blob: 98045ed3d24952d8d01616eccfa8d8581c10193c [file] [log] [blame]
/*
* QEMU PowerPC PowerNV Processor Service Interface (PSI) model
*
* Copyright (c) 2015-2017, IBM Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "hw/irq.h"
#include "target/ppc/cpu.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "sysemu/reset.h"
#include "qapi/error.h"
#include "monitor/monitor.h"
#include "hw/ppc/fdt.h"
#include "hw/ppc/pnv.h"
#include "hw/ppc/pnv_xscom.h"
#include "hw/qdev-properties.h"
#include "hw/ppc/pnv_psi.h"
#include <libfdt.h>
#define PSIHB_XSCOM_FIR_RW 0x00
#define PSIHB_XSCOM_FIR_AND 0x01
#define PSIHB_XSCOM_FIR_OR 0x02
#define PSIHB_XSCOM_FIRMASK_RW 0x03
#define PSIHB_XSCOM_FIRMASK_AND 0x04
#define PSIHB_XSCOM_FIRMASK_OR 0x05
#define PSIHB_XSCOM_FIRACT0 0x06
#define PSIHB_XSCOM_FIRACT1 0x07
/* Host Bridge Base Address Register */
#define PSIHB_XSCOM_BAR 0x0a
#define PSIHB_BAR_EN 0x0000000000000001ull
/* FSP Base Address Register */
#define PSIHB_XSCOM_FSPBAR 0x0b
/* PSI Host Bridge Control/Status Register */
#define PSIHB_XSCOM_CR 0x0e
#define PSIHB_CR_FSP_CMD_ENABLE 0x8000000000000000ull
#define PSIHB_CR_FSP_MMIO_ENABLE 0x4000000000000000ull
#define PSIHB_CR_FSP_IRQ_ENABLE 0x1000000000000000ull
#define PSIHB_CR_FSP_ERR_RSP_ENABLE 0x0800000000000000ull
#define PSIHB_CR_PSI_LINK_ENABLE 0x0400000000000000ull
#define PSIHB_CR_FSP_RESET 0x0200000000000000ull
#define PSIHB_CR_PSIHB_RESET 0x0100000000000000ull
#define PSIHB_CR_PSI_IRQ 0x0000800000000000ull
#define PSIHB_CR_FSP_IRQ 0x0000400000000000ull
#define PSIHB_CR_FSP_LINK_ACTIVE 0x0000200000000000ull
#define PSIHB_CR_IRQ_CMD_EXPECT 0x0000010000000000ull
/* and more ... */
/* PSIHB Status / Error Mask Register */
#define PSIHB_XSCOM_SEMR 0x0f
/* XIVR, to signal interrupts to the CEC firmware. more XIVR below. */
#define PSIHB_XSCOM_XIVR_FSP 0x10
#define PSIHB_XIVR_SERVER_SH 40
#define PSIHB_XIVR_SERVER_MSK (0xffffull << PSIHB_XIVR_SERVER_SH)
#define PSIHB_XIVR_PRIO_SH 32
#define PSIHB_XIVR_PRIO_MSK (0xffull << PSIHB_XIVR_PRIO_SH)
#define PSIHB_XIVR_SRC_SH 29
#define PSIHB_XIVR_SRC_MSK (0x7ull << PSIHB_XIVR_SRC_SH)
#define PSIHB_XIVR_PENDING 0x01000000ull
/* PSI Host Bridge Set Control/ Status Register */
#define PSIHB_XSCOM_SCR 0x12
/* PSI Host Bridge Clear Control/ Status Register */
#define PSIHB_XSCOM_CCR 0x13
/* DMA Upper Address Register */
#define PSIHB_XSCOM_DMA_UPADD 0x14
/* Interrupt Status */
#define PSIHB_XSCOM_IRQ_STAT 0x15
#define PSIHB_IRQ_STAT_OCC 0x0000001000000000ull
#define PSIHB_IRQ_STAT_FSI 0x0000000800000000ull
#define PSIHB_IRQ_STAT_LPCI2C 0x0000000400000000ull
#define PSIHB_IRQ_STAT_LOCERR 0x0000000200000000ull
#define PSIHB_IRQ_STAT_EXT 0x0000000100000000ull
/* remaining XIVR */
#define PSIHB_XSCOM_XIVR_OCC 0x16
#define PSIHB_XSCOM_XIVR_FSI 0x17
#define PSIHB_XSCOM_XIVR_LPCI2C 0x18
#define PSIHB_XSCOM_XIVR_LOCERR 0x19
#define PSIHB_XSCOM_XIVR_EXT 0x1a
/* Interrupt Requester Source Compare Register */
#define PSIHB_XSCOM_IRSN 0x1b
