| /* |
| * ARM CMSDK APB UART emulation |
| * |
| * Copyright (c) 2017 Linaro Limited |
| * Written by Peter Maydell |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 or |
| * (at your option) any later version. |
| */ |
| |
| /* This is a model of the "APB UART" which is part of the Cortex-M |
| * System Design Kit (CMSDK) and documented in the Cortex-M System |
| * Design Kit Technical Reference Manual (ARM DDI0479C): |
| * https://developer.arm.com/products/system-design/system-design-kits/cortex-m-system-design-kit |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/log.h" |
| #include "qemu/module.h" |
| #include "qapi/error.h" |
| #include "trace.h" |
| #include "hw/sysbus.h" |
| #include "hw/registerfields.h" |
| #include "chardev/char-fe.h" |
| #include "chardev/char-serial.h" |
| #include "hw/char/cmsdk-apb-uart.h" |
| |
| REG32(DATA, 0) |
| REG32(STATE, 4) |
| FIELD(STATE, TXFULL, 0, 1) |
| FIELD(STATE, RXFULL, 1, 1) |
| FIELD(STATE, TXOVERRUN, 2, 1) |
| FIELD(STATE, RXOVERRUN, 3, 1) |
| REG32(CTRL, 8) |
| FIELD(CTRL, TX_EN, 0, 1) |
| FIELD(CTRL, RX_EN, 1, 1) |
| FIELD(CTRL, TX_INTEN, 2, 1) |
| FIELD(CTRL, RX_INTEN, 3, 1) |
| FIELD(CTRL, TXO_INTEN, 4, 1) |
| FIELD(CTRL, RXO_INTEN, 5, 1) |
| FIELD(CTRL, HSTEST, 6, 1) |
| REG32(INTSTATUS, 0xc) |
| FIELD(INTSTATUS, TX, 0, 1) |
| FIELD(INTSTATUS, RX, 1, 1) |
| FIELD(INTSTATUS, TXO, 2, 1) |
| FIELD(INTSTATUS, RXO, 3, 1) |
| REG32(BAUDDIV, 0x10) |
| REG32(PID4, 0xFD0) |
| REG32(PID5, 0xFD4) |
| REG32(PID6, 0xFD8) |
| REG32(PID7, 0xFDC) |
| REG32(PID0, 0xFE0) |
| REG32(PID1, 0xFE4) |
| REG32(PID2, 0xFE8) |
| REG32(PID3, 0xFEC) |
| REG32(CID0, 0xFF0) |
| REG32(CID1, 0xFF4) |
| REG32(CID2, 0xFF8) |
| REG32(CID3, 0xFFC) |
| |
| /* PID/CID values */ |
| static const int uart_id[] = { |
| 0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */ |
| 0x21, 0xb8, 0x1b, 0x00, /* PID0..PID3 */ |
| 0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */ |
| }; |
| |
| static bool uart_baudrate_ok(CMSDKAPBUART *s) |
| { |
| /* The minimum permitted bauddiv setting is 16, so we just ignore |
| * settings below that (usually this means the device has just |
| * been reset and not yet programmed). |
| */ |
| return s->bauddiv >= 16 && s->bauddiv <= s->pclk_frq; |
| } |
| |
| static void uart_update_parameters(CMSDKAPBUART *s) |
| { |
| QEMUSerialSetParams ssp; |
| |
| /* This UART is always 8N1 but the baud rate is programmable. */ |
| if (!uart_baudrate_ok(s)) { |
| return; |
| } |
| |
| ssp.data_bits = 8; |
| ssp.parity = 'N'; |
| ssp.stop_bits = 1; |
| ssp.speed = s->pclk_frq / s->bauddiv; |
| qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp); |
| trace_cmsdk_apb_uart_set_params(ssp.speed); |
| } |
| |
| static void cmsdk_apb_uart_update(CMSDKAPBUART *s) |
| { |
| /* update outbound irqs, including handling the way the rxo and txo |
| * interrupt status bits are just logical AND of the overrun bit in |
| * STATE and the overrun interrupt enable bit in CTRL. |
