blob: 510d096a888604ef8b62c086ae3fe9cb1bf6fab9 [file] [log] [blame]
/*
* NUMA parameter parsing routines
*
* Copyright (c) 2014 Fujitsu Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "sysemu/hostmem.h"
#include "sysemu/numa.h"
#include "exec/cpu-common.h"
#include "exec/ramlist.h"
#include "qemu/bitmap.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "qapi/opts-visitor.h"
#include "qapi/qapi-visit-machine.h"
#include "sysemu/qtest.h"
#include "hw/core/cpu.h"
#include "hw/mem/pc-dimm.h"
#include "migration/vmstate.h"
#include "hw/boards.h"
#include "hw/mem/memory-device.h"
#include "qemu/option.h"
#include "qemu/config-file.h"
#include "qemu/cutils.h"
QemuOptsList qemu_numa_opts = {
.name = "numa",
.implied_opt_name = "type",
.head = QTAILQ_HEAD_INITIALIZER(qemu_numa_opts.head),
.desc = { { 0 } } /* validated with OptsVisitor */
};
static int have_memdevs;
bool numa_uses_legacy_mem(void)
{
return !have_memdevs;
}
static int have_mem;
static int max_numa_nodeid; /* Highest specified NUMA node ID, plus one.
* For all nodes, nodeid < max_numa_nodeid
*/
static void parse_numa_node(MachineState *ms, NumaNodeOptions *node,
Error **errp)
{
Error *err = NULL;
uint16_t nodenr;
uint16List *cpus = NULL;
MachineClass *mc = MACHINE_GET_CLASS(ms);
unsigned int max_cpus = ms->smp.max_cpus;
NodeInfo *numa_info = ms->numa_state->nodes;
if (node->has_nodeid) {
nodenr = node->nodeid;
} else {
nodenr = ms->numa_state->num_nodes;
}
if (nodenr >= MAX_NODES) {
error_setg(errp, "Max number of NUMA nodes reached: %"
PRIu16 "", nodenr);
return;
}
if (numa_info[nodenr].present) {
error_setg(errp, "Duplicate NUMA nodeid: %" PRIu16, nodenr);
return;
}
/*
* If not set the initiator, set it to MAX_NODES. And if
* HMAT is enabled and this node has no cpus, QEMU will raise error.
*/
numa_info[nodenr].initiator = MAX_NODES;
if (node->has_initiator) {
if (!ms->numa_state->hmat_enabled) {
error_setg(errp, "ACPI Heterogeneous Memory Attribute Table "
"(HMAT) is disabled, enable it with -machine hmat=on "
"before using any of hmat specific options");
return;
}
if (node->initiator >= MAX_NODES) {
error_report("The initiator id %" PRIu16 " expects an integer "
"between 0 and %d", node->initiator,
MAX_NODES - 1);
return;
}
numa_info[nodenr].initiator = node->initiator;
}
for (cpus = node->cpus; cpus; cpus = cpus->next) {
CpuInstanceProperties props;
if (cpus->value >= max_cpus) {
error_setg(errp,
"CPU index (%" PRIu16 ")"
" should be smaller than maxcpus (%d)",
cpus->value, max_cpus);
return;
}
props = mc->cpu_index_to_instance_props(ms, cpus->value);
props.node_id = nodenr;
props.has_node_id = true;
machine_set_cpu_numa_node(ms, &props, &err);
if (err) {
error_propagate(errp, err);
return;
}
}
have_memdevs = have_memdevs ? : node->has_memdev;
have_mem = have_mem ? : node->has_mem;
if ((node->has_mem && have_memdevs) || (node->has_memdev && have_mem)) {
error_setg(errp, "numa configuration should use either mem= or memdev=,"
"mixing both is not allowed");
return;
}
if (node->has_mem) {
if (!mc->numa_mem_supported) {
error_setg(errp, "Parameter -numa node,mem is not supported by this"
" machine type");
error_append_hint(errp, "Use -numa node,memdev instead\n");
return;
}
numa_info[nodenr].node_mem = node->mem;
if (!qtest_enabled()) {
warn_report("Parameter -numa node,mem is deprecated,"
" use -numa node,memdev instead");
}
}
if (node->has_memdev) {