#define PSIHB_IRSN_COMP_SH 45
#define PSIHB_IRSN_COMP_MSK (0x7ffffull << PSIHB_IRSN_COMP_SH)
#define PSIHB_IRSN_IRQ_MUX 0x0000000800000000ull
#define PSIHB_IRSN_IRQ_RESET 0x0000000400000000ull
#define PSIHB_IRSN_DOWNSTREAM_EN 0x0000000200000000ull
#define PSIHB_IRSN_UPSTREAM_EN 0x0000000100000000ull
#define PSIHB_IRSN_COMPMASK_SH 13
#define PSIHB_IRSN_COMPMASK_MSK (0x7ffffull << PSIHB_IRSN_COMPMASK_SH)
#define PSIHB_BAR_MASK 0x0003fffffff00000ull
#define PSIHB_FSPBAR_MASK 0x0003ffff00000000ull
#define PSIHB9_BAR_MASK 0x00fffffffff00000ull
#define PSIHB9_FSPBAR_MASK 0x00ffffff00000000ull
#define PSIHB_REG(addr) (((addr) >> 3) + PSIHB_XSCOM_BAR)
static void pnv_psi_set_bar(PnvPsi *psi, uint64_t bar)
{
PnvPsiClass *ppc = PNV_PSI_GET_CLASS(psi);
MemoryRegion *sysmem = get_system_memory();
uint64_t old = psi->regs[PSIHB_XSCOM_BAR];
psi->regs[PSIHB_XSCOM_BAR] = bar & (ppc->bar_mask | PSIHB_BAR_EN);
/* Update MR, always remove it first */
if (old & PSIHB_BAR_EN) {
memory_region_del_subregion(sysmem, &psi->regs_mr);
}
/* Then add it back if needed */
if (bar & PSIHB_BAR_EN) {
uint64_t addr = bar & ppc->bar_mask;
memory_region_add_subregion(sysmem, addr, &psi->regs_mr);
}
}
static void pnv_psi_update_fsp_mr(PnvPsi *psi)
{
/* TODO: Update FSP MR if/when we support FSP BAR */
}
static void pnv_psi_set_cr(PnvPsi *psi, uint64_t cr)
{
uint64_t old = psi->regs[PSIHB_XSCOM_CR];
psi->regs[PSIHB_XSCOM_CR] = cr;
/* Check some bit changes */
if ((old ^ psi->regs[PSIHB_XSCOM_CR]) & PSIHB_CR_FSP_MMIO_ENABLE) {
pnv_psi_update_fsp_mr(psi);
}
}
static void pnv_psi_set_irsn(PnvPsi *psi, uint64_t val)
{
ICSState *ics = &PNV8_PSI(psi)->ics;
/* In this model we ignore the up/down enable bits for now
* as SW doesn't use them (other than setting them at boot).
* We ignore IRQ_MUX, its meaning isn't clear and we don't use
* it and finally we ignore reset (XXX fix that ?)
*/
psi->regs[PSIHB_XSCOM_IRSN] = val & (PSIHB_IRSN_COMP_MSK |
PSIHB_IRSN_IRQ_MUX |
PSIHB_IRSN_IRQ_RESET |
PSIHB_IRSN_DOWNSTREAM_EN |
PSIHB_IRSN_UPSTREAM_EN);
/* We ignore the compare mask as well, our ICS emulation is too
* simplistic to make any use if it, and we extract the offset
* from the compare value
*/
ics->offset = (val & PSIHB_IRSN_COMP_MSK) >> PSIHB_IRSN_COMP_SH;
}
/*
* FSP and PSI interrupts are muxed under the same number.
*/
static const uint32_t xivr_regs[PSI_NUM_INTERRUPTS] = {
[PSIHB_IRQ_FSP] = PSIHB_XSCOM_XIVR_FSP,
[PSIHB_IRQ_OCC] = PSIHB_XSCOM_XIVR_OCC,
[PSIHB_IRQ_FSI] = PSIHB_XSCOM_XIVR_FSI,
[PSIHB_IRQ_LPC_I2C] = PSIHB_XSCOM_XIVR_LPCI2C,
[PSIHB_IRQ_LOCAL_ERR] = PSIHB_XSCOM_XIVR_LOCERR,
[PSIHB_IRQ_EXTERNAL] = PSIHB_XSCOM_XIVR_EXT,
};
static const uint32_t stat_regs[PSI_NUM_INTERRUPTS] = {
[PSIHB_IRQ_FSP] = PSIHB_XSCOM_CR,
[PSIHB_IRQ_OCC] = PSIHB_XSCOM_IRQ_STAT,
[PSIHB_IRQ_FSI] = PSIHB_XSCOM_IRQ_STAT,
[PSIHB_IRQ_LPC_I2C] = PSIHB_XSCOM_IRQ_STAT,
[PSIHB_IRQ_LOCAL_ERR] = PSIHB_XSCOM_IRQ_STAT,
[PSIHB_IRQ_EXTERNAL] = PSIHB_XSCOM_IRQ_STAT,
};
