blob: a83e5b8272360e6176b7b377c73f3ded51c2e983 [file] [log] [blame]
/*
* QEMU Sparc SLAVIO interrupt controller emulation
*
* Copyright (c) 2003-2005 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "sun4m.h"
#include "monitor.h"
#include "sysbus.h"
#include "trace.h"
//#define DEBUG_IRQ_COUNT
/*
* Registers of interrupt controller in sun4m.
*
* This is the interrupt controller part of chip STP2001 (Slave I/O), also
* produced as NCR89C105. See
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
*
* There is a system master controller and one for each cpu.
*
*/
#define MAX_CPUS 16
#define MAX_PILS 16
struct SLAVIO_INTCTLState;
typedef struct SLAVIO_CPUINTCTLState {
uint32_t intreg_pending;
struct SLAVIO_INTCTLState *master;
uint32_t cpu;
uint32_t irl_out;
} SLAVIO_CPUINTCTLState;
typedef struct SLAVIO_INTCTLState {
SysBusDevice busdev;
uint32_t intregm_pending;
uint32_t intregm_disabled;
uint32_t target_cpu;
#ifdef DEBUG_IRQ_COUNT
uint64_t irq_count[32];
#endif
qemu_irq cpu_irqs[MAX_CPUS][MAX_PILS];
SLAVIO_CPUINTCTLState slaves[MAX_CPUS];
} SLAVIO_INTCTLState;
#define INTCTL_MAXADDR 0xf
#define INTCTL_SIZE (INTCTL_MAXADDR + 1)
#define INTCTLM_SIZE 0x14
#define MASTER_IRQ_MASK ~0x0fa2007f
#define MASTER_DISABLE 0x80000000
#define CPU_SOFTIRQ_MASK 0xfffe0000
#define CPU_IRQ_INT15_IN (1 << 15)
#define CPU_IRQ_TIMER_IN (1 << 14)
static void slavio_check_interrupts(SLAVIO_INTCTLState *s, int set_irqs);
// per-cpu interrupt controller
static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr)
{
SLAVIO_CPUINTCTLState *s = opaque;
uint32_t saddr, ret;
saddr = addr >> 2;
switch (saddr) {
case 0:
ret = s->intreg_pending;
break;
default:
ret = 0;
break;
}
trace_slavio_intctl_mem_readl(s->cpu, addr, ret);
return ret;
}
static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
SLAVIO_CPUINTCTLState *s = opaque;
uint32_t saddr;
saddr = addr >> 2;
trace_slavio_intctl_mem_writel(s->cpu, addr, val);
switch (saddr) {
case 1: // clear pending softints
val &= CPU_SOFTIRQ_MASK | CPU_IRQ_INT15_IN;
s->intreg_pending &= ~val;
slavio_check_interrupts(s->master, 1);
trace_slavio_intctl_mem_writel_clear(s->cpu, val, s->intreg_pending);
break;
case 2: // set softint
val &= CPU_SOFTIRQ_MASK;
s->intreg_pending |= val;
slavio_check_interrupts(s->master, 1);
trace_slavio_intctl_mem_writel_set(s->cpu, val, s->intreg_pending);
break;
default:
break;
}
}
static CPUReadMemoryFunc * const slavio_intctl_mem_read[3] = {
NULL,
NULL,
slavio_intctl_mem_readl,
};
static CPUWriteMemoryFunc * const slavio_intctl_mem_write[3] = {
NULL,
NULL,
slavio_intctl_mem_writel,
};
// master system interrupt controller
static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr)
{
SLAVIO_INTCTLState *s = opaque;
uint32_t saddr, ret;
saddr = addr >> 2;
switch (saddr) {
case 0:
ret = s->intregm_pending & ~MASTER_DISABLE;
break;
case 1:
ret = s->intregm_disabled & MASTER_IRQ_MASK;
break;
case 4:
ret = s->target_cpu;
break;
default:
ret = 0;
break;
}
trace_slavio_intctlm_mem_readl(addr, ret);
return ret;
}
static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
SLAVIO_INTCTLState *s = opaque;
uint32_t saddr;
saddr = addr >> 2;
trace_slavio_intctlm_mem_writel(addr, val);
switch (saddr) {
case 2: // clear (enable)
// Force clear unused bits
val &= MASTER_IRQ_MASK;
s->intregm_disabled &= ~val;
trace_slavio_intctlm_mem_writel_enable(val, s->intregm_disabled);
slavio_check_interrupts(s, 1);
break;
