blob: 5ab58160a929d2b51495d003f951eb42222619c4 [file] [log] [blame]
/*
* QEMU M48T59 NVRAM emulation for PPC PREP platform
*
* Copyright (c) 2003-2004 Jocelyn Mayer
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "vl.h"
#include "m48t59.h"
//#define DEBUG_NVRAM
#if defined(DEBUG_NVRAM)
#define NVRAM_PRINTF(fmt, args...) do { printf(fmt , ##args); } while (0)
#else
#define NVRAM_PRINTF(fmt, args...) do { } while (0)
#endif
struct m48t59_t {
/* Hardware parameters */
int IRQ;
int mem_index;
uint32_t mem_base;
uint32_t io_base;
uint16_t size;
/* RTC management */
time_t time_offset;
time_t stop_time;
/* Alarm & watchdog */
time_t alarm;
struct QEMUTimer *alrm_timer;
struct QEMUTimer *wd_timer;
/* NVRAM storage */
uint8_t lock;
uint16_t addr;
uint8_t *buffer;
};
/* Fake timer functions */
/* Generic helpers for BCD */
static inline uint8_t toBCD (uint8_t value)
{
return (((value / 10) % 10) << 4) | (value % 10);
}
static inline uint8_t fromBCD (uint8_t BCD)
{
return ((BCD >> 4) * 10) + (BCD & 0x0F);
}
/* RTC management helpers */
static void get_time (m48t59_t *NVRAM, struct tm *tm)
{
time_t t;
t = time(NULL) + NVRAM->time_offset;
#ifdef _WIN32
memcpy(tm,localtime(&t),sizeof(*tm));
#else
localtime_r (&t, tm) ;
#endif
}
static void set_time (m48t59_t *NVRAM, struct tm *tm)
{
time_t now, new_time;
new_time = mktime(tm);
now = time(NULL);
NVRAM->time_offset = new_time - now;
}
/* Alarm management */
static void alarm_cb (void *opaque)
{
struct tm tm, tm_now;
uint64_t next_time;
m48t59_t *NVRAM = opaque;
pic_set_irq(NVRAM->IRQ, 1);
if ((NVRAM->buffer[0x1FF5] & 0x80) == 0 &&
(NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
(NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
(NVRAM->buffer[0x1FF2] & 0x80) == 0) {
/* Repeat once a month */
get_time(NVRAM, &tm_now);
memcpy(&tm, &tm_now, sizeof(struct tm));
tm.tm_mon++;
if (tm.tm_mon == 13) {
tm.tm_mon = 1;
tm.tm_year++;
}
next_time = mktime(&tm);
} else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
(NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
(NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
(NVRAM->buffer[0x1FF2] & 0x80) == 0) {
/* Repeat once a day */
next_time = 24 * 60 * 60 + mktime(&tm_now);
} else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
(NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
(NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
(NVRAM->buffer[0x1FF2] & 0x80) == 0) {
/* Repeat once an hour */
next_time = 60 * 60 + mktime(&tm_now);
} else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
(NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
(NVRAM->buffer[0x1FF3] & 0x80) != 0 &&
(NVRAM->buffer[0x1FF2] & 0x80) == 0) {
/* Repeat once a minute */
next_time = 60 + mktime(&tm_now);
} else {
/* Repeat once a second */
next_time = 1 + mktime(&tm_now);
}
qemu_mod_timer(NVRAM->alrm_timer, next_time * 1000);
pic_set_irq(NVRAM->IRQ, 0);
}
static void get_alarm (m48t59_t *NVRAM, struct tm *tm)
{
#ifdef _WIN32
memcpy(tm,localtime(&NVRAM->alarm),sizeof(*tm));