static const uint64_t stat_bits[PSI_NUM_INTERRUPTS] = {
[PSIHB_IRQ_FSP] = PSIHB_CR_FSP_IRQ,
[PSIHB_IRQ_OCC] = PSIHB_IRQ_STAT_OCC,
[PSIHB_IRQ_FSI] = PSIHB_IRQ_STAT_FSI,
[PSIHB_IRQ_LPC_I2C] = PSIHB_IRQ_STAT_LPCI2C,
[PSIHB_IRQ_LOCAL_ERR] = PSIHB_IRQ_STAT_LOCERR,
[PSIHB_IRQ_EXTERNAL] = PSIHB_IRQ_STAT_EXT,
};
static void pnv_psi_power8_set_irq(void *opaque, int irq, int state)
{
PnvPsi *psi = opaque;
uint32_t xivr_reg;
uint32_t stat_reg;
uint32_t src;
bool masked;
xivr_reg = xivr_regs[irq];
stat_reg = stat_regs[irq];
src = (psi->regs[xivr_reg] & PSIHB_XIVR_SRC_MSK) >> PSIHB_XIVR_SRC_SH;
if (state) {
psi->regs[stat_reg] |= stat_bits[irq];
/* TODO: optimization, check mask here. That means
* re-evaluating when unmasking
*/
qemu_irq_raise(psi->qirqs[src]);
} else {
psi->regs[stat_reg] &= ~stat_bits[irq];
/* FSP and PSI are muxed so don't lower if either is still set */
if (stat_reg != PSIHB_XSCOM_CR ||
!(psi->regs[stat_reg] & (PSIHB_CR_PSI_IRQ | PSIHB_CR_FSP_IRQ))) {
qemu_irq_lower(psi->qirqs[src]);
} else {
state = true;
}
}
/* Note about the emulation of the pending bit: This isn't
* entirely correct. The pending bit should be cleared when the
* EOI has been received. However, we don't have callbacks on EOI
* (especially not under KVM) so no way to emulate that properly,
* so instead we just set that bit as the logical "output" of the
* XIVR (ie pending & !masked)
*
* CLG: We could define a new ICS object with a custom eoi()
* handler to clear the pending bit. But I am not sure this would
* be useful for the software anyhow.
*/
masked = (psi->regs[xivr_reg] & PSIHB_XIVR_PRIO_MSK) == PSIHB_XIVR_PRIO_MSK;
if (state && !masked) {
psi->regs[xivr_reg] |= PSIHB_XIVR_PENDING;
} else {
psi->regs[xivr_reg] &= ~PSIHB_XIVR_PENDING;
}
}
static void pnv_psi_set_xivr(PnvPsi *psi, uint32_t reg, uint64_t val)
{
ICSState *ics = &PNV8_PSI(psi)->ics;
uint16_t server;
uint8_t prio;
uint8_t src;
psi->regs[reg] = (psi->regs[reg] & PSIHB_XIVR_PENDING) |
(val & (PSIHB_XIVR_SERVER_MSK |
PSIHB_XIVR_PRIO_MSK |
PSIHB_XIVR_SRC_MSK));
val = psi->regs[reg];
server = (val & PSIHB_XIVR_SERVER_MSK) >> PSIHB_XIVR_SERVER_SH;
prio = (val & PSIHB_XIVR_PRIO_MSK) >> PSIHB_XIVR_PRIO_SH;
src = (val & PSIHB_XIVR_SRC_MSK) >> PSIHB_XIVR_SRC_SH;
if (src >= PSI_NUM_INTERRUPTS) {
qemu_log_mask(LOG_GUEST_ERROR, "PSI: Unsupported irq %d\n", src);
return;
}
/* Remove pending bit if the IRQ is masked */
if ((psi->regs[reg] & PSIHB_XIVR_PRIO_MSK) == PSIHB_XIVR_PRIO_MSK) {
psi->regs[reg] &= ~PSIHB_XIVR_PENDING;
}
/* The low order 2 bits are the link pointer (Type II interrupts).
* Shift back to get a valid IRQ server.
*/
server >>= 2;
/* Now because of source remapping, weird things can happen
* if you change the source number dynamically, our simple ICS
* doesn't deal with remapping. So we just poke a different
* ICS entry based on what source number was written. This will
* do for now but a more accurate implementation would instead
* use a fixed server/prio and a remapper of the generated irq.
