blob: 8c11b237de701accaab5cf0f4b749d4dc4efc155 [file] [log] [blame]
/*
* i.MX Fast Ethernet Controller emulation.
*
* Copyright (c) 2013 Jean-Christophe Dubois. <jcd@tribudubois.net>
*
* Based on Coldfire Fast Ethernet Controller emulation.
*
* Copyright (c) 2007 CodeSourcery.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "hw/irq.h"
#include "hw/net/imx_fec.h"
#include "hw/qdev-properties.h"
#include "migration/vmstate.h"
#include "sysemu/dma.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "net/checksum.h"
#include "net/eth.h"
#include "trace.h"
/* For crc32 */
#include <zlib.h>
#define IMX_MAX_DESC 1024
static const char *imx_default_reg_name(IMXFECState *s, uint32_t index)
{
static char tmp[20];
sprintf(tmp, "index %d", index);
return tmp;
}
static const char *imx_fec_reg_name(IMXFECState *s, uint32_t index)
{
switch (index) {
case ENET_FRBR:
return "FRBR";
case ENET_FRSR:
return "FRSR";
case ENET_MIIGSK_CFGR:
return "MIIGSK_CFGR";
case ENET_MIIGSK_ENR:
return "MIIGSK_ENR";
default:
return imx_default_reg_name(s, index);
}
}
static const char *imx_enet_reg_name(IMXFECState *s, uint32_t index)
{
switch (index) {
case ENET_RSFL:
return "RSFL";
case ENET_RSEM:
return "RSEM";
case ENET_RAEM:
return "RAEM";
case ENET_RAFL:
return "RAFL";
case ENET_TSEM:
return "TSEM";
case ENET_TAEM:
return "TAEM";
case ENET_TAFL:
return "TAFL";
case ENET_TIPG:
return "TIPG";
case ENET_FTRL:
return "FTRL";
case ENET_TACC:
return "TACC";
case ENET_RACC:
return "RACC";
case ENET_ATCR:
return "ATCR";
case ENET_ATVR:
return "ATVR";
case ENET_ATOFF:
return "ATOFF";
case ENET_ATPER:
return "ATPER";
case ENET_ATCOR:
return "ATCOR";
case ENET_ATINC:
return "ATINC";
case ENET_ATSTMP:
return "ATSTMP";
case ENET_TGSR:
return "TGSR";
case ENET_TCSR0:
return "TCSR0";
case ENET_TCCR0:
return "TCCR0";
case ENET_TCSR1:
return "TCSR1";
case ENET_TCCR1:
return "TCCR1";
case ENET_TCSR2:
return "TCSR2";
case ENET_TCCR2:
return "TCCR2";
case ENET_TCSR3:
return "TCSR3";
case ENET_TCCR3:
return "TCCR3";
default:
return imx_default_reg_name(s, index);
}
}
static const char *imx_eth_reg_name(IMXFECState *s, uint32_t index)
{
switch (index) {
case ENET_EIR:
return "EIR";
case ENET_EIMR:
return "EIMR";
case ENET_RDAR:
return "RDAR";
case ENET_TDAR:
return "TDAR";
case ENET_ECR:
return "ECR";
case ENET_MMFR:
return "MMFR";
case ENET_MSCR:
return "MSCR";
case ENET_MIBC:
return "MIBC";
case ENET_RCR:
return "RCR";
case ENET_TCR:
return "TCR";
case ENET_PALR:
return "PALR";
case ENET_PAUR:
return "PAUR";
case ENET_OPD:
return "OPD";
case ENET_IAUR:
return "IAUR";
case ENET_IALR:
return "IALR";
case ENET_GAUR:
return "GAUR";
case ENET_GALR:
return "GALR";
case ENET_TFWR:
return "TFWR";
case ENET_RDSR:
return "RDSR";
case ENET_TDSR:
return "TDSR";
case ENET_MRBR:
return "MRBR";
default:
if (s->is_fec) {
return imx_fec_reg_name(s, index);
} else {
return imx_enet_reg_name(s, index);
}
}
}
/*
* Versions of this device with more than one TX descriptor save the
* 2nd and 3rd descriptors in a subsection, to maintain migration
* compatibility with previous versions of the device that only
* supported a single descriptor.