| */ |
| uint32_t omask = (R_INTSTATUS_RXO_MASK | R_INTSTATUS_TXO_MASK); |
| s->intstatus &= ~omask; |
| s->intstatus |= (s->state & (s->ctrl >> 2) & omask); |
| |
| qemu_set_irq(s->txint, !!(s->intstatus & R_INTSTATUS_TX_MASK)); |
| qemu_set_irq(s->rxint, !!(s->intstatus & R_INTSTATUS_RX_MASK)); |
| qemu_set_irq(s->txovrint, !!(s->intstatus & R_INTSTATUS_TXO_MASK)); |
| qemu_set_irq(s->rxovrint, !!(s->intstatus & R_INTSTATUS_RXO_MASK)); |
| qemu_set_irq(s->uartint, !!(s->intstatus)); |
| } |
| |
| static int uart_can_receive(void *opaque) |
| { |
| CMSDKAPBUART *s = CMSDK_APB_UART(opaque); |
| |
| /* We can take a char if RX is enabled and the buffer is empty */ |
| if (s->ctrl & R_CTRL_RX_EN_MASK && !(s->state & R_STATE_RXFULL_MASK)) { |
| return 1; |
| } |
| return 0; |
| } |
| |
| static void uart_receive(void *opaque, const uint8_t *buf, int size) |
| { |
| CMSDKAPBUART *s = CMSDK_APB_UART(opaque); |
| |
| trace_cmsdk_apb_uart_receive(*buf); |
| |
| /* In fact uart_can_receive() ensures that we can't be |
| * called unless RX is enabled and the buffer is empty, |
| * but we include this logic as documentation of what the |
| * hardware does if a character arrives in these circumstances. |
| */ |
| if (!(s->ctrl & R_CTRL_RX_EN_MASK)) { |
| /* Just drop the character on the floor */ |
| return; |
| } |
| |
| if (s->state & R_STATE_RXFULL_MASK) { |
| s->state |= R_STATE_RXOVERRUN_MASK; |
| } |
| |
| s->rxbuf = *buf; |
| s->state |= R_STATE_RXFULL_MASK; |
| if (s->ctrl & R_CTRL_RX_INTEN_MASK) { |
| s->intstatus |= R_INTSTATUS_RX_MASK; |
| } |
| cmsdk_apb_uart_update(s); |
| } |
| |
| static uint64_t uart_read(void *opaque, hwaddr offset, unsigned size) |
| { |
| CMSDKAPBUART *s = CMSDK_APB_UART(opaque); |
| uint64_t r; |
| |
| switch (offset) { |
| case A_DATA: |
| r = s->rxbuf; |
| s->state &= ~R_STATE_RXFULL_MASK; |
| cmsdk_apb_uart_update(s); |
| qemu_chr_fe_accept_input(&s->chr); |
| break; |
| case A_STATE: |
| r = s->state; |
| break; |
| case A_CTRL: |
| r = s->ctrl; |
| break; |
| case A_INTSTATUS: |
| r = s->intstatus; |
| break; |
| case A_BAUDDIV: |
| r = s->bauddiv; |
| break; |
| case A_PID4 ... A_CID3: |
| r = uart_id[(offset - A_PID4) / 4]; |
| break; |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "CMSDK APB UART read: bad offset %x\n", (int) offset); |
| r = 0; |
| break; |
| } |
| trace_cmsdk_apb_uart_read(offset, r, size); |
| return r; |
| } |
| |
| /* Try to send tx data, and arrange to be called back later if |
| * we can't (ie the char backend is busy/blocking). |
| */ |
| static gboolean uart_transmit(GIOChannel *chan, GIOCondition cond, void *opaque) |
| { |
| CMSDKAPBUART *s = CMSDK_APB_UART(opaque); |
| int ret; |
| |
| s->watch_tag = 0; |
| |
| if (!(s->ctrl & R_CTRL_TX_EN_MASK) || !(s->state & R_STATE_TXFULL_MASK)) { |
| return FALSE; |
| } |
| |
| ret = qemu_chr_fe_write(&s->chr, &s->txbuf, 1); |
| if (ret <= 0) { |