*/
ics_write_xive(ics, src, server, prio, prio);
}
static uint64_t pnv_psi_reg_read(PnvPsi *psi, uint32_t offset, bool mmio)
{
uint64_t val = 0xffffffffffffffffull;
switch (offset) {
case PSIHB_XSCOM_FIR_RW:
case PSIHB_XSCOM_FIRACT0:
case PSIHB_XSCOM_FIRACT1:
case PSIHB_XSCOM_BAR:
case PSIHB_XSCOM_FSPBAR:
case PSIHB_XSCOM_CR:
case PSIHB_XSCOM_XIVR_FSP:
case PSIHB_XSCOM_XIVR_OCC:
case PSIHB_XSCOM_XIVR_FSI:
case PSIHB_XSCOM_XIVR_LPCI2C:
case PSIHB_XSCOM_XIVR_LOCERR:
case PSIHB_XSCOM_XIVR_EXT:
case PSIHB_XSCOM_IRQ_STAT:
case PSIHB_XSCOM_SEMR:
case PSIHB_XSCOM_DMA_UPADD:
case PSIHB_XSCOM_IRSN:
val = psi->regs[offset];
break;
default:
qemu_log_mask(LOG_UNIMP, "PSI: read at 0x%" PRIx32 "\n", offset);
}
return val;
}
static void pnv_psi_reg_write(PnvPsi *psi, uint32_t offset, uint64_t val,
bool mmio)
{
switch (offset) {
case PSIHB_XSCOM_FIR_RW:
case PSIHB_XSCOM_FIRACT0:
case PSIHB_XSCOM_FIRACT1:
case PSIHB_XSCOM_SEMR:
case PSIHB_XSCOM_DMA_UPADD:
psi->regs[offset] = val;
break;
case PSIHB_XSCOM_FIR_OR:
psi->regs[PSIHB_XSCOM_FIR_RW] |= val;
break;
case PSIHB_XSCOM_FIR_AND:
psi->regs[PSIHB_XSCOM_FIR_RW] &= val;
break;
case PSIHB_XSCOM_BAR:
/* Only XSCOM can write this one */
if (!mmio) {
pnv_psi_set_bar(psi, val);
} else {
qemu_log_mask(LOG_GUEST_ERROR, "PSI: invalid write of BAR\n");
}
break;
case PSIHB_XSCOM_FSPBAR:
psi->regs[PSIHB_XSCOM_FSPBAR] = val & PSIHB_FSPBAR_MASK;
pnv_psi_update_fsp_mr(psi);
break;
case PSIHB_XSCOM_CR:
pnv_psi_set_cr(psi, val);
break;
case PSIHB_XSCOM_SCR:
pnv_psi_set_cr(psi, psi->regs[PSIHB_XSCOM_CR] | val);
break;
case PSIHB_XSCOM_CCR:
pnv_psi_set_cr(psi, psi->regs[PSIHB_XSCOM_CR] & ~val);
break;
case PSIHB_XSCOM_XIVR_FSP:
case PSIHB_XSCOM_XIVR_OCC:
case PSIHB_XSCOM_XIVR_FSI:
case PSIHB_XSCOM_XIVR_LPCI2C:
case PSIHB_XSCOM_XIVR_LOCERR:
case PSIHB_XSCOM_XIVR_EXT:
pnv_psi_set_xivr(psi, offset, val);
break;
case PSIHB_XSCOM_IRQ_STAT:
/* Read only */
qemu_log_mask(LOG_GUEST_ERROR, "PSI: invalid write of IRQ_STAT\n");
break;
case PSIHB_XSCOM_IRSN:
pnv_psi_set_irsn(psi, val);
break;
default:
qemu_log_mask(LOG_UNIMP, "PSI: write at 0x%" PRIx32 "\n", offset);
}
}
/*
* The values of the registers when accessed through the MMIO region
* follow the relation : xscom = (mmio + 0x50) >> 3
*/
static uint64_t pnv_psi_mmio_read(void *opaque, hwaddr addr, unsigned size)
{
return pnv_psi_reg_read(opaque, PSIHB_REG(addr), true);
}
static void pnv_psi_mmio_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
pnv_psi_reg_write(opaque, PSIHB_REG(addr), val, true);
}
static const MemoryRegionOps psi_mmio_ops = {
.read = pnv_psi_mmio_read,
.write = pnv_psi_mmio_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 8,
.max_access_size = 8,
},
.impl = {
.min_access_size = 8,
.max_access_size = 8,
},
};
static uint64_t pnv_psi_xscom_read(void *opaque, hwaddr addr, unsigned size)
{
return pnv_psi_reg_read(opaque, addr >> 3, false);
}
static void pnv_psi_xscom_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
pnv_psi_reg_write(opaque, addr >> 3, val, false);
}
static const MemoryRegionOps pnv_psi_xscom_ops = {
.read = pnv_psi_xscom_read,
.write = pnv_psi_xscom_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 8,
.max_access_size = 8,
},
.impl = {
.min_access_size = 8,
.max_access_size = 8,
}
};
static void pnv_psi_reset(DeviceState *dev)
{
PnvPsi *psi = PNV_PSI(dev);