*/
static bool imx_eth_is_multi_tx_ring(void *opaque)
{
IMXFECState *s = IMX_FEC(opaque);
return s->tx_ring_num > 1;
}
static const VMStateDescription vmstate_imx_eth_txdescs = {
.name = "imx.fec/txdescs",
.version_id = 1,
.minimum_version_id = 1,
.needed = imx_eth_is_multi_tx_ring,
.fields = (VMStateField[]) {
VMSTATE_UINT32(tx_descriptor[1], IMXFECState),
VMSTATE_UINT32(tx_descriptor[2], IMXFECState),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_imx_eth = {
.name = TYPE_IMX_FEC,
.version_id = 2,
.minimum_version_id = 2,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(regs, IMXFECState, ENET_MAX),
VMSTATE_UINT32(rx_descriptor, IMXFECState),
VMSTATE_UINT32(tx_descriptor[0], IMXFECState),
VMSTATE_UINT32(phy_status, IMXFECState),
VMSTATE_UINT32(phy_control, IMXFECState),
VMSTATE_UINT32(phy_advertise, IMXFECState),
VMSTATE_UINT32(phy_int, IMXFECState),
VMSTATE_UINT32(phy_int_mask, IMXFECState),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription * []) {
&vmstate_imx_eth_txdescs,
NULL
},
};
#define PHY_INT_ENERGYON (1 << 7)
#define PHY_INT_AUTONEG_COMPLETE (1 << 6)
#define PHY_INT_FAULT (1 << 5)
#define PHY_INT_DOWN (1 << 4)
#define PHY_INT_AUTONEG_LP (1 << 3)
#define PHY_INT_PARFAULT (1 << 2)
#define PHY_INT_AUTONEG_PAGE (1 << 1)
static void imx_eth_update(IMXFECState *s);
/*
* The MII phy could raise a GPIO to the processor which in turn
* could be handled as an interrpt by the OS.
* For now we don't handle any GPIO/interrupt line, so the OS will
* have to poll for the PHY status.
*/
static void imx_phy_update_irq(IMXFECState *s)
{
imx_eth_update(s);
}
static void imx_phy_update_link(IMXFECState *s)
{
/* Autonegotiation status mirrors link status. */
if (qemu_get_queue(s->nic)->link_down) {
trace_imx_phy_update_link("down");
s->phy_status &= ~0x0024;
s->phy_int |= PHY_INT_DOWN;
} else {
trace_imx_phy_update_link("up");
s->phy_status |= 0x0024;
s->phy_int |= PHY_INT_ENERGYON;
s->phy_int |= PHY_INT_AUTONEG_COMPLETE;
}
imx_phy_update_irq(s);
}
static void imx_eth_set_link(NetClientState *nc)
{
imx_phy_update_link(IMX_FEC(qemu_get_nic_opaque(nc)));
}
static void imx_phy_reset(IMXFECState *s)
{
trace_imx_phy_reset();
s->phy_status = 0x7809;
s->phy_control = 0x3000;
s->phy_advertise = 0x01e1;
s->phy_int_mask = 0;
s->phy_int = 0;
imx_phy_update_link(s);
}
static uint32_t imx_phy_read(IMXFECState *s, int reg)
{
uint32_t val;
uint32_t phy = reg / 32;
if (phy != s->phy_num) {
trace_imx_phy_read_num(phy, s->phy_num);
return 0xffff;
}
reg %= 32;
switch (reg) {
case 0: /* Basic Control */
val = s->phy_control;
break;
case 1: /* Basic Status */
val = s->phy_status;
break;
case 2: /* ID1 */
val = 0x0007;
break;
case 3: /* ID2 */
val = 0xc0d1;
break;
case 4: /* Auto-neg advertisement */
val = s->phy_advertise;
break;
case 5: /* Auto-neg Link Partner Ability */
val = 0x0f71;
break;
case 6: /* Auto-neg Expansion */
val = 1;
break;
case 29: /* Interrupt source. */
val = s->phy_int;
s->phy_int = 0;
imx_phy_update_irq(s);
break;
case 30: /* Interrupt mask */
val = s->phy_int_mask;
break;
case 17:
case 18:
case 27:
case 31:
qemu_log_mask(LOG_UNIMP, "[%s.phy]%s: reg %d not implemented\n",
TYPE_IMX_FEC, __func__, reg);
val = 0;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n",
TYPE_IMX_FEC, __func__, reg);
val = 0;
break;
}
trace_imx_phy_read(val, phy, reg);
return val;
}
static void imx_phy_write(IMXFECState *s, int reg, uint32_t val)
{
uint32_t phy = reg / 32;
if (phy != s->phy_num) {
trace_imx_phy_write_num(phy, s->phy_num);
return;
}
reg %= 32;
trace_imx_phy_write(val, phy, reg);
switch (reg) {
case 0: /* Basic Control */
if (val & 0x8000) {
imx_phy_reset(s);
} else {
s->phy_control = val & 0x7980;
/* Complete autonegotiation immediately. */
if (val & 0x1000) {
s->phy_status |= 0x0020;
}
}
break;
case 4: /* Auto-neg advertisement */
s->phy_advertise = (val & 0x2d7f) | 0x80;
break;
case 30: /* Interrupt mask */
s->phy_int_mask = val & 0xff;
imx_phy_update_irq(s);
break;
case 17:
case 18:
case 27:
case 31:
qemu_log_mask(LOG_UNIMP, "[%s.phy)%s: reg %d not implemented\n",
TYPE_IMX_FEC, __func__, reg);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "[%s.phy]%s: Bad address at offset %d\n",
TYPE_IMX_FEC, __func__, reg);
break;
}
}
static void imx_fec_read_bd(IMXFECBufDesc *bd, dma_addr_t addr)
{
dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd),
MEMTXATTRS_UNSPECIFIED);
trace_imx_fec_read_bd(addr, bd->flags, bd->length, bd->data);
}
static void imx_fec_write_bd(IMXFECBufDesc *bd, dma_addr_t addr)
{
dma_memory_write(&address_space_memory, addr, bd, sizeof(*bd),
MEMTXATTRS_UNSPECIFIED);
}
static void imx_enet_read_bd(IMXENETBufDesc *bd, dma_addr_t addr)
{
dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd),
MEMTXATTRS_UNSPECIFIED);
trace_imx_enet_read_bd(addr, bd->flags, bd->length, bd->data,
bd->option, bd->status);
}
static void imx_enet_write_bd(IMXENETBufDesc *bd, dma_addr_t addr)
{
dma_memory_write(&address_space_memory, addr, bd, sizeof(*bd),
MEMTXATTRS_UNSPECIFIED);
}
static void imx_eth_update(IMXFECState *s)
{
/*
* Previous versions of qemu had the ENET_INT_MAC and ENET_INT_TS_TIMER
* interrupts swapped. This worked with older versions of Linux (4.14
* and older) since Linux associated both interrupt lines with Ethernet
* MAC interrupts. Specifically,
* - Linux 4.15 and later have separate interrupt handlers for the MAC and
* timer interrupts. Those versions of Linux fail with versions of QEMU
* with swapped interrupt assignments.