#else
localtime_r (&NVRAM->alarm, tm);
#endif
}
static void set_alarm (m48t59_t *NVRAM, struct tm *tm)
{
NVRAM->alarm = mktime(tm);
if (NVRAM->alrm_timer != NULL) {
qemu_del_timer(NVRAM->alrm_timer);
NVRAM->alrm_timer = NULL;
}
if (NVRAM->alarm - time(NULL) > 0)
qemu_mod_timer(NVRAM->alrm_timer, NVRAM->alarm * 1000);
}
/* Watchdog management */
static void watchdog_cb (void *opaque)
{
m48t59_t *NVRAM = opaque;
NVRAM->buffer[0x1FF0] |= 0x80;
if (NVRAM->buffer[0x1FF7] & 0x80) {
NVRAM->buffer[0x1FF7] = 0x00;
NVRAM->buffer[0x1FFC] &= ~0x40;
/* May it be a hw CPU Reset instead ? */
qemu_system_reset_request();
} else {
pic_set_irq(NVRAM->IRQ, 1);
pic_set_irq(NVRAM->IRQ, 0);
}
}
static void set_up_watchdog (m48t59_t *NVRAM, uint8_t value)
{
uint64_t interval; /* in 1/16 seconds */
if (NVRAM->wd_timer != NULL) {
qemu_del_timer(NVRAM->wd_timer);
NVRAM->wd_timer = NULL;
}
NVRAM->buffer[0x1FF0] &= ~0x80;
if (value != 0) {
interval = (1 << (2 * (value & 0x03))) * ((value >> 2) & 0x1F);
qemu_mod_timer(NVRAM->wd_timer, ((uint64_t)time(NULL) * 1000) +
((interval * 1000) >> 4));
}
}
/* Direct access to NVRAM */
void m48t59_write (m48t59_t *NVRAM, uint32_t val)
{
struct tm tm;
int tmp;
if (NVRAM->addr > 0x1FF8 && NVRAM->addr < 0x2000)
NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, NVRAM->addr, val);
switch (NVRAM->addr) {
case 0x1FF0:
/* flags register : read-only */
break;
case 0x1FF1:
/* unused */
break;
case 0x1FF2:
/* alarm seconds */
tmp = fromBCD(val & 0x7F);
if (tmp >= 0 && tmp <= 59) {
get_alarm(NVRAM, &tm);
tm.tm_sec = tmp;
NVRAM->buffer[0x1FF2] = val;
set_alarm(NVRAM, &tm);
}
break;
case 0x1FF3:
/* alarm minutes */
tmp = fromBCD(val & 0x7F);
if (tmp >= 0 && tmp <= 59) {
get_alarm(NVRAM, &tm);
tm.tm_min = tmp;
NVRAM->buffer[0x1FF3] = val;
set_alarm(NVRAM, &tm);
}
break;
case 0x1FF4:
/* alarm hours */
tmp = fromBCD(val & 0x3F);
if (tmp >= 0 && tmp <= 23) {
get_alarm(NVRAM, &tm);
tm.tm_hour = tmp;
NVRAM->buffer[0x1FF4] = val;
set_alarm(NVRAM, &tm);
}
break;
case 0x1FF5:
/* alarm date */
tmp = fromBCD(val & 0x1F);
if (tmp != 0) {
get_alarm(NVRAM, &tm);
tm.tm_mday = tmp;
NVRAM->buffer[0x1FF5] = val;
set_alarm(NVRAM, &tm);
}
break;
case 0x1FF6:
/* interrupts */
NVRAM->buffer[0x1FF6] = val;
break;
case 0x1FF7:
/* watchdog */
NVRAM->buffer[0x1FF7] = val;
set_up_watchdog(NVRAM, val);
break;
case 0x1FF8:
/* control */
NVRAM->buffer[0x1FF8] = (val & ~0xA0) | 0x90;
break;
case 0x1FF9:
/* seconds (BCD) */
tmp = fromBCD(val & 0x7F);
if (tmp >= 0 && tmp <= 59) {
get_time(NVRAM, &tm);
tm.tm_sec = tmp;
set_time(NVRAM, &tm);
}
if ((val & 0x80) ^ (NVRAM->buffer[0x1FF9] & 0x80)) {
if (val & 0x80) {
NVRAM->stop_time = time(NULL);
} else {
NVRAM->time_offset += NVRAM->stop_time - time(NULL);
NVRAM->stop_time = 0;
}
}
NVRAM->buffer[0x1FF9] = val & 0x80;
break;
case 0x1FFA:
/* minutes (BCD) */
tmp = fromBCD(val & 0x7F);
if (tmp >= 0 && tmp <= 59) {
get_time(NVRAM, &tm);
tm.tm_min = tmp;
set_time(NVRAM, &tm);
}
break;
case 0x1FFB:
/* hours (BCD) */
tmp = fromBCD(val & 0x3F);