memset(psi->regs, 0x0, sizeof(psi->regs));
psi->regs[PSIHB_XSCOM_BAR] = psi->bar | PSIHB_BAR_EN;
}
static void pnv_psi_reset_handler(void *dev)
{
device_cold_reset(DEVICE(dev));
}
static void pnv_psi_realize(DeviceState *dev, Error **errp)
{
PnvPsi *psi = PNV_PSI(dev);
/* Default BAR for MMIO region */
pnv_psi_set_bar(psi, psi->bar | PSIHB_BAR_EN);
qemu_register_reset(pnv_psi_reset_handler, dev);
}
static void pnv_psi_power8_instance_init(Object *obj)
{
Pnv8Psi *psi8 = PNV8_PSI(obj);
object_initialize_child(obj, "ics-psi", &psi8->ics, TYPE_ICS);
object_property_add_alias(obj, ICS_PROP_XICS, OBJECT(&psi8->ics),
ICS_PROP_XICS);
}
static const uint8_t irq_to_xivr[] = {
PSIHB_XSCOM_XIVR_FSP,
PSIHB_XSCOM_XIVR_OCC,
PSIHB_XSCOM_XIVR_FSI,
PSIHB_XSCOM_XIVR_LPCI2C,
PSIHB_XSCOM_XIVR_LOCERR,
PSIHB_XSCOM_XIVR_EXT,
};
static void pnv_psi_power8_realize(DeviceState *dev, Error **errp)
{
PnvPsi *psi = PNV_PSI(dev);
ICSState *ics = &PNV8_PSI(psi)->ics;
unsigned int i;
/* Create PSI interrupt control source */
if (!object_property_set_int(OBJECT(ics), "nr-irqs", PSI_NUM_INTERRUPTS,
errp)) {
return;
}
if (!qdev_realize(DEVICE(ics), NULL, errp)) {
return;
}
for (i = 0; i < ics->nr_irqs; i++) {
ics_set_irq_type(ics, i, true);
}
qdev_init_gpio_in(dev, pnv_psi_power8_set_irq, ics->nr_irqs);
psi->qirqs = qemu_allocate_irqs(ics_set_irq, ics, ics->nr_irqs);
/* XSCOM region for PSI registers */
pnv_xscom_region_init(&psi->xscom_regs, OBJECT(dev), &pnv_psi_xscom_ops,
psi, "xscom-psi", PNV_XSCOM_PSIHB_SIZE);
/* Initialize MMIO region */
memory_region_init_io(&psi->regs_mr, OBJECT(dev), &psi_mmio_ops, psi,
"psihb", PNV_PSIHB_SIZE);
/* Default sources in XIVR */
for (i = 0; i < PSI_NUM_INTERRUPTS; i++) {
uint8_t xivr = irq_to_xivr[i];
psi->regs[xivr] = PSIHB_XIVR_PRIO_MSK |
((uint64_t) i << PSIHB_XIVR_SRC_SH);
}
pnv_psi_realize(dev, errp);
}
static int pnv_psi_dt_xscom(PnvXScomInterface *dev, void *fdt, int xscom_offset)
{
PnvPsiClass *ppc = PNV_PSI_GET_CLASS(dev);
char *name;
int offset;
uint32_t reg[] = {
cpu_to_be32(ppc->xscom_pcba),
cpu_to_be32(ppc->xscom_size)
};
name = g_strdup_printf("psihb@%x", ppc->xscom_pcba);
offset = fdt_add_subnode(fdt, xscom_offset, name);
_FDT(offset);
g_free(name);
_FDT(fdt_setprop(fdt, offset, "reg", reg, sizeof(reg)));
_FDT(fdt_setprop_cell(fdt, offset, "#address-cells", 2));
_FDT(fdt_setprop_cell(fdt, offset, "#size-cells", 1));
_FDT(fdt_setprop(fdt, offset, "compatible", ppc->compat,
ppc->compat_size));
return 0;
}
static Property pnv_psi_properties[] = {
DEFINE_PROP_UINT64("bar", PnvPsi, bar, 0),
DEFINE_PROP_UINT64("fsp-bar", PnvPsi, fsp_bar, 0),
DEFINE_PROP_END_OF_LIST(),
};
static void pnv_psi_power8_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PnvPsiClass *ppc = PNV_PSI_CLASS(klass);
static const char compat[] = "ibm,power8-psihb-x\0ibm,psihb-x";
dc->desc = "PowerNV PSI Controller POWER8";
dc->realize = pnv_psi_power8_realize;
ppc->xscom_pcba = PNV_XSCOM_PSIHB_BASE;
ppc->xscom_size = PNV_XSCOM_PSIHB_SIZE;
ppc->bar_mask = PSIHB_BAR_MASK;
ppc->compat = compat;
ppc->compat_size = sizeof(compat);
}
static const TypeInfo pnv_psi_power8_info = {
.name = TYPE_PNV8_PSI,
.parent = TYPE_PNV_PSI,
.instance_size = sizeof(Pnv8Psi),
.instance_init = pnv_psi_power8_instance_init,
.class_init = pnv_psi_power8_class_init,
};
/* Common registers */