case 3: // set (disable; doesn't affect pending)
// Force clear unused bits
val &= MASTER_IRQ_MASK;
s->intregm_disabled |= val;
slavio_check_interrupts(s, 1);
trace_slavio_intctlm_mem_writel_disable(val, s->intregm_disabled);
break;
case 4:
s->target_cpu = val & (MAX_CPUS - 1);
slavio_check_interrupts(s, 1);
trace_slavio_intctlm_mem_writel_target(s->target_cpu);
break;
default:
break;
}
}
static CPUReadMemoryFunc * const slavio_intctlm_mem_read[3] = {
NULL,
NULL,
slavio_intctlm_mem_readl,
};
static CPUWriteMemoryFunc * const slavio_intctlm_mem_write[3] = {
NULL,
NULL,
slavio_intctlm_mem_writel,
};
void slavio_pic_info(Monitor *mon, DeviceState *dev)
{
SysBusDevice *sd;
SLAVIO_INTCTLState *s;
int i;
sd = sysbus_from_qdev(dev);
s = FROM_SYSBUS(SLAVIO_INTCTLState, sd);
for (i = 0; i < MAX_CPUS; i++) {
monitor_printf(mon, "per-cpu %d: pending 0x%08x\n", i,
s->slaves[i].intreg_pending);
}
monitor_printf(mon, "master: pending 0x%08x, disabled 0x%08x\n",
s->intregm_pending, s->intregm_disabled);
}
void slavio_irq_info(Monitor *mon, DeviceState *dev)
{
#ifndef DEBUG_IRQ_COUNT
monitor_printf(mon, "irq statistic code not compiled.\n");
#else
SysBusDevice *sd;
SLAVIO_INTCTLState *s;
int i;
int64_t count;
sd = sysbus_from_qdev(dev);
s = FROM_SYSBUS(SLAVIO_INTCTLState, sd);
monitor_printf(mon, "IRQ statistics:\n");
for (i = 0; i < 32; i++) {
count = s->irq_count[i];
if (count > 0)
monitor_printf(mon, "%2d: %" PRId64 "\n", i, count);
}
#endif
}
static const uint32_t intbit_to_level[] = {
2, 3, 5, 7, 9, 11, 13, 2, 3, 5, 7, 9, 11, 13, 12, 12,
6, 13, 4, 10, 8, 9, 11, 0, 0, 0, 0, 15, 15, 15, 15, 0,
};
static void slavio_check_interrupts(SLAVIO_INTCTLState *s, int set_irqs)
{
uint32_t pending = s->intregm_pending, pil_pending;
unsigned int i, j;
pending &= ~s->intregm_disabled;
trace_slavio_check_interrupts(pending, s->intregm_disabled);
for (i = 0; i < MAX_CPUS; i++) {
pil_pending = 0;
/* If we are the current interrupt target, get hard interrupts */
if (pending && !(s->intregm_disabled & MASTER_DISABLE) &&
(i == s->target_cpu)) {
for (j = 0; j < 32; j++) {
if ((pending & (1 << j)) && intbit_to_level[j]) {
pil_pending |= 1 << intbit_to_level[j];
}
}
}
/* Calculate current pending hard interrupts for display */
s->slaves[i].intreg_pending &= CPU_SOFTIRQ_MASK | CPU_IRQ_INT15_IN |
CPU_IRQ_TIMER_IN;
if (i == s->target_cpu) {
for (j = 0; j < 32; j++) {
if ((s->intregm_pending & (1 << j)) && intbit_to_level[j]) {
s->slaves[i].intreg_pending |= 1 << intbit_to_level[j];
}
}
}
/* Level 15 and CPU timer interrupts are only masked when
the MASTER_DISABLE bit is set */
if (!(s->intregm_disabled & MASTER_DISABLE)) {
pil_pending |= s->slaves[i].intreg_pending &
(CPU_IRQ_INT15_IN | CPU_IRQ_TIMER_IN);
}
/* Add soft interrupts */
pil_pending |= (s->slaves[i].intreg_pending & CPU_SOFTIRQ_MASK) >> 16;
if (set_irqs) {
/* Since there is not really an interrupt 0 (and pil_pending
* and irl_out bit zero are thus always zero) there is no need
* to do anything with cpu_irqs[i][0] and it is OK not to do
* the j=0 iteration of this loop.
*/
for (j = MAX_PILS-1; j > 0; j--) {
if (pil_pending & (1 << j)) {
if (!(s->slaves[i].irl_out & (1 << j))) {
qemu_irq_raise(s->cpu_irqs[i][j]);
}
} else {
if (s->slaves[i].irl_out & (1 << j)) {
qemu_irq_lower(s->cpu_irqs[i][j]);
}
}
}
}
s->slaves[i].irl_out = pil_pending;
}
}
/*
* "irq" here is the bit number in the system interrupt register to
* separate serial and keyboard interrupts sharing a level.