Object *o;
o = object_resolve_path_type(node->memdev, TYPE_MEMORY_BACKEND, NULL);
if (!o) {
error_setg(errp, "memdev=%s is ambiguous", node->memdev);
return;
}
object_ref(o);
numa_info[nodenr].node_mem = object_property_get_uint(o, "size", NULL);
numa_info[nodenr].node_memdev = MEMORY_BACKEND(o);
}
numa_info[nodenr].present = true;
max_numa_nodeid = MAX(max_numa_nodeid, nodenr + 1);
ms->numa_state->num_nodes++;
}
static
void parse_numa_distance(MachineState *ms, NumaDistOptions *dist, Error **errp)
{
uint16_t src = dist->src;
uint16_t dst = dist->dst;
uint8_t val = dist->val;
NodeInfo *numa_info = ms->numa_state->nodes;
if (src >= MAX_NODES || dst >= MAX_NODES) {
error_setg(errp, "Parameter '%s' expects an integer between 0 and %d",
src >= MAX_NODES ? "src" : "dst", MAX_NODES - 1);
return;
}
if (!numa_info[src].present || !numa_info[dst].present) {
error_setg(errp, "Source/Destination NUMA node is missing. "
"Please use '-numa node' option to declare it first.");
return;
}
if (val < NUMA_DISTANCE_MIN) {
error_setg(errp, "NUMA distance (%" PRIu8 ") is invalid, "
"it shouldn't be less than %d.",
val, NUMA_DISTANCE_MIN);
return;
}
if (src == dst && val != NUMA_DISTANCE_MIN) {
error_setg(errp, "Local distance of node %d should be %d.",
src, NUMA_DISTANCE_MIN);
return;
}
numa_info[src].distance[dst] = val;
ms->numa_state->have_numa_distance = true;
}
void parse_numa_hmat_lb(NumaState *numa_state, NumaHmatLBOptions *node,
Error **errp)
{
int i, first_bit, last_bit;
uint64_t max_entry, temp_base, bitmap_copy;
NodeInfo *numa_info = numa_state->nodes;
HMAT_LB_Info *hmat_lb =
numa_state->hmat_lb[node->hierarchy][node->data_type];
HMAT_LB_Data lb_data = {};
HMAT_LB_Data *lb_temp;
/* Error checking */
if (node->initiator > numa_state->num_nodes) {
error_setg(errp, "Invalid initiator=%d, it should be less than %d",
node->initiator, numa_state->num_nodes);
return;
}
if (node->target > numa_state->num_nodes) {
error_setg(errp, "Invalid target=%d, it should be less than %d",
node->target, numa_state->num_nodes);
return;
}
if (!numa_info[node->initiator].has_cpu) {
error_setg(errp, "Invalid initiator=%d, it isn't an "
"initiator proximity domain", node->initiator);
return;
}
if (!numa_info[node->target].present) {
error_setg(errp, "The target=%d should point to an existing node",
node->target);
return;
}
if (!hmat_lb) {
hmat_lb = g_malloc0(sizeof(*hmat_lb));
numa_state->hmat_lb[node->hierarchy][node->data_type] = hmat_lb;
hmat_lb->list = g_array_new(false, true, sizeof(HMAT_LB_Data));
}
hmat_lb->hierarchy = node->hierarchy;
hmat_lb->data_type = node->data_type;
lb_data.initiator = node->initiator;
lb_data.target = node->target;
if (node->data_type <= HMATLB_DATA_TYPE_WRITE_LATENCY) {
/* Input latency data */
if (!node->has_latency) {
error_setg(errp, "Missing 'latency' option");
return;
}
if (node->has_bandwidth) {
error_setg(errp, "Invalid option 'bandwidth' since "
"the data type is latency");
return;
}
/* Detect duplicate configuration */
for (i = 0; i < hmat_lb->list->len; i++) {
lb_temp = &g_array_index(hmat_lb->list, HMAT_LB_Data, i);
if (node->initiator == lb_temp->initiator &&
node->target == lb_temp->target) {
error_setg(errp, "Duplicate configuration of the latency for "
"initiator=%d and target=%d", node->initiator,
node->target);
return;
}
}
hmat_lb->base = hmat_lb->base ? hmat_lb->base : UINT64_MAX;
if (node->latency) {
