blob: 20bc8f9669553be37b673a7146bc89589ec1e112 [file] [log] [blame]
/*
* Interface to the capstone disassembler.
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "qemu/osdep.h"
#include "qemu/bswap.h"
#include "disas/dis-asm.h"
#include "disas/capstone.h"
/*
* Temporary storage for the capstone library. This will be alloced via
* malloc with a size private to the library; thus there's no reason not
* to share this across calls and across host vs target disassembly.
*/
static __thread cs_insn *cap_insn;
/*
* The capstone library always skips 2 bytes for S390X.
* This is less than ideal, since we can tell from the first two bits
* the size of the insn and thus stay in sync with the insn stream.
*/
static size_t CAPSTONE_API
cap_skipdata_s390x_cb(const uint8_t *code, size_t code_size,
size_t offset, void *user_data)
{
size_t ilen;
/* See get_ilen() in target/s390x/internal.h. */
switch (code[offset] >> 6) {
case 0:
ilen = 2;
break;
case 1:
case 2:
ilen = 4;
break;
default:
ilen = 6;
break;
}
return ilen;
}
static const cs_opt_skipdata cap_skipdata_s390x = {
.mnemonic = ".byte",
.callback = cap_skipdata_s390x_cb
};
/*
* Initialize the Capstone library.
*
* ??? It would be nice to cache this. We would need one handle for the
* host and one for the target. For most targets we can reset specific
* parameters via cs_option(CS_OPT_MODE, new_mode), but we cannot change
* CS_ARCH_* in this way. Thus we would need to be able to close and
* re-open the target handle with a different arch for the target in order
* to handle AArch64 vs AArch32 mode switching.
*/
static cs_err cap_disas_start(disassemble_info *info, csh *handle)
{
cs_mode cap_mode = info->cap_mode;
cs_err err;
cap_mode += (info->endian == BFD_ENDIAN_BIG ? CS_MODE_BIG_ENDIAN
: CS_MODE_LITTLE_ENDIAN);
err = cs_open(info->cap_arch, cap_mode, handle);
if (err != CS_ERR_OK) {
return err;
}
/* "Disassemble" unknown insns as ".byte W,X,Y,Z". */
cs_option(*handle, CS_OPT_SKIPDATA, CS_OPT_ON);
switch (info->cap_arch) {
case CS_ARCH_SYSZ:
cs_option(*handle, CS_OPT_SKIPDATA_SETUP,
(uintptr_t)&cap_skipdata_s390x);
break;
case CS_ARCH_X86:
/*
* We don't care about errors (if for some reason the library
* is compiled without AT&T syntax); the user will just have
* to deal with the Intel syntax.
*/
cs_option(*handle, CS_OPT_SYNTAX, CS_OPT_SYNTAX_ATT);
break;
}
/* Allocate temp space for cs_disasm_iter. */
if (cap_insn == NULL) {
cap_insn = cs_malloc(*handle);
if (cap_insn == NULL) {
cs_close(handle);
return CS_ERR_MEM;
}
}
return CS_ERR_OK;
}
static void cap_dump_insn_units(disassemble_info *info, cs_insn *insn,
int i, int n)
{
fprintf_function print = info->fprintf_func;
FILE *stream = info->stream;
switch (info->cap_insn_unit) {
case 4:
if (info->endian == BFD_ENDIAN_BIG) {
for (; i < n; i += 4) {
print(stream, " %08x", ldl_be_p(insn->bytes + i));
}
} else {
for (; i < n; i += 4) {
print(stream, " %08x", ldl_le_p(insn->bytes + i));
}
}
break;
case 2:
if (info->endian == BFD_ENDIAN_BIG) {
for (; i < n; i += 2) {
print(stream, " %04x", lduw_be_p(insn->bytes + i));
}
} else {
for (; i < n; i += 2) {
print(stream, " %04x", lduw_le_p(insn->bytes + i));
}
}
break;
default:
for (; i < n; i++) {
print(stream, " %02x", insn->bytes[i]);
}
break;
}
}
static void cap_dump_insn(disassemble_info *info, cs_insn *insn)
{
fprintf_function print = info->fprintf_func;
FILE *stream = info->stream;
int i, n, split;
print(stream, "0x%08" PRIx64 ": ", insn->address);
n = insn->size;
split = info->cap_insn_split;
/* Dump the first SPLIT bytes of the instruction. */
cap_dump_insn_units(info, insn, 0, MIN(n, split));
/* Add padding up to SPLIT so that mnemonics line up. */
if (n < split) {
int width = (split - n) / info->cap_insn_unit;
width *= (2 * info->cap_insn_unit + 1);
print(stream, "%*s", width, "");
}
/* Print the actual instruction. */
print(stream, " %-8s %s\n", insn->mnemonic, insn->op_str);
/* Dump any remaining part of the insn on subsequent lines. */
for (i = split; i < n; i += split) {
print(stream, "0x%08" PRIx64 ": ", insn->address + i);
cap_dump_insn_units(info, insn, i, MIN(n, i + split));
print(stream, "\n");
}
}
/* Disassemble SIZE bytes at PC for the target. */
bool cap_disas_target(disassemble_info *info, uint64_t pc, size_t size)
{
uint8_t cap_buf[1024];
csh handle;
cs_insn *insn;
size_t csize = 0;
if (cap_disas_start(info, &handle) != CS_ERR_OK) {
return false;
}
insn = cap_insn;
while (1) {
size_t tsize = MIN(sizeof(cap_buf) - csize, size);
const uint8_t *cbuf = cap_buf;
info->read_memory_func(pc + csize, cap_buf + csize, tsize, info);
csize += tsize;
size -= tsize;
while (cs_disasm_iter(handle, &cbuf, &csize, &pc, insn)) {
cap_dump_insn(info, insn);
}
/* If the target memory is not consumed, go back for more... */
if (size != 0) {
/*
* ... taking care to move any remaining fractional insn
* to the beginning of the buffer.