* - In linux 4.14, both interrupt lines were registered with the Ethernet
* MAC interrupt handler. As a result, all versions of qemu happen to
* work, though that is accidental.
* - In Linux 4.9 and older, the timer interrupt was registered directly
* with the Ethernet MAC interrupt handler. The MAC interrupt was
* redirected to a GPIO interrupt to work around erratum ERR006687.
* This was implemented using the SOC's IOMUX block. In qemu, this GPIO
* interrupt never fired since IOMUX is currently not supported in qemu.
* Linux instead received MAC interrupts on the timer interrupt.
* As a result, qemu versions with the swapped interrupt assignment work,
* albeit accidentally, but qemu versions with the correct interrupt
* assignment fail.
*
* To ensure that all versions of Linux work, generate ENET_INT_MAC
* interrupts on both interrupt lines. This should be changed if and when
* qemu supports IOMUX.
*/
if (s->regs[ENET_EIR] & s->regs[ENET_EIMR] &
(ENET_INT_MAC | ENET_INT_TS_TIMER)) {
qemu_set_irq(s->irq[1], 1);
} else {
qemu_set_irq(s->irq[1], 0);
}
if (s->regs[ENET_EIR] & s->regs[ENET_EIMR] & ENET_INT_MAC) {
qemu_set_irq(s->irq[0], 1);
} else {
qemu_set_irq(s->irq[0], 0);
}
}
static void imx_fec_do_tx(IMXFECState *s)
{
int frame_size = 0, descnt = 0;
uint8_t *ptr = s->frame;
uint32_t addr = s->tx_descriptor[0];
while (descnt++ < IMX_MAX_DESC) {
IMXFECBufDesc bd;
int len;
imx_fec_read_bd(&bd, addr);
if ((bd.flags & ENET_BD_R) == 0) {
/* Run out of descriptors to transmit. */
trace_imx_eth_tx_bd_busy();
break;
}
len = bd.length;
if (frame_size + len > ENET_MAX_FRAME_SIZE) {
len = ENET_MAX_FRAME_SIZE - frame_size;
s->regs[ENET_EIR] |= ENET_INT_BABT;
}
dma_memory_read(&address_space_memory, bd.data, ptr, len,
MEMTXATTRS_UNSPECIFIED);
ptr += len;
frame_size += len;
if (bd.flags & ENET_BD_L) {
/* Last buffer in frame. */
qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size);
ptr = s->frame;
frame_size = 0;
s->regs[ENET_EIR] |= ENET_INT_TXF;
}
s->regs[ENET_EIR] |= ENET_INT_TXB;
bd.flags &= ~ENET_BD_R;
/* Write back the modified descriptor. */
imx_fec_write_bd(&bd, addr);
/* Advance to the next descriptor. */
if ((bd.flags & ENET_BD_W) != 0) {
addr = s->regs[ENET_TDSR];
} else {
addr += sizeof(bd);
}
}
s->tx_descriptor[0] = addr;
imx_eth_update(s);
}
static void imx_enet_do_tx(IMXFECState *s, uint32_t index)
{
int frame_size = 0, descnt = 0;
uint8_t *ptr = s->frame;
uint32_t addr, int_txb, int_txf, tdsr;
size_t ring;
switch (index) {
case ENET_TDAR:
ring = 0;
int_txb = ENET_INT_TXB;
int_txf = ENET_INT_TXF;
tdsr = ENET_TDSR;
break;
case ENET_TDAR1:
ring = 1;
int_txb = ENET_INT_TXB1;
int_txf = ENET_INT_TXF1;
tdsr = ENET_TDSR1;
break;
case ENET_TDAR2:
ring = 2;
int_txb = ENET_INT_TXB2;
int_txf = ENET_INT_TXF2;
tdsr = ENET_TDSR2;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: bogus value for index %x\n",
__func__, index);
abort();
break;
}
addr = s->tx_descriptor[ring];
while (descnt++ < IMX_MAX_DESC) {
IMXENETBufDesc bd;
int len;
imx_enet_read_bd(&bd, addr);
if ((bd.flags & ENET_BD_R) == 0) {
/* Run out of descriptors to transmit. */
trace_imx_eth_tx_bd_busy();
break;
}
len = bd.length;
if (frame_size + len > ENET_MAX_FRAME_SIZE) {
len = ENET_MAX_FRAME_SIZE - frame_size;
s->regs[ENET_EIR] |= ENET_INT_BABT;
}
dma_memory_read(&address_space_memory, bd.data, ptr, len,
MEMTXATTRS_UNSPECIFIED);
ptr += len;
frame_size += len;
if (bd.flags & ENET_BD_L) {
int csum = 0;
if (bd.option & ENET_BD_PINS) {