/* Calculate the temporary base and compressed latency */
max_entry = node->latency;
temp_base = 1;
while (QEMU_IS_ALIGNED(max_entry, 10)) {
max_entry /= 10;
temp_base *= 10;
}
/* Calculate the max compressed latency */
temp_base = MIN(hmat_lb->base, temp_base);
max_entry = node->latency / hmat_lb->base;
max_entry = MAX(hmat_lb->range_bitmap, max_entry);
/*
* For latency hmat_lb->range_bitmap record the max compressed
* latency which should be less than 0xFFFF (UINT16_MAX)
*/
if (max_entry >= UINT16_MAX) {
error_setg(errp, "Latency %" PRIu64 " between initiator=%d and "
"target=%d should not differ from previously entered "
"min or max values on more than %d", node->latency,
node->initiator, node->target, UINT16_MAX - 1);
return;
} else {
hmat_lb->base = temp_base;
hmat_lb->range_bitmap = max_entry;
}
/*
* Set lb_info_provided bit 0 as 1,
* latency information is provided
*/
numa_info[node->target].lb_info_provided |= BIT(0);
}
lb_data.data = node->latency;
} else if (node->data_type >= HMATLB_DATA_TYPE_ACCESS_BANDWIDTH) {
/* Input bandwidth data */
if (!node->has_bandwidth) {
error_setg(errp, "Missing 'bandwidth' option");
return;
}
if (node->has_latency) {
error_setg(errp, "Invalid option 'latency' since "
"the data type is bandwidth");
return;
}
if (!QEMU_IS_ALIGNED(node->bandwidth, MiB)) {
error_setg(errp, "Bandwidth %" PRIu64 " between initiator=%d and "
"target=%d should be 1MB aligned", node->bandwidth,
node->initiator, node->target);
return;
}
/* Detect duplicate configuration */
for (i = 0; i < hmat_lb->list->len; i++) {
lb_temp = &g_array_index(hmat_lb->list, HMAT_LB_Data, i);
if (node->initiator == lb_temp->initiator &&
node->target == lb_temp->target) {
error_setg(errp, "Duplicate configuration of the bandwidth for "
"initiator=%d and target=%d", node->initiator,
node->target);
return;
}
}
hmat_lb->base = hmat_lb->base ? hmat_lb->base : 1;
if (node->bandwidth) {
/* Keep bitmap unchanged when bandwidth out of range */
bitmap_copy = hmat_lb->range_bitmap;
bitmap_copy |= node->bandwidth;
first_bit = ctz64(bitmap_copy);
temp_base = UINT64_C(1) << first_bit;
max_entry = node->bandwidth / temp_base;
last_bit = 64 - clz64(bitmap_copy);
/*
* For bandwidth, first_bit record the base unit of bandwidth bits,
* last_bit record the last bit of the max bandwidth. The max
* compressed bandwidth should be less than 0xFFFF (UINT16_MAX)
*/
if ((last_bit - first_bit) > UINT16_BITS ||
max_entry >= UINT16_MAX) {
error_setg(errp, "Bandwidth %" PRIu64 " between initiator=%d "
"and target=%d should not differ from previously "
"entered values on more than %d", node->bandwidth,
node->initiator, node->target, UINT16_MAX - 1);
return;
} else {
hmat_lb->base = temp_base;
hmat_lb->range_bitmap = bitmap_copy;
}
/*
* Set lb_info_provided bit 1 as 1,
* bandwidth information is provided
*/
numa_info[node->target].lb_info_provided |= BIT(1);
}
lb_data.data = node->bandwidth;
} else {
assert(0);
}
g_array_append_val(hmat_lb->list, lb_data);
}
void parse_numa_hmat_cache(MachineState *ms, NumaHmatCacheOptions *node,
Error **errp)
{
int nb_numa_nodes = ms->numa_state->num_nodes;
NodeInfo *numa_info = ms->numa_state->nodes;
NumaHmatCacheOptions *hmat_cache = NULL;
if (node->node_id >= nb_numa_nodes) {
error_setg(errp, "Invalid node-id=%" PRIu32 ", it should be less "
"than %d", node->node_id, nb_numa_nodes);
return;
}
