const AIOCBInfo nvme_dsm_aiocb_info = {
.aiocb_size = sizeof(NvmeDSMAIOCB),
.cancel_async = nvme_dsm_cancel,
};
static void nvme_dsm_bh(void *opaque)
{
NvmeDSMAIOCB *iocb = opaque;
iocb->common.cb(iocb->common.opaque, iocb->ret);
qemu_bh_delete(iocb->bh);
iocb->bh = NULL;
qemu_aio_unref(iocb);
}
static void nvme_dsm_cb(void *opaque, int ret);
static void nvme_dsm_md_cb(void *opaque, int ret)
{
NvmeDSMAIOCB *iocb = opaque;
NvmeRequest *req = iocb->req;
NvmeNamespace *ns = req->ns;
NvmeDsmRange *range;
uint64_t slba;
uint32_t nlb;
if (ret < 0) {
iocb->ret = ret;
goto done;
}
if (!ns->lbaf.ms) {
nvme_dsm_cb(iocb, 0);
return;
}
range = &iocb->range[iocb->idx - 1];
slba = le64_to_cpu(range->slba);
nlb = le32_to_cpu(range->nlb);
/*
* Check that all block were discarded (zeroed); otherwise we do not zero
* the metadata.
*/
ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_ZERO);
if (ret) {
if (ret < 0) {
iocb->ret = ret;
goto done;
}
nvme_dsm_cb(iocb, 0);
return;
}
iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_moff(ns, slba),
nvme_m2b(ns, nlb), BDRV_REQ_MAY_UNMAP,
nvme_dsm_cb, iocb);
return;
done:
iocb->aiocb = NULL;
qemu_bh_schedule(iocb->bh);
}
static void nvme_dsm_cb(void *opaque, int ret)
{
NvmeDSMAIOCB *iocb = opaque;
NvmeRequest *req = iocb->req;
NvmeCtrl *n = nvme_ctrl(req);
NvmeNamespace *ns = req->ns;
NvmeDsmRange *range;
uint64_t slba;
uint32_t nlb;
if (ret < 0) {
iocb->ret = ret;
goto done;
}
next:
if (iocb->idx == iocb->nr) {
goto done;
}
range = &iocb->range[iocb->idx++];
slba = le64_to_cpu(range->slba);
nlb = le32_to_cpu(range->nlb);
trace_pci_nvme_dsm_deallocate(slba, nlb);
if (nlb > n->dmrsl) {
trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl);
goto next;
}
if (nvme_check_bounds(ns, slba, nlb)) {
trace_pci_nvme_err_invalid_lba_range(slba, nlb,
ns->id_ns.nsze);
goto next;
}
iocb->aiocb = blk_aio_pdiscard(ns->blkconf.blk, nvme_l2b(ns, slba),
nvme_l2b(ns, nlb),
nvme_dsm_md_cb, iocb);
return;
done:
iocb->aiocb = NULL;
qemu_bh_schedule(iocb->bh);
}
static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req)
{
NvmeNamespace *ns = req->ns;
NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd;
uint32_t attr = le32_to_cpu(dsm->attributes);
uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1;
uint16_t status = NVME_SUCCESS;
trace_pci_nvme_dsm(nr, attr);
if (attr & NVME_DSMGMT_AD) {
NvmeDSMAIOCB *iocb = blk_aio_get(&nvme_dsm_aiocb_info, ns->blkconf.blk,
nvme_misc_cb, req);
iocb->req = req;
iocb->bh = qemu_bh_new(nvme_dsm_bh, iocb);
iocb->ret = 0;
iocb->range = g_new(NvmeDsmRange, nr);
iocb->nr = nr;
iocb->idx = 0;
status = nvme_h2c(n, (uint8_t *)iocb->range, sizeof(NvmeDsmRange) * nr,
req);
if (status) {
return status;
}
req->aiocb = &iocb->common;
nvme_dsm_cb(iocb, 0);
return NVME_NO_COMPLETE;
}
return status;
}
static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req)
{
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
NvmeNamespace *ns = req->ns;