csum |= (CSUM_TCP | CSUM_UDP);
}
if (bd.option & ENET_BD_IINS) {
csum |= CSUM_IP;
}
if (csum) {
net_checksum_calculate(s->frame, frame_size, csum);
}
/* Last buffer in frame. */
qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size);
ptr = s->frame;
frame_size = 0;
if (bd.option & ENET_BD_TX_INT) {
s->regs[ENET_EIR] |= int_txf;
}
/* Indicate that we've updated the last buffer descriptor. */
bd.last_buffer = ENET_BD_BDU;
}
if (bd.option & ENET_BD_TX_INT) {
s->regs[ENET_EIR] |= int_txb;
}
bd.flags &= ~ENET_BD_R;
/* Write back the modified descriptor. */
imx_enet_write_bd(&bd, addr);
/* Advance to the next descriptor. */
if ((bd.flags & ENET_BD_W) != 0) {
addr = s->regs[tdsr];
} else {
addr += sizeof(bd);
}
}
s->tx_descriptor[ring] = addr;
imx_eth_update(s);
}
static void imx_eth_do_tx(IMXFECState *s, uint32_t index)
{
if (!s->is_fec && (s->regs[ENET_ECR] & ENET_ECR_EN1588)) {
imx_enet_do_tx(s, index);
} else {
imx_fec_do_tx(s);
}
}
static void imx_eth_enable_rx(IMXFECState *s, bool flush)
{
IMXFECBufDesc bd;
imx_fec_read_bd(&bd, s->rx_descriptor);
s->regs[ENET_RDAR] = (bd.flags & ENET_BD_E) ? ENET_RDAR_RDAR : 0;
if (!s->regs[ENET_RDAR]) {
trace_imx_eth_rx_bd_full();
} else if (flush) {
qemu_flush_queued_packets(qemu_get_queue(s->nic));
}
}
static void imx_eth_reset(DeviceState *d)
{
IMXFECState *s = IMX_FEC(d);
/* Reset the Device */
memset(s->regs, 0, sizeof(s->regs));
s->regs[ENET_ECR] = 0xf0000000;
s->regs[ENET_MIBC] = 0xc0000000;
s->regs[ENET_RCR] = 0x05ee0001;
s->regs[ENET_OPD] = 0x00010000;
s->regs[ENET_PALR] = (s->conf.macaddr.a[0] << 24)
| (s->conf.macaddr.a[1] << 16)
| (s->conf.macaddr.a[2] << 8)
| s->conf.macaddr.a[3];
s->regs[ENET_PAUR] = (s->conf.macaddr.a[4] << 24)
| (s->conf.macaddr.a[5] << 16)
| 0x8808;
if (s->is_fec) {
s->regs[ENET_FRBR] = 0x00000600;
s->regs[ENET_FRSR] = 0x00000500;
s->regs[ENET_MIIGSK_ENR] = 0x00000006;
} else {
s->regs[ENET_RAEM] = 0x00000004;
s->regs[ENET_RAFL] = 0x00000004;
s->regs[ENET_TAEM] = 0x00000004;
s->regs[ENET_TAFL] = 0x00000008;
s->regs[ENET_TIPG] = 0x0000000c;
s->regs[ENET_FTRL] = 0x000007ff;
s->regs[ENET_ATPER] = 0x3b9aca00;
}
s->rx_descriptor = 0;
memset(s->tx_descriptor, 0, sizeof(s->tx_descriptor));
/* We also reset the PHY */
imx_phy_reset(s);
}
static uint32_t imx_default_read(IMXFECState *s, uint32_t index)
{
qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
PRIx32 "\n", TYPE_IMX_FEC, __func__, index * 4);
return 0;
}
static uint32_t imx_fec_read(IMXFECState *s, uint32_t index)
{
switch (index) {
case ENET_FRBR:
case ENET_FRSR:
case ENET_MIIGSK_CFGR:
case ENET_MIIGSK_ENR:
return s->regs[index];
default:
return imx_default_read(s, index);
}
}
static uint32_t imx_enet_read(IMXFECState *s, uint32_t index)
{
switch (index) {
case ENET_RSFL:
case ENET_RSEM:
case ENET_RAEM:
case ENET_RAFL:
case ENET_TSEM:
case ENET_TAEM:
case ENET_TAFL:
case ENET_TIPG:
case ENET_FTRL:
case ENET_TACC:
case ENET_RACC:
case ENET_ATCR:
case ENET_ATVR:
case ENET_ATOFF:
case ENET_ATPER:
case ENET_ATCOR:
case ENET_ATINC:
case ENET_ATSTMP:
case ENET_TGSR:
case ENET_TCSR0:
case ENET_TCCR0:
case ENET_TCSR1:
case ENET_TCCR1:
case ENET_TCSR2:
case ENET_TCCR2:
case ENET_TCSR3:
case ENET_TCCR3:
return s->regs[index];
default:
return imx_default_read(s, index);
}
}
static uint64_t imx_eth_read(void *opaque, hwaddr offset, unsigned size)
{
uint32_t value = 0;
IMXFECState *s = IMX_FEC(opaque);
uint32_t index = offset >> 2;
switch (index) {