if (tmp >= 0 && tmp <= 23) {
get_time(NVRAM, &tm);
tm.tm_hour = tmp;
set_time(NVRAM, &tm);
}
break;
case 0x1FFC:
/* day of the week / century */
tmp = fromBCD(val & 0x07);
get_time(NVRAM, &tm);
tm.tm_wday = tmp;
set_time(NVRAM, &tm);
NVRAM->buffer[0x1FFC] = val & 0x40;
break;
case 0x1FFD:
/* date */
tmp = fromBCD(val & 0x1F);
if (tmp != 0) {
get_time(NVRAM, &tm);
tm.tm_mday = tmp;
set_time(NVRAM, &tm);
}
break;
case 0x1FFE:
/* month */
tmp = fromBCD(val & 0x1F);
if (tmp >= 1 && tmp <= 12) {
get_time(NVRAM, &tm);
tm.tm_mon = tmp - 1;
set_time(NVRAM, &tm);
}
break;
case 0x1FFF:
/* year */
tmp = fromBCD(val);
if (tmp >= 0 && tmp <= 99) {
get_time(NVRAM, &tm);
tm.tm_year = fromBCD(val);
set_time(NVRAM, &tm);
}
break;
default:
/* Check lock registers state */
if (NVRAM->addr >= 0x20 && NVRAM->addr <= 0x2F && (NVRAM->lock & 1))
break;
if (NVRAM->addr >= 0x30 && NVRAM->addr <= 0x3F && (NVRAM->lock & 2))
break;
if (NVRAM->addr < 0x1FF0 ||
(NVRAM->addr > 0x1FFF && NVRAM->addr < NVRAM->size)) {
NVRAM->buffer[NVRAM->addr] = val & 0xFF;
}
break;
}
}
uint32_t m48t59_read (m48t59_t *NVRAM)
{
struct tm tm;
uint32_t retval = 0xFF;
switch (NVRAM->addr) {
case 0x1FF0:
/* flags register */
goto do_read;
case 0x1FF1:
/* unused */
retval = 0;
break;
case 0x1FF2:
/* alarm seconds */
goto do_read;
case 0x1FF3:
/* alarm minutes */
goto do_read;
case 0x1FF4:
/* alarm hours */
goto do_read;
case 0x1FF5:
/* alarm date */
goto do_read;
case 0x1FF6:
/* interrupts */
goto do_read;
case 0x1FF7:
/* A read resets the watchdog */
set_up_watchdog(NVRAM, NVRAM->buffer[0x1FF7]);
goto do_read;
case 0x1FF8:
/* control */
goto do_read;
case 0x1FF9:
/* seconds (BCD) */
get_time(NVRAM, &tm);
retval = (NVRAM->buffer[0x1FF9] & 0x80) | toBCD(tm.tm_sec);
break;
case 0x1FFA:
/* minutes (BCD) */
get_time(NVRAM, &tm);
retval = toBCD(tm.tm_min);
break;
case 0x1FFB:
/* hours (BCD) */
get_time(NVRAM, &tm);
retval = toBCD(tm.tm_hour);
break;
case 0x1FFC:
/* day of the week / century */
get_time(NVRAM, &tm);
retval = NVRAM->buffer[0x1FFC] | tm.tm_wday;
break;
case 0x1FFD:
/* date */
get_time(NVRAM, &tm);
retval = toBCD(tm.tm_mday);
break;
case 0x1FFE:
/* month */
get_time(NVRAM, &tm);
retval = toBCD(tm.tm_mon + 1);
break;
case 0x1FFF:
/* year */
get_time(NVRAM, &tm);
retval = toBCD(tm.tm_year);
break;
default:
/* Check lock registers state */
if (NVRAM->addr >= 0x20 && NVRAM->addr <= 0x2F && (NVRAM->lock & 1))
break;
if (NVRAM->addr >= 0x30 && NVRAM->addr <= 0x3F && (NVRAM->lock & 2))
break;
if (NVRAM->addr < 0x1FF0 ||
(NVRAM->addr > 0x1FFF && NVRAM->addr < NVRAM->size)) {
do_read:
retval = NVRAM->buffer[NVRAM->addr];
}
break;
}
if (NVRAM->addr > 0x1FF9 && NVRAM->addr < 0x2000)
NVRAM_PRINTF("0x%08x <= 0x%08x\n", NVRAM->addr, retval);
return retval;
}
void m48t59_set_addr (m48t59_t *NVRAM, uint32_t addr)
{
NVRAM->addr = addr;
}
void m48t59_toggle_lock (m48t59_t *NVRAM, int lock)
{
NVRAM->lock ^= 1 << lock;
}
/* IO access to NVRAM */
static void NVRAM_writeb (void *opaque, uint32_t addr, uint32_t val)
{
m48t59_t *NVRAM = opaque;