if (numa_info[node->node_id].lb_info_provided != (BIT(0) | BIT(1))) {
error_setg(errp, "The latency and bandwidth information of "
"node-id=%" PRIu32 " should be provided before memory side "
"cache attributes", node->node_id);
return;
}
if (node->level < 1 || node->level >= HMAT_LB_LEVELS) {
error_setg(errp, "Invalid level=%" PRIu8 ", it should be larger than 0 "
"and less than or equal to %d", node->level,
HMAT_LB_LEVELS - 1);
return;
}
assert(node->associativity < HMAT_CACHE_ASSOCIATIVITY__MAX);
assert(node->policy < HMAT_CACHE_WRITE_POLICY__MAX);
if (ms->numa_state->hmat_cache[node->node_id][node->level]) {
error_setg(errp, "Duplicate configuration of the side cache for "
"node-id=%" PRIu32 " and level=%" PRIu8,
node->node_id, node->level);
return;
}
if ((node->level > 1) &&
ms->numa_state->hmat_cache[node->node_id][node->level - 1] == NULL) {
error_setg(errp, "Cache level=%u shall be defined first",
node->level - 1);
return;
}
if ((node->level > 1) &&
(node->size <=
ms->numa_state->hmat_cache[node->node_id][node->level - 1]->size)) {
error_setg(errp, "Invalid size=%" PRIu64 ", the size of level=%" PRIu8
" should be larger than the size(%" PRIu64 ") of "
"level=%u", node->size, node->level,
ms->numa_state->hmat_cache[node->node_id]
[node->level - 1]->size,
node->level - 1);
return;
}
if ((node->level < HMAT_LB_LEVELS - 1) &&
ms->numa_state->hmat_cache[node->node_id][node->level + 1] &&
(node->size >=
ms->numa_state->hmat_cache[node->node_id][node->level + 1]->size)) {
error_setg(errp, "Invalid size=%" PRIu64 ", the size of level=%" PRIu8
" should be less than the size(%" PRIu64 ") of "
"level=%u", node->size, node->level,
ms->numa_state->hmat_cache[node->node_id]
[node->level + 1]->size,
node->level + 1);
return;
}
hmat_cache = g_malloc0(sizeof(*hmat_cache));
memcpy(hmat_cache, node, sizeof(*hmat_cache));
ms->numa_state->hmat_cache[node->node_id][node->level] = hmat_cache;
}
void set_numa_options(MachineState *ms, NumaOptions *object, Error **errp)
{
if (!ms->numa_state) {
error_setg(errp, "NUMA is not supported by this machine-type");
return;
}
switch (object->type) {
case NUMA_OPTIONS_TYPE_NODE:
parse_numa_node(ms, &object->u.node, errp);
break;
case NUMA_OPTIONS_TYPE_DIST:
parse_numa_distance(ms, &object->u.dist, errp);
break;
case NUMA_OPTIONS_TYPE_CPU:
if (!object->u.cpu.has_node_id) {
error_setg(errp, "Missing mandatory node-id property");
return;
}
if (!ms->numa_state->nodes[object->u.cpu.node_id].present) {
error_setg(errp, "Invalid node-id=%" PRId64 ", NUMA node must be "
"defined with -numa node,nodeid=ID before it's used with "
"-numa cpu,node-id=ID", object->u.cpu.node_id);
return;
}
machine_set_cpu_numa_node(ms,
qapi_NumaCpuOptions_base(&object->u.cpu),
errp);
break;
case NUMA_OPTIONS_TYPE_HMAT_LB:
if (!ms->numa_state->hmat_enabled) {
error_setg(errp, "ACPI Heterogeneous Memory Attribute Table "
"(HMAT) is disabled, enable it with -machine hmat=on "
"before using any of hmat specific options");
return;
}
parse_numa_hmat_lb(ms->numa_state, &object->u.hmat_lb, errp);
break;
case NUMA_OPTIONS_TYPE_HMAT_CACHE:
if (!ms->numa_state->hmat_enabled) {
error_setg(errp, "ACPI Heterogeneous Memory Attribute Table "
"(HMAT) is disabled, enable it with -machine hmat=on "
"before using any of hmat specific options");
return;
}
parse_numa_hmat_cache(ms, &object->u.hmat_cache, errp);
break;
default:
abort();
}
}