#define PSIHB9_CR 0x20
#define PSIHB9_SEMR 0x28
/* P9 registers */
#define PSIHB9_INTERRUPT_CONTROL 0x58
#define PSIHB9_IRQ_METHOD PPC_BIT(0)
#define PSIHB9_IRQ_RESET PPC_BIT(1)
#define PSIHB9_ESB_CI_BASE 0x60
#define PSIHB9_ESB_CI_ADDR_MASK PPC_BITMASK(8, 47)
#define PSIHB9_ESB_CI_VALID PPC_BIT(63)
#define PSIHB9_ESB_NOTIF_ADDR 0x68
#define PSIHB9_ESB_NOTIF_ADDR_MASK PPC_BITMASK(8, 60)
#define PSIHB9_ESB_NOTIF_VALID PPC_BIT(63)
#define PSIHB9_IVT_OFFSET 0x70
#define PSIHB9_IVT_OFF_SHIFT 32
#define PSIHB9_IRQ_LEVEL 0x78 /* assertion */
#define PSIHB9_IRQ_LEVEL_PSI PPC_BIT(0)
#define PSIHB9_IRQ_LEVEL_OCC PPC_BIT(1)
#define PSIHB9_IRQ_LEVEL_FSI PPC_BIT(2)
#define PSIHB9_IRQ_LEVEL_LPCHC PPC_BIT(3)
#define PSIHB9_IRQ_LEVEL_LOCAL_ERR PPC_BIT(4)
#define PSIHB9_IRQ_LEVEL_GLOBAL_ERR PPC_BIT(5)
#define PSIHB9_IRQ_LEVEL_TPM PPC_BIT(6)
#define PSIHB9_IRQ_LEVEL_LPC_SIRQ1 PPC_BIT(7)
#define PSIHB9_IRQ_LEVEL_LPC_SIRQ2 PPC_BIT(8)
#define PSIHB9_IRQ_LEVEL_LPC_SIRQ3 PPC_BIT(9)
#define PSIHB9_IRQ_LEVEL_LPC_SIRQ4 PPC_BIT(10)
#define PSIHB9_IRQ_LEVEL_SBE_I2C PPC_BIT(11)
#define PSIHB9_IRQ_LEVEL_DIO PPC_BIT(12)
#define PSIHB9_IRQ_LEVEL_PSU PPC_BIT(13)
#define PSIHB9_IRQ_LEVEL_I2C_C PPC_BIT(14)
#define PSIHB9_IRQ_LEVEL_I2C_D PPC_BIT(15)
#define PSIHB9_IRQ_LEVEL_I2C_E PPC_BIT(16)
#define PSIHB9_IRQ_LEVEL_SBE PPC_BIT(19)
#define PSIHB9_IRQ_STAT 0x80 /* P bit */
#define PSIHB9_IRQ_STAT_PSI PPC_BIT(0)
#define PSIHB9_IRQ_STAT_OCC PPC_BIT(1)
#define PSIHB9_IRQ_STAT_FSI PPC_BIT(2)
#define PSIHB9_IRQ_STAT_LPCHC PPC_BIT(3)
#define PSIHB9_IRQ_STAT_LOCAL_ERR PPC_BIT(4)
#define PSIHB9_IRQ_STAT_GLOBAL_ERR PPC_BIT(5)
#define PSIHB9_IRQ_STAT_TPM PPC_BIT(6)
#define PSIHB9_IRQ_STAT_LPC_SIRQ1 PPC_BIT(7)
#define PSIHB9_IRQ_STAT_LPC_SIRQ2 PPC_BIT(8)
#define PSIHB9_IRQ_STAT_LPC_SIRQ3 PPC_BIT(9)
#define PSIHB9_IRQ_STAT_LPC_SIRQ4 PPC_BIT(10)
#define PSIHB9_IRQ_STAT_SBE_I2C PPC_BIT(11)
#define PSIHB9_IRQ_STAT_DIO PPC_BIT(12)
#define PSIHB9_IRQ_STAT_PSU PPC_BIT(13)
/* P10 register extensions */
#define PSIHB10_CR PSIHB9_CR
#define PSIHB10_CR_STORE_EOI PPC_BIT(12)
#define PSIHB10_ESB_CI_BASE PSIHB9_ESB_CI_BASE
#define PSIHB10_ESB_CI_64K PPC_BIT(1)
static void pnv_psi_notify(XiveNotifier *xf, uint32_t srcno, bool pq_checked)
{
PnvPsi *psi = PNV_PSI(xf);
uint64_t notif_port = psi->regs[PSIHB_REG(PSIHB9_ESB_NOTIF_ADDR)];
bool valid = notif_port & PSIHB9_ESB_NOTIF_VALID;
uint64_t notify_addr = notif_port & ~PSIHB9_ESB_NOTIF_VALID;
uint32_t offset =
(psi->regs[PSIHB_REG(PSIHB9_IVT_OFFSET)] >> PSIHB9_IVT_OFF_SHIFT);
uint64_t data = offset | srcno;
MemTxResult result;
if (pq_checked) {
data |= XIVE_TRIGGER_PQ;
}
if (!valid) {
return;
}
address_space_stq_be(&address_space_memory, notify_addr, data,
MEMTXATTRS_UNSPECIFIED, &result);
if (result != MEMTX_OK) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: trigger failed @%"
HWADDR_PRIx "\n", __func__, notif_port);
return;
}
}
static uint64_t pnv_psi_p9_mmio_read(void *opaque, hwaddr addr, unsigned size)
{
PnvPsi *psi = PNV_PSI(opaque);
uint32_t reg = PSIHB_REG(addr);
uint64_t val = -1;
switch (addr) {
case PSIHB9_CR:
case PSIHB9_SEMR:
/* FSP stuff */
case PSIHB9_INTERRUPT_CONTROL:
case PSIHB9_ESB_CI_BASE:
case PSIHB9_ESB_NOTIF_ADDR:
case PSIHB9_IVT_OFFSET:
val = psi->regs[reg];
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "PSI: read at 0x%" PRIx64 "\n", addr);