*/
if (csize != 0) {
memmove(cap_buf, cbuf, csize);
}
continue;
}
/*
* Since the target memory is consumed, we should not have
* a remaining fractional insn.
*/
if (csize != 0) {
info->fprintf_func(info->stream,
"Disassembler disagrees with translator "
"over instruction decoding\n"
"Please report this to qemu-devel@nongnu.org\n");
}
break;
}
cs_close(&handle);
return true;
}
/* Disassemble SIZE bytes at CODE for the host. */
bool cap_disas_host(disassemble_info *info, const void *code, size_t size)
{
csh handle;
const uint8_t *cbuf;
cs_insn *insn;
uint64_t pc;
if (cap_disas_start(info, &handle) != CS_ERR_OK) {
return false;
}
insn = cap_insn;
cbuf = code;
pc = (uintptr_t)code;
while (cs_disasm_iter(handle, &cbuf, &size, &pc, insn)) {
cap_dump_insn(info, insn);
}
if (size != 0) {
info->fprintf_func(info->stream,
"Disassembler disagrees with TCG over instruction encoding\n"
"Please report this to qemu-devel@nongnu.org\n");
}
cs_close(&handle);
return true;
}
/* Disassemble COUNT insns at PC for the target. */
bool cap_disas_monitor(disassemble_info *info, uint64_t pc, int count)
{
uint8_t cap_buf[32];
csh handle;
cs_insn *insn;
size_t csize = 0;
if (cap_disas_start(info, &handle) != CS_ERR_OK) {
return false;
}
insn = cap_insn;
while (1) {
/*
* We want to read memory for one insn, but generically we do not
* know how much memory that is. We have a small buffer which is
* known to be sufficient for all supported targets. Try to not
* read beyond the page, Just In Case. For even more simplicity,
* ignore the actual target page size and use a 1k boundary. If
* that turns out to be insufficient, we'll come back around the
* loop and read more.
*/
uint64_t epc = QEMU_ALIGN_UP(pc + csize + 1, 1024);
size_t tsize = MIN(sizeof(cap_buf) - csize, epc - pc);
const uint8_t *cbuf = cap_buf;
/* Make certain that we can make progress. */
assert(tsize != 0);
info->read_memory_func(pc + csize, cap_buf + csize, tsize, info);
csize += tsize;
if (cs_disasm_iter(handle, &cbuf, &csize, &pc, insn)) {
cap_dump_insn(info, insn);
if (--count <= 0) {
break;
}
}
memmove(cap_buf, cbuf, csize);
}
cs_close(&handle);
return true;
}
/* Disassemble a single instruction directly into plugin output */
bool cap_disas_plugin(disassemble_info *info, uint64_t pc, size_t size)
{
uint8_t cap_buf[32];
const uint8_t *cbuf = cap_buf;
csh handle;
if (cap_disas_start(info, &handle) != CS_ERR_OK) {
return false;
}
assert(size < sizeof(cap_buf));
info->read_memory_func(pc, cap_buf, size, info);
if (cs_disasm_iter(handle, &cbuf, &size, &pc, cap_insn)) {
info->fprintf_func(info->stream, "%s %s",
cap_insn->mnemonic, cap_insn->op_str);
}
cs_close(&handle);
return true;
}