static int parse_numa(void *opaque, QemuOpts *opts, Error **errp)
{
NumaOptions *object = NULL;
MachineState *ms = MACHINE(opaque);
Error *err = NULL;
Visitor *v = opts_visitor_new(opts);
visit_type_NumaOptions(v, NULL, &object, errp);
visit_free(v);
if (!object) {
return -1;
}
/* Fix up legacy suffix-less format */
if ((object->type == NUMA_OPTIONS_TYPE_NODE) && object->u.node.has_mem) {
const char *mem_str = qemu_opt_get(opts, "mem");
qemu_strtosz_MiB(mem_str, NULL, &object->u.node.mem);
}
set_numa_options(ms, object, &err);
qapi_free_NumaOptions(object);
if (err) {
error_propagate(errp, err);
return -1;
}
return 0;
}
/* If all node pair distances are symmetric, then only distances
* in one direction are enough. If there is even one asymmetric
* pair, though, then all distances must be provided. The
* distance from a node to itself is always NUMA_DISTANCE_MIN,
* so providing it is never necessary.
*/
static void validate_numa_distance(MachineState *ms)
{
int src, dst;
bool is_asymmetrical = false;
int nb_numa_nodes = ms->numa_state->num_nodes;
NodeInfo *numa_info = ms->numa_state->nodes;
for (src = 0; src < nb_numa_nodes; src++) {
for (dst = src; dst < nb_numa_nodes; dst++) {
if (numa_info[src].distance[dst] == 0 &&
numa_info[dst].distance[src] == 0) {
if (src != dst) {
error_report("The distance between node %d and %d is "
"missing, at least one distance value "
"between each nodes should be provided.",
src, dst);
exit(EXIT_FAILURE);
}
}
if (numa_info[src].distance[dst] != 0 &&
numa_info[dst].distance[src] != 0 &&
numa_info[src].distance[dst] !=
numa_info[dst].distance[src]) {
is_asymmetrical = true;
}
}
}
if (is_asymmetrical) {
for (src = 0; src < nb_numa_nodes; src++) {
for (dst = 0; dst < nb_numa_nodes; dst++) {
if (src != dst && numa_info[src].distance[dst] == 0) {
error_report("At least one asymmetrical pair of "
"distances is given, please provide distances "
"for both directions of all node pairs.");
exit(EXIT_FAILURE);
}
}
}
}
}
static void complete_init_numa_distance(MachineState *ms)
{
int src, dst;
NodeInfo *numa_info = ms->numa_state->nodes;
/* Fixup NUMA distance by symmetric policy because if it is an
* asymmetric distance table, it should be a complete table and
* there would not be any missing distance except local node, which
* is verified by validate_numa_distance above.
*/
for (src = 0; src < ms->numa_state->num_nodes; src++) {
for (dst = 0; dst < ms->numa_state->num_nodes; dst++) {
if (numa_info[src].distance[dst] == 0) {
if (src == dst) {
numa_info[src].distance[dst] = NUMA_DISTANCE_MIN;
} else {
numa_info[src].distance[dst] = numa_info[dst].distance[src];
}
}
}
}
}
static void numa_init_memdev_container(MachineState *ms, MemoryRegion *ram)
{
int i;
uint64_t addr = 0;
for (i = 0; i < ms->numa_state->num_nodes; i++) {
uint64_t size = ms->numa_state->nodes[i].node_mem;
HostMemoryBackend *backend = ms->numa_state->nodes[i].node_memdev;
if (!backend) {
continue;
}
MemoryRegion *seg = machine_consume_memdev(ms, backend);
memory_region_add_subregion(ram, addr, seg);
addr += size;
}
}
void numa_complete_configuration(MachineState *ms)
{
int i;
MachineClass *mc = MACHINE_GET_CLASS(ms);
NodeInfo *numa_info = ms->numa_state->nodes;
/*
* If memory hotplug is enabled (slot > 0) or memory devices are enabled
* (ms->maxram_size > ms->ram_size) but without '-numa' options explicitly on
* CLI, guests will break.