| s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP, |
| uart_transmit, s); |
| if (!s->watch_tag) { |
| /* Most common reason to be here is "no chardev backend": |
| * just insta-drain the buffer, so the serial output |
| * goes into a void, rather than blocking the guest. |
| */ |
| goto buffer_drained; |
| } |
| /* Transmit pending */ |
| trace_cmsdk_apb_uart_tx_pending(); |
| return FALSE; |
| } |
| |
| buffer_drained: |
| /* Character successfully sent */ |
| trace_cmsdk_apb_uart_tx(s->txbuf); |
| s->state &= ~R_STATE_TXFULL_MASK; |
| /* Going from TXFULL set to clear triggers the tx interrupt */ |
| if (s->ctrl & R_CTRL_TX_INTEN_MASK) { |
| s->intstatus |= R_INTSTATUS_TX_MASK; |
| } |
| cmsdk_apb_uart_update(s); |
| return FALSE; |
| } |
| |
| static void uart_cancel_transmit(CMSDKAPBUART *s) |
| { |
| if (s->watch_tag) { |
| g_source_remove(s->watch_tag); |
| s->watch_tag = 0; |
| } |
| } |
| |
| static void uart_write(void *opaque, hwaddr offset, uint64_t value, |
| unsigned size) |
| { |
| CMSDKAPBUART *s = CMSDK_APB_UART(opaque); |
| |
| trace_cmsdk_apb_uart_write(offset, value, size); |
| |
| switch (offset) { |
| case A_DATA: |
| s->txbuf = value; |
| if (s->state & R_STATE_TXFULL_MASK) { |
| /* Buffer already full -- note the overrun and let the |
| * existing pending transmit callback handle the new char. |
| */ |
| s->state |= R_STATE_TXOVERRUN_MASK; |
| cmsdk_apb_uart_update(s); |
| } else { |
| s->state |= R_STATE_TXFULL_MASK; |
| uart_transmit(NULL, G_IO_OUT, s); |
| } |
| break; |
| case A_STATE: |
| /* Bits 0 and 1 are read only; bits 2 and 3 are W1C */ |
| s->state &= ~(value & |
| (R_STATE_TXOVERRUN_MASK | R_STATE_RXOVERRUN_MASK)); |
| cmsdk_apb_uart_update(s); |
| break; |
| case A_CTRL: |
| s->ctrl = value & 0x7f; |
| if ((s->ctrl & R_CTRL_TX_EN_MASK) && !uart_baudrate_ok(s)) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "CMSDK APB UART: Tx enabled with invalid baudrate\n"); |
| } |
| cmsdk_apb_uart_update(s); |
| break; |
| case A_INTSTATUS: |
| /* All bits are W1C. Clearing the overrun interrupt bits really |
| * clears the overrun status bits in the STATE register (which |
| * is then reflected into the intstatus value by the update function). |
| */ |
| s->state &= ~(value & (R_INTSTATUS_TXO_MASK | R_INTSTATUS_RXO_MASK)); |
| s->intstatus &= ~value; |
| cmsdk_apb_uart_update(s); |
| break; |
| case A_BAUDDIV: |
| s->bauddiv = value & 0xFFFFF; |
| uart_update_parameters(s); |
| break; |
| case A_PID4 ... A_CID3: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "CMSDK APB UART write: write to RO offset 0x%x\n", |
| (int)offset); |
| break; |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "CMSDK APB UART write: bad offset 0x%x\n", (int) offset); |
| break; |
| } |
| } |
| |
| static const MemoryRegionOps uart_ops = { |
| .read = uart_read, |
| .write = uart_write, |
| .endianness = DEVICE_LITTLE_ENDIAN, |
| }; |
| |
| static void cmsdk_apb_uart_reset(DeviceState *dev) |
| { |