}
return val;
}
static void pnv_psi_p9_mmio_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
PnvPsi *psi = PNV_PSI(opaque);
Pnv9Psi *psi9 = PNV9_PSI(psi);
uint32_t reg = PSIHB_REG(addr);
MemoryRegion *sysmem = get_system_memory();
switch (addr) {
case PSIHB9_CR:
if (val & PSIHB10_CR_STORE_EOI) {
psi9->source.esb_flags |= XIVE_SRC_STORE_EOI;
} else {
psi9->source.esb_flags &= ~XIVE_SRC_STORE_EOI;
}
break;
case PSIHB9_SEMR:
/* FSP stuff */
break;
case PSIHB9_INTERRUPT_CONTROL:
if (val & PSIHB9_IRQ_RESET) {
device_cold_reset(DEVICE(&psi9->source));
}
psi->regs[reg] = val;
break;
case PSIHB9_ESB_CI_BASE:
if (val & PSIHB10_ESB_CI_64K) {
psi9->source.esb_shift = XIVE_ESB_64K;
} else {
psi9->source.esb_shift = XIVE_ESB_4K;
}
if (!(val & PSIHB9_ESB_CI_VALID)) {
if (psi->regs[reg] & PSIHB9_ESB_CI_VALID) {
memory_region_del_subregion(sysmem, &psi9->source.esb_mmio);
}
} else {
if (!(psi->regs[reg] & PSIHB9_ESB_CI_VALID)) {
hwaddr addr = val & ~(PSIHB9_ESB_CI_VALID | PSIHB10_ESB_CI_64K);
memory_region_add_subregion(sysmem, addr,
&psi9->source.esb_mmio);
}
}
psi->regs[reg] = val;
break;
case PSIHB9_ESB_NOTIF_ADDR:
psi->regs[reg] = val;
break;
case PSIHB9_IVT_OFFSET:
psi->regs[reg] = val;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "PSI: write at 0x%" PRIx64 "\n", addr);
}
}
static const MemoryRegionOps pnv_psi_p9_mmio_ops = {
.read = pnv_psi_p9_mmio_read,
.write = pnv_psi_p9_mmio_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 8,
.max_access_size = 8,
},
.impl = {
.min_access_size = 8,
.max_access_size = 8,
},
};
static uint64_t pnv_psi_p9_xscom_read(void *opaque, hwaddr addr, unsigned size)
{
/* No read are expected */
qemu_log_mask(LOG_GUEST_ERROR, "PSI: xscom read at 0x%" PRIx64 "\n", addr);
return -1;
}
static void pnv_psi_p9_xscom_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
PnvPsi *psi = PNV_PSI(opaque);
/* XSCOM is only used to set the PSIHB MMIO region */
switch (addr >> 3) {
case PSIHB_XSCOM_BAR:
pnv_psi_set_bar(psi, val);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "PSI: xscom write at 0x%" PRIx64 "\n",
addr);
}
}
static const MemoryRegionOps pnv_psi_p9_xscom_ops = {
.read = pnv_psi_p9_xscom_read,
.write = pnv_psi_p9_xscom_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 8,
.max_access_size = 8,
},
.impl = {
.min_access_size = 8,
.max_access_size = 8,
}
};
static void pnv_psi_power9_set_irq(void *opaque, int irq, int state)
{
PnvPsi *psi = opaque;
uint64_t irq_method = psi->regs[PSIHB_REG(PSIHB9_INTERRUPT_CONTROL)];
if (irq_method & PSIHB9_IRQ_METHOD) {
qemu_log_mask(LOG_GUEST_ERROR, "PSI: LSI IRQ method no supported\n");
return;
}
/* Update LSI levels */
if (state) {
psi->regs[PSIHB_REG(PSIHB9_IRQ_LEVEL)] |= PPC_BIT(irq);
} else {
psi->regs[PSIHB_REG(PSIHB9_IRQ_LEVEL)] &= ~PPC_BIT(irq);
}
qemu_set_irq(psi->qirqs[irq], state);
}
static void pnv_psi_power9_reset(DeviceState *dev)
{
Pnv9Psi *psi = PNV9_PSI(dev);
pnv_psi_reset(dev);
if (memory_region_is_mapped(&psi->source.esb_mmio)) {
memory_region_del_subregion(get_system_memory(), &psi->source.esb_mmio);
}
}
static void pnv_psi_power9_instance_init(Object *obj)
{
Pnv9Psi *psi = PNV9_PSI(obj);
object_initialize_child(obj, "source", &psi->source, TYPE_XIVE_SOURCE);
object_property_add_alias(obj, "shift", OBJECT(&psi->source), "shift");
}
static void pnv_psi_power9_realize(DeviceState *dev, Error **errp)