*
* Windows: won't enable memory hotplug without SRAT table at all
*
* Linux: if QEMU is started with initial memory all below 4Gb
* and no SRAT table present, guest kernel will use nommu DMA ops,
* which breaks 32bit hw drivers when memory is hotplugged and
* guest tries to use it with that drivers.
*
* Enable NUMA implicitly by adding a new NUMA node automatically.
*
* Or if MachineClass::auto_enable_numa is true and no NUMA nodes,
* assume there is just one node with whole RAM.
*/
if (ms->numa_state->num_nodes == 0 &&
((ms->ram_slots && mc->auto_enable_numa_with_memhp) ||
(ms->maxram_size > ms->ram_size && mc->auto_enable_numa_with_memdev) ||
mc->auto_enable_numa)) {
NumaNodeOptions node = { };
parse_numa_node(ms, &node, &error_abort);
numa_info[0].node_mem = ms->ram_size;
}
assert(max_numa_nodeid <= MAX_NODES);
/* No support for sparse NUMA node IDs yet: */
for (i = max_numa_nodeid - 1; i >= 0; i--) {
/* Report large node IDs first, to make mistakes easier to spot */
if (!numa_info[i].present) {
error_report("numa: Node ID missing: %d", i);
exit(1);
}
}
/* This must be always true if all nodes are present: */
assert(ms->numa_state->num_nodes == max_numa_nodeid);
if (ms->numa_state->num_nodes > 0) {
uint64_t numa_total;
numa_total = 0;
for (i = 0; i < ms->numa_state->num_nodes; i++) {
numa_total += numa_info[i].node_mem;
}
if (numa_total != ms->ram_size) {
error_report("total memory for NUMA nodes (0x%" PRIx64 ")"
" should equal RAM size (0x" RAM_ADDR_FMT ")",
numa_total, ms->ram_size);
exit(1);
}
if (!numa_uses_legacy_mem() && mc->default_ram_id) {
if (ms->ram_memdev_id) {
error_report("'-machine memory-backend' and '-numa memdev'"
" properties are mutually exclusive");
exit(1);
}
ms->ram = g_new(MemoryRegion, 1);
memory_region_init(ms->ram, OBJECT(ms), mc->default_ram_id,
ms->ram_size);
numa_init_memdev_container(ms, ms->ram);
}
/* QEMU needs at least all unique node pair distances to build
* the whole NUMA distance table. QEMU treats the distance table
* as symmetric by default, i.e. distance A->B == distance B->A.
* Thus, QEMU is able to complete the distance table
* initialization even though only distance A->B is provided and
* distance B->A is not. QEMU knows the distance of a node to
* itself is always 10, so A->A distances may be omitted. When
* the distances of two nodes of a pair differ, i.e. distance
* A->B != distance B->A, then that means the distance table is
* asymmetric. In this case, the distances for both directions
* of all node pairs are required.