addr -= NVRAM->io_base;
NVRAM_PRINTF("0x%08x => 0x%08x\n", addr, val);
switch (addr) {
case 0:
NVRAM->addr &= ~0x00FF;
NVRAM->addr |= val;
break;
case 1:
NVRAM->addr &= ~0xFF00;
NVRAM->addr |= val << 8;
break;
case 3:
m48t59_write(NVRAM, val);
NVRAM->addr = 0x0000;
break;
default:
break;
}
}
static uint32_t NVRAM_readb (void *opaque, uint32_t addr)
{
m48t59_t *NVRAM = opaque;
uint32_t retval;
addr -= NVRAM->io_base;
switch (addr) {
case 3:
retval = m48t59_read(NVRAM);
break;
default:
retval = -1;
break;
}
NVRAM_PRINTF("0x%08x <= 0x%08x\n", addr, retval);
return retval;
}
static void nvram_writeb (void *opaque, target_phys_addr_t addr, uint32_t value)
{
m48t59_t *NVRAM = opaque;
addr -= NVRAM->mem_base;
if (addr < 0x1FF0)
NVRAM->buffer[addr] = value;
}
static void nvram_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
{
m48t59_t *NVRAM = opaque;
addr -= NVRAM->mem_base;
if (addr < 0x1FF0) {
NVRAM->buffer[addr] = value >> 8;
NVRAM->buffer[addr + 1] = value;
}
}
static void nvram_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
{
m48t59_t *NVRAM = opaque;
addr -= NVRAM->mem_base;
if (addr < 0x1FF0) {
NVRAM->buffer[addr] = value >> 24;
NVRAM->buffer[addr + 1] = value >> 16;
NVRAM->buffer[addr + 2] = value >> 8;
NVRAM->buffer[addr + 3] = value;
}
}
static uint32_t nvram_readb (void *opaque, target_phys_addr_t addr)
{
m48t59_t *NVRAM = opaque;
uint32_t retval = 0;
addr -= NVRAM->mem_base;
if (addr < 0x1FF0)
retval = NVRAM->buffer[addr];
return retval;
}
static uint32_t nvram_readw (void *opaque, target_phys_addr_t addr)
{
m48t59_t *NVRAM = opaque;
uint32_t retval = 0;
addr -= NVRAM->mem_base;
if (addr < 0x1FF0) {
retval = NVRAM->buffer[addr] << 8;
retval |= NVRAM->buffer[addr + 1];
}
return retval;
}
static uint32_t nvram_readl (void *opaque, target_phys_addr_t addr)
{
m48t59_t *NVRAM = opaque;
uint32_t retval = 0;
addr -= NVRAM->mem_base;
if (addr < 0x1FF0) {
retval = NVRAM->buffer[addr] << 24;
retval |= NVRAM->buffer[addr + 1] << 16;
retval |= NVRAM->buffer[addr + 2] << 8;
retval |= NVRAM->buffer[addr + 3];
}
return retval;
}
static CPUWriteMemoryFunc *nvram_write[] = {
&nvram_writeb,
&nvram_writew,
&nvram_writel,
};
static CPUReadMemoryFunc *nvram_read[] = {
&nvram_readb,
&nvram_readw,
&nvram_readl,
};
/* Initialisation routine */
m48t59_t *m48t59_init (int IRQ, uint32_t mem_base,
uint32_t io_base, uint16_t size)
{
m48t59_t *s;
s = qemu_mallocz(sizeof(m48t59_t));
if (!s)
return NULL;
s->buffer = qemu_mallocz(size);
if (!s->buffer) {
qemu_free(s);
return NULL;
}
s->IRQ = IRQ;
s->size = size;
s->mem_base = mem_base;
s->io_base = io_base;
s->addr = 0;
register_ioport_read(io_base, 0x04, 1, NVRAM_readb, s);
register_ioport_write(io_base, 0x04, 1, NVRAM_writeb, s);
if (mem_base != 0) {
s->mem_index = cpu_register_io_memory(0, nvram_read, nvram_write, s);
cpu_register_physical_memory(mem_base, 0x4000, s->mem_index);
}
s->alrm_timer = qemu_new_timer(vm_clock, &alarm_cb, s);
s->wd_timer = qemu_new_timer(vm_clock, &watchdog_cb, s);
s->lock = 0;
return s;
}