| CMSDKAPBUART *s = CMSDK_APB_UART(dev); |
| |
| trace_cmsdk_apb_uart_reset(); |
| uart_cancel_transmit(s); |
| s->state = 0; |
| s->ctrl = 0; |
| s->intstatus = 0; |
| s->bauddiv = 0; |
| s->txbuf = 0; |
| s->rxbuf = 0; |
| } |
| |
| static void cmsdk_apb_uart_init(Object *obj) |
| { |
| SysBusDevice *sbd = SYS_BUS_DEVICE(obj); |
| CMSDKAPBUART *s = CMSDK_APB_UART(obj); |
| |
| memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000); |
| sysbus_init_mmio(sbd, &s->iomem); |
| sysbus_init_irq(sbd, &s->txint); |
| sysbus_init_irq(sbd, &s->rxint); |
| sysbus_init_irq(sbd, &s->txovrint); |
| sysbus_init_irq(sbd, &s->rxovrint); |
| sysbus_init_irq(sbd, &s->uartint); |
| } |
| |
| static void cmsdk_apb_uart_realize(DeviceState *dev, Error **errp) |
| { |
| CMSDKAPBUART *s = CMSDK_APB_UART(dev); |
| |
| if (s->pclk_frq == 0) { |
| error_setg(errp, "CMSDK APB UART: pclk-frq property must be set"); |
| return; |
| } |
| |
| /* This UART has no flow control, so we do not need to register |
| * an event handler to deal with CHR_EVENT_BREAK. |
| */ |
| qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive, |
| NULL, NULL, s, NULL, true); |
| } |
| |
| static int cmsdk_apb_uart_post_load(void *opaque, int version_id) |
| { |
| CMSDKAPBUART *s = CMSDK_APB_UART(opaque); |
| |
| /* If we have a pending character, arrange to resend it. */ |
| if (s->state & R_STATE_TXFULL_MASK) { |
| s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP, |
| uart_transmit, s); |
| } |
| uart_update_parameters(s); |
| return 0; |
| } |
| |
| static const VMStateDescription cmsdk_apb_uart_vmstate = { |
| .name = "cmsdk-apb-uart", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .post_load = cmsdk_apb_uart_post_load, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT32(state, CMSDKAPBUART), |
| VMSTATE_UINT32(ctrl, CMSDKAPBUART), |
| VMSTATE_UINT32(intstatus, CMSDKAPBUART), |
| VMSTATE_UINT32(bauddiv, CMSDKAPBUART), |
| VMSTATE_UINT8(txbuf, CMSDKAPBUART), |
| VMSTATE_UINT8(rxbuf, CMSDKAPBUART), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static Property cmsdk_apb_uart_properties[] = { |
| DEFINE_PROP_CHR("chardev", CMSDKAPBUART, chr), |
| DEFINE_PROP_UINT32("pclk-frq", CMSDKAPBUART, pclk_frq, 0), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static void cmsdk_apb_uart_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| |
| dc->realize = cmsdk_apb_uart_realize; |
| dc->vmsd = &cmsdk_apb_uart_vmstate; |
| dc->reset = cmsdk_apb_uart_reset; |
| dc->props = cmsdk_apb_uart_properties; |
| } |
| |
| static const TypeInfo cmsdk_apb_uart_info = { |
| .name = TYPE_CMSDK_APB_UART, |
| .parent = TYPE_SYS_BUS_DEVICE, |
| .instance_size = sizeof(CMSDKAPBUART), |
| .instance_init = cmsdk_apb_uart_init, |
| .class_init = cmsdk_apb_uart_class_init, |
| }; |
| |
| static void cmsdk_apb_uart_register_types(void) |
| { |
| type_register_static(&cmsdk_apb_uart_info); |
| } |
| |
| type_init(cmsdk_apb_uart_register_types); |