*/
if (ms->numa_state->have_numa_distance) {
/* Validate enough NUMA distance information was provided. */
validate_numa_distance(ms);
/* Validation succeeded, now fill in any missing distances. */
complete_init_numa_distance(ms);
}
}
}
void parse_numa_opts(MachineState *ms)
{
qemu_opts_foreach(qemu_find_opts("numa"), parse_numa, ms, &error_fatal);
}
void numa_cpu_pre_plug(const CPUArchId *slot, DeviceState *dev, Error **errp)
{
int node_id = object_property_get_int(OBJECT(dev), "node-id", &error_abort);
if (node_id == CPU_UNSET_NUMA_NODE_ID) {
/* due to bug in libvirt, it doesn't pass node-id from props on
* device_add as expected, so we have to fix it up here */
if (slot->props.has_node_id) {
object_property_set_int(OBJECT(dev), "node-id",
slot->props.node_id, errp);
}
} else if (node_id != slot->props.node_id) {
error_setg(errp, "invalid node-id, must be %"PRId64,
slot->props.node_id);
}
}
static void numa_stat_memory_devices(NumaNodeMem node_mem[])
{
MemoryDeviceInfoList *info_list = qmp_memory_device_list();
MemoryDeviceInfoList *info;
PCDIMMDeviceInfo *pcdimm_info;
VirtioPMEMDeviceInfo *vpi;
VirtioMEMDeviceInfo *vmi;
for (info = info_list; info; info = info->next) {
MemoryDeviceInfo *value = info->value;
if (value) {
switch (value->type) {
case MEMORY_DEVICE_INFO_KIND_DIMM:
case MEMORY_DEVICE_INFO_KIND_NVDIMM:
pcdimm_info = value->type == MEMORY_DEVICE_INFO_KIND_DIMM ?
value->u.dimm.data : value->u.nvdimm.data;
node_mem[pcdimm_info->node].node_mem += pcdimm_info->size;
node_mem[pcdimm_info->node].node_plugged_mem +=
pcdimm_info->size;
break;
case MEMORY_DEVICE_INFO_KIND_VIRTIO_PMEM:
vpi = value->u.virtio_pmem.data;
/* TODO: once we support numa, assign to right node */
node_mem[0].node_mem += vpi->size;
node_mem[0].node_plugged_mem += vpi->size;
break;
case MEMORY_DEVICE_INFO_KIND_VIRTIO_MEM:
vmi = value->u.virtio_mem.data;
node_mem[vmi->node].node_mem += vmi->size;
node_mem[vmi->node].node_plugged_mem += vmi->size;
break;
default:
g_assert_not_reached();
}
}
}
qapi_free_MemoryDeviceInfoList(info_list);
}
void query_numa_node_mem(NumaNodeMem node_mem[], MachineState *ms)
{
int i;
if (ms->numa_state == NULL || ms->numa_state->num_nodes <= 0) {
return;
}
numa_stat_memory_devices(node_mem);
for (i = 0; i < ms->numa_state->num_nodes; i++) {
node_mem[i].node_mem += ms->numa_state->nodes[i].node_mem;
}
}
static int ram_block_notify_add_single(RAMBlock *rb, void *opaque)
{
const ram_addr_t max_size = qemu_ram_get_max_length(rb);
const ram_addr_t size = qemu_ram_get_used_length(rb);
void *host = qemu_ram_get_host_addr(rb);
RAMBlockNotifier *notifier = opaque;
if (host) {
notifier->ram_block_added(notifier, host, size, max_size);
}
return 0;
}
void ram_block_notifier_add(RAMBlockNotifier *n)
{
QLIST_INSERT_HEAD(&ram_list.ramblock_notifiers, n, next);
/* Notify about all existing ram blocks. */
if (n->ram_block_added) {
qemu_ram_foreach_block(ram_block_notify_add_single, n);
}
}
void ram_block_notifier_remove(RAMBlockNotifier *n)
{
QLIST_REMOVE(n, next);
}
void ram_block_notify_add(void *host, size_t size, size_t max_size)
{
RAMBlockNotifier *notifier;
QLIST_FOREACH(notifier, &ram_list.ramblock_notifiers, next) {
if (notifier->ram_block_added) {
notifier->ram_block_added(notifier, host, size, max_size);
}
}
}
void ram_block_notify_remove(void *host, size_t size, size_t max_size)
{
RAMBlockNotifier *notifier;
QLIST_FOREACH(notifier, &ram_list.ramblock_notifiers, next) {
if (notifier->ram_block_removed) {
notifier->ram_block_removed(notifier, host, size, max_size);
}
}
}
void ram_block_notify_resize(void *host, size_t old_size, size_t new_size)
{
RAMBlockNotifier *notifier;
QLIST_FOREACH(notifier, &ram_list.ramblock_notifiers, next) {
if (notifier->ram_block_resized) {
notifier->ram_block_resized(notifier, host, old_size, new_size);
}
}
}