case ENET_EIR:
case ENET_EIMR:
case ENET_RDAR:
case ENET_TDAR:
case ENET_ECR:
case ENET_MMFR:
case ENET_MSCR:
case ENET_MIBC:
case ENET_RCR:
case ENET_TCR:
case ENET_PALR:
case ENET_PAUR:
case ENET_OPD:
case ENET_IAUR:
case ENET_IALR:
case ENET_GAUR:
case ENET_GALR:
case ENET_TFWR:
case ENET_RDSR:
case ENET_TDSR:
case ENET_MRBR:
value = s->regs[index];
break;
default:
if (s->is_fec) {
value = imx_fec_read(s, index);
} else {
value = imx_enet_read(s, index);
}
break;
}
trace_imx_eth_read(index, imx_eth_reg_name(s, index), value);
return value;
}
static void imx_default_write(IMXFECState *s, uint32_t index, uint32_t value)
{
qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad address at offset 0x%"
PRIx32 "\n", TYPE_IMX_FEC, __func__, index * 4);
return;
}
static void imx_fec_write(IMXFECState *s, uint32_t index, uint32_t value)
{
switch (index) {
case ENET_FRBR:
/* FRBR is read only */
qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Register FRBR is read only\n",
TYPE_IMX_FEC, __func__);
break;
case ENET_FRSR:
s->regs[index] = (value & 0x000003fc) | 0x00000400;
break;
case ENET_MIIGSK_CFGR:
s->regs[index] = value & 0x00000053;
break;
case ENET_MIIGSK_ENR:
s->regs[index] = (value & 0x00000002) ? 0x00000006 : 0;
break;
default:
imx_default_write(s, index, value);
break;
}
}
static void imx_enet_write(IMXFECState *s, uint32_t index, uint32_t value)
{
switch (index) {
case ENET_RSFL:
case ENET_RSEM:
case ENET_RAEM:
case ENET_RAFL:
case ENET_TSEM:
case ENET_TAEM:
case ENET_TAFL:
s->regs[index] = value & 0x000001ff;
break;
case ENET_TIPG:
s->regs[index] = value & 0x0000001f;
break;
case ENET_FTRL:
s->regs[index] = value & 0x00003fff;
break;
case ENET_TACC:
s->regs[index] = value & 0x00000019;
break;
case ENET_RACC:
s->regs[index] = value & 0x000000C7;
break;
case ENET_ATCR:
s->regs[index] = value & 0x00002a9d;
break;
case ENET_ATVR:
case ENET_ATOFF:
case ENET_ATPER:
s->regs[index] = value;
break;
case ENET_ATSTMP:
/* ATSTMP is read only */
qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Register ATSTMP is read only\n",
TYPE_IMX_FEC, __func__);
break;
case ENET_ATCOR:
s->regs[index] = value & 0x7fffffff;
break;
case ENET_ATINC:
s->regs[index] = value & 0x00007f7f;
break;
case ENET_TGSR:
/* implement clear timer flag */
s->regs[index] &= ~(value & 0x0000000f); /* all bits W1C */
break;
case ENET_TCSR0:
case ENET_TCSR1:
case ENET_TCSR2:
case ENET_TCSR3:
s->regs[index] &= ~(value & 0x00000080); /* W1C bits */
s->regs[index] &= ~0x0000007d; /* writable fields */
s->regs[index] |= (value & 0x0000007d);
break;
case ENET_TCCR0:
case ENET_TCCR1:
case ENET_TCCR2:
case ENET_TCCR3:
s->regs[index] = value;
break;
default:
imx_default_write(s, index, value);
break;
}
}
static void imx_eth_write(void *opaque, hwaddr offset, uint64_t value,
unsigned size)
{
IMXFECState *s = IMX_FEC(opaque);
const bool single_tx_ring = !imx_eth_is_multi_tx_ring(s);
uint32_t index = offset >> 2;
trace_imx_eth_write(index, imx_eth_reg_name(s, index), value);
switch (index) {
case ENET_EIR:
s->regs[index] &= ~value;
break;
case ENET_EIMR:
s->regs[index] = value;
break;
case ENET_RDAR:
if (s->regs[ENET_ECR] & ENET_ECR_ETHEREN) {
if (!s->regs[index]) {
imx_eth_enable_rx(s, true);
}
} else {
s->regs[index] = 0;
}
break;
case ENET_TDAR1:
case ENET_TDAR2:
if (unlikely(single_tx_ring)) {
qemu_log_mask(LOG_GUEST_ERROR,
"[%s]%s: trying to access TDAR2 or TDAR1\n",
TYPE_IMX_FEC, __func__);
return;
}
/* fall through */