*/
static void slavio_set_irq(void *opaque, int irq, int level)
{
SLAVIO_INTCTLState *s = opaque;
uint32_t mask = 1 << irq;
uint32_t pil = intbit_to_level[irq];
unsigned int i;
trace_slavio_set_irq(s->target_cpu, irq, pil, level);
if (pil > 0) {
if (level) {
#ifdef DEBUG_IRQ_COUNT
s->irq_count[pil]++;
#endif
s->intregm_pending |= mask;
if (pil == 15) {
for (i = 0; i < MAX_CPUS; i++) {
s->slaves[i].intreg_pending |= 1 << pil;
}
}
} else {
s->intregm_pending &= ~mask;
if (pil == 15) {
for (i = 0; i < MAX_CPUS; i++) {
s->slaves[i].intreg_pending &= ~(1 << pil);
}
}
}
slavio_check_interrupts(s, 1);
}
}
static void slavio_set_timer_irq_cpu(void *opaque, int cpu, int level)
{
SLAVIO_INTCTLState *s = opaque;
trace_slavio_set_timer_irq_cpu(cpu, level);
if (level) {
s->slaves[cpu].intreg_pending |= CPU_IRQ_TIMER_IN;
} else {
s->slaves[cpu].intreg_pending &= ~CPU_IRQ_TIMER_IN;
}
slavio_check_interrupts(s, 1);
}
static void slavio_set_irq_all(void *opaque, int irq, int level)
{
if (irq < 32) {
slavio_set_irq(opaque, irq, level);
} else {
slavio_set_timer_irq_cpu(opaque, irq - 32, level);
}
}
static int vmstate_intctl_post_load(void *opaque, int version_id)
{
SLAVIO_INTCTLState *s = opaque;
slavio_check_interrupts(s, 0);
return 0;
}
static const VMStateDescription vmstate_intctl_cpu = {
.name ="slavio_intctl_cpu",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField []) {
VMSTATE_UINT32(intreg_pending, SLAVIO_CPUINTCTLState),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_intctl = {
.name ="slavio_intctl",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.post_load = vmstate_intctl_post_load,
.fields = (VMStateField []) {
VMSTATE_STRUCT_ARRAY(slaves, SLAVIO_INTCTLState, MAX_CPUS, 1,
vmstate_intctl_cpu, SLAVIO_CPUINTCTLState),
VMSTATE_UINT32(intregm_pending, SLAVIO_INTCTLState),
VMSTATE_UINT32(intregm_disabled, SLAVIO_INTCTLState),
VMSTATE_UINT32(target_cpu, SLAVIO_INTCTLState),
VMSTATE_END_OF_LIST()
}
};
static void slavio_intctl_reset(DeviceState *d)
{
SLAVIO_INTCTLState *s = container_of(d, SLAVIO_INTCTLState, busdev.qdev);
int i;
for (i = 0; i < MAX_CPUS; i++) {
s->slaves[i].intreg_pending = 0;
s->slaves[i].irl_out = 0;
}
s->intregm_disabled = ~MASTER_IRQ_MASK;
s->intregm_pending = 0;
s->target_cpu = 0;
slavio_check_interrupts(s, 0);
}
static int slavio_intctl_init1(SysBusDevice *dev)
{
SLAVIO_INTCTLState *s = FROM_SYSBUS(SLAVIO_INTCTLState, dev);
int io_memory;
unsigned int i, j;
qdev_init_gpio_in(&dev->qdev, slavio_set_irq_all, 32 + MAX_CPUS);
io_memory = cpu_register_io_memory(slavio_intctlm_mem_read,
slavio_intctlm_mem_write, s,
DEVICE_NATIVE_ENDIAN);
sysbus_init_mmio(dev, INTCTLM_SIZE, io_memory);
for (i = 0; i < MAX_CPUS; i++) {
for (j = 0; j < MAX_PILS; j++) {
sysbus_init_irq(dev, &s->cpu_irqs[i][j]);
}
io_memory = cpu_register_io_memory(slavio_intctl_mem_read,
slavio_intctl_mem_write,
&s->slaves[i],
DEVICE_NATIVE_ENDIAN);
sysbus_init_mmio(dev, INTCTL_SIZE, io_memory);
s->slaves[i].cpu = i;
s->slaves[i].master = s;
}
return 0;
}
static SysBusDeviceInfo slavio_intctl_info = {
.init = slavio_intctl_init1,
.qdev.name = "slavio_intctl",
.qdev.size = sizeof(SLAVIO_INTCTLState),
.qdev.vmsd = &vmstate_intctl,
.qdev.reset = slavio_intctl_reset,
};
static void slavio_intctl_register_devices(void)
{
sysbus_register_withprop(&slavio_intctl_info);
}
device_init(slavio_intctl_register_devices)