BlockBackend *blk = ns->blkconf.blk;
uint64_t slba = le64_to_cpu(rw->slba);
uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
size_t len = nvme_l2b(ns, nlb);
int64_t offset = nvme_l2b(ns, slba);
uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
uint32_t reftag = le32_to_cpu(rw->reftag);
NvmeBounceContext *ctx = NULL;
uint16_t status;
trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb);
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
status = nvme_check_prinfo(ns, prinfo, slba, reftag);
if (status) {
return status;
}
if (prinfo & NVME_PRINFO_PRACT) {
return NVME_INVALID_PROT_INFO | NVME_DNR;
}
}
if (len > n->page_size << n->params.vsl) {
return NVME_INVALID_FIELD | NVME_DNR;
}
status = nvme_check_bounds(ns, slba, nlb);
if (status) {
return status;
}
if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
status = nvme_check_dulbe(ns, slba, nlb);
if (status) {
return status;
}
}
ctx = g_new0(NvmeBounceContext, 1);
ctx->req = req;
ctx->data.bounce = g_malloc(len);
qemu_iovec_init(&ctx->data.iov, 1);
qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len);
block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size,
BLOCK_ACCT_READ);
req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0,
nvme_verify_mdata_in_cb, ctx);
return NVME_NO_COMPLETE;
}
typedef struct NvmeCopyAIOCB {
BlockAIOCB common;
BlockAIOCB *aiocb;
NvmeRequest *req;
QEMUBH *bh;
int ret;
void *ranges;
unsigned int format;
int nr;
int idx;
uint8_t *bounce;
QEMUIOVector iov;
struct {
BlockAcctCookie read;
BlockAcctCookie write;
} acct;
uint64_t reftag;
uint64_t slba;
NvmeZone *zone;
} NvmeCopyAIOCB;
static void nvme_copy_cancel(BlockAIOCB *aiocb)
{
NvmeCopyAIOCB *iocb = container_of(aiocb, NvmeCopyAIOCB, common);
iocb->ret = -ECANCELED;
if (iocb->aiocb) {
blk_aio_cancel_async(iocb->aiocb);
iocb->aiocb = NULL;
}
}
static const AIOCBInfo nvme_copy_aiocb_info = {
.aiocb_size = sizeof(NvmeCopyAIOCB),
.cancel_async = nvme_copy_cancel,
};
static void nvme_copy_bh(void *opaque)
{
NvmeCopyAIOCB *iocb = opaque;
NvmeRequest *req = iocb->req;
NvmeNamespace *ns = req->ns;
BlockAcctStats *stats = blk_get_stats(ns->blkconf.blk);
if (iocb->idx != iocb->nr) {
req->cqe.result = cpu_to_le32(iocb->idx);
}
qemu_iovec_destroy(&iocb->iov);
g_free(iocb->bounce);
qemu_bh_delete(iocb->bh);
iocb->bh = NULL;
if (iocb->ret < 0) {
block_acct_failed(stats, &iocb->acct.read);
block_acct_failed(stats, &iocb->acct.write);
} else {
block_acct_done(stats, &iocb->acct.read);
block_acct_done(stats, &iocb->acct.write);
}
iocb->common.cb(iocb->common.opaque, iocb->ret);
qemu_aio_unref(iocb);
}
static void nvme_copy_cb(void *opaque, int ret);
static void nvme_copy_source_range_parse_format0(void *ranges, int idx,
uint64_t *slba, uint32_t *nlb,
uint16_t *apptag,
uint16_t *appmask,
uint64_t *reftag)
{
NvmeCopySourceRangeFormat0 *_ranges = ranges;
if (slba) {
*slba = le64_to_cpu(_ranges[idx].slba);
}
if (nlb) {
*nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
}
if (apptag) {
*apptag = le16_to_cpu(_ranges[idx].apptag);
}
if (appmask) {
*appmask = le16_to_cpu(_ranges[idx].appmask);
}
if (reftag) {
*reftag = le32_to_cpu(_ranges[idx].reftag);
}
}
static void nvme_copy_source_range_parse_format1(void *ranges, int idx,
uint64_t *slba, uint32_t *nlb,
uint16_t *apptag,
uint16_t *appmask,
uint64_t *reftag)
{
NvmeCopySourceRangeFormat1 *_ranges = ranges;
if (slba) {
*slba = le64_to_cpu(_ranges[idx].slba);
}
if (nlb) {
*nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
}
if (apptag) {
*apptag = le16_to_cpu(_ranges[idx].apptag);
}
if (appmask) {
*appmask = le16_to_cpu(_ranges[idx].appmask);
}
if (reftag) {
*reftag = 0;
*reftag |= (uint64_t)_ranges[idx].sr[4] << 40;
*reftag |= (uint64_t)_ranges[idx].sr[5] << 32;
*reftag |= (uint64_t)_ranges[idx].sr[6] << 24;
*reftag |= (uint64_t)_ranges[idx].sr[7] << 16;
*reftag |= (uint64_t)_ranges[idx].sr[8] << 8;
*reftag |= (uint64_t)_ranges[idx].sr[9];
}
}
static void nvme_copy_source_range_parse(void *ranges, int idx, uint8_t format,
uint64_t *slba, uint32_t *nlb,
uint16_t *apptag, uint16_t *appmask,
uint64_t *reftag)
{
switch (format) {
case NVME_COPY_FORMAT_0:
nvme_copy_source_range_parse_format0(ranges, idx, slba, nlb, apptag,
appmask, reftag);
break;
case NVME_COPY_FORMAT_1:
nvme_copy_source_range_parse_format1(ranges, idx, slba, nlb, apptag,
appmask, reftag);
break;
default:
abort();
}
}
static void nvme_copy_out_completed_cb(void *opaque, int ret)
{
NvmeCopyAIOCB *iocb = opaque;
NvmeRequest *req = iocb->req;
NvmeNamespace *ns = req->ns;
uint32_t nlb;
nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
&nlb, NULL, NULL, NULL);
if (ret < 0) {
iocb->ret = ret;
goto out;
} else if (iocb->ret < 0) {
goto out;
}
if (ns->params.zoned) {
nvme_advance_zone_wp(ns, iocb->zone, nlb);
}
iocb->idx++;
iocb->slba += nlb;
out:
nvme_copy_cb(iocb, iocb->ret);
}
static void nvme_copy_out_cb(void *opaque, int ret)
{
NvmeCopyAIOCB *iocb = opaque;
NvmeRequest *req = iocb->req;
NvmeNamespace *ns = req->ns;
uint32_t nlb;
size_t mlen;
uint8_t *mbounce;
if (ret < 0) {
iocb->ret = ret;
goto out;
} else if (iocb->ret < 0) {
goto out;
}
if (!ns->lbaf.ms) {
nvme_copy_out_completed_cb(iocb, 0);
return;
}
nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
&nlb, NULL, NULL, NULL);
mlen = nvme_m2b(ns, nlb);
mbounce = iocb->bounce + nvme_l2b(ns, nlb);
qemu_iovec_reset(&iocb->iov);
qemu_iovec_add(&iocb->iov, mbounce, mlen);
iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_moff(ns, iocb->slba),
&iocb->iov, 0, nvme_copy_out_completed_cb,
iocb);
return;
out:
nvme_copy_cb(iocb, ret);
}
static void nvme_copy_in_completed_cb(void *opaque, int ret)
{
NvmeCopyAIOCB *iocb = opaque;
NvmeRequest *req = iocb->req;
NvmeNamespace *ns = req->ns;
uint32_t nlb;
uint64_t slba;
uint16_t apptag, appmask;
uint64_t reftag;
size_t len;
uint16_t status;
if (ret < 0) {
iocb->ret = ret;
goto out;
} else if (iocb->ret < 0) {
goto out;
}
nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
&nlb, &apptag, &appmask, &reftag);
len = nvme_l2b(ns, nlb);
trace_pci_nvme_copy_out(iocb->slba, nlb);
if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
size_t mlen = nvme_m2b(ns, nlb);
uint8_t *mbounce = iocb->bounce + nvme_l2b(ns, nlb);
status = nvme_dif_mangle_mdata(ns, mbounce, mlen, slba);
if (status) {
goto invalid;
}
status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen, prinfor,
slba, apptag, appmask, &reftag);
if (status) {
goto invalid;
}
apptag = le16_to_cpu(copy->apptag);
appmask = le16_to_cpu(copy->appmask);
if (prinfow & NVME_PRINFO_PRACT) {
status = nvme_check_prinfo(ns, prinfow, iocb->slba, iocb->reftag);
if (status) {
goto invalid;
}
nvme_dif_pract_generate_dif(ns, iocb->bounce, len, mbounce, mlen,
apptag, &iocb->reftag);
} else {
status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen,
prinfow, iocb->slba, apptag, appmask,
&iocb->reftag);
if (status) {
goto invalid;
}
}
}
status = nvme_check_bounds(ns, iocb->slba, nlb);
if (status) {
goto invalid;
}
if (ns->params.zoned) {
status = nvme_check_zone_write(ns, iocb->zone, iocb->slba, nlb);
if (status) {
goto invalid;
}
if (!(iocb->zone->d.za & NVME_ZA_ZRWA_VALID)) {
iocb->zone->w_ptr += nlb;
}
}
qemu_iovec_reset(&iocb->iov);
qemu_iovec_add(&iocb->iov, iocb->bounce, len);
iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, iocb->slba),
&iocb->iov, 0, nvme_copy_out_cb, iocb);
return;
invalid:
req->status = status;
iocb->aiocb = NULL;
if (iocb->bh) {
qemu_bh_schedule(iocb->bh);
}
return;
out:
nvme_copy_cb(iocb, ret);
}
static void nvme_copy_in_cb(void *opaque, int ret)
{
NvmeCopyAIOCB *iocb = opaque;
NvmeRequest *req = iocb->req;
NvmeNamespace *ns = req->ns;
uint64_t slba;
uint32_t nlb;
if (ret < 0) {
iocb->ret = ret;
goto out;
} else if (iocb->ret < 0) {
goto out;
}
if (!ns->lbaf.ms) {
nvme_copy_in_completed_cb(iocb, 0);
return;
}
nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
&nlb, NULL, NULL, NULL);
qemu_iovec_reset(&iocb->iov);
qemu_iovec_add(&iocb->iov, iocb->bounce + nvme_l2b(ns, nlb),
nvme_m2b(ns, nlb));
iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_moff(ns, slba),
&iocb->iov, 0, nvme_copy_in_completed_cb,
iocb);
return;
out:
nvme_copy_cb(iocb, iocb->ret);
}
static void nvme_copy_cb(void *opaque, int ret)
{
NvmeCopyAIOCB *iocb = opaque;
NvmeRequest *req = iocb->req;
NvmeNamespace *ns = req->ns;
uint64_t slba;
uint32_t nlb;
size_t len;
uint16_t status;
if (ret < 0) {
iocb->ret = ret;
goto done;
} else if (iocb->ret < 0) {
goto done;
}
if (iocb->idx == iocb->nr) {
goto done;
}
nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
&nlb, NULL, NULL, NULL);
len = nvme_l2b(ns, nlb);
trace_pci_nvme_copy_source_range(slba, nlb);
if (nlb > le16_to_cpu(ns->id_ns.mssrl)) {
status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
goto invalid;
}
status = nvme_check_bounds(ns, slba, nlb);
if (status) {
goto invalid