{
PnvPsi *psi = PNV_PSI(dev);
XiveSource *xsrc = &PNV9_PSI(psi)->source;
int i;
object_property_set_int(OBJECT(xsrc), "nr-irqs", PSIHB9_NUM_IRQS,
&error_fatal);
object_property_set_link(OBJECT(xsrc), "xive", OBJECT(psi), &error_abort);
if (!qdev_realize(DEVICE(xsrc), NULL, errp)) {
return;
}
for (i = 0; i < xsrc->nr_irqs; i++) {
xive_source_irq_set_lsi(xsrc, i);
}
psi->qirqs = qemu_allocate_irqs(xive_source_set_irq, xsrc, xsrc->nr_irqs);
qdev_init_gpio_in(dev, pnv_psi_power9_set_irq, xsrc->nr_irqs);
/* XSCOM region for PSI registers */
pnv_xscom_region_init(&psi->xscom_regs, OBJECT(dev), &pnv_psi_p9_xscom_ops,
psi, "xscom-psi", PNV9_XSCOM_PSIHB_SIZE);
/* MMIO region for PSI registers */
memory_region_init_io(&psi->regs_mr, OBJECT(dev), &pnv_psi_p9_mmio_ops, psi,
"psihb", PNV9_PSIHB_SIZE);
pnv_psi_realize(dev, errp);
}
static void pnv_psi_power9_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PnvPsiClass *ppc = PNV_PSI_CLASS(klass);
XiveNotifierClass *xfc = XIVE_NOTIFIER_CLASS(klass);
static const char compat[] = "ibm,power9-psihb-x\0ibm,psihb-x";
dc->desc = "PowerNV PSI Controller POWER9";
dc->realize = pnv_psi_power9_realize;
dc->reset = pnv_psi_power9_reset;
ppc->xscom_pcba = PNV9_XSCOM_PSIHB_BASE;
ppc->xscom_size = PNV9_XSCOM_PSIHB_SIZE;
ppc->bar_mask = PSIHB9_BAR_MASK;
ppc->compat = compat;
ppc->compat_size = sizeof(compat);
xfc->notify = pnv_psi_notify;
}
static const TypeInfo pnv_psi_power9_info = {
.name = TYPE_PNV9_PSI,
.parent = TYPE_PNV_PSI,
.instance_size = sizeof(Pnv9Psi),
.instance_init = pnv_psi_power9_instance_init,
.class_init = pnv_psi_power9_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_XIVE_NOTIFIER },
{ },
},
};
static void pnv_psi_power10_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PnvPsiClass *ppc = PNV_PSI_CLASS(klass);
static const char compat[] = "ibm,power10-psihb-x\0ibm,psihb-x";
dc->desc = "PowerNV PSI Controller POWER10";
ppc->xscom_pcba = PNV10_XSCOM_PSIHB_BASE;
ppc->xscom_size = PNV10_XSCOM_PSIHB_SIZE;
ppc->compat = compat;
ppc->compat_size = sizeof(compat);
}
static const TypeInfo pnv_psi_power10_info = {
.name = TYPE_PNV10_PSI,
.parent = TYPE_PNV9_PSI,
.class_init = pnv_psi_power10_class_init,
};
static void pnv_psi_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
xdc->dt_xscom = pnv_psi_dt_xscom;
dc->desc = "PowerNV PSI Controller";
device_class_set_props(dc, pnv_psi_properties);
dc->reset = pnv_psi_reset;
dc->user_creatable = false;
}
static const TypeInfo pnv_psi_info = {
.name = TYPE_PNV_PSI,
.parent = TYPE_DEVICE,
.instance_size = sizeof(PnvPsi),
.class_init = pnv_psi_class_init,
.class_size = sizeof(PnvPsiClass),
.abstract = true,
.interfaces = (InterfaceInfo[]) {
{ TYPE_PNV_XSCOM_INTERFACE },
{ }
}
};
static void pnv_psi_register_types(void)
{
type_register_static(&pnv_psi_info);
type_register_static(&pnv_psi_power8_info);
type_register_static(&pnv_psi_power9_info);
type_register_static(&pnv_psi_power10_info);
}
type_init(pnv_psi_register_types);
void pnv_psi_pic_print_info(Pnv9Psi *psi9, Monitor *mon)
{
PnvPsi *psi = PNV_PSI(psi9);
uint32_t offset =
(psi->regs[PSIHB_REG(PSIHB9_IVT_OFFSET)] >> PSIHB9_IVT_OFF_SHIFT);
monitor_printf(mon, "PSIHB Source %08x .. %08x\n",
offset, offset + psi9->source.nr_irqs - 1);
xive_source_pic_print_info(&psi9->source, offset, mon);
}