case ENET_TDAR:
if (s->regs[ENET_ECR] & ENET_ECR_ETHEREN) {
s->regs[index] = ENET_TDAR_TDAR;
imx_eth_do_tx(s, index);
}
s->regs[index] = 0;
break;
case ENET_ECR:
if (value & ENET_ECR_RESET) {
return imx_eth_reset(DEVICE(s));
}
s->regs[index] = value;
if ((s->regs[index] & ENET_ECR_ETHEREN) == 0) {
s->regs[ENET_RDAR] = 0;
s->rx_descriptor = s->regs[ENET_RDSR];
s->regs[ENET_TDAR] = 0;
s->regs[ENET_TDAR1] = 0;
s->regs[ENET_TDAR2] = 0;
s->tx_descriptor[0] = s->regs[ENET_TDSR];
s->tx_descriptor[1] = s->regs[ENET_TDSR1];
s->tx_descriptor[2] = s->regs[ENET_TDSR2];
}
break;
case ENET_MMFR:
s->regs[index] = value;
if (extract32(value, 29, 1)) {
/* This is a read operation */
s->regs[ENET_MMFR] = deposit32(s->regs[ENET_MMFR], 0, 16,
imx_phy_read(s,
extract32(value,
18, 10)));
} else {
/* This is a write operation */
imx_phy_write(s, extract32(value, 18, 10), extract32(value, 0, 16));
}
/* raise the interrupt as the PHY operation is done */
s->regs[ENET_EIR] |= ENET_INT_MII;
break;
case ENET_MSCR:
s->regs[index] = value & 0xfe;
break;
case ENET_MIBC:
/* TODO: Implement MIB. */
s->regs[index] = (value & 0x80000000) ? 0xc0000000 : 0;
break;
case ENET_RCR:
s->regs[index] = value & 0x07ff003f;
/* TODO: Implement LOOP mode. */
break;
case ENET_TCR:
/* We transmit immediately, so raise GRA immediately. */
s->regs[index] = value;
if (value & 1) {
s->regs[ENET_EIR] |= ENET_INT_GRA;
}
break;
case ENET_PALR:
s->regs[index] = value;
s->conf.macaddr.a[0] = value >> 24;
s->conf.macaddr.a[1] = value >> 16;
s->conf.macaddr.a[2] = value >> 8;
s->conf.macaddr.a[3] = value;
break;
case ENET_PAUR:
s->regs[index] = (value | 0x0000ffff) & 0xffff8808;
s->conf.macaddr.a[4] = value >> 24;
s->conf.macaddr.a[5] = value >> 16;
break;
case ENET_OPD:
s->regs[index] = (value & 0x0000ffff) | 0x00010000;
break;
case ENET_IAUR:
case ENET_IALR:
case ENET_GAUR:
case ENET_GALR:
/* TODO: implement MAC hash filtering. */
break;
case ENET_TFWR:
if (s->is_fec) {
s->regs[index] = value & 0x3;
} else {
s->regs[index] = value & 0x13f;
}
break;
case ENET_RDSR:
if (s->is_fec) {
s->regs[index] = value & ~3;
} else {
s->regs[index] = value & ~7;
}
s->rx_descriptor = s->regs[index];
break;
case ENET_TDSR:
if (s->is_fec) {
s->regs[index] = value & ~3;
} else {
s->regs[index] = value & ~7;
}
s->tx_descriptor[0] = s->regs[index];
break;
case ENET_TDSR1:
if (unlikely(single_tx_ring)) {
qemu_log_mask(LOG_GUEST_ERROR,
"[%s]%s: trying to access TDSR1\n",
TYPE_IMX_FEC, __func__);
return;
}
s->regs[index] = value & ~7;
s->tx_descriptor[1] = s->regs[index];
break;
case ENET_TDSR2:
if (unlikely(single_tx_ring)) {
qemu_log_mask(LOG_GUEST_ERROR,
"[%s]%s: trying to access TDSR2\n",
TYPE_IMX_FEC, __func__);
return;
}
s->regs[index] = value & ~7;
s->tx_descriptor[2] = s->regs[index];
break;
case ENET_MRBR:
s->regs[index] = value & 0x00003ff0;
break;
default:
if (s->is_fec) {
imx_fec_write(s, index, value);
} else {
imx_enet_write(s, index, value);
}
return;
}
imx_eth_update(s);
}
static bool imx_eth_can_receive(NetClientState *nc)
{
IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
return !!s->regs[ENET_RDAR];
}
static ssize_t imx_fec_receive(NetClientState *nc, const uint8_t *buf,
size_t len)
{
IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
IMXFECBufDesc bd;
uint32_t flags = 0;
uint32_t addr;
uint32_t crc;
uint32_t buf_addr;
uint8_t *crc_ptr;
unsigned int buf_len;
size_t size = len;
trace_imx_fec_receive(size);
if (!s->regs[ENET_RDAR]) {
qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n",
TYPE_IMX_FEC, __func__);
return 0;
}
/* 4 bytes for the CRC. */
size += 4;
crc = cpu_to_be32(crc32(~0, buf, size));
crc_ptr = (uint8_t *) &crc;
/* Huge frames are truncated. */
if (size > ENET_MAX_FRAME_SIZE) {
size = ENET_MAX_FRAME_SIZE;
flags |= ENET_BD_TR | ENET_BD_LG;
}
/* Frames larger than the user limit just set error flags. */
if (size > (s->regs[ENET_RCR] >> 16)) {
flags |= ENET_BD_LG;
}
addr = s->rx_descriptor;
while (size > 0) {
imx_fec_read_bd(&bd, addr);
if ((bd.flags & ENET_BD_E) == 0) {
/* No descriptors available. Bail out. */
/*
* FIXME: This is wrong. We should probably either
* save the remainder for when more RX buffers are
* available, or flag an error.
*/
qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Lost end of frame\n",
TYPE_IMX_FEC, __func__);
break;
}
buf_len = (size <= s->regs[ENET_MRBR]) ? size : s->regs[ENET_MRBR];
bd.length = buf_len;
size -= buf_len;
trace_imx_fec_receive_len(addr, bd.length);
/* The last 4 bytes are the CRC. */
if (size < 4) {
buf_len += size - 4;
}
buf_addr = bd.data;
dma_memory_write(&address_space_memory, buf_addr, buf, buf_len,
MEMTXATTRS_UNSPECIFIED);
buf += buf_len;
if (size < 4) {
dma_memory_write(&address_space_memory, buf_addr + buf_len,
crc_ptr, 4 - size, MEMTXATTRS_UNSPECIFIED);
crc_ptr += 4 - size;
}
bd.flags &= ~ENET_BD_E;
if (size == 0) {
/* Last buffer in frame. */
bd.flags |= flags | ENET_BD_L;
trace_imx_fec_receive_last(bd.flags);
s->regs[ENET_EIR] |= ENET_INT_RXF;
} else {
s->regs[ENET_EIR] |= ENET_INT_RXB;
}
imx_fec_write_bd(&bd, addr);
/* Advance to the next descriptor. */
if ((bd.flags & ENET_BD_W) != 0) {
addr = s->regs[ENET_RDSR];
} else {
addr += sizeof(bd);
}
}
s->rx_descriptor = addr;
imx_eth_enable_rx(s, false);
imx_eth_update(s);
return len;
}
static ssize_t imx_enet_receive(NetClientState *nc, const uint8_t *buf,
size_t len)
{
IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
IMXENETBufDesc bd;
uint32_t flags = 0;
uint32_t addr;
uint32_t crc;
uint32_t buf_addr;
uint8_t *crc_ptr;
unsigned int buf_len;
size_t size = len;
bool shift16 = s->regs[ENET_RACC] & ENET_RACC_SHIFT16;
trace_imx_enet_receive(size);
if (!s->regs[ENET_RDAR]) {
qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Unexpected packet\n",
TYPE_IMX_FEC, __func__);
return 0;
}
/* 4 bytes for the CRC. */
size += 4;
crc = cpu_to_be32(crc32(~0, buf, size));
crc_ptr = (uint8_t *) &crc;
if (shift16) {
size += 2;
}
/* Huge frames are truncated. */
if (size > s->regs[ENET_FTRL]) {
size = s->regs[ENET_FTRL];
flags |= ENET_BD_TR | ENET_BD_LG;
}
/* Frames larger than the user limit just set error flags. */
if (size > (s->regs[ENET_RCR] >> 16)) {
flags |= ENET_BD_LG;
}
addr = s->rx_descriptor;
while (size > 0) {
imx_enet_read_bd(&bd, addr);
if ((bd.flags & ENET_BD_E) == 0) {
/* No descriptors available. Bail out. */
/*
* FIXME: This is wrong. We should probably either
* save the remainder for when more RX buffers are
* available, or flag an error.
*/
qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Lost end of frame\n",
TYPE_IMX_FEC, __func__);
break;
}
buf_len = MIN(size, s->regs[ENET_MRBR]);
bd.length = buf_len;
size -= buf_len;
trace_imx_enet_receive_len(addr, bd.length);
/* The last 4 bytes are the CRC. */
if (size < 4) {
buf_len += size - 4;
}
buf_addr = bd.data;
if (shift16) {
/*
* If SHIFT16 bit of ENETx_RACC register is set we need to
* align the payload to 4-byte boundary.
*/
const uint8_t zeros[2] = { 0 };
dma_memory_write(&address_space_memory, buf_addr, zeros,
sizeof(zeros), MEMTXATTRS_UNSPECIFIED);
buf_addr += sizeof(zeros);
buf_len -= sizeof(zeros);
/* We only do this once per Ethernet frame */
shift16 = false;
}
dma_memory_write(&address_space_memory, buf_addr, buf, buf_len,
MEMTXATTRS_UNSPECIFIED);
buf += buf_len;
if (size < 4) {
dma_memory_write(&address_space_memory, buf_addr + buf_len,
crc_ptr, 4 - size, MEMTXATTRS_UNSPECIFIED);
crc_ptr += 4 - size;
}
bd.flags &= ~ENET_BD_E;
if (size == 0) {
/* Last buffer in frame. */
bd.flags |= flags | ENET_BD_L;
trace_imx_enet_receive_last(bd.flags);
/* Indicate that we've updated the last buffer descriptor. */
bd.last_buffer = ENET_BD_BDU;
if (bd.option & ENET_BD_RX_INT) {
s->regs[ENET_EIR] |= ENET_INT_RXF;
}
} else {
if (bd.option & ENET_BD_RX_INT) {
s->regs[ENET_EIR] |= ENET_INT_RXB;
}
}
imx_enet_write_bd(&bd, addr);
/* Advance to the next descriptor. */
if ((bd.flags & ENET_BD_W) != 0) {
addr = s->regs[ENET_RDSR];
} else {
addr += sizeof(bd);
}
}
s->rx_descriptor = addr;
imx_eth_enable_rx(s, false);
imx_eth_update(s);
return len;
}
static ssize_t imx_eth_receive(NetClientState *nc, const uint8_t *buf,
size_t len)
{
IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
if (!s->is_fec && (s->regs[ENET_ECR] & ENET_ECR_EN1588)) {
return imx_enet_receive(nc, buf, len);
} else {
return imx_fec_receive(nc, buf, len);
}
}
static const MemoryRegionOps imx_eth_ops = {
.read = imx_eth_read,
.write = imx_eth_write,
.valid.min_access_size = 4,
.valid.max_access_size = 4,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void imx_eth_cleanup(NetClientState *nc)
{
IMXFECState *s = IMX_FEC(qemu_get_nic_opaque(nc));
s->nic = NULL;
}
static NetClientInfo imx_eth_net_info = {
.type = NET_CLIENT_DRIVER_NIC,
.size = sizeof(NICState),
.can_receive = imx_eth_can_receive,
.receive = imx_eth_receive,
.cleanup = imx_eth_cleanup,
.link_status_changed = imx_eth_set_link,
};
static void imx_eth_realize(DeviceState *dev, Error **errp)
{
IMXFECState *s = IMX_FEC(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
memory_region_init_io(&s->iomem, OBJECT(dev), &imx_eth_ops, s,
TYPE_IMX_FEC, FSL_IMX25_FEC_SIZE);
sysbus_init_mmio(sbd, &s->iomem);
sysbus_init_irq(sbd, &s->irq[0]);
sysbus_init_irq(sbd, &s->irq[1]);
qemu_macaddr_default_if_unset(&s->conf.macaddr);
s->nic = qemu_new_nic(&imx_eth_net_info, &s->conf,
object_get_typename(OBJECT(dev)),
dev->id, s);
qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
}
static Property imx_eth_properties[] = {
DEFINE_NIC_PROPERTIES(IMXFECState, conf),
DEFINE_PROP_UINT32("tx-ring-num", IMXFECState, tx_ring_num, 1),
DEFINE_PROP_UINT32("phy-num", IMXFECState, phy_num, 0),
DEFINE_PROP_END_OF_LIST(),
};
static void imx_eth_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->vmsd = &vmstate_imx_eth;
dc->reset = imx_eth_reset;
device_class_set_props(dc, imx_eth_properties);
dc->realize = imx_eth_realize;
dc->desc = "i.MX FEC/ENET Ethernet Controller";
}
static void imx_fec_init(Object *obj)
{
IMXFECState *s = IMX_FEC(obj);
s->is_fec = true;
}
static void imx_enet_init(Object *obj)
{
IMXFECState *s = IMX_FEC(obj);
s->is_fec = false;
}
static const TypeInfo imx_fec_info = {
.name = TYPE_IMX_FEC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(IMXFECState),
.instance_init = imx_fec_init,
.class_init = imx_eth_class_init,
};
static const TypeInfo imx_enet_info = {
.name = TYPE_IMX_ENET,
.parent = TYPE_IMX_FEC,
.instance_init = imx_enet_init,
};
static void imx_eth_register_types(void)
{
type_register_static(&imx_fec_info);
type_register_static(&imx_enet_info);
}
type_init(imx_